Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-09-11 12:04 -0400 (Thu, 11 Sep 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" | 4539 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4474 |
kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4519 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4544 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 990/2322 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-09-10 22:34:43 -0400 (Wed, 10 Sep 2025) |
EndedAt: 2025-09-10 22:40:55 -0400 (Wed, 10 Sep 2025) |
EllapsedTime: 371.6 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’ * using R version 4.5.1 Patched (2025-09-10 r88807) * using platform: x86_64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Monterey 12.7.6 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.15.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 35.148 1.714 37.245 FSmethod 33.350 1.612 35.222 corr_plot 33.106 1.597 34.946 pred_ensembel 14.084 0.421 12.531 enrichfindP 0.482 0.053 7.855 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: x86_64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 95.526039 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 107.738830 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.807547 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 100.427975 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 107.656061 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 122.344847 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.261376 final value 94.448052 converged Fitting Repeat 3 # weights: 305 initial value 96.781875 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 104.994052 iter 10 value 94.468123 final value 94.467391 converged Fitting Repeat 5 # weights: 305 initial value 96.055372 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 97.604964 iter 10 value 93.470621 iter 20 value 93.362073 final value 93.361960 converged Fitting Repeat 2 # weights: 507 initial value 124.937713 final value 94.467391 converged Fitting Repeat 3 # weights: 507 initial value 122.697404 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 97.243801 final value 94.467391 converged Fitting Repeat 5 # weights: 507 initial value 102.545960 final value 94.467391 converged Fitting Repeat 1 # weights: 103 initial value 99.787151 iter 10 value 94.480458 iter 20 value 93.862111 iter 30 value 93.823851 iter 40 value 88.223578 iter 50 value 86.040828 iter 60 value 84.898830 iter 70 value 84.831114 iter 80 value 84.650710 iter 90 value 84.564448 final value 84.558381 converged Fitting Repeat 2 # weights: 103 initial value 114.234618 iter 10 value 94.286809 iter 20 value 91.263030 iter 30 value 88.120018 iter 40 value 87.355530 iter 50 value 84.724134 iter 60 value 84.218728 iter 70 value 84.063651 iter 80 value 83.307622 iter 90 value 83.274386 iter 100 value 83.269776 final value 83.269776 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 104.176011 iter 10 value 94.485106 iter 20 value 94.311049 iter 30 value 88.485495 iter 40 value 85.296292 iter 50 value 83.970329 iter 60 value 83.882590 iter 70 value 83.864088 final value 83.859211 converged Fitting Repeat 4 # weights: 103 initial value 110.221391 iter 10 value 93.853413 iter 20 value 86.138440 iter 30 value 85.207383 iter 40 value 84.889622 iter 50 value 84.791313 iter 60 value 84.616959 iter 70 value 84.576749 iter 80 value 84.538671 final value 84.538433 converged Fitting Repeat 5 # weights: 103 initial value 97.701528 iter 10 value 94.529011 iter 20 value 94.489265 iter 30 value 94.026418 iter 40 value 92.752076 iter 50 value 85.349467 iter 60 value 84.826008 iter 70 value 84.432383 iter 80 value 84.020211 iter 90 value 83.164119 iter 100 value 83.073529 final value 83.073529 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 107.025562 iter 10 value 94.600031 iter 20 value 91.063826 iter 30 value 86.918273 iter 40 value 84.861860 iter 50 value 84.022691 iter 60 value 83.441125 iter 70 value 82.429702 iter 80 value 82.281169 iter 90 value 81.749855 iter 100 value 81.583564 final value 81.583564 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 145.025351 iter 10 value 94.541839 iter 20 value 89.910808 iter 30 value 88.460633 iter 40 value 87.848872 iter 50 value 84.911399 iter 60 value 84.215999 iter 70 value 83.703871 iter 80 value 83.583511 iter 90 value 83.255363 iter 100 value 83.130157 final value 83.130157 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 102.328464 iter 10 value 94.661766 iter 20 value 94.043496 iter 30 value 87.800669 iter 40 value 85.890274 iter 50 value 84.021013 iter 60 value 83.531804 iter 70 value 82.626640 iter 80 value 82.194484 iter 90 value 81.786544 iter 100 value 81.534638 final value 81.534638 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.288514 iter 10 value 92.714331 iter 20 value 91.997624 iter 30 value 88.441883 iter 40 value 85.250660 iter 50 value 83.914741 iter 60 value 83.782542 iter 70 value 83.676523 iter 80 value 83.566676 iter 90 value 83.481472 iter 100 value 83.400996 final value 83.400996 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 124.065770 iter 10 value 94.216186 iter 20 value 89.228314 iter 30 value 86.441487 iter 40 value 85.540186 iter 50 value 84.839250 iter 60 value 84.501955 iter 70 value 83.858586 iter 80 value 83.450285 iter 90 value 83.330515 iter 100 value 83.311601 final value 83.311601 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.906704 iter 10 value 96.502462 iter 20 value 90.573865 iter 30 value 86.658329 iter 40 value 85.292051 iter 50 value 84.635626 iter 60 value 84.505061 iter 70 value 84.454658 iter 