Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-09-11 12:03 -0400 (Thu, 11 Sep 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" | 4539 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4474 |
kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4519 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4544 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 990/2322 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-09-11 01:34:23 -0400 (Thu, 11 Sep 2025) |
EndedAt: 2025-09-11 01:50:18 -0400 (Thu, 11 Sep 2025) |
EllapsedTime: 955.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’ * using R version 4.5.1 Patched (2025-08-23 r88802) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 * running under: Ubuntu 24.04.3 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.15.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 34.975 0.284 35.304 corr_plot 34.061 0.460 34.524 FSmethod 33.264 0.528 33.795 pred_ensembel 13.109 0.386 12.214 enrichfindP 0.545 0.048 8.346 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 94.578207 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 97.320571 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 98.320046 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 105.801428 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 95.896129 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.733990 iter 10 value 93.977034 iter 20 value 93.958070 final value 93.956926 converged Fitting Repeat 2 # weights: 305 initial value 100.460415 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 101.528162 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 94.935279 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 104.410552 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 111.385695 iter 10 value 94.025289 iter 10 value 94.025289 iter 10 value 94.025289 final value 94.025289 converged Fitting Repeat 2 # weights: 507 initial value 107.649181 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 100.251248 iter 10 value 92.438650 final value 91.717242 converged Fitting Repeat 4 # weights: 507 initial value 106.411566 iter 10 value 89.964326 iter 20 value 89.870875 final value 89.870091 converged Fitting Repeat 5 # weights: 507 initial value 99.486493 iter 10 value 84.507900 iter 20 value 83.157463 iter 30 value 82.901879 iter 40 value 82.901704 final value 82.901697 converged Fitting Repeat 1 # weights: 103 initial value 97.552443 iter 10 value 93.821790 iter 20 value 87.469450 iter 30 value 84.363421 iter 40 value 84.165112 iter 50 value 83.523141 iter 60 value 83.244137 final value 83.243067 converged Fitting Repeat 2 # weights: 103 initial value 105.142650 iter 10 value 93.857333 iter 20 value 87.315340 iter 30 value 85.370937 iter 40 value 85.109982 iter 50 value 84.100027 iter 60 value 84.009340 iter 70 value 83.893106 iter 80 value 83.888858 iter 90 value 83.885052 final value 83.884938 converged Fitting Repeat 3 # weights: 103 initial value 99.790929 iter 10 value 91.460605 iter 20 value 91.188743 iter 30 value 90.201342 iter 40 value 90.158513 iter 50 value 90.138826 final value 90.138821 converged Fitting Repeat 4 # weights: 103 initial value 103.624850 iter 10 value 93.975077 iter 20 value 87.393396 iter 30 value 86.390588 iter 40 value 85.119352 iter 50 value 84.577722 iter 60 value 84.334102 iter 70 value 84.312127 final value 84.312049 converged Fitting Repeat 5 # weights: 103 initial value 98.232896 iter 10 value 94.059599 iter 20 value 94.010385 iter 30 value 88.521242 iter 40 value 85.985241 iter 50 value 84.977596 iter 60 value 84.014763 iter 70 value 83.856699 iter 80 value 83.847582 iter 80 value 83.847581 iter 80 value 83.847581 final value 83.847581 converged Fitting Repeat 1 # weights: 305 initial value 97.958166 iter 10 value 89.274416 iter 20 value 87.484394 iter 30 value 83.784682 iter 40 value 82.653839 iter 50 value 82.474339 iter 60 value 82.278612 iter 70 value 81.770979 iter 80 value 81.107552 iter 90 value 80.655251 iter 100 value 80.374706 final value 80.374706 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 127.069905 iter 10 value 94.108178 iter 20 value 93.501677 iter 30 value 89.539096 iter 40 value 85.879803 iter 50 value 85.132324 iter 60 value 83.917327 iter 70 value 83.206973 iter 80 value 82.771449 iter 90 value 80.837102 iter 100 value 80.475238 final value 80.475238 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.643325 iter 10 value 92.970402 iter 20 value 85.734519 iter 30 value 84.149797 iter 40 value 83.957542 iter 50 value 83.783388 iter 60 value 83.094716 iter 70 value 81.623735 iter 80 value 81.501156 iter 90 value 81.378467 iter 100 value 80.710537 final value 80.710537 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.874047 iter 10 value 92.550202 iter 20 value 84.632460 iter 30 value 84.476873 iter 40 value 84.237765 iter 50 value 83.916111 iter 60 value 83.272402 iter 70 value 82.201263 iter 80 value 81.971141 iter 90 value 81.582740 iter 100 value 81.515031 final value 81.515031 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.482227 iter 10 value 94.039786 iter 20 value 90.653512 iter 30 value 89.493887 iter 40 value 83.533219 iter 50 value 82.989866 iter 60 value 81.933758 iter 70 value 81.223678 iter 80 value 81.156429 iter 90 value 80.960582 iter 100 value 80.748604 final value 80.748604 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.323133 iter 10 value 93.335807 iter 20 value 90.483667 iter 30 value 89.767578 iter 40 value 85.368322 iter 50 value 83.739554 iter 60 value 83.002473 iter 70 value 81.668703 iter 80 value 81.510152 iter 90 value 81.160318 iter 100 value 80.902961 final value 80.902961 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.339205 iter 10 value 94.050605 iter 20 value 85.734948 iter 30 value 84.725719 iter 40 value 84.404404 iter 50 value 83.936337 iter 60 value 82.134120 iter 70 value 81.657119 iter 80 value 81.585172 iter 90 value 81.526271 iter 100 value 81.500441 final value 81.500441 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.258375 iter 10 value 93.862906 iter 20 value 90.818072 iter 30 value 89.659785 iter 40 value 87.501929 iter 50 value 83.915709 iter 60 value 81.935661 iter 70 value 81.701383 iter 80 