Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-09-01 12:03 -0400 (Mon, 01 Sep 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4824 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4615 |
kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4562 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4541 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 989/2320 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-08-31 23:37:51 -0400 (Sun, 31 Aug 2025) |
EndedAt: 2025-08-31 23:52:48 -0400 (Sun, 31 Aug 2025) |
EllapsedTime: 897.0 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’ * using R version 4.5.1 (2025-06-13) * using platform: x86_64-pc-linux-gnu * R was compiled by gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 * running under: Ubuntu 24.04.3 LTS * using session charset: UTF-8 * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.15.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed FSmethod 33.860 0.620 34.483 corr_plot 33.939 0.345 34.358 var_imp 32.792 0.575 33.408 pred_ensembel 13.305 0.153 12.093 enrichfindP 0.498 0.032 9.183 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking re-building of vignette outputs ... OK * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/home/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 (2025-06-13) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-pc-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 107.827996 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 108.035320 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.005030 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.117171 final value 94.466822 converged Fitting Repeat 5 # weights: 103 initial value 106.786250 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 101.566766 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 101.158994 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 104.155059 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.382887 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 96.948013 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 127.069125 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 98.016971 iter 10 value 94.355279 iter 10 value 94.355279 iter 10 value 94.355279 final value 94.355279 converged Fitting Repeat 3 # weights: 507 initial value 119.662994 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 128.428562 final value 94.484137 converged Fitting Repeat 5 # weights: 507 initial value 106.834654 iter 10 value 94.483784 iter 10 value 94.483784 iter 10 value 94.483784 final value 94.483784 converged Fitting Repeat 1 # weights: 103 initial value 102.315279 iter 10 value 94.488936 iter 20 value 93.118717 iter 30 value 85.573026 iter 40 value 85.029011 iter 50 value 84.613507 iter 60 value 84.245210 iter 70 value 82.924286 iter 80 value 82.761213 iter 90 value 82.753710 final value 82.751756 converged Fitting Repeat 2 # weights: 103 initial value 117.725667 iter 10 value 94.493849 iter 20 value 94.365180 iter 30 value 86.521135 iter 40 value 84.987366 iter 50 value 84.507019 iter 60 value 84.379661 iter 70 value 83.568590 iter 80 value 83.212940 final value 83.209157 converged Fitting Repeat 3 # weights: 103 initial value 101.468847 iter 10 value 94.498113 iter 20 value 88.191221 iter 30 value 84.849566 iter 40 value 84.559061 iter 50 value 83.533326 iter 60 value 82.285807 iter 70 value 82.203106 iter 80 value 81.823025 iter 90 value 81.626757 iter 100 value 81.358707 final value 81.358707 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.133739 iter 10 value 94.518538 iter 20 value 91.777789 iter 30 value 83.844076 iter 40 value 82.836431 iter 50 value 82.354429 iter 60 value 82.306106 final value 82.306087 converged Fitting Repeat 5 # weights: 103 initial value 104.313871 iter 10 value 94.488364 iter 20 value 94.302146 iter 30 value 94.136236 iter 40 value 92.866998 iter 50 value 92.259330 iter 60 value 84.163059 iter 70 value 83.798980 iter 80 value 83.531316 iter 90 value 83.492142 final value 83.491948 converged Fitting Repeat 1 # weights: 305 initial value 103.395645 iter 10 value 94.453565 iter 20 value 89.860961 iter 30 value 84.985805 iter 40 value 82.274075 iter 50 value 81.694870 iter 60 value 81.409424 iter 70 value 81.175551 iter 80 value 80.947414 iter 90 value 80.369724 iter 100 value 80.163649 final value 80.163649 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 108.457127 iter 10 value 94.644231 iter 20 value 92.985951 iter 30 value 92.175982 iter 40 value 91.959510 iter 50 value 91.444681 iter 60 value 91.349997 iter 70 value 90.647350 iter 80 value 88.586081 iter 90 value 85.184075 iter 100 value 84.959235 final value 84.959235 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 114.799385 iter 10 value 94.509370 iter 20 value 88.092500 iter 30 value 84.748443 iter 40 value 82.188602 iter 50 value 81.660281 iter 60 value 80.864509 iter 70 value 80.106708 iter 80 value 80.043047 iter 90 value 79.982389 iter 100 value 79.973752 final value 79.973752 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 139.381331 iter 10 value 95.123507 iter 20 value 89.225112 iter 30 value 84.856202 iter 40 value 82.942972 iter 50 value 82.096244 iter 60 value 81.884326 iter 70 value 81.567566 iter 80 value 81.422487 iter 90 value 81.250065 iter 100 value 80.773153 final value 80.773153 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.568482 iter 10 value 95.573701 iter 20 value 94.487930 iter 30 value 94.154373 iter 40 value 94.073537 iter 50 value 86.261549 iter 60 value 84.888694 iter 70 value 83.458081 iter 80 value 81.638374 iter 90 value 81.275283 iter 100 value 80.664714 final value 80.664714 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.582012 iter 10 value 95.171047 iter 20 value 94.559039 iter 30 value 93.486518 iter 40 value 89.429922 iter 50 value 87.304770 iter 60 value 82.970481 iter 70 value 81.075079 iter 80 value 80.603945 iter 90 value 79.972455 iter 100 value 79.778190 final value 79.778190 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 118.730237 iter 10 value 94.558277 iter 20 value 90.792484 iter 30 value 85.566793 iter 40 value 84.031565 iter 50 value 83.138368 iter 60 value 82.633894 iter 70 value 82.573790 iter 80 value 82.523691 iter 90 value 82.270085 iter 100 value 81.377348 final value 