80 value 84.172345 iter 90 value 83.297895 iter 100 value 82.107527 final value 82.107527 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.552127 iter 10 value 100.026360 iter 20 value 85.450252 iter 30 value 84.837327 iter 40 value 84.375291 iter 50 value 81.822891 iter 60 value 81.555231 iter 70 value 81.313220 iter 80 value 81.000011 iter 90 value 80.910766 iter 100 value 80.885593 final value 80.885593 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 124.978599 iter 10 value 94.455149 iter 20 value 88.463747 iter 30 value 85.969699 iter 40 value 85.634003 iter 50 value 83.124247 iter 60 value 82.354962 iter 70 value 81.915579 iter 80 value 81.714928 iter 90 value 81.295393 iter 100 value 81.089215 final value 81.089215 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.541545 iter 10 value 94.652303 iter 20 value 93.603274 iter 30 value 88.959480 iter 40 value 87.874246 iter 50 value 87.684588 iter 60 value 86.400237 iter 70 value 84.231743 iter 80 value 82.616988 iter 90 value 81.606463 iter 100 value 81.094662 final value 81.094662 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 113.162799 iter 10 value 94.603192 iter 20 value 89.465975 iter 30 value 85.210340 iter 40 value 83.966057 iter 50 value 83.335655 iter 60 value 82.274251 iter 70 value 82.029205 iter 80 value 81.252410 iter 90 value 81.097090 iter 100 value 80.940627 final value 80.940627 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.171771 final value 94.485827 converged Fitting Repeat 2 # weights: 103 initial value 96.308446 iter 10 value 94.485821 iter 20 value 94.484043 iter 30 value 93.406983 final value 93.406974 converged Fitting Repeat 3 # weights: 103 initial value 98.020767 final value 94.485964 converged Fitting Repeat 4 # weights: 103 initial value 103.152793 final value 94.485706 converged Fitting Repeat 5 # weights: 103 initial value 109.863278 final value 94.468562 converged Fitting Repeat 1 # weights: 305 initial value 100.579956 iter 10 value 94.329775 iter 20 value 94.315018 iter 30 value 94.183843 iter 40 value 94.142949 iter 50 value 93.102322 iter 60 value 93.047905 iter 70 value 93.038192 iter 80 value 92.838846 iter 90 value 92.838525 iter 100 value 92.838177 final value 92.838177 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.710400 iter 10 value 94.472643 iter 20 value 94.467574 final value 94.467570 converged Fitting Repeat 3 # weights: 305 initial value 102.683642 iter 10 value 94.472258 iter 20 value 94.448058 iter 30 value 92.493224 iter 40 value 91.520961 iter 50 value 90.586509 iter 60 value 83.781641 iter 70 value 83.054818 iter 80 value 82.980282 iter 90 value 82.979048 iter 100 value 82.793997 final value 82.793997 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.744072 iter 10 value 89.252285 iter 20 value 87.566804 iter 30 value 85.742789 iter 40 value 85.740984 iter 50 value 85.735103 iter 60 value 85.734991 final value 85.734723 converged Fitting Repeat 5 # weights: 305 initial value 98.783239 iter 10 value 94.472381 iter 20 value 94.468530 final value 94.467800 converged Fitting Repeat 1 # weights: 507 initial value 105.810673 iter 10 value 92.331385 iter 20 value 92.284180 iter 30 value 92.246487 iter 40 value 92.238971 iter 50 value 92.181788 iter 60 value 92.181353 iter 70 value 92.180428 final value 92.180352 converged Fitting Repeat 2 # weights: 507 initial value 104.380145 iter 10 value 93.881448 iter 20 value 88.318835 iter 30 value 87.033682 iter 40 value 87.031389 iter 50 value 87.030137 iter 60 value 86.674010 iter 70 value 86.612280 iter 80 value 86.611029 iter 90 value 85.047979 iter 100 value 83.591237 final value 83.591237 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.670183 iter 10 value 94.491560 iter 20 value 94.481761 iter 30 value 89.559889 iter 40 value 86.311919 iter 50 value 85.680523 iter 60 value 85.145808 iter 70 value 84.861942 iter 80 value 84.856776 final value 84.854520 converged Fitting Repeat 4 # weights: 507 initial value 98.107540 iter 10 value 93.353296 iter 20 value 86.840535 iter 30 value 86.693544 iter 40 value 86.688715 iter 50 value 86.662751 iter 60 value 85.979873 iter 70 value 82.419166 iter 80 value 81.048702 iter 90 value 80.613336 iter 100 value 80.429568 final value 80.429568 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 95.133311 iter 10 value 94.475414 iter 20 value 94.461341 iter 30 value 94.453584 iter 40 value 94.088495 iter 50 value 93.798581 iter 60 value 85.053698 iter 70 value 84.457668 iter 80 value 83.031470 iter 90 value 82.185772 iter 100 value 81.090704 final value 81.090704 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.749435 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.308201 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.336806 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 99.093627 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 104.442447 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 97.723466 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 95.076898 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 101.287540 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 113.754290 iter 10 value 93.773048 final value 93.772973 converged Fitting Repeat 5 # weights: 305 initial value 111.755087 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 107.303471 iter 10 value 92.316902 iter 20 value 92.218570 iter 30 value 92.216777 final value 92.216767 converged Fitting Repeat 2 # weights: 507 initial value 112.253233 iter 10 value 94.450867 final value 94.450826 converged Fitting Repeat 3 # weights: 507 initial value 100.662361 