value 81.211798 iter 90 value 80.739492 iter 100 value 80.476183 final value 80.476183 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.310505 iter 10 value 93.998398 iter 20 value 90.156895 iter 30 value 89.705858 iter 40 value 87.552605 iter 50 value 84.111420 iter 60 value 83.537805 iter 70 value 82.275960 iter 80 value 81.270161 iter 90 value 80.972199 iter 100 value 80.145875 final value 80.145875 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.373708 iter 10 value 94.113915 iter 20 value 92.875689 iter 30 value 90.418787 iter 40 value 85.910015 iter 50 value 85.106867 iter 60 value 83.713595 iter 70 value 82.831333 iter 80 value 81.338280 iter 90 value 80.233567 iter 100 value 79.688359 final value 79.688359 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.027183 final value 94.054528 converged Fitting Repeat 2 # weights: 103 initial value 106.229519 final value 94.054546 converged Fitting Repeat 3 # weights: 103 initial value 101.559254 iter 10 value 94.010354 iter 20 value 94.008977 iter 30 value 93.965839 final value 93.956956 converged Fitting Repeat 4 # weights: 103 initial value 99.807624 final value 94.054781 converged Fitting Repeat 5 # weights: 103 initial value 102.700451 final value 94.054410 converged Fitting Repeat 1 # weights: 305 initial value 95.938597 iter 10 value 94.057054 iter 20 value 93.981262 iter 30 value 85.272388 final value 85.218340 converged Fitting Repeat 2 # weights: 305 initial value 94.182388 iter 10 value 94.046687 iter 20 value 92.621414 iter 30 value 90.928445 iter 40 value 90.571211 iter 50 value 90.569344 iter 60 value 90.555267 iter 70 value 90.554880 iter 80 value 90.518087 iter 90 value 90.447714 iter 100 value 90.447653 final value 90.447653 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.442924 iter 10 value 94.014080 iter 20 value 93.886791 iter 30 value 90.159239 iter 40 value 81.846824 iter 50 value 81.832266 iter 60 value 81.815800 iter 70 value 81.809673 final value 81.809367 converged Fitting Repeat 4 # weights: 305 initial value 99.068239 iter 10 value 89.481304 iter 20 value 82.415057 iter 30 value 82.238920 iter 30 value 82.238919 final value 82.238919 converged Fitting Repeat 5 # weights: 305 initial value 104.489982 iter 10 value 85.974502 iter 20 value 83.734875 iter 30 value 83.733137 iter 40 value 83.729604 iter 50 value 83.648129 iter 60 value 83.544831 iter 70 value 82.969042 final value 82.905558 converged Fitting Repeat 1 # weights: 507 initial value 108.438562 iter 10 value 94.061385 iter 20 value 93.597306 iter 30 value 85.247391 iter 40 value 85.223268 iter 50 value 85.221424 iter 60 value 85.219963 iter 70 value 85.101555 iter 80 value 85.100185 iter 90 value 84.963527 iter 100 value 82.902029 final value 82.902029 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.968191 iter 10 value 94.064046 iter 20 value 94.061705 iter 30 value 94.058340 iter 40 value 94.052823 iter 50 value 94.030854 iter 60 value 93.823553 iter 70 value 85.869193 iter 80 value 84.616224 final value 84.616163 converged Fitting Repeat 3 # weights: 507 initial value 99.444440 iter 10 value 94.017394 iter 20 value 94.008914 iter 30 value 93.696103 iter 40 value 87.891179 iter 50 value 85.039085 iter 60 value 83.289668 iter 70 value 81.895694 iter 80 value 81.894642 final value 81.879207 converged Fitting Repeat 4 # weights: 507 initial value 99.536240 iter 10 value 93.559964 iter 20 value 93.553597 final value 93.552440 converged Fitting Repeat 5 # weights: 507 initial value 107.559845 iter 10 value 94.061064 iter 20 value 93.939213 iter 30 value 86.814616 iter 40 value 86.697185 iter 50 value 86.695984 iter 60 value 85.279114 iter 70 value 84.858311 iter 80 value 81.345260 iter 90 value 80.797955 iter 100 value 80.791118 final value 80.791118 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.893015 final value 94.312038 converged Fitting Repeat 2 # weights: 103 initial value 100.556961 iter 10 value 94.165247 final value 93.345953 converged Fitting Repeat 3 # weights: 103 initial value 95.465427 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.494776 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 97.953443 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 111.499295 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.906319 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 100.801471 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.116716 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 103.348525 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 100.761414 iter 10 value 93.809664 final value 93.792430 converged Fitting Repeat 2 # weights: 507 initial value 129.828197 final value 93.809646 converged Fitting Repeat 3 # weights: 507 initial value 137.115466 iter 10 value 94.466832 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 97.406749 final value 94.484210 converged Fitting Repeat 5 # weights: 507 initial value 104.831726 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 99.067763 iter 10 value 94.488634 iter 20 value 94.027117 iter 30 value 87.092351 iter 40 value 86.043802 iter 50 value 85.878337 iter 60 value 85.194211 iter 70 value 85.135303 final value 85.135267 converged Fitting Repeat 2 # weights: 103 initial value 101.605148 iter 10 value 94.432455 iter 20 value 88.628456 iter 30 value 82.925601 iter 40 value 82.767575 iter 50 value 81.912041 iter 60 value 80.807286 iter 70 value 80.665645 final value 80.644385 converged Fitting Repeat 3 # weights: 103 initial value 100.020867 iter 10 value 94.447811 iter 20 value 87.972345 iter 30 value 86.141835 iter 40 value 85.925767 iter 50 value 85.819918 iter 60 value 85.189335 iter 70 value 85.135616 iter 80 value 85.135286 final value 85.135267 converged Fitting Repeat 4 # weights: 103 initial value 98.387985 iter 10 value 94.476575 iter 20 value 94.194765 iter 30 value 93.724135 iter 40 value 91.755633 iter 50 value 88.372528 iter 60 value 86.841914 iter 70 value 85.290221 iter 80 value 83.246645 iter 90 value 82.669897 iter 100 value 82.444424 final value 82.444424 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.211910 iter 10 value 94.488320 iter 20 value 93.866628 iter 30 value 93.705208 iter 40 value 87.388063 iter 50 value 85.681765 