81.377348 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.949664 iter 10 value 94.544890 iter 20 value 92.295586 iter 30 value 85.495713 iter 40 value 84.418246 iter 50 value 83.860825 iter 60 value 83.521139 iter 70 value 83.344981 iter 80 value 83.136132 iter 90 value 80.844448 iter 100 value 80.172506 final value 80.172506 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 136.695552 iter 10 value 94.001994 iter 20 value 90.857759 iter 30 value 88.941259 iter 40 value 83.944210 iter 50 value 83.007971 iter 60 value 81.120427 iter 70 value 80.151348 iter 80 value 79.975442 iter 90 value 79.851009 iter 100 value 79.671276 final value 79.671276 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.888085 iter 10 value 94.847631 iter 20 value 86.476114 iter 30 value 83.846101 iter 40 value 83.629001 iter 50 value 81.981493 iter 60 value 80.700874 iter 70 value 79.984390 iter 80 value 79.649196 iter 90 value 79.573558 iter 100 value 79.526163 final value 79.526163 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.370958 final value 94.485764 converged Fitting Repeat 2 # weights: 103 initial value 106.722729 final value 94.485759 converged Fitting Repeat 3 # weights: 103 initial value 101.793654 iter 10 value 92.793794 iter 20 value 92.487689 iter 30 value 92.480296 iter 40 value 92.353064 iter 50 value 92.310822 final value 92.310739 converged Fitting Repeat 4 # weights: 103 initial value 102.802649 final value 94.485769 converged Fitting Repeat 5 # weights: 103 initial value 101.576382 final value 94.486159 converged Fitting Repeat 1 # weights: 305 initial value 125.641425 iter 10 value 94.488969 iter 20 value 94.412912 iter 30 value 94.149470 iter 40 value 92.496712 iter 50 value 92.265396 final value 92.154273 converged Fitting Repeat 2 # weights: 305 initial value 113.790129 iter 10 value 94.471607 iter 20 value 94.055357 iter 30 value 94.053618 iter 40 value 93.006839 iter 50 value 83.696621 iter 60 value 82.476678 iter 70 value 81.325431 iter 80 value 81.199222 final value 81.199108 converged Fitting Repeat 3 # weights: 305 initial value 100.708690 iter 10 value 94.259165 iter 20 value 94.211652 iter 30 value 87.202429 iter 40 value 85.464635 iter 50 value 81.963382 iter 60 value 80.096304 iter 70 value 78.703079 iter 80 value 78.494768 iter 90 value 78.429835 iter 100 value 78.424834 final value 78.424834 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 97.277663 iter 10 value 90.950118 iter 20 value 90.017363 iter 30 value 89.365857 iter 40 value 89.314201 iter 50 value 89.299421 iter 60 value 88.925138 iter 70 value 88.908593 final value 88.908018 converged Fitting Repeat 5 # weights: 305 initial value 97.890567 iter 10 value 94.471401 iter 20 value 94.467457 iter 30 value 94.466874 final value 94.466700 converged Fitting Repeat 1 # weights: 507 initial value 97.703115 iter 10 value 94.492575 iter 20 value 94.484938 iter 30 value 90.038892 iter 40 value 84.179973 iter 50 value 81.842349 iter 60 value 81.817215 iter 70 value 81.720428 iter 80 value 81.193542 iter 90 value 80.590348 iter 100 value 80.578965 final value 80.578965 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 99.241601 iter 10 value 92.986798 iter 20 value 85.169648 iter 30 value 83.084606 iter 40 value 83.077180 iter 50 value 83.072712 iter 60 value 82.867705 iter 70 value 82.867002 iter 80 value 82.724072 iter 90 value 82.469215 iter 100 value 82.024243 final value 82.024243 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.918109 iter 10 value 94.322430 iter 20 value 93.654643 iter 30 value 92.052765 final value 91.995683 converged Fitting Repeat 4 # weights: 507 initial value 98.972793 iter 10 value 94.492761 iter 20 value 94.469786 final value 94.466874 converged Fitting Repeat 5 # weights: 507 initial value 107.867900 iter 10 value 94.309547 iter 20 value 94.307568 iter 30 value 92.824942 iter 40 value 85.722456 iter 50 value 85.677079 iter 60 value 85.110399 iter 70 value 85.012908 iter 80 value 85.008338 iter 90 value 85.006475 final value 85.006401 converged Fitting Repeat 1 # weights: 103 initial value 96.754372 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 108.094968 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 107.212933 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.101492 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.241566 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 96.988964 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 101.362089 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 113.986648 final value 94.032967 converged Fitting Repeat 4 # weights: 305 initial value 121.761664 final value 94.032967 converged Fitting Repeat 5 # weights: 305 initial value 116.228599 iter 10 value 92.049936 iter 20 value 92.033161 final value 92.031334 converged Fitting Repeat 1 # weights: 507 initial value 103.789841 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 100.339611 iter 10 value 92.322715 iter 20 value 91.884506 iter 30 value 91.845591 iter 40 value 91.845369 final value 91.845366 converged Fitting Repeat 3 # weights: 507 initial value 119.116468 iter 10 value 93.725779 iter 20 value 93.484264 iter 30 value 93.479305 iter 40 value 93.472497 final value 93.472464 converged Fitting Repeat 4 # weights: 507 initial value 99.071396 iter 10 value 94.033147 final value 94.032968 converged Fitting Repeat 5 # weights: 507 initial value 124.643885 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 100.357492 iter 10 value 93.998665 iter 20 value 90.443972 iter 30 value 89.443017 iter 40 value 88.770620 iter 50 value 88.284837 iter 60 value 86.667345 iter 70 value 85.300577 iter 80 value 85.210607 iter 90 value 85.078326 iter 100 value 85.065719 final value 85.065719 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.687883 iter 10 value 94.053519 iter 20 value 88.631803 iter 30 value 86.030831 iter 40 value 85.847918 iter 50 value 85.335652 iter 60 value 84.619357 iter 70 value 84.407246 iter 80 value 84.227657 final value 84.149285 converged Fitting Repeat 3 # weights: 103 initial value 108.680285 iter 10 value 94.621733 iter 20 value 94.057084 iter 30 value 92.902796 iter 40 value 86.688879 iter 50 value 85.977869 iter 60 value 85.291912 iter 70 value 84.923475 iter 80 value 84.720171 iter 90 value 84.658509 iter 