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 124.715551 iter 10 value 93.601364 final value 93.567525 converged Fitting Repeat 5 # weights: 507 initial value 97.144541 iter 10 value 89.932078 iter 20 value 88.919709 iter 30 value 87.310115 iter 40 value 86.747863 iter 50 value 86.416962 iter 60 value 86.416413 iter 70 value 85.873005 iter 80 value 85.813758 final value 85.813113 converged Fitting Repeat 1 # weights: 103 initial value 119.591541 iter 10 value 94.420791 iter 20 value 91.619246 iter 30 value 85.338026 iter 40 value 83.397022 iter 50 value 83.316117 iter 60 value 82.995778 iter 70 value 82.901414 iter 80 value 82.880134 final value 82.880101 converged Fitting Repeat 2 # weights: 103 initial value 99.115905 iter 10 value 94.473242 iter 20 value 90.065231 iter 30 value 84.425502 iter 40 value 83.896498 iter 50 value 83.279113 iter 60 value 82.933059 iter 70 value 82.897795 iter 80 value 82.880117 final value 82.880101 converged Fitting Repeat 3 # weights: 103 initial value 114.734989 iter 10 value 94.486621 iter 20 value 93.686232 iter 30 value 93.422753 iter 40 value 84.389219 iter 50 value 84.010285 iter 60 value 83.143198 iter 70 value 81.478165 iter 80 value 81.007859 iter 90 value 80.333648 final value 80.301166 converged Fitting Repeat 4 # weights: 103 initial value 103.306435 iter 10 value 94.611907 iter 20 value 94.487687 iter 30 value 93.551039 iter 40 value 93.414974 iter 50 value 86.065586 iter 60 value 84.278295 iter 70 value 81.354582 iter 80 value 80.798238 iter 90 value 80.602869 iter 100 value 80.306831 final value 80.306831 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 105.304651 iter 10 value 94.488615 iter 20 value 93.818238 iter 30 value 92.546470 iter 40 value 88.332562 iter 50 value 87.055472 iter 60 value 86.783853 iter 70 value 86.704461 iter 80 value 86.690802 iter 90 value 86.651485 iter 100 value 86.515781 final value 86.515781 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 100.017574 iter 10 value 92.493947 iter 20 value 84.210389 iter 30 value 83.354210 iter 40 value 82.138509 iter 50 value 80.856227 iter 60 value 80.409653 iter 70 value 80.283327 iter 80 value 79.915539 iter 90 value 79.711791 iter 100 value 79.608918 final value 79.608918 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.178555 iter 10 value 94.492234 iter 20 value 86.788889 iter 30 value 84.604309 iter 40 value 84.242279 iter 50 value 82.193300 iter 60 value 81.841447 iter 70 value 81.726394 iter 80 value 81.606022 iter 90 value 80.632961 iter 100 value 80.010378 final value 80.010378 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 115.958907 iter 10 value 94.558282 iter 20 value 94.076445 iter 30 value 87.152254 iter 40 value 86.444934 iter 50 value 86.171944 iter 60 value 82.632984 iter 70 value 82.498135 iter 80 value 82.479020 iter 90 value 82.268445 iter 100 value 80.974491 final value 80.974491 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.102761 iter 10 value 94.494192 iter 20 value 93.326348 iter 30 value 88.493501 iter 40 value 86.923715 iter 50 value 86.439524 iter 60 value 85.412989 iter 70 value 82.184428 iter 80 value 80.281332 iter 90 value 79.293582 iter 100 value 78.944827 final value 78.944827 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 136.714260 iter 10 value 94.386989 iter 20 value 84.754195 iter 30 value 84.021968 iter 40 value 83.347998 iter 50 value 82.681464 iter 60 value 82.126660 iter 70 value 80.474392 iter 80 value 79.715200 iter 90 value 79.643660 iter 100 value 79.533863 final value 79.533863 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.297533 iter 10 value 94.719347 iter 20 value 92.595313 iter 30 value 87.690733 iter 40 value 81.651170 iter 50 value 80.849468 iter 60 value 79.688511 iter 70 value 79.241549 iter 80 value 79.156648 iter 90 value 79.098823 iter 100 value 78.919758 final value 78.919758 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.747967 iter 10 value 94.400534 iter 20 value 91.911100 iter 30 value 87.080098 iter 40 value 84.987332 iter 50 value 83.434095 iter 60 value 81.742657 iter 70 value 81.123807 iter 80 value 80.333071 iter 90 value 79.765659 iter 100 value 79.416062 final value 79.416062 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 126.165326 iter 10 value 97.875597 iter 20 value 87.276906 iter 30 value 83.325174 iter 40 value 83.069141 iter 50 value 80.728854 iter 60 value 79.708294 iter 70 value 79.613032 iter 80 value 79.474568 iter 90 value 79.261924 iter 100 value 78.882297 final value 78.882297 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.553367 iter 10 value 94.524516 iter 20 value 94.094937 iter 30 value 84.430992 iter 40 value 82.836453 iter 50 value 81.956255 iter 60 value 81.354563 iter 70 value 79.965394 iter 80 value 79.203458 iter 90 value 78.968495 iter 100 value 78.839463 final value 78.839463 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 119.950125 iter 10 value 86.018286 iter 20 value 83.438731 iter 30 value 82.770405 iter 40 value 82.497073 iter 50 value 82.308892 iter 60 value 81.634149 iter 70 value 81.409388 iter 80 value 80.141763 iter 90 value 79.493695 iter 100 value 78.926080 final value 78.926080 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.531770 final value 94.486175 converged Fitting Repeat 2 # weights: 103 initial value 103.157922 final value 94.485928 converged Fitting Repeat 3 # weights: 103 initial value 100.109012 final value 94.485602 converged Fitting Repeat 4 # weights: 103 initial value 97.203644 iter 10 value 93.774829 iter 20 value 93.726013 iter 30 value 93.320008 iter 40 value 93.192059 iter 50 value 93.191991 final value 