iter 60 value 85.317313 iter 70 value 85.175829 iter 80 value 85.135279 final value 85.135267 converged Fitting Repeat 1 # weights: 305 initial value 100.798485 iter 10 value 93.745788 iter 20 value 85.349522 iter 30 value 83.284841 iter 40 value 82.737328 iter 50 value 81.464621 iter 60 value 81.356539 iter 70 value 81.130795 iter 80 value 80.585087 iter 90 value 79.992265 iter 100 value 79.926377 final value 79.926377 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.001238 iter 10 value 92.628712 iter 20 value 90.816104 iter 30 value 89.547360 iter 40 value 89.261724 iter 50 value 89.150979 iter 60 value 87.851055 iter 70 value 87.106162 iter 80 value 86.995195 iter 90 value 86.636946 iter 100 value 84.608138 final value 84.608138 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 106.224110 iter 10 value 94.714756 iter 20 value 93.913894 iter 30 value 86.212003 iter 40 value 82.669376 iter 50 value 82.371285 iter 60 value 81.856628 iter 70 value 81.035149 iter 80 value 80.767010 iter 90 value 80.231666 iter 100 value 79.854636 final value 79.854636 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 118.522492 iter 10 value 94.455113 iter 20 value 93.754798 iter 30 value 93.592165 iter 40 value 91.407931 iter 50 value 85.746519 iter 60 value 84.765645 iter 70 value 81.667605 iter 80 value 81.241250 iter 90 value 80.722085 iter 100 value 79.858354 final value 79.858354 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.098735 iter 10 value 94.487192 iter 20 value 86.188314 iter 30 value 86.067941 iter 40 value 85.230351 iter 50 value 84.775714 iter 60 value 84.705032 iter 70 value 84.373724 iter 80 value 83.087137 iter 90 value 81.504377 iter 100 value 80.930839 final value 80.930839 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 147.224298 iter 10 value 94.522290 iter 20 value 87.731291 iter 30 value 87.369880 iter 40 value 87.129440 iter 50 value 84.592454 iter 60 value 82.931447 iter 70 value 82.213855 iter 80 value 81.441272 iter 90 value 80.312020 iter 100 value 79.972084 final value 79.972084 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.849842 iter 10 value 94.321940 iter 20 value 86.855003 iter 30 value 86.018632 iter 40 value 84.846830 iter 50 value 83.377096 iter 60 value 82.550537 iter 70 value 82.075224 iter 80 value 81.691056 iter 90 value 81.384132 iter 100 value 81.250375 final value 81.250375 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.101814 iter 10 value 96.225124 iter 20 value 87.770927 iter 30 value 87.506840 iter 40 value 87.300210 iter 50 value 86.198699 iter 60 value 84.330849 iter 70 value 83.925363 iter 80 value 83.510824 iter 90 value 82.246319 iter 100 value 81.805242 final value 81.805242 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.495352 iter 10 value 94.590763 iter 20 value 94.388531 iter 30 value 92.596184 iter 40 value 90.748167 iter 50 value 89.686355 iter 60 value 86.158920 iter 70 value 83.415617 iter 80 value 81.052860 iter 90 value 80.527792 iter 100 value 79.950017 final value 79.950017 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 126.501445 iter 10 value 94.422785 iter 20 value 93.716315 iter 30 value 92.667641 iter 40 value 88.772770 iter 50 value 84.344614 iter 60 value 82.094022 iter 70 value 81.144069 iter 80 value 80.762437 iter 90 value 80.182300 iter 100 value 80.076335 final value 80.076335 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.598419 iter 10 value 94.486108 final value 94.484217 converged Fitting Repeat 2 # weights: 103 initial value 97.172929 iter 10 value 94.484421 iter 20 value 93.663061 final value 93.660217 converged Fitting Repeat 3 # weights: 103 initial value 97.087937 iter 10 value 94.468440 iter 20 value 94.457073 iter 30 value 89.430311 iter 40 value 89.414719 iter 50 value 89.373217 final value 89.364685 converged Fitting Repeat 4 # weights: 103 initial value 95.240418 iter 10 value 94.485862 iter 20 value 94.478156 iter 30 value 93.659765 final value 93.659565 converged Fitting Repeat 5 # weights: 103 initial value 108.052610 iter 10 value 94.485938 iter 20 value 94.484269 final value 94.484217 converged Fitting Repeat 1 # weights: 305 initial value 96.959282 iter 10 value 94.471307 iter 20 value 94.449302 iter 30 value 90.425904 iter 40 value 90.306852 iter 50 value 90.059145 iter 60 value 83.016391 iter 70 value 81.265316 iter 80 value 79.854988 iter 90 value 79.205672 iter 100 value 78.413545 final value 78.413545 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.931133 iter 10 value 94.471354 iter 20 value 94.124189 iter 30 value 87.652263 iter 40 value 87.604880 final value 87.604846 converged Fitting Repeat 3 # weights: 305 initial value 99.899756 iter 10 value 94.489005 iter 20 value 94.427992 iter 30 value 88.051120 iter 40 value 86.169890 iter 50 value 86.158438 iter 60 value 86.156450 iter 70 value 83.849118 iter 80 value 82.370602 iter 90 value 80.859763 iter 100 value 80.701711 final value 80.701711 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.869341 iter 10 value 94.471344 iter 20 value 91.958781 iter 30 value 87.288890 iter 40 value 87.017030 iter 50 value 86.925444 iter 60 value 86.925350 final value 86.925347 converged Fitting Repeat 5 # weights: 305 initial value 97.622781 iter 10 value 94.489493 iter 20 value 94.473297 iter 30 value 94.143859 iter 40 value 92.740288 iter 50 value 83.244806 iter 60 value 83.209653 iter 70 value 83.209594 final value 83.209580 converged Fitting Repeat 1 # weights: 507 initial value 100.778927 iter 10 value 94.474966 iter 20 value 94.428290 iter 30 value 89.061960 iter 40 value 87.315793 iter 50 value 87.315597 iter 60 value 86.989553 iter 70 value 86.988022 final value 86.987978 converged Fitting Repeat 2 # weights: 507 initial value 115.156471 iter 10 value 94.492227 iter 20 value 94.180764 iter 30 value 89.458810 iter 40 value 89.458535 iter 50 value 88.817477 final value 88.556755 converged Fitting Repeat 3 # weights: 507 initial value 98.355097 iter 10 value 94.492512 iter 20 value 94.477432 iter 30 value 94.474740 iter 40 value 94.392037 iter 50 value 87.731852 iter 60 value 87.097547 iter 70 value 86.267725 iter 80 value 80.956981 iter 90 value 80.341127 iter 100 value 79.044032 final value 79.044032 