100 value 84.252018 final value 84.252018 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.719439 iter 10 value 92.956908 iter 20 value 87.530803 iter 30 value 86.626728 iter 40 value 86.294580 iter 50 value 85.796821 iter 60 value 85.579314 iter 70 value 84.892503 iter 80 value 84.379326 iter 90 value 84.151432 final value 84.149285 converged Fitting Repeat 5 # weights: 103 initial value 96.774613 iter 10 value 93.614387 iter 20 value 87.311627 iter 30 value 86.727573 iter 40 value 86.343660 iter 50 value 85.579550 iter 60 value 85.388781 iter 70 value 85.171189 final value 85.170554 converged Fitting Repeat 1 # weights: 305 initial value 137.664716 iter 10 value 94.064569 iter 20 value 90.873319 iter 30 value 87.050596 iter 40 value 85.544004 iter 50 value 84.458427 iter 60 value 83.488271 iter 70 value 83.396981 iter 80 value 82.765768 iter 90 value 82.012272 iter 100 value 81.577785 final value 81.577785 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.774091 iter 10 value 94.258722 iter 20 value 93.996044 iter 30 value 90.314009 iter 40 value 88.635604 iter 50 value 87.777307 iter 60 value 84.995749 iter 70 value 84.710785 iter 80 value 84.660407 iter 90 value 83.650432 iter 100 value 83.519695 final value 83.519695 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.755122 iter 10 value 94.130004 iter 20 value 90.006263 iter 30 value 86.602757 iter 40 value 86.331680 iter 50 value 85.863082 iter 60 value 84.944978 iter 70 value 84.084976 iter 80 value 81.826032 iter 90 value 81.771666 iter 100 value 81.533627 final value 81.533627 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 112.428843 iter 10 value 94.203080 iter 20 value 86.033964 iter 30 value 83.616235 iter 40 value 83.453335 iter 50 value 82.894958 iter 60 value 82.538001 iter 70 value 82.130779 iter 80 value 82.102011 iter 90 value 82.052084 iter 100 value 81.992404 final value 81.992404 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.977518 iter 10 value 94.394032 iter 20 value 93.992796 iter 30 value 88.011662 iter 40 value 84.679679 iter 50 value 82.961927 iter 60 value 82.483636 iter 70 value 82.087018 iter 80 value 82.031948 iter 90 value 81.984711 iter 100 value 81.953737 final value 81.953737 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.413626 iter 10 value 94.256503 iter 20 value 93.368110 iter 30 value 92.054604 iter 40 value 86.816970 iter 50 value 83.030304 iter 60 value 82.299211 iter 70 value 81.857315 iter 80 value 81.724411 iter 90 value 81.664641 iter 100 value 81.638417 final value 81.638417 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 112.438616 iter 10 value 94.037940 iter 20 value 90.282073 iter 30 value 89.105068 iter 40 value 85.267281 iter 50 value 84.377631 iter 60 value 83.031069 iter 70 value 82.040648 iter 80 value 81.853458 iter 90 value 81.799110 iter 100 value 81.754337 final value 81.754337 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 103.465015 iter 10 value 98.259919 iter 20 value 91.892896 iter 30 value 88.453029 iter 40 value 84.742258 iter 50 value 83.854087 iter 60 value 82.657051 iter 70 value 82.322120 iter 80 value 82.188045 iter 90 value 82.089842 iter 100 value 81.985978 final value 81.985978 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 108.768715 iter 10 value 94.439286 iter 20 value 93.796096 iter 30 value 90.214810 iter 40 value 85.623452 iter 50 value 83.544346 iter 60 value 82.586069 iter 70 value 81.978287 iter 80 value 81.867483 iter 90 value 81.749656 iter 100 value 81.570512 final value 81.570512 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.790382 iter 10 value 94.114915 iter 20 value 93.884142 iter 30 value 92.028115 iter 40 value 86.402444 iter 50 value 85.972971 iter 60 value 85.203556 iter 70 value 83.976775 iter 80 value 83.717781 iter 90 value 83.386363 iter 100 value 82.261185 final value 82.261185 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 108.170138 final value 94.054619 converged Fitting Repeat 2 # weights: 103 initial value 97.698123 final value 94.054792 converged Fitting Repeat 3 # weights: 103 initial value 100.487794 iter 10 value 94.054434 iter 20 value 94.050446 iter 30 value 93.032624 iter 40 value 91.882488 iter 50 value 91.877990 iter 60 value 91.569967 iter 70 value 91.559034 final value 91.558920 converged Fitting Repeat 4 # weights: 103 initial value 97.306335 iter 10 value 94.054793 iter 20 value 93.988660 iter 30 value 90.838951 iter 40 value 90.727130 iter 50 value 90.364209 iter 60 value 90.258651 final value 90.258567 converged Fitting Repeat 5 # weights: 103 initial value 94.759574 iter 10 value 85.964983 iter 20 value 85.578361 final value 85.574542 converged Fitting Repeat 1 # weights: 305 initial value 96.758255 iter 10 value 94.057526 iter 20 value 92.273992 iter 30 value 91.599712 final value 91.598422 converged Fitting Repeat 2 # weights: 305 initial value 98.214209 iter 10 value 94.057057 iter 20 value 93.971148 iter 30 value 91.752320 iter 40 value 91.227089 iter 50 value 91.161622 iter 60 value 91.123210 iter 70 value 91.085405 iter 80 value 91.084819 iter 90 value 90.802673 iter 100 value 90.369436 final value 90.369436 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.186511 iter 10 value 94.054885 iter 20 value 94.033862 iter 30 value 94.016705 iter 40 value 85.254996 iter 50 value 84.813061 iter 60 value 83.429035 iter 70 value 82.556634 iter 80 value 82.392054 final value 82.392049 converged Fitting Repeat 4 # weights: 305 initial value 94.350657 iter 10 value 94.058047 iter 20 value 94.052905 iter 30 value 93.870904 iter 40 value 89.059026 iter 50 value 88.878245 iter 60 value 88.824199 iter 70 value 88.823769 final value 88.823742 converged Fitting Repeat 5 # weights: 305 initial value 113.554579 iter 10 value 93.905368 iter 20 value 92.148061 iter 30 value 85.538695 iter 40 value 83.269924 iter 50 value 82.210874 iter 60 value 81.361388 iter 70 value 81.332669 iter 80 value 81.328770 iter 90 value 80.416869 iter 100 value 80.338093 final value 80.338093 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 95.586531 iter 10 value 87.860607 iter 20 value 87.386566 iter 30 value 87.386134 iter 40 value 86.623592 iter 50 value 86.173763 iter 60 value 86.159133 final value 86.158591 converged Fitting Repeat 2 # weights: 507 initial value 