93.191985 converged Fitting Repeat 5 # weights: 103 initial value 96.564650 final value 94.485867 converged Fitting Repeat 1 # weights: 305 initial value 98.421365 iter 10 value 94.488074 final value 94.484364 converged Fitting Repeat 2 # weights: 305 initial value 97.211962 iter 10 value 87.403765 iter 20 value 84.560159 iter 30 value 83.955812 iter 40 value 83.477958 iter 50 value 80.537305 iter 60 value 78.239869 iter 70 value 77.635149 iter 80 value 77.616121 final value 77.606680 converged Fitting Repeat 3 # weights: 305 initial value 98.792440 iter 10 value 93.778130 iter 20 value 93.774126 iter 30 value 85.105067 iter 40 value 82.758964 iter 50 value 81.161455 iter 60 value 79.139015 iter 70 value 78.029151 iter 80 value 78.024935 iter 90 value 78.023818 final value 78.023773 converged Fitting Repeat 4 # weights: 305 initial value 104.459647 iter 10 value 94.489682 iter 20 value 94.404539 iter 30 value 85.384521 iter 40 value 84.860651 iter 50 value 83.698526 iter 60 value 83.571485 iter 70 value 81.252052 iter 80 value 80.168568 iter 90 value 80.161779 iter 100 value 79.932769 final value 79.932769 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 109.616556 iter 10 value 93.392357 iter 20 value 93.389234 final value 93.377140 converged Fitting Repeat 1 # weights: 507 initial value 103.106061 iter 10 value 94.495127 iter 20 value 94.287758 iter 30 value 82.461466 iter 40 value 82.185427 iter 50 value 82.177523 iter 60 value 82.174712 iter 70 value 82.171604 iter 80 value 82.037798 iter 90 value 81.669781 iter 100 value 81.661198 final value 81.661198 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.789318 iter 10 value 90.079651 iter 20 value 88.636500 iter 30 value 88.635046 iter 40 value 82.982526 iter 50 value 82.152213 iter 60 value 81.994244 iter 70 value 81.993042 iter 80 value 81.988392 iter 90 value 81.943669 final value 81.941646 converged Fitting Repeat 3 # weights: 507 initial value 108.743117 iter 10 value 94.492437 iter 20 value 94.482947 iter 30 value 93.889481 iter 40 value 87.666367 iter 50 value 86.647715 iter 60 value 86.104555 iter 70 value 85.965732 iter 80 value 85.960277 final value 85.959630 converged Fitting Repeat 4 # weights: 507 initial value 109.182379 iter 10 value 94.492879 iter 20 value 94.478217 iter 30 value 89.758593 iter 40 value 88.602214 iter 50 value 88.449078 final value 88.448544 converged Fitting Repeat 5 # weights: 507 initial value 97.739144 iter 10 value 93.781023 iter 20 value 93.777929 iter 30 value 84.698564 iter 40 value 83.986370 iter 50 value 83.375704 iter 60 value 83.299400 iter 70 value 83.286540 iter 70 value 83.286539 final value 83.286539 converged Fitting Repeat 1 # weights: 103 initial value 100.455890 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 93.161661 iter 10 value 83.894585 iter 20 value 83.685550 iter 30 value 83.364760 final value 83.364499 converged Fitting Repeat 3 # weights: 103 initial value 95.019138 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.947845 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.017796 final value 94.466823 converged Fitting Repeat 1 # weights: 305 initial value 101.666446 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 106.937571 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 95.291775 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 98.361447 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 103.106450 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 96.318663 iter 10 value 94.309860 final value 94.309797 converged Fitting Repeat 2 # weights: 507 initial value 98.774469 iter 10 value 94.424304 final value 94.424079 converged Fitting Repeat 3 # weights: 507 initial value 98.073415 iter 10 value 93.175047 final value 93.175041 converged Fitting Repeat 4 # weights: 507 initial value 113.798401 iter 10 value 94.480520 iter 10 value 94.480519 iter 10 value 94.480519 final value 94.480519 converged Fitting Repeat 5 # weights: 507 initial value 117.367627 iter 10 value 94.466748 final value 94.466667 converged Fitting Repeat 1 # weights: 103 initial value 102.469479 iter 10 value 93.950092 iter 20 value 87.210550 iter 30 value 86.308049 iter 40 value 86.232378 iter 50 value 85.696444 iter 60 value 85.069009 iter 70 value 84.707055 iter 80 value 84.645506 final value 84.645481 converged Fitting Repeat 2 # weights: 103 initial value 97.018840 iter 10 value 94.547200 iter 20 value 94.487685 iter 30 value 93.945842 iter 40 value 93.275031 iter 50 value 89.738780 iter 60 value 88.753513 iter 70 value 86.308125 iter 80 value 86.097724 iter 90 value 85.992036 iter 100 value 85.935847 final value 85.935847 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 118.882498 iter 10 value 94.330881 iter 20 value 87.759561 iter 30 value 86.649746 iter 40 value 86.548182 iter 50 value 86.355894 iter 60 value 84.789282 iter 70 value 84.265329 final value 84.265044 converged Fitting Repeat 4 # weights: 103 initial value 99.911279 iter 10 value 94.486463 iter 20 value 89.822568 iter 30 value 86.746980 iter 40 value 85.977338 iter 50 value 84.740867 iter 60 value 82.984600 iter 70 value 82.542206 final value 82.496234 converged Fitting Repeat 5 # weights: 103 initial value 97.750807 iter 10 value 94.470185 iter 20 value 86.845952 iter 30 value 86.302879 iter 40 value 86.194914 iter 50 value 86.019706 iter 60 value 85.495936 iter 70 value 84.778382 iter 80 value 84.586287 iter 90 value 84.392533 iter 100 value 84.285147 final value 84.285147 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.827003 iter 10 value 94.011753 iter 20 value 87.041293 iter 30 value 85.210023 iter 40 value 