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.563778 iter 10 value 93.576334 iter 20 value 93.569045 iter 30 value 93.530977 iter 40 value 93.525869 iter 50 value 93.509636 iter 60 value 93.498571 iter 70 value 93.497979 iter 70 value 93.497978 iter 70 value 93.497978 final value 93.497978 converged Fitting Repeat 5 # weights: 507 initial value 109.727303 iter 10 value 94.475002 iter 20 value 94.467811 iter 30 value 94.117194 iter 40 value 93.230823 iter 50 value 85.860357 iter 60 value 84.855295 iter 70 value 84.695441 iter 80 value 84.443671 iter 90 value 84.430519 iter 100 value 84.166132 final value 84.166132 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.278927 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 96.980681 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.439884 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.078297 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 102.738989 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.333056 iter 10 value 93.102865 final value 93.102857 converged Fitting Repeat 2 # weights: 305 initial value 103.848456 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 102.332108 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 95.023060 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 107.378031 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 105.836149 iter 10 value 94.339035 iter 20 value 85.696099 iter 30 value 84.863506 final value 84.863492 converged Fitting Repeat 2 # weights: 507 initial value 95.720230 final value 94.354285 converged Fitting Repeat 3 # weights: 507 initial value 97.050217 iter 10 value 88.627358 iter 20 value 87.845115 iter 30 value 87.645837 iter 40 value 87.623477 iter 50 value 87.607681 iter 60 value 87.568930 final value 87.568894 converged Fitting Repeat 4 # weights: 507 initial value 103.808222 iter 10 value 94.484863 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 97.148493 iter 10 value 94.467136 final value 94.466824 converged Fitting Repeat 1 # weights: 103 initial value 96.860943 iter 10 value 94.472859 iter 20 value 92.776884 iter 30 value 90.268266 iter 40 value 86.757029 iter 50 value 83.415256 iter 60 value 83.228550 iter 70 value 83.117250 final value 83.116834 converged Fitting Repeat 2 # weights: 103 initial value 96.270208 iter 10 value 94.488547 iter 20 value 94.367609 iter 30 value 94.319180 iter 40 value 93.466572 iter 50 value 83.451535 iter 60 value 83.123021 iter 70 value 82.733218 iter 80 value 81.866308 iter 90 value 81.482849 iter 100 value 81.363006 final value 81.363006 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.965434 iter 10 value 94.488459 iter 20 value 87.860849 iter 30 value 86.539313 iter 40 value 83.603883 iter 50 value 83.153162 iter 60 value 83.122776 iter 70 value 83.110800 final value 83.110798 converged Fitting Repeat 4 # weights: 103 initial value 105.998140 iter 10 value 93.548659 iter 20 value 87.492729 iter 30 value 86.570213 iter 40 value 84.089157 iter 50 value 81.651636 iter 60 value 81.169840 iter 70 value 80.983008 final value 80.981893 converged Fitting Repeat 5 # weights: 103 initial value 110.295608 iter 10 value 94.446033 iter 20 value 88.744938 iter 30 value 84.430884 iter 40 value 83.788897 iter 50 value 83.316402 iter 60 value 83.168790 final value 83.168722 converged Fitting Repeat 1 # weights: 305 initial value 102.654309 iter 10 value 90.866609 iter 20 value 87.106909 iter 30 value 85.810555 iter 40 value 85.454916 iter 50 value 85.019464 iter 60 value 84.550595 iter 70 value 84.366579 iter 80 value 82.129964 iter 90 value 80.681281 iter 100 value 79.665823 final value 79.665823 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 112.307739 iter 10 value 94.420197 iter 20 value 86.458387 iter 30 value 86.080768 iter 40 value 83.854779 iter 50 value 83.557478 iter 60 value 83.231810 iter 70 value 81.838510 iter 80 value 81.001314 iter 90 value 80.860809 iter 100 value 80.770755 final value 80.770755 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.531606 iter 10 value 87.904047 iter 20 value 84.776895 iter 30 value 84.122369 iter 40 value 83.751903 iter 50 value 82.154141 iter 60 value 81.589471 iter 70 value 81.322325 iter 80 value 80.576307 iter 90 value 80.283259 iter 100 value 79.948789 final value 79.948789 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.728058 iter 10 value 94.356338 iter 20 value 87.304877 iter 30 value 83.876675 iter 40 value 82.939306 iter 50 value 82.752907 iter 60 value 82.624550 iter 70 value 82.447497 iter 80 value 82.417450 iter 90 value 82.334428 iter 100 value 81.775394 final value 81.775394 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 99.925042 iter 10 value 94.324042 iter 20 value 87.413123 iter 30 value 80.844015 iter 40 value 80.158749 iter 50 value 80.021882 iter 60 value 79.841651 iter 70 value 79.799610 iter 80 value 79.729252 iter 90 value 79.600102 iter 100 value 79.476667 final value 79.476667 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.846938 iter 10 value 94.747374 iter 20 value 90.840921 iter 30 value 89.140615 iter 40 value 87.415098 iter 50 value 85.067695 iter 60 value 82.825595 iter 70 value 81.849599 iter 80 value 81.456442 iter 90 value 80.322229 iter 100 value 80.152980 final value 80.152980 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.222548 iter 10 value 94.722889 iter 20 value 93.950949 iter 30 value 87.090767 iter 40 value 83.697851 iter 50 value 83.352498 iter 60 value 82.731852 iter 70 value 82.409929 iter 80 value 82.171688 iter 90 value 80.869570 iter 100 value 80.297949 final value 80.297949 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 110.104703 iter 10 value 94.733284 iter 20 value 88.449261 iter 30 value 85.417065 iter 40 value 83.131810 iter 50 value 81.381710 iter 60 value 80.599015 iter 70 value 80.350221 iter 80 value 79.975239 iter 90 value 79.543628 iter 100 value 79.401411 final value 79.401411 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.686396 iter 10 value 95.104567 iter 20 value 87.974957 iter 30 value 86.448784 iter 40 value 84.515653 iter 50 value 82.780589 iter 60 value 81.829281 iter 70 value 81.381744 iter 80 value 80.998023 iter 90 value 80.557883 iter 100 value 