105.050638 iter 10 value 94.061241 iter 20 value 94.001767 iter 30 value 91.380190 iter 40 value 90.266660 iter 50 value 90.205232 final value 90.204706 converged Fitting Repeat 3 # weights: 507 initial value 116.489348 iter 10 value 94.061340 iter 20 value 94.047249 iter 30 value 90.303759 iter 40 value 86.265333 iter 50 value 85.691885 iter 60 value 85.507383 iter 70 value 85.104765 iter 80 value 81.642079 iter 90 value 81.172822 iter 100 value 81.160320 final value 81.160320 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 96.161680 iter 10 value 94.060539 iter 20 value 93.961846 iter 30 value 91.980694 iter 40 value 91.858411 iter 50 value 91.846932 final value 91.846803 converged Fitting Repeat 5 # weights: 507 initial value 97.751564 iter 10 value 94.041121 iter 20 value 94.033911 iter 30 value 93.014594 iter 40 value 87.420384 iter 50 value 87.053095 iter 60 value 87.046050 final value 87.046003 converged Fitting Repeat 1 # weights: 103 initial value 95.717155 final value 94.026542 converged Fitting Repeat 2 # weights: 103 initial value 95.565255 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 108.546339 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.818032 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.994105 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 100.751133 final value 94.448052 converged Fitting Repeat 2 # weights: 305 initial value 111.208014 iter 10 value 93.974684 final value 93.974641 converged Fitting Repeat 3 # weights: 305 initial value 108.268289 iter 10 value 94.026542 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 4 # weights: 305 initial value 107.451577 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 102.574514 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 107.452197 final value 94.026542 converged Fitting Repeat 2 # weights: 507 initial value 100.625111 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 115.456762 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 102.416694 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 99.912936 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 106.643007 iter 10 value 93.947362 iter 20 value 85.905821 iter 30 value 84.045563 iter 40 value 81.143057 iter 50 value 79.598032 iter 60 value 79.595052 final value 79.594848 converged Fitting Repeat 2 # weights: 103 initial value 98.391178 iter 10 value 94.487635 iter 20 value 86.155764 iter 30 value 80.255549 iter 40 value 79.801004 iter 50 value 79.614327 iter 60 value 79.594848 iter 60 value 79.594848 iter 60 value 79.594848 final value 79.594848 converged Fitting Repeat 3 # weights: 103 initial value 105.670616 iter 10 value 94.736963 iter 20 value 93.866868 iter 30 value 93.621646 iter 40 value 92.576319 iter 50 value 87.448452 iter 60 value 86.731228 iter 70 value 86.167539 iter 80 value 81.645294 iter 90 value 79.729957 iter 100 value 76.826516 final value 76.826516 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 100.187277 iter 10 value 94.492784 iter 20 value 94.463108 iter 30 value 94.240723 iter 40 value 93.308781 iter 50 value 80.488051 iter 60 value 79.482298 iter 70 value 79.242374 iter 80 value 79.078549 final value 79.073808 converged Fitting Repeat 5 # weights: 103 initial value 97.262992 iter 10 value 95.023315 iter 20 value 94.490015 iter 30 value 93.514332 iter 40 value 90.580433 iter 50 value 83.560720 iter 60 value 80.412763 iter 70 value 80.284255 iter 80 value 79.855221 iter 90 value 79.600917 iter 100 value 79.595761 final value 79.595761 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.902802 iter 10 value 93.567092 iter 20 value 85.379946 iter 30 value 79.976045 iter 40 value 79.620521 iter 50 value 78.563550 iter 60 value 78.225744 iter 70 value 77.728980 iter 80 value 76.863092 iter 90 value 76.165352 iter 100 value 75.830119 final value 75.830119 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.425247 iter 10 value 94.324606 iter 20 value 93.756917 iter 30 value 93.050624 iter 40 value 88.159201 iter 50 value 85.974136 iter 60 value 79.662420 iter 70 value 79.018116 iter 80 value 78.010727 iter 90 value 76.733402 iter 100 value 76.684643 final value 76.684643 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.651529 iter 10 value 94.078276 iter 20 value 93.435013 iter 30 value 90.457700 iter 40 value 87.656228 iter 50 value 86.679287 iter 60 value 84.845481 iter 70 value 83.859752 iter 80 value 81.114493 iter 90 value 79.271004 iter 100 value 77.881507 final value 77.881507 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.208194 iter 10 value 86.646629 iter 20 value 83.931338 iter 30 value 83.645095 iter 40 value 80.079717 iter 50 value 79.683006 iter 60 value 79.320348 iter 70 value 78.113599 iter 80 value 76.159714 iter 90 value 75.805953 iter 100 value 75.780097 final value 75.780097 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 110.030868 iter 10 value 94.547497 iter 20 value 94.352126 iter 30 value 89.475076 iter 40 value 80.981330 iter 50 value 80.091551 iter 60 value 79.757341 iter 70 value 78.101214 iter 80 value 77.364936 iter 90 value 76.995350 iter 100 value 76.718805 final value 76.718805 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 140.543857 iter 10 value 94.491652 iter 20 value 90.473519 iter 30 value 82.181178 iter 40 value 80.162308 iter 50 value 78.070236 iter 60 value 76.912410 iter 70 value 76.033290 iter 80 value 75.698866 iter 90 value 75.361225 iter 100 value 75.187256 final value 75.187256 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.051141 iter 10 value 94.350400 iter 20 value 93.329320 iter 30 value 86.377024 iter 40 value 85.384693 iter 50 value 78.845806 iter 60 value 77.098126 iter 70 value 76.918895 iter 80 value 76.236965 iter 90 value 75.955109 iter 100 value 75.935267 final value 75.935267 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.137633 iter 10 value 94.265383 iter 20 value 84.261017 iter 30 value 83.022760 iter 40 value 82.436335 iter 50 value 80.770789 iter 60 value 80.350959 iter 70 value 78.557489 iter 80 value 77.381520 iter 90 value 76.858608 iter 100 value 76.142656 final value 76.142656 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.655916 iter 10 value 94.480217 iter 20 value 93.372134 iter 30 value 91.606811 iter 40 value 87.960853 iter 50 value 87.236093 iter 