82.903295 iter 50 value 81.313689 iter 60 value 80.813906 iter 70 value 80.728526 iter 80 value 80.682968 iter 90 value 80.657454 iter 100 value 80.580334 final value 80.580334 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.806336 iter 10 value 93.861141 iter 20 value 87.445989 iter 30 value 85.329800 iter 40 value 85.075248 iter 50 value 84.938982 iter 60 value 83.936210 iter 70 value 82.639566 iter 80 value 82.436658 iter 90 value 82.364493 iter 100 value 82.145541 final value 82.145541 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.860135 iter 10 value 94.784489 iter 20 value 94.493753 iter 30 value 94.379339 iter 40 value 92.930940 iter 50 value 87.388512 iter 60 value 86.648408 iter 70 value 86.211121 iter 80 value 85.085592 iter 90 value 83.332506 iter 100 value 81.893878 final value 81.893878 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 131.393831 iter 10 value 94.497780 iter 20 value 94.029037 iter 30 value 86.155567 iter 40 value 85.258117 iter 50 value 81.884037 iter 60 value 81.199915 iter 70 value 80.964147 iter 80 value 80.938365 iter 90 value 80.831825 iter 100 value 80.746283 final value 80.746283 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 108.492635 iter 10 value 94.486563 iter 20 value 89.770147 iter 30 value 85.771386 iter 40 value 85.081208 iter 50 value 83.807644 iter 60 value 83.160582 iter 70 value 81.391051 iter 80 value 81.044254 iter 90 value 80.996717 iter 100 value 80.972173 final value 80.972173 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 112.764241 iter 10 value 94.242383 iter 20 value 89.553664 iter 30 value 86.401573 iter 40 value 85.371749 iter 50 value 83.845884 iter 60 value 83.332817 iter 70 value 83.237467 iter 80 value 83.172840 iter 90 value 82.969999 iter 100 value 82.469080 final value 82.469080 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.819263 iter 10 value 95.574386 iter 20 value 86.476533 iter 30 value 85.984919 iter 40 value 85.174741 iter 50 value 83.735221 iter 60 value 82.944993 iter 70 value 82.717256 iter 80 value 82.390424 iter 90 value 82.290712 iter 100 value 82.255094 final value 82.255094 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.908273 iter 10 value 94.739323 iter 20 value 88.815017 iter 30 value 87.031185 iter 40 value 86.258238 iter 50 value 85.812347 iter 60 value 83.943795 iter 70 value 82.810537 iter 80 value 82.421696 iter 90 value 82.130554 iter 100 value 81.523672 final value 81.523672 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.875301 iter 10 value 94.355271 iter 20 value 86.405517 iter 30 value 85.381919 iter 40 value 84.815897 iter 50 value 82.900786 iter 60 value 82.006156 iter 70 value 81.760805 iter 80 value 81.240221 iter 90 value 81.012452 iter 100 value 80.879362 final value 80.879362 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 118.828336 iter 10 value 93.676452 iter 20 value 82.345942 iter 30 value 80.921601 iter 40 value 80.533236 iter 50 value 80.374653 iter 60 value 80.333897 iter 70 value 80.308451 iter 80 value 80.227377 iter 90 value 80.223999 iter 100 value 80.189497 final value 80.189497 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 95.340547 final value 94.485644 converged Fitting Repeat 2 # weights: 103 initial value 97.835750 final value 94.482087 converged Fitting Repeat 3 # weights: 103 initial value 96.141949 final value 94.486692 converged Fitting Repeat 4 # weights: 103 initial value 102.621213 final value 94.486043 converged Fitting Repeat 5 # weights: 103 initial value 94.973791 final value 94.485894 converged Fitting Repeat 1 # weights: 305 initial value 127.859450 iter 10 value 94.491832 iter 20 value 94.485211 iter 30 value 94.046880 iter 40 value 86.612510 iter 50 value 84.949695 iter 60 value 84.941524 iter 70 value 84.940886 iter 80 value 84.939620 iter 90 value 84.939183 iter 100 value 84.920226 final value 84.920226 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.564325 iter 10 value 94.315066 iter 20 value 94.311796 iter 30 value 93.132594 iter 40 value 92.899787 final value 92.898381 converged Fitting Repeat 3 # weights: 305 initial value 99.383116 iter 10 value 94.433599 iter 20 value 94.416435 iter 30 value 86.936145 iter 40 value 86.874315 iter 50 value 86.873411 iter 60 value 86.872864 iter 70 value 86.786673 iter 80 value 86.746155 iter 90 value 86.745403 final value 86.745185 converged Fitting Repeat 4 # weights: 305 initial value 118.216792 iter 10 value 94.431299 iter 20 value 94.427832 iter 30 value 92.752034 iter 40 value 83.760974 iter 50 value 83.153880 iter 60 value 83.153667 final value 83.153629 converged Fitting Repeat 5 # weights: 305 initial value 94.924845 iter 10 value 94.485814 iter 20 value 94.245988 iter 30 value 90.541821 iter 40 value 87.724621 iter 50 value 83.286712 iter 60 value 82.551981 iter 70 value 82.546295 iter 80 value 82.399635 iter 90 value 82.393891 final value 82.393870 converged Fitting Repeat 1 # weights: 507 initial value 119.814442 iter 10 value 94.488451 iter 20 value 94.474189 iter 30 value 94.470843 iter 40 value 93.600385 iter 50 value 82.760820 iter 60 value 81.968736 iter 70 value 81.441831 iter 80 value 80.754719 iter 90 value 80.364539 iter 100 value 80.005306 final value 80.005306 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.826532 iter 10 value 92.503223 iter 20 value 86.625130 iter 30 value 86.579053 iter 40 value 86.576373 iter 50 value 84.545310 iter 60 value 84.430812 iter 70 value 83.890693 iter 80 value 82.034909 iter 90 value 81.251599 iter 100 value 81.013799 final value 81.013799 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.514853 iter 