79.815630 final value 79.815630 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.901290 iter 10 value 95.007108 iter 20 value 88.574528 iter 30 value 83.965943 iter 40 value 81.770453 iter 50 value 81.031213 iter 60 value 80.480815 iter 70 value 80.226609 iter 80 value 80.117105 iter 90 value 79.980522 iter 100 value 79.745378 final value 79.745378 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.658064 final value 94.468429 converged Fitting Repeat 2 # weights: 103 initial value 101.374285 iter 10 value 94.485823 iter 20 value 94.484220 final value 94.484215 converged Fitting Repeat 3 # weights: 103 initial value 98.134801 final value 94.485855 converged Fitting Repeat 4 # weights: 103 initial value 102.038747 final value 94.486081 converged Fitting Repeat 5 # weights: 103 initial value 99.703195 iter 10 value 94.486000 iter 20 value 94.484224 final value 94.484213 converged Fitting Repeat 1 # weights: 305 initial value 98.948591 iter 10 value 94.488485 iter 20 value 88.459430 iter 30 value 87.656771 iter 40 value 87.464269 iter 50 value 85.274891 iter 60 value 85.272187 iter 60 value 85.272186 iter 60 value 85.272186 final value 85.272186 converged Fitting Repeat 2 # weights: 305 initial value 107.548192 iter 10 value 94.489628 iter 20 value 94.459165 iter 30 value 88.514724 iter 40 value 87.035750 iter 50 value 85.120784 iter 60 value 84.245229 iter 70 value 79.670202 iter 80 value 79.557331 iter 90 value 79.537981 iter 100 value 79.518958 final value 79.518958 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.854284 iter 10 value 94.485080 iter 20 value 83.732966 iter 30 value 82.935107 iter 40 value 81.802435 iter 50 value 81.088156 iter 60 value 80.938070 iter 70 value 80.937474 iter 80 value 80.934859 iter 90 value 80.934421 final value 80.934213 converged Fitting Repeat 4 # weights: 305 initial value 115.932386 iter 10 value 94.488930 iter 20 value 86.601464 final value 86.564633 converged Fitting Repeat 5 # weights: 305 initial value 95.420202 iter 10 value 92.943489 iter 20 value 92.902120 iter 30 value 92.901082 iter 40 value 92.889857 iter 50 value 92.859991 iter 60 value 92.858803 iter 70 value 92.822353 iter 80 value 92.821596 iter 90 value 92.746904 iter 100 value 92.745347 final value 92.745347 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 108.732063 iter 10 value 94.492960 iter 20 value 94.487925 iter 30 value 94.046517 iter 40 value 86.830355 iter 50 value 86.655747 final value 86.655441 converged Fitting Repeat 2 # weights: 507 initial value 96.954360 iter 10 value 94.491519 iter 20 value 94.346100 iter 30 value 94.319931 iter 40 value 89.212768 iter 50 value 85.650560 iter 60 value 85.548602 iter 70 value 82.590417 iter 80 value 82.515206 iter 90 value 82.511664 final value 82.511376 converged Fitting Repeat 3 # weights: 507 initial value 99.659156 iter 10 value 92.499043 iter 20 value 83.675349 iter 30 value 83.646985 iter 40 value 83.549845 iter 50 value 83.077348 iter 60 value 83.046412 iter 70 value 83.041671 iter 80 value 83.018609 iter 90 value 82.983529 iter 100 value 82.983067 final value 82.983067 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.393261 iter 10 value 92.228905 iter 20 value 88.814932 iter 30 value 84.751806 iter 40 value 84.527213 iter 50 value 84.521886 iter 60 value 84.456818 iter 70 value 83.910472 iter 80 value 83.578910 iter 90 value 83.194844 iter 100 value 83.194601 final value 83.194601 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.843964 iter 10 value 83.498354 iter 20 value 82.747230 iter 30 value 82.651608 iter 40 value 82.649441 iter 50 value 82.645898 iter 60 value 82.220504 iter 70 value 82.095790 iter 80 value 81.531672 final value 81.531627 converged Fitting Repeat 1 # weights: 103 initial value 94.206455 iter 10 value 92.971267 final value 92.971247 converged Fitting Repeat 2 # weights: 103 initial value 99.621685 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 102.355160 iter 10 value 93.672975 final value 93.672973 converged Fitting Repeat 4 # weights: 103 initial value 95.188349 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 96.010546 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 103.011140 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.346389 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 105.127014 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 94.816080 iter 10 value 93.604547 final value 93.604521 converged Fitting Repeat 5 # weights: 305 initial value 103.632979 final value 93.604520 converged Fitting Repeat 1 # weights: 507 initial value 111.616430 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 98.599592 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 96.653869 final value 94.050155 converged Fitting Repeat 4 # weights: 507 initial value 96.350490 iter 10 value 93.712587 iter 20 value 86.629372 iter 30 value 86.025525 final value 86.013413 converged Fitting Repeat 5 # weights: 507 initial value 103.367978 iter 10 value 93.915746 iter 10 value 93.915746 iter 10 value 93.915746 final value 93.915746 converged Fitting Repeat 1 # weights: 103 initial value 100.874436 iter 10 value 94.072200 iter 20 value 94.056725 iter 30 value 93.890864 iter 40 value 92.839557 iter 50 value 92.756022 iter 60 value 92.572164 iter 70 value 86.098559 iter 80 value 84.503743 iter 90 value 82.734641 iter 100 value 82.476009 final value 82.476009 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.607038 iter 10 value 94.064445 iter 20 value 94.022625 iter 30 value 88.790151 iter 40 value 87.944814 iter 50 value 85.578746 iter 60 value 84.011311 iter 70 value 83.849482 iter 80 value 83.848061 iter 90 value 83.845653 iter 90 value 83.845653 iter 90 value 83.845653 final value 83.845653 converged Fitting Repeat 3 # weights: 103 initial value 110.373193 iter 10 value 93.833226 iter 20 value 87.639512 iter 30 value 87.223420 iter 40 value 86.513183 iter 50 value 84.951980 iter 60 value 84.817403 iter 70 value 84.804033 iter 80 value 84.801413 final value 84.801410 converged Fitting Repeat 4 # weights: 103 initial value 97.746486 iter 10 value 94.056711 iter 20 value 93.991055 iter 30 value 91.965775 iter 40 value 91.394526 iter 50 value 90.897120 iter 60 value 86.367915 iter 