60 value 84.931369 iter 70 value 81.992219 iter 80 value 77.592546 iter 90 value 76.842417 iter 100 value 75.959824 final value 75.959824 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.216815 iter 10 value 93.341829 iter 20 value 85.230474 iter 30 value 82.116666 iter 40 value 80.420080 iter 50 value 77.343587 iter 60 value 76.572585 iter 70 value 76.060157 iter 80 value 75.605295 iter 90 value 75.550323 iter 100 value 75.504015 final value 75.504015 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.751729 final value 94.485594 converged Fitting Repeat 2 # weights: 103 initial value 96.945104 iter 10 value 94.028417 iter 20 value 94.026739 iter 30 value 90.124240 iter 40 value 89.083219 iter 50 value 89.081370 iter 60 value 88.806436 final value 88.613859 converged Fitting Repeat 3 # weights: 103 initial value 100.259549 iter 10 value 94.485991 iter 20 value 94.453790 iter 30 value 87.632612 iter 40 value 81.294333 iter 50 value 78.614244 iter 60 value 78.611942 iter 70 value 78.604294 iter 80 value 78.600633 iter 90 value 78.595328 final value 78.595274 converged Fitting Repeat 4 # weights: 103 initial value 112.888556 final value 94.485663 converged Fitting Repeat 5 # weights: 103 initial value 104.095314 final value 94.485912 converged Fitting Repeat 1 # weights: 305 initial value 104.876658 iter 10 value 91.878384 iter 20 value 83.045414 iter 30 value 83.041989 iter 40 value 83.039048 iter 50 value 78.213480 iter 60 value 78.088313 iter 70 value 78.078763 iter 80 value 78.074886 iter 90 value 78.071908 iter 100 value 78.071576 final value 78.071576 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 115.228845 iter 10 value 94.489191 iter 20 value 94.468269 iter 30 value 93.709342 iter 40 value 93.141993 iter 50 value 93.138478 iter 50 value 93.138478 final value 93.138471 converged Fitting Repeat 3 # weights: 305 initial value 102.677779 iter 10 value 94.031846 iter 20 value 94.028110 final value 94.027805 converged Fitting Repeat 4 # weights: 305 initial value 94.658781 iter 10 value 92.340621 iter 20 value 92.302685 iter 30 value 92.302408 iter 40 value 92.298280 iter 50 value 92.257813 iter 60 value 88.851774 iter 70 value 86.158654 iter 80 value 79.107260 iter 90 value 75.704330 iter 100 value 75.304318 final value 75.304318 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.025047 iter 10 value 94.489062 iter 20 value 94.484374 iter 30 value 93.561658 iter 40 value 91.175639 iter 50 value 78.599206 iter 60 value 78.586563 iter 70 value 78.575802 iter 80 value 78.028068 iter 90 value 78.022075 iter 100 value 78.020874 final value 78.020874 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.695485 iter 10 value 94.492624 iter 20 value 94.484597 iter 30 value 94.484236 iter 40 value 85.595853 iter 50 value 77.413339 iter 60 value 76.203162 iter 70 value 76.191640 iter 80 value 76.167510 iter 90 value 75.630056 iter 100 value 74.201221 final value 74.201221 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.397659 iter 10 value 84.285846 iter 20 value 83.935840 iter 30 value 83.931882 iter 40 value 83.927050 iter 50 value 83.926507 iter 60 value 80.733046 iter 70 value 80.701477 iter 80 value 80.323572 final value 80.309112 converged Fitting Repeat 3 # weights: 507 initial value 98.209042 iter 10 value 94.492512 iter 20 value 94.484551 iter 30 value 94.167876 iter 40 value 93.321784 iter 50 value 93.320958 final value 93.320935 converged Fitting Repeat 4 # weights: 507 initial value 109.360574 iter 10 value 94.492745 iter 20 value 94.191616 iter 30 value 81.580130 iter 40 value 81.017608 iter 50 value 81.015449 iter 60 value 80.762671 iter 70 value 80.694560 iter 80 value 80.693224 iter 90 value 80.692568 iter 90 value 80.692568 final value 80.692568 converged Fitting Repeat 5 # weights: 507 initial value 114.895074 iter 10 value 94.173588 iter 20 value 93.613032 iter 30 value 83.744195 iter 40 value 76.607968 iter 50 value 76.214300 iter 60 value 76.212198 iter 70 value 76.203724 iter 80 value 75.152298 iter 90 value 75.106487 final value 75.105638 converged Fitting Repeat 1 # weights: 103 initial value 100.846267 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.305113 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.075182 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 106.055422 iter 10 value 94.008696 iter 10 value 94.008696 iter 10 value 94.008696 final value 94.008696 converged Fitting Repeat 5 # weights: 103 initial value 96.765985 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 94.189136 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 102.227981 final value 94.008696 converged Fitting Repeat 3 # weights: 305 initial value 102.739226 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 108.007773 iter 10 value 94.052978 final value 94.052911 converged Fitting Repeat 5 # weights: 305 initial value 97.485885 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 102.081739 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 105.608037 final value 94.008696 converged Fitting Repeat 3 # weights: 507 initial value 108.936547 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 101.589768 final value 93.897214 converged Fitting Repeat 5 # weights: 507 initial value 103.090452 final value 94.008696 converged Fitting Repeat 1 # weights: 103 initial value 96.207876 iter 10 value 94.065041 iter 20 value 94.031977 iter 30 value 93.488452 iter 40 value 92.289513 iter 50 value 89.097932 iter 60 value 86.814489 iter 70 value 85.658979 iter 80 value 84.759401 iter 90 value 84.412174 iter 100 value 84.221477 final value 84.221477 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 103.099942 iter 10 value 94.054172 iter 20 value 93.854515 iter 30 value 93.846027 iter 40 value 93.843985 iter 50 value 93.757400 iter 60 value 90.033106 iter 70 value 87.427069 iter 80 value 86.878431 iter 90 value 86.396152 iter 100 value 86.172522 final value 86.172522 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 101.606217 iter 10 value 94.043662 iter 20 value 87.638160 iter 30 value 87.351817 iter 40 value 86.459232 iter 50 value 85.636111 iter 60 value 85.506239 iter 70 value 85.463505 final value 85.449343 converged Fitting Repeat 4 # weights: 103 initial value 99.954441 iter 10 value 94.055368 iter 20 value 93.921871 iter 30 value 