10 value 94.475222 iter 20 value 94.467278 iter 30 value 94.196932 iter 40 value 87.848730 iter 50 value 87.826511 iter 60 value 87.778887 iter 70 value 87.774499 iter 80 value 87.187846 iter 90 value 86.505254 iter 100 value 84.670207 final value 84.670207 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 122.571108 iter 10 value 91.772960 iter 20 value 83.780234 iter 30 value 83.776921 iter 40 value 83.593804 iter 50 value 83.217696 iter 60 value 83.215409 iter 70 value 83.201767 iter 80 value 82.866737 iter 90 value 82.795705 iter 100 value 82.792677 final value 82.792677 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 101.585888 iter 10 value 86.737230 iter 20 value 86.708195 iter 30 value 86.702127 iter 40 value 86.681987 iter 50 value 86.592824 iter 60 value 86.588516 iter 70 value 86.578209 iter 80 value 85.246290 iter 90 value 84.765567 final value 84.765316 converged Fitting Repeat 1 # weights: 103 initial value 103.136039 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 107.042088 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 99.094056 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.354840 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 97.369708 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 122.720220 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 96.435610 final value 94.025290 converged Fitting Repeat 3 # weights: 305 initial value 96.220866 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 96.586449 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 94.224739 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 1 # weights: 507 initial value 97.628185 iter 10 value 93.430672 final value 93.430422 converged Fitting Repeat 2 # weights: 507 initial value 99.289600 iter 10 value 94.052912 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 101.706480 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 97.729802 final value 93.582418 converged Fitting Repeat 5 # weights: 507 initial value 103.039938 iter 10 value 93.529068 final value 93.528329 converged Fitting Repeat 1 # weights: 103 initial value 102.777595 iter 10 value 94.032649 iter 20 value 93.614012 iter 30 value 93.415690 iter 40 value 92.700848 iter 50 value 85.989809 iter 60 value 85.744154 iter 70 value 85.378207 iter 80 value 85.306116 iter 90 value 84.994263 iter 100 value 84.633605 final value 84.633605 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.654826 iter 10 value 96.329124 iter 20 value 94.049396 iter 30 value 89.152266 iter 40 value 87.103182 iter 50 value 86.074878 iter 60 value 84.575871 iter 70 value 82.532404 iter 80 value 81.952883 iter 90 value 81.918029 final value 81.916407 converged Fitting Repeat 3 # weights: 103 initial value 97.844543 iter 10 value 94.056724 iter 20 value 87.213760 iter 30 value 85.491168 iter 40 value 84.405890 iter 50 value 83.571735 iter 60 value 83.155068 iter 70 value 82.575223 iter 80 value 82.132484 iter 90 value 82.103927 final value 82.102331 converged Fitting Repeat 4 # weights: 103 initial value 98.312347 iter 10 value 94.065541 iter 20 value 94.059309 iter 30 value 88.847694 iter 40 value 87.196580 iter 50 value 86.951959 iter 60 value 86.898583 iter 70 value 86.516558 iter 80 value 86.359221 iter 90 value 83.523766 iter 100 value 83.459009 final value 83.459009 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 100.040224 iter 10 value 93.888889 iter 20 value 85.816842 iter 30 value 85.156275 iter 40 value 84.871404 iter 50 value 83.800427 iter 60 value 83.470134 iter 70 value 83.457873 final value 83.457841 converged Fitting Repeat 1 # weights: 305 initial value 105.436349 iter 10 value 94.495724 iter 20 value 94.097540 iter 30 value 88.064720 iter 40 value 84.821816 iter 50 value 84.022370 iter 60 value 83.536324 iter 70 value 83.442563 iter 80 value 83.431853 iter 90 value 83.211952 iter 100 value 83.125680 final value 83.125680 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.492323 iter 10 value 93.764955 iter 20 value 86.995435 iter 30 value 85.589248 iter 40 value 85.407934 iter 50 value 84.851701 iter 60 value 84.623669 iter 70 value 83.929377 iter 80 value 83.627857 iter 90 value 82.277593 iter 100 value 81.517524 final value 81.517524 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.335704 iter 10 value 92.928497 iter 20 value 91.219815 iter 30 value 86.769803 iter 40 value 86.423128 iter 50 value 83.873762 iter 60 value 82.077149 iter 70 value 81.323345 iter 80 value 81.141019 iter 90 value 81.056368 iter 100 value 81.000251 final value 81.000251 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.202022 iter 10 value 95.354777 iter 20 value 91.936854 iter 30 value 87.149124 iter 40 value 85.475974 iter 50 value 84.939186 iter 60 value 84.325340 iter 70 value 83.970450 iter 80 value 83.520069 final value 83.482547 converged Fitting Repeat 5 # weights: 305 initial value 110.060564 iter 10 value 94.036839 iter 20 value 87.868228 iter 30 value 86.382117 iter 40 value 83.810187 iter 50 value 82.690778 iter 60 value 82.378157 iter 70 value 81.978703 iter 80 value 81.201322 iter 90 value 80.968170 iter 100 value 80.944273 final value 80.944273 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 117.460926 iter 10 value 93.908965 iter 20 value 87.816693 iter 30 value 85.977839 iter 40 value 84.758494 iter 50 value 84.449183 iter 60 value 84.069372 iter 70 value 83.490126 iter 80 value 82.282211 iter 90 value 80.830736 iter 100 value 80.312121 final value 80.312121 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.668546 iter 10 value 92.294214 iter 20 value 89.650443 iter 30 value 87.662310 iter 