70 value 84.459507 iter 80 value 83.397039 iter 90 value 83.170785 iter 100 value 82.833339 final value 82.833339 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 110.795985 iter 10 value 94.036064 iter 20 value 93.240494 iter 30 value 93.209924 iter 40 value 92.819724 iter 50 value 87.897415 iter 60 value 86.748375 iter 70 value 84.597580 iter 80 value 84.279405 iter 90 value 83.628177 iter 100 value 83.445767 final value 83.445767 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 129.977301 iter 10 value 94.111883 iter 20 value 86.968685 iter 30 value 85.690435 iter 40 value 85.376492 iter 50 value 84.928932 iter 60 value 83.530564 iter 70 value 82.446140 iter 80 value 81.782575 iter 90 value 81.494536 iter 100 value 81.345675 final value 81.345675 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.434591 iter 10 value 93.831021 iter 20 value 87.228089 iter 30 value 85.567654 iter 40 value 85.235557 iter 50 value 85.022572 iter 60 value 84.249246 iter 70 value 84.208970 iter 80 value 83.891457 iter 90 value 82.925243 iter 100 value 82.507987 final value 82.507987 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.962320 iter 10 value 93.818077 iter 20 value 93.494426 iter 30 value 87.957140 iter 40 value 84.773656 iter 50 value 83.186218 iter 60 value 82.811460 iter 70 value 82.560015 iter 80 value 81.967709 iter 90 value 81.587059 iter 100 value 81.080466 final value 81.080466 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.603282 iter 10 value 93.871456 iter 20 value 87.823895 iter 30 value 85.503816 iter 40 value 83.743086 iter 50 value 82.995928 iter 60 value 82.359534 iter 70 value 81.952387 iter 80 value 81.661707 iter 90 value 81.562198 iter 100 value 81.538893 final value 81.538893 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.206610 iter 10 value 94.166224 iter 20 value 91.572506 iter 30 value 88.720377 iter 40 value 86.062682 iter 50 value 85.795651 iter 60 value 83.553560 iter 70 value 82.956151 iter 80 value 81.465600 iter 90 value 81.294868 iter 100 value 81.279134 final value 81.279134 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.458523 iter 10 value 93.988613 iter 20 value 93.194937 iter 30 value 91.227364 iter 40 value 90.527226 iter 50 value 87.679374 iter 60 value 86.445834 iter 70 value 84.978692 iter 80 value 83.357574 iter 90 value 82.309730 iter 100 value 81.363416 final value 81.363416 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.235318 iter 10 value 94.404686 iter 20 value 94.062017 iter 30 value 89.907521 iter 40 value 86.646988 iter 50 value 86.366870 iter 60 value 85.773679 iter 70 value 83.974186 iter 80 value 83.068351 iter 90 value 82.222167 iter 100 value 81.527197 final value 81.527197 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.140190 iter 10 value 93.940873 iter 20 value 90.392930 iter 30 value 86.438758 iter 40 value 83.579666 iter 50 value 82.576156 iter 60 value 82.033927 iter 70 value 81.821875 iter 80 value 81.388226 iter 90 value 81.115266 iter 100 value 81.029221 final value 81.029221 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.259354 iter 10 value 94.248849 iter 20 value 86.996356 iter 30 value 86.636046 iter 40 value 86.437541 iter 50 value 85.666826 iter 60 value 85.265769 iter 70 value 84.033949 iter 80 value 82.990707 iter 90 value 81.908936 iter 100 value 81.472498 final value 81.472498 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 112.136209 iter 10 value 93.856591 iter 20 value 88.232869 iter 30 value 86.923470 iter 40 value 85.981480 iter 50 value 85.821812 iter 60 value 85.379037 iter 70 value 84.739375 iter 80 value 83.179120 iter 90 value 81.917414 iter 100 value 81.431937 final value 81.431937 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.866539 final value 94.054569 converged Fitting Repeat 2 # weights: 103 initial value 95.146007 iter 10 value 94.054691 iter 20 value 94.044892 iter 30 value 90.545399 final value 90.459627 converged Fitting Repeat 3 # weights: 103 initial value 95.558451 final value 94.054642 converged Fitting Repeat 4 # weights: 103 initial value 103.933510 final value 94.054467 converged Fitting Repeat 5 # weights: 103 initial value 95.811994 final value 94.054752 converged Fitting Repeat 1 # weights: 305 initial value 97.128904 iter 10 value 94.057721 iter 20 value 94.052782 iter 30 value 86.246768 iter 40 value 85.460344 iter 50 value 85.451696 iter 60 value 85.322765 iter 70 value 85.316103 iter 80 value 83.321676 iter 90 value 82.090998 iter 100 value 81.935483 final value 81.935483 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 96.862715 iter 10 value 94.057976 iter 20 value 94.053199 final value 94.053100 converged Fitting Repeat 3 # weights: 305 initial value 106.896401 iter 10 value 94.057945 iter 20 value 93.920402 iter 30 value 90.192157 iter 40 value 87.877980 final value 87.877977 converged Fitting Repeat 4 # weights: 305 initial value 103.484463 iter 10 value 93.920640 iter 20 value 93.744901 iter 30 value 90.623660 iter 40 value 90.543961 iter 50 value 90.149408 iter 60 value 90.144001 iter 60 value 90.144001 final value 90.144001 converged Fitting Repeat 5 # weights: 305 initial value 96.450056 iter 10 value 93.920533 iter 20 value 93.915942 iter 30 value 91.956845 iter 40 value 84.184836 iter 50 value 83.461725 iter 60 value 83.388299 iter 70 value 83.372685 iter 70 value 83.372685 iter 70 value 83.372684 final value 83.372684 converged Fitting Repeat 1 # weights: 507 initial value 94.713206 iter 10 value 93.912401 iter 20 value 85.818479 iter 30 value 85.182343 iter 40 value 85.174725 iter 40 value 85.174725 final value 85.174725 converged Fitting Repeat 2 # weights: 507 initial value 108.379774 iter 10 value 93.396968 iter 20 value 92.883352 iter 30 value 92.882188 iter 40 value 92.881055 iter 50 value 92.820951 iter 60 value 86.977279 iter 70 value 84.570531 iter 80 value 83.823558 iter 90 value 83.480133 iter 100 value 83.477773 final value 83.477773 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.630010 iter 10 value 93.925828 iter 20 value 93.696209 iter 30 value 86.792653 iter 40 value 85.928323 iter 50 value 83.857905 iter 60 value 83.657243 iter 70 value 83.649370 iter 80 value 83.648146 iter 90 value 83.646518 