89.346273 iter 40 value 88.419763 iter 50 value 87.385796 iter 60 value 86.830492 iter 70 value 86.448687 iter 80 value 85.939617 iter 90 value 85.879313 iter 100 value 84.266819 final value 84.266819 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.034095 iter 10 value 94.033794 iter 20 value 86.514057 iter 30 value 85.401606 iter 40 value 85.106917 iter 50 value 84.522494 iter 60 value 84.335519 iter 70 value 84.304005 iter 80 value 84.284934 final value 84.284872 converged Fitting Repeat 1 # weights: 305 initial value 108.578053 iter 10 value 94.376995 iter 20 value 90.258914 iter 30 value 86.391894 iter 40 value 84.345598 iter 50 value 83.137299 iter 60 value 82.366305 iter 70 value 82.265831 iter 80 value 82.151520 iter 90 value 81.967755 iter 100 value 81.663130 final value 81.663130 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.495802 iter 10 value 94.124619 iter 20 value 94.058608 iter 30 value 93.906138 iter 40 value 93.041236 iter 50 value 87.315232 iter 60 value 84.479590 iter 70 value 83.582187 iter 80 value 82.891070 iter 90 value 82.109164 iter 100 value 81.624951 final value 81.624951 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 119.528637 iter 10 value 93.756908 iter 20 value 88.237175 iter 30 value 86.474091 iter 40 value 86.056522 iter 50 value 85.865278 iter 60 value 85.700962 iter 70 value 85.551941 iter 80 value 85.419178 iter 90 value 84.241938 iter 100 value 83.748988 final value 83.748988 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 102.122049 iter 10 value 94.414179 iter 20 value 94.039852 iter 30 value 88.799785 iter 40 value 87.741881 iter 50 value 87.293135 iter 60 value 85.498131 iter 70 value 83.949557 iter 80 value 83.198528 iter 90 value 82.090048 iter 100 value 81.980396 final value 81.980396 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 111.621376 iter 10 value 93.904349 iter 20 value 88.823396 iter 30 value 87.059970 iter 40 value 86.671677 iter 50 value 86.159316 iter 60 value 85.770909 iter 70 value 85.562915 iter 80 value 85.431020 iter 90 value 84.288540 iter 100 value 82.838765 final value 82.838765 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 104.100282 iter 10 value 93.853534 iter 20 value 90.243815 iter 30 value 87.289936 iter 40 value 86.995277 iter 50 value 85.929773 iter 60 value 85.559113 iter 70 value 85.540441 iter 80 value 85.351705 iter 90 value 84.854888 iter 100 value 82.250187 final value 82.250187 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.001253 iter 10 value 98.196783 iter 20 value 97.122666 iter 30 value 88.469116 iter 40 value 87.186450 iter 50 value 84.620870 iter 60 value 83.911480 iter 70 value 83.404077 iter 80 value 83.213596 iter 90 value 82.527336 iter 100 value 82.167542 final value 82.167542 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.652575 iter 10 value 96.425285 iter 20 value 94.721632 iter 30 value 92.859642 iter 40 value 85.362027 iter 50 value 83.458744 iter 60 value 83.204686 iter 70 value 82.717841 iter 80 value 82.429695 iter 90 value 82.163950 iter 100 value 82.041442 final value 82.041442 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.511336 iter 10 value 94.218370 iter 20 value 92.236191 iter 30 value 87.667043 iter 40 value 84.743227 iter 50 value 84.286767 iter 60 value 84.004718 iter 70 value 83.921977 iter 80 value 83.742575 iter 90 value 83.459646 iter 100 value 82.743676 final value 82.743676 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.268139 iter 10 value 94.021828 iter 20 value 90.420939 iter 30 value 84.994658 iter 40 value 84.023197 iter 50 value 83.851922 iter 60 value 83.447979 iter 70 value 82.823379 iter 80 value 82.494892 iter 90 value 82.309543 iter 100 value 82.066260 final value 82.066260 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.979385 iter 10 value 94.054364 iter 20 value 94.035364 iter 30 value 87.084234 iter 40 value 87.072155 iter 50 value 87.027666 iter 60 value 86.849571 iter 70 value 86.772109 iter 80 value 86.023317 iter 90 value 85.837406 iter 100 value 85.836057 final value 85.836057 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.020582 iter 10 value 93.871302 iter 20 value 93.869890 final value 93.869794 converged Fitting Repeat 3 # weights: 103 initial value 98.000470 final value 94.054414 converged Fitting Repeat 4 # weights: 103 initial value 101.504255 final value 94.054476 converged Fitting Repeat 5 # weights: 103 initial value 96.076936 final value 94.054639 converged Fitting Repeat 1 # weights: 305 initial value 95.233634 iter 10 value 94.013921 iter 20 value 94.010066 iter 30 value 93.958760 iter 40 value 88.020418 iter 50 value 87.569476 iter 60 value 87.525373 iter 70 value 85.584846 iter 80 value 84.676155 iter 90 value 84.317920 iter 100 value 84.313245 final value 84.313245 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.543220 iter 10 value 93.898740 iter 20 value 93.894598 iter 30 value 93.772602 iter 40 value 87.337626 iter 50 value 85.190330 iter 60 value 84.854692 iter 70 value 84.431911 iter 80 value 84.415407 iter 90 value 84.415247 final value 84.411898 converged Fitting Repeat 3 # weights: 305 initial value 125.274990 iter 10 value 94.058042 iter 20 value 93.976600 iter 30 value 91.105434 iter 40 value 90.747883 iter 50 value 87.548271 iter 60 value 85.529618 iter 70 value 81.751103 iter 80 value 81.222077 iter 90 value 80.713348 iter 100 value 80.710800 final value 80.710800 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.279210 iter 10 value 94.057731 final value 94.052920 converged Fitting Repeat 5 # weights: 305 initial value 109.354959 iter 10 value 94.057791 iter 20 value 94.052918 iter 30 value 91.854748 iter 40 value 88.085252 final value 88.085238 converged Fitting Repeat 1 # weights: 507 initial value 104.772898 iter 10 value 94.061356 iter 20 value 94.031430 iter 30 value 93.818939 final value 93.818934 converged Fitting Repeat 2 # weights: 507 initial value 107.828210 iter 10 value 92.878257 iter 20 value 92.671813 final value 92.669978 converged Fitting Repeat 3 # weights: 507 initial value 99.314804 iter 10 value 94.060982 iter 20 value 93.054254 iter 30 value 86.348193 iter 40 value 85.766205 iter 50 value 85.736823 final value 85.736786 converged Fitting Repeat 4 # weights: 507 initial value 95.518573 iter 10 value 