40 value 87.262228 iter 50 value 85.942705 iter 60 value 83.870901 iter 70 value 82.487447 iter 80 value 81.401863 iter 90 value 81.159011 iter 100 value 80.907005 final value 80.907005 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.621547 iter 10 value 94.288630 iter 20 value 90.880811 iter 30 value 85.202027 iter 40 value 84.026604 iter 50 value 82.005534 iter 60 value 80.935398 iter 70 value 80.715841 iter 80 value 80.632647 iter 90 value 80.610675 iter 100 value 80.604674 final value 80.604674 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 115.781728 iter 10 value 93.916182 iter 20 value 89.503857 iter 30 value 85.112525 iter 40 value 83.311117 iter 50 value 82.211291 iter 60 value 81.640779 iter 70 value 81.152653 iter 80 value 80.590992 iter 90 value 80.452892 iter 100 value 80.390849 final value 80.390849 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.913823 iter 10 value 93.819487 iter 20 value 90.739547 iter 30 value 83.695814 iter 40 value 82.666218 iter 50 value 82.407057 iter 60 value 81.754938 iter 70 value 80.968095 iter 80 value 80.700890 iter 90 value 80.515270 iter 100 value 80.349573 final value 80.349573 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.779872 iter 10 value 94.043801 iter 20 value 94.029681 iter 30 value 94.028309 iter 40 value 92.832151 iter 50 value 89.008426 iter 60 value 88.999298 iter 70 value 86.517745 iter 80 value 86.491811 iter 90 value 86.463355 iter 100 value 86.224650 final value 86.224650 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 100.410478 final value 94.054713 converged Fitting Repeat 3 # weights: 103 initial value 101.714896 final value 94.054414 converged Fitting Repeat 4 # weights: 103 initial value 98.720004 final value 94.054785 converged Fitting Repeat 5 # weights: 103 initial value 97.474582 iter 10 value 93.584085 iter 20 value 93.582874 final value 93.528532 converged Fitting Repeat 1 # weights: 305 initial value 97.663075 iter 10 value 94.057955 iter 20 value 93.629891 iter 30 value 92.014737 iter 40 value 89.836650 iter 50 value 89.659452 final value 89.656488 converged Fitting Repeat 2 # weights: 305 initial value 99.591000 iter 10 value 93.609614 iter 20 value 93.535119 iter 30 value 93.102450 iter 40 value 87.319014 iter 50 value 86.460071 iter 60 value 86.445349 iter 70 value 85.247427 iter 80 value 85.090587 iter 90 value 85.068513 iter 100 value 84.847937 final value 84.847937 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.160874 iter 10 value 94.057688 iter 20 value 94.051442 iter 30 value 93.585338 iter 40 value 93.361498 iter 50 value 91.067983 iter 60 value 91.019530 iter 70 value 91.018699 iter 80 value 91.018493 final value 91.018491 converged Fitting Repeat 4 # weights: 305 initial value 107.093726 iter 10 value 94.057895 iter 20 value 93.806827 iter 30 value 93.604743 final value 93.604723 converged Fitting Repeat 5 # weights: 305 initial value 98.484275 iter 10 value 93.587534 iter 20 value 93.584950 iter 30 value 93.448303 iter 40 value 86.609499 iter 50 value 84.640227 iter 60 value 84.185859 iter 70 value 84.176189 iter 80 value 84.174893 iter 90 value 84.167084 iter 100 value 82.718883 final value 82.718883 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 98.362052 iter 10 value 93.590208 iter 20 value 93.584469 iter 30 value 93.528637 final value 93.528634 converged Fitting Repeat 2 # weights: 507 initial value 102.772486 iter 10 value 92.240191 iter 20 value 91.964594 iter 30 value 91.603011 iter 40 value 91.364150 iter 50 value 91.361843 iter 60 value 91.349624 iter 70 value 90.813639 iter 80 value 90.812722 iter 90 value 90.812483 iter 100 value 90.812312 final value 90.812312 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.568062 iter 10 value 94.067023 iter 20 value 94.058103 iter 30 value 92.936191 iter 40 value 87.616452 iter 50 value 87.590321 iter 60 value 84.247975 iter 70 value 83.521018 iter 80 value 82.699626 iter 90 value 82.065500 iter 100 value 81.479944 final value 81.479944 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 101.198952 iter 10 value 94.060651 iter 20 value 94.053265 iter 30 value 93.585829 final value 93.582602 converged Fitting Repeat 5 # weights: 507 initial value 109.551229 iter 10 value 94.059896 iter 20 value 94.044328 iter 30 value 93.649799 iter 40 value 93.605350 iter 50 value 93.604959 final value 93.604940 converged Fitting Repeat 1 # weights: 103 initial value 104.691718 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 95.749875 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.230884 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.077996 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 107.152491 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 109.466202 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 94.916444 final value 94.032967 converged Fitting Repeat 3 # weights: 305 initial value 101.679008 final value 94.032967 converged Fitting Repeat 4 # weights: 305 initial value 112.565612 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.218432 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 95.461493 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 110.033478 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 126.707259 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 102.884273 final value 94.032967 converged Fitting Repeat 5 # weights: 507 initial value 134.343961 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 97.573815 iter 10 value 94.047709 iter 20 value 92.474061 iter 30 value 92.337309 iter 40 value 85.327406 iter 50 value 83.118560 iter 60 value 82.683115 iter 70 