iter 100 value 82.925531 final value 82.925531 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.930569 iter 10 value 93.923521 iter 20 value 93.731037 iter 30 value 85.045096 iter 40 value 82.335935 iter 50 value 82.176747 final value 82.175712 converged Fitting Repeat 5 # weights: 507 initial value 116.447747 iter 10 value 94.064671 iter 20 value 93.815083 iter 30 value 87.314826 iter 40 value 82.534334 iter 50 value 82.486342 iter 60 value 82.473808 iter 70 value 82.469122 iter 80 value 82.468048 iter 90 value 82.467396 iter 100 value 82.466930 final value 82.466930 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.300086 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 103.614879 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.584660 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.592699 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.707182 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.380926 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 98.034007 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 102.161717 iter 10 value 93.494014 final value 93.485037 converged Fitting Repeat 4 # weights: 305 initial value 96.260449 iter 10 value 93.772980 final value 93.772973 converged Fitting Repeat 5 # weights: 305 initial value 99.928157 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 101.667999 iter 10 value 93.772978 final value 93.772973 converged Fitting Repeat 2 # weights: 507 initial value 97.096702 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 114.575964 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.709916 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 102.844663 final value 94.409357 converged Fitting Repeat 1 # weights: 103 initial value 99.918738 iter 10 value 94.475861 iter 20 value 94.142035 iter 30 value 94.008314 iter 40 value 93.997230 iter 50 value 93.982057 iter 60 value 93.453573 iter 70 value 89.066437 iter 80 value 85.524704 iter 90 value 83.958282 iter 100 value 82.752220 final value 82.752220 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 101.732106 iter 10 value 93.997851 iter 20 value 93.117665 iter 30 value 90.472204 iter 40 value 86.347998 iter 50 value 85.549269 iter 60 value 84.504323 iter 70 value 83.314957 iter 80 value 83.227969 iter 90 value 83.217475 iter 100 value 83.199949 final value 83.199949 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 105.375819 iter 10 value 94.451755 iter 20 value 91.618767 iter 30 value 90.333167 iter 40 value 86.648213 iter 50 value 84.595708 iter 60 value 83.323973 iter 70 value 82.618920 iter 80 value 82.403895 iter 90 value 82.403617 final value 82.403592 converged Fitting Repeat 4 # weights: 103 initial value 97.344583 iter 10 value 94.467291 iter 20 value 93.768664 iter 30 value 93.751587 iter 40 value 93.749696 iter 50 value 93.287881 iter 60 value 90.398175 iter 70 value 85.759000 iter 80 value 83.683494 iter 90 value 83.371543 iter 100 value 83.050294 final value 83.050294 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.668973 iter 10 value 94.475498 iter 20 value 94.029372 iter 30 value 93.991866 iter 40 value 93.980468 iter 50 value 93.044731 iter 60 value 87.771674 iter 70 value 84.600793 iter 80 value 84.280878 iter 90 value 83.492558 iter 100 value 83.215411 final value 83.215411 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 116.544539 iter 10 value 94.738282 iter 20 value 93.980652 iter 30 value 93.943050 iter 40 value 87.831951 iter 50 value 85.972527 iter 60 value 85.162526 iter 70 value 82.883366 iter 80 value 82.223272 iter 90 value 81.848732 iter 100 value 81.653198 final value 81.653198 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.464031 iter 10 value 94.461313 iter 20 value 88.393379 iter 30 value 87.941631 iter 40 value 87.233912 iter 50 value 86.869909 iter 60 value 86.675825 iter 70 value 84.388034 iter 80 value 82.773501 iter 90 value 81.725987 iter 100 value 81.413176 final value 81.413176 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 128.302751 iter 10 value 94.924682 iter 20 value 90.675216 iter 30 value 87.266723 iter 40 value 85.695028 iter 50 value 84.961059 iter 60 value 84.264392 iter 70 value 83.873528 iter 80 value 83.011151 iter 90 value 82.590800 iter 100 value 82.554585 final value 82.554585 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.401682 iter 10 value 93.954934 iter 20 value 88.870682 iter 30 value 88.279703 iter 40 value 85.665521 iter 50 value 83.957783 iter 60 value 83.887934 iter 70 value 83.822705 iter 80 value 83.763544 iter 90 value 83.147315 iter 100 value 82.085156 final value 82.085156 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.353578 iter 10 value 94.438615 iter 20 value 87.713433 iter 30 value 86.495346 iter 40 value 84.608544 iter 50 value 81.908083 iter 60 value 81.511977 iter 70 value 81.392271 iter 80 value 81.348921 iter 90 value 81.317088 iter 100 value 81.271500 final value 81.271500 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.524918 iter 10 value 94.698386 iter 20 value 93.840607 iter 30 value 90.710750 iter 40 value 85.692513 iter 50 value 82.980271 iter 60 value 82.469408 iter 70 value 81.781258 iter 80 value 81.265212 iter 90 value 81.132735 iter 100 value 80.800924 final value 80.800924 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.782255 iter 10 value 94.570652 iter 20 value 89.448185 iter 30 value 87.799922 iter 40 value 85.374998 iter 50 value 84.845912 iter 60 value 84.370401 iter 70 value 84.003291 iter 80 value 83.544084 iter 90 value 83.083825 iter 100 value 81.911364 final value 81.911364 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 116.592913 iter 10 value 94.584681 iter 20 value 88.919294 iter 30 value 86.164436 iter 40 value 85.450053 iter 50 value 84.762137 iter 60 value 84.237024 iter 70 value 83.489048 iter 80 value 82.931313 iter 90 value 82.270814 iter 100 value 81.433129 final value 81.433129 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.008464 iter 10 value 94.163881 iter 20 value 90.725733 iter 30 value 88.750609 iter 40 value 86.188327 iter 50 value 82.660284 iter 60 value 81.677770 iter 70 value 81.459586 iter 80 value 81.182434 iter 90 value 81.134822 iter 100 value 81.104432 final value 