93.649970 iter 20 value 93.643222 iter 30 value 90.912040 iter 40 value 86.317265 iter 50 value 84.981520 iter 60 value 84.743591 iter 70 value 84.604252 final value 84.603524 converged Fitting Repeat 5 # weights: 507 initial value 103.671905 iter 10 value 93.827295 iter 20 value 93.819041 iter 30 value 93.817437 iter 40 value 93.605818 iter 50 value 87.677469 iter 60 value 85.621291 iter 70 value 84.846036 iter 80 value 84.507270 iter 90 value 83.605717 iter 100 value 82.774782 final value 82.774782 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.716934 iter 10 value 94.053030 final value 94.052435 converged Fitting Repeat 2 # weights: 103 initial value 96.881684 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 112.539036 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.903095 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 102.945822 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.669562 final value 94.275362 converged Fitting Repeat 2 # weights: 305 initial value 120.318505 iter 10 value 91.762716 iter 20 value 88.248767 iter 30 value 87.144826 iter 40 value 85.409680 final value 85.131031 converged Fitting Repeat 3 # weights: 305 initial value 119.944873 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 101.302817 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 120.763290 iter 10 value 94.275378 final value 94.275362 converged Fitting Repeat 1 # weights: 507 initial value 94.347637 iter 10 value 86.167015 iter 20 value 86.156239 iter 30 value 85.083635 iter 40 value 85.074852 final value 85.074782 converged Fitting Repeat 2 # weights: 507 initial value 105.454748 final value 94.052427 converged Fitting Repeat 3 # weights: 507 initial value 118.576148 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 107.338948 iter 10 value 94.484211 iter 10 value 94.484211 iter 10 value 94.484211 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 105.831307 final value 94.275362 converged Fitting Repeat 1 # weights: 103 initial value 116.802484 iter 10 value 94.411968 iter 20 value 91.954642 iter 30 value 87.596392 iter 40 value 86.409290 iter 50 value 86.340983 iter 60 value 86.053957 iter 70 value 85.860438 iter 80 value 85.771864 iter 90 value 85.663342 iter 100 value 85.654723 final value 85.654723 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 108.101059 iter 10 value 93.183142 iter 20 value 90.347155 iter 30 value 90.184706 iter 40 value 89.853300 final value 89.853004 converged Fitting Repeat 3 # weights: 103 initial value 97.648987 iter 10 value 94.497753 iter 20 value 94.486775 iter 30 value 94.317322 iter 40 value 90.970269 iter 50 value 86.860224 iter 60 value 86.541862 iter 70 value 85.384065 iter 80 value 85.040836 iter 90 value 84.090608 iter 100 value 84.036053 final value 84.036053 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 112.804868 iter 10 value 94.416454 iter 20 value 92.118012 iter 30 value 91.030084 iter 40 value 90.478040 iter 50 value 89.219646 iter 60 value 88.051859 iter 70 value 85.736461 iter 80 value 84.755333 iter 90 value 84.274050 iter 100 value 84.046793 final value 84.046793 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.729392 iter 10 value 94.489239 iter 20 value 87.641054 iter 30 value 85.812499 iter 40 value 85.024470 iter 50 value 84.951875 iter 60 value 84.613165 iter 70 value 84.473140 iter 80 value 84.341781 final value 84.337328 converged Fitting Repeat 1 # weights: 305 initial value 101.358920 iter 10 value 94.378505 iter 20 value 87.904724 iter 30 value 86.746841 iter 40 value 86.654799 iter 50 value 86.281297 iter 60 value 86.064316 iter 70 value 85.692211 iter 80 value 85.441676 iter 90 value 85.241277 iter 100 value 82.843854 final value 82.843854 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.180064 iter 10 value 94.467832 iter 20 value 92.277493 iter 30 value 90.136131 iter 40 value 84.645629 iter 50 value 84.121863 iter 60 value 83.675175 iter 70 value 82.843064 iter 80 value 82.012691 iter 90 value 81.961448 iter 100 value 81.901539 final value 81.901539 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 113.829793 iter 10 value 95.459059 iter 20 value 90.839890 iter 30 value 90.206179 iter 40 value 89.798774 iter 50 value 89.758336 iter 60 value 85.082898 iter 70 value 83.742249 iter 80 value 83.356585 iter 90 value 82.673543 iter 100 value 82.585888 final value 82.585888 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 104.142825 iter 10 value 94.510965 iter 20 value 88.881220 iter 30 value 87.217749 iter 40 value 86.171785 iter 50 value 85.276959 iter 60 value 83.716170 iter 70 value 83.210665 iter 80 value 82.457577 iter 90 value 81.935866 iter 100 value 81.275906 final value 81.275906 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 113.414096 iter 10 value 95.292172 iter 20 value 86.192647 iter 30 value 85.566139 iter 40 value 83.856000 iter 50 value 81.715349 iter 60 value 81.495972 iter 70 value 81.248632 iter 80 value 80.970040 iter 90 value 80.771395 iter 100 value 80.714100 final value 80.714100 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.068808 iter 10 value 96.026662 iter 20 value 87.836388 iter 30 value 86.968931 iter 40 value 86.031763 iter 50 value 83.844752 iter 60 value 83.589536 iter 70 value 83.426410 iter 80 value 82.728249 iter 90 value 81.466638 iter 100 value 81.039337 final value 81.039337 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.629951 iter 10 value 94.514263 iter 20 value 93.773880 iter 30 value 87.420536 iter 40 value 86.271176 iter 50 value 85.279604 iter 60 value 85.176144 iter 70 value 85.097998 iter 80 value 85.039804 iter 90 value 84.950459 iter 100 value 84.477904 final value 84.477904 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 111.693281 iter 10 value 95.127831 iter 20 value 94.677364 iter 30 value 92.793399 iter 40 value 88.817746 iter 50 value 86.756097 iter 60 value 85.219359 iter 70 value 83.064914 iter 80 value 81.471879 iter 90 value 81.122423 iter 100 value 80.806419 final value 80.806419 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.017505 iter 10 value 93.771408 iter 20 value 86.604094 iter 30 value 84.828452 iter 40 value 83.445877 iter 50 value 81.688147 iter 60 value 81.048885 iter 70 value 80.613204 iter 80 value 80.525323 iter 90 value 80.495822 iter 100 value 