81.104432 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.572681 iter 10 value 95.409142 iter 20 value 89.223209 iter 30 value 85.863280 iter 40 value 85.202034 iter 50 value 83.373814 iter 60 value 82.261418 iter 70 value 81.983140 iter 80 value 81.638296 iter 90 value 81.528913 iter 100 value 81.237667 final value 81.237667 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.886343 final value 94.485652 converged Fitting Repeat 2 # weights: 103 initial value 100.727520 final value 94.485661 converged Fitting Repeat 3 # weights: 103 initial value 99.671085 iter 10 value 87.037515 iter 20 value 84.758935 iter 30 value 84.739933 iter 40 value 84.739685 iter 50 value 84.738177 iter 60 value 84.486632 iter 70 value 84.465964 final value 84.465642 converged Fitting Repeat 4 # weights: 103 initial value 98.539138 final value 94.486025 converged Fitting Repeat 5 # weights: 103 initial value 97.511199 iter 10 value 93.774827 iter 20 value 93.773856 iter 30 value 93.568485 iter 40 value 89.253486 final value 89.165851 converged Fitting Repeat 1 # weights: 305 initial value 97.193021 iter 10 value 93.778005 iter 20 value 93.776674 iter 30 value 93.666346 iter 40 value 92.585315 iter 50 value 90.553567 iter 60 value 90.540168 iter 70 value 90.457696 iter 80 value 89.989590 iter 90 value 89.874296 iter 100 value 89.874187 final value 89.874187 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 109.090525 iter 10 value 94.280513 iter 20 value 94.276705 iter 30 value 94.276466 iter 40 value 93.739926 iter 50 value 93.637988 iter 60 value 93.551572 final value 93.541163 converged Fitting Repeat 3 # weights: 305 initial value 94.534149 iter 10 value 94.488413 iter 20 value 94.275878 iter 30 value 93.541812 final value 93.541803 converged Fitting Repeat 4 # weights: 305 initial value 100.709018 iter 10 value 94.489157 iter 20 value 94.484882 iter 30 value 93.811946 final value 93.773419 converged Fitting Repeat 5 # weights: 305 initial value 109.955147 iter 10 value 94.488898 iter 20 value 94.484235 iter 20 value 94.484235 iter 30 value 89.671108 iter 40 value 85.694788 final value 85.694688 converged Fitting Repeat 1 # weights: 507 initial value 103.327435 iter 10 value 93.782020 iter 20 value 93.774658 iter 30 value 88.965115 iter 40 value 87.000647 iter 50 value 85.896497 iter 60 value 84.783002 iter 70 value 82.258187 iter 80 value 81.755225 iter 90 value 81.576072 iter 100 value 81.265897 final value 81.265897 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.290511 iter 10 value 94.490454 iter 20 value 94.167900 iter 30 value 94.166812 iter 40 value 93.639068 final value 93.639038 converged Fitting Repeat 3 # weights: 507 initial value 99.376709 iter 10 value 94.491730 final value 94.484865 converged Fitting Repeat 4 # weights: 507 initial value 99.003937 iter 10 value 93.754889 iter 20 value 93.749391 iter 30 value 93.696455 iter 40 value 91.907283 final value 91.889233 converged Fitting Repeat 5 # weights: 507 initial value 100.729790 iter 10 value 93.781812 iter 20 value 93.775161 iter 30 value 93.555843 iter 40 value 91.843508 iter 50 value 91.670935 iter 60 value 91.449632 iter 70 value 90.296614 iter 80 value 90.293097 iter 90 value 87.359871 iter 100 value 87.335861 final value 87.335861 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 163.293327 iter 10 value 117.961057 iter 20 value 114.125194 iter 30 value 105.363858 iter 40 value 104.371406 iter 50 value 102.492957 iter 60 value 101.714780 iter 70 value 101.212558 iter 80 value 101.005547 iter 90 value 100.974316 iter 100 value 100.830676 final value 100.830676 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 141.748171 iter 10 value 116.853608 iter 20 value 110.857185 iter 30 value 109.249451 iter 40 value 108.330681 iter 50 value 103.531903 iter 60 value 101.924597 iter 70 value 101.461156 iter 80 value 101.343725 iter 90 value 101.308248 iter 100 value 101.043472 final value 101.043472 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 140.282548 iter 10 value 118.148816 iter 20 value 108.318204 iter 30 value 107.339594 iter 40 value 106.851947 iter 50 value 103.009711 iter 60 value 101.856365 iter 70 value 101.396744 iter 80 value 101.251679 iter 90 value 101.180921 iter 100 value 101.143034 final value 101.143034 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 135.312353 iter 10 value 117.879154 iter 20 value 117.507370 iter 30 value 107.712063 iter 40 value 104.260194 iter 50 value 104.089663 iter 60 value 103.158818 iter 70 value 101.978376 iter 80 value 101.709165 iter 90 value 101.363703 iter 100 value 101.235204 final value 101.235204 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 150.686970 iter 10 value 118.336102 iter 20 value 114.785915 iter 30 value 114.626292 iter 40 value 110.058850 iter 50 value 106.839732 iter 60 value 105.204406 iter 70 value 104.795057 iter 80 value 103.899906 iter 90 value 102.646657 iter 100 value 102.517104 final value 102.517104 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Thu Sep 11 01:40:30 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 40.889 1.134 153.993
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.264 | 0.528 | 33.795 | |
FreqInteractors | 0.209 | 0.009 | 0.218 | |
calculateAAC | 0.033 | 0.005 | 0.038 | |
calculateAutocor | 0.286 | 0.015 | 0.302 | |
calculateCTDC | 0.075 | 0.001 | 0.076 | |
calculateCTDD | 0.512 | 0.000 | 0.512 | |
calculateCTDT | 0.179 | 0.011 | 0.189 | |
calculateCTriad | 0.387 | 0.015 | 0.402 | |
calculateDC | 0.085 | 0.000 | 0.086 | |
calculateF | 0.298 | 0.003 | 0.302 | |
calculateKSAAP | 0.086 | 0.003 | 0.089 | |
calculateQD_Sm | 1.676 | 0.024 | 1.700 | |
calculateTC | 1.462 | 0.038 | 1.501 | |
calculateTC_Sm | 0.252 | 0.001 | 0.253 | |
corr_plot | 34.061 | 0.460 | 34.524 | |
enrichfindP | 0.545 | 0.048 | 8.346 | |
enrichfind_hp | 0.102 | 0.005 | 0.926 | |
enrichplot | 0.375 | 0.046 | 0.420 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.443 | 0.047 | 3.631 | |
getHPI | 0.001 | 0.000 | 0.000 | |
get_negativePPI | 0.002 | 0.001 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.000 | 0.002 | |
plotPPI | 0.074 | 0.002 | 0.076 | |
pred_ensembel | 13.109 | 0.386 | 12.214 | |
var_imp | 34.975 | 0.284 | 35.304 | |