80.448629 final value 80.448629 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.725522 iter 10 value 94.799578 iter 20 value 91.794287 iter 30 value 85.361797 iter 40 value 83.113373 iter 50 value 82.430780 iter 60 value 81.138910 iter 70 value 80.179231 iter 80 value 80.102984 iter 90 value 80.030043 iter 100 value 79.883098 final value 79.883098 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 113.833721 final value 94.485978 converged Fitting Repeat 2 # weights: 103 initial value 96.982547 iter 10 value 94.485873 iter 20 value 94.484219 final value 94.484215 converged Fitting Repeat 3 # weights: 103 initial value 97.526137 final value 94.449583 converged Fitting Repeat 4 # weights: 103 initial value 95.023483 final value 94.486072 converged Fitting Repeat 5 # weights: 103 initial value 94.757228 final value 94.485841 converged Fitting Repeat 1 # weights: 305 initial value 116.724384 iter 10 value 94.489854 iter 20 value 94.470529 iter 30 value 94.006534 iter 40 value 89.575726 iter 50 value 88.792494 iter 60 value 88.782459 iter 70 value 88.696352 final value 88.680419 converged Fitting Repeat 2 # weights: 305 initial value 99.924510 iter 10 value 94.297598 iter 20 value 94.234583 iter 30 value 94.082439 iter 40 value 85.543885 final value 85.536542 converged Fitting Repeat 3 # weights: 305 initial value 100.542736 iter 10 value 94.489463 iter 20 value 94.376946 iter 30 value 87.884169 iter 40 value 87.840303 iter 50 value 87.839648 final value 87.839621 converged Fitting Repeat 4 # weights: 305 initial value 95.279707 iter 10 value 94.045928 iter 20 value 89.723531 iter 30 value 86.143636 iter 40 value 86.067919 iter 50 value 85.584915 iter 60 value 85.572601 iter 70 value 85.571353 iter 80 value 85.570767 iter 90 value 85.570504 iter 90 value 85.570504 iter 90 value 85.570504 final value 85.570504 converged Fitting Repeat 5 # weights: 305 initial value 97.162371 iter 10 value 90.915591 iter 20 value 85.394185 iter 30 value 85.372638 iter 40 value 85.245329 iter 50 value 85.086924 iter 60 value 85.085980 iter 70 value 85.084906 iter 80 value 85.082526 iter 90 value 85.082373 iter 100 value 85.082283 final value 85.082283 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.490654 iter 10 value 94.283783 iter 20 value 94.281516 iter 30 value 94.279329 iter 40 value 94.239451 iter 50 value 93.999449 iter 60 value 93.919287 iter 70 value 87.765024 iter 80 value 85.527766 iter 90 value 85.203379 final value 85.203064 converged Fitting Repeat 2 # weights: 507 initial value 102.701940 iter 10 value 94.491071 iter 20 value 93.997581 iter 30 value 93.942102 iter 40 value 93.940223 final value 93.940014 converged Fitting Repeat 3 # weights: 507 initial value 108.321382 iter 10 value 94.458654 iter 20 value 94.453864 iter 30 value 94.411732 iter 40 value 85.869303 iter 50 value 85.467744 iter 60 value 84.802804 final value 84.801532 converged Fitting Repeat 4 # weights: 507 initial value 113.717583 iter 10 value 94.096942 final value 94.096508 converged Fitting Repeat 5 # weights: 507 initial value 105.338545 iter 10 value 94.492348 iter 20 value 94.464665 iter 30 value 91.169605 iter 40 value 87.073330 iter 50 value 84.481004 iter 60 value 82.163039 iter 70 value 80.501754 iter 80 value 79.477671 iter 90 value 79.432568 iter 100 value 79.390374 final value 79.390374 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 134.118818 iter 10 value 114.035182 iter 20 value 107.898011 iter 30 value 107.307643 iter 40 value 104.936582 iter 50 value 103.019495 iter 60 value 102.654344 iter 70 value 102.299111 iter 80 value 101.865156 iter 90 value 101.631678 iter 100 value 101.433622 final value 101.433622 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 137.277493 iter 10 value 117.140028 iter 20 value 111.056887 iter 30 value 107.694276 iter 40 value 106.583549 iter 50 value 105.751610 iter 60 value 105.084609 iter 70 value 104.706597 iter 80 value 104.624995 iter 90 value 104.441576 iter 100 value 104.265919 final value 104.265919 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 148.317346 iter 10 value 117.721672 iter 20 value 110.850536 iter 30 value 110.324293 iter 40 value 109.773367 iter 50 value 104.048839 iter 60 value 102.638463 iter 70 value 102.313462 iter 80 value 102.072481 iter 90 value 101.403750 iter 100 value 101.112601 final value 101.112601 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 124.730731 iter 10 value 110.433241 iter 20 value 106.389106 iter 30 value 103.476630 iter 40 value 102.576683 iter 50 value 101.929401 iter 60 value 101.461040 iter 70 value 101.137423 iter 80 value 101.051364 iter 90 value 101.032637 iter 100 value 100.748151 final value 100.748151 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 140.119293 iter 10 value 117.914089 iter 20 value 117.787749 iter 30 value 113.681229 iter 40 value 111.437512 iter 50 value 107.047159 iter 60 value 105.922218 iter 70 value 105.680107 iter 80 value 104.512281 iter 90 value 103.071010 iter 100 value 102.384159 final value 102.384159 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Sun Aug 31 23:43:08 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 39.968 1.481 102.823
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.860 | 0.620 | 34.483 | |
FreqInteractors | 0.213 | 0.007 | 0.220 | |
calculateAAC | 0.029 | 0.011 | 0.040 | |
calculateAutocor | 0.316 | 0.012 | 0.328 | |
calculateCTDC | 0.078 | 0.001 | 0.079 | |
calculateCTDD | 0.504 | 0.002 | 0.507 | |
calculateCTDT | 0.185 | 0.006 | 0.191 | |
calculateCTriad | 0.351 | 0.019 | 0.369 | |
calculateDC | 0.084 | 0.001 | 0.084 | |
calculateF | 0.468 | 0.000 | 0.469 | |
calculateKSAAP | 0.102 | 0.000 | 0.102 | |
calculateQD_Sm | 1.665 | 0.031 | 1.696 | |
calculateTC | 1.449 | 0.031 | 1.480 | |
calculateTC_Sm | 0.261 | 0.024 | 0.285 | |
corr_plot | 33.939 | 0.345 | 34.358 | |
enrichfindP | 0.498 | 0.032 | 9.183 | |
enrichfind_hp | 0.080 | 0.005 | 1.582 | |
enrichplot | 0.355 | 0.003 | 0.359 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.415 | 0.009 | 3.978 | |
getHPI | 0.001 | 0.000 | 0.001 | |
get_negativePPI | 0.003 | 0.000 | 0.003 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.000 | 0.003 | |
plotPPI | 0.088 | 0.000 | 0.089 | |
pred_ensembel | 13.305 | 0.153 | 12.093 | |
var_imp | 32.792 | 0.575 | 33.408 | |