value 82.582179 iter 80 value 81.951751 iter 90 value 81.903979 iter 100 value 81.889229 final value 81.889229 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.743214 iter 10 value 92.902591 iter 20 value 84.776366 iter 30 value 84.301645 iter 40 value 84.119615 iter 50 value 83.963521 iter 60 value 83.904647 iter 70 value 83.867996 iter 80 value 83.866481 final value 83.865560 converged Fitting Repeat 3 # weights: 103 initial value 99.361445 iter 10 value 94.020187 iter 20 value 93.639446 iter 30 value 92.632804 iter 40 value 84.075736 iter 50 value 82.857806 iter 60 value 82.627253 iter 70 value 82.155536 iter 80 value 81.914401 iter 90 value 81.909527 iter 100 value 81.907588 final value 81.907588 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 102.032942 iter 10 value 94.522178 iter 20 value 93.986598 iter 30 value 87.219130 iter 40 value 85.824850 iter 50 value 83.763689 iter 60 value 83.596855 iter 70 value 83.495817 iter 80 value 83.483241 iter 80 value 83.483241 iter 80 value 83.483241 final value 83.483241 converged Fitting Repeat 5 # weights: 103 initial value 103.414658 iter 10 value 94.057137 iter 20 value 93.199084 iter 30 value 92.537633 iter 40 value 90.047322 iter 50 value 82.113423 iter 60 value 80.405740 iter 70 value 80.004206 iter 80 value 79.897674 iter 90 value 79.580915 iter 100 value 79.523289 final value 79.523289 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 108.964985 iter 10 value 93.820787 iter 20 value 87.839686 iter 30 value 87.524143 iter 40 value 87.353053 iter 50 value 85.597903 iter 60 value 83.615305 iter 70 value 81.714181 iter 80 value 81.243742 iter 90 value 79.613405 iter 100 value 79.031880 final value 79.031880 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.978408 iter 10 value 94.058721 iter 20 value 91.714647 iter 30 value 89.008036 iter 40 value 87.100851 iter 50 value 83.333280 iter 60 value 80.823064 iter 70 value 79.897897 iter 80 value 79.859603 iter 90 value 79.773748 iter 100 value 79.311786 final value 79.311786 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.371660 iter 10 value 91.294930 iter 20 value 84.196723 iter 30 value 83.931238 iter 40 value 83.835246 iter 50 value 83.654934 iter 60 value 83.605634 iter 70 value 83.575550 iter 80 value 83.516464 iter 90 value 83.237200 iter 100 value 82.846684 final value 82.846684 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.953371 iter 10 value 94.034995 iter 20 value 88.128929 iter 30 value 86.952679 iter 40 value 85.647856 iter 50 value 82.692073 iter 60 value 80.728300 iter 70 value 79.932650 iter 80 value 79.438203 iter 90 value 78.715212 iter 100 value 78.278234 final value 78.278234 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.210450 iter 10 value 94.144823 iter 20 value 93.719446 iter 30 value 88.160346 iter 40 value 82.605396 iter 50 value 81.007849 iter 60 value 80.341276 iter 70 value 79.990806 iter 80 value 78.847029 iter 90 value 78.197938 iter 100 value 78.065960 final value 78.065960 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 109.242479 iter 10 value 93.073312 iter 20 value 86.921366 iter 30 value 83.502142 iter 40 value 81.148624 iter 50 value 80.386472 iter 60 value 79.773986 iter 70 value 79.639166 iter 80 value 79.044833 iter 90 value 78.809177 iter 100 value 78.775176 final value 78.775176 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.696094 iter 10 value 94.052001 iter 20 value 92.088798 iter 30 value 90.804199 iter 40 value 90.415945 iter 50 value 87.682605 iter 60 value 84.649938 iter 70 value 80.227320 iter 80 value 79.648306 iter 90 value 79.160823 iter 100 value 78.892631 final value 78.892631 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.630484 iter 10 value 94.090503 iter 20 value 86.304170 iter 30 value 82.427535 iter 40 value 82.109646 iter 50 value 80.443325 iter 60 value 80.037009 iter 70 value 78.854355 iter 80 value 78.577629 iter 90 value 78.531690 iter 100 value 78.450739 final value 78.450739 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.574747 iter 10 value 94.320965 iter 20 value 92.020259 iter 30 value 84.014225 iter 40 value 82.746815 iter 50 value 82.416708 iter 60 value 81.966068 iter 70 value 81.695149 iter 80 value 81.223322 iter 90 value 79.692722 iter 100 value 79.235178 final value 79.235178 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.018027 iter 10 value 94.007165 iter 20 value 92.034748 iter 30 value 89.325973 iter 40 value 87.601129 iter 50 value 87.518296 iter 60 value 87.453716 iter 70 value 87.271082 iter 80 value 85.789577 iter 90 value 83.298251 iter 100 value 78.947399 final value 78.947399 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.649411 final value 94.054692 converged Fitting Repeat 2 # weights: 103 initial value 102.138044 final value 94.054564 converged Fitting Repeat 3 # weights: 103 initial value 95.875061 iter 10 value 94.053210 iter 20 value 94.011249 iter 30 value 92.043397 iter 40 value 89.944977 iter 50 value 89.781012 iter 60 value 89.705346 iter 70 value 83.018109 iter 80 value 83.016143 iter 90 value 83.015605 final value 83.015298 converged Fitting Repeat 4 # weights: 103 initial value 96.954869 iter 10 value 94.034688 iter 20 value 93.870905 iter 30 value 89.821601 iter 40 value 85.707742 iter 50 value 85.644147 iter 60 value 85.639876 iter 70 value 85.638066 iter 80 value 85.636362 iter 90 value 85.632582 iter 100 value 85.630462 final value 85.630462 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 96.245914 iter 10 value 94.054509 iter 20 value 94.052280 iter 30 value 92.894850 iter 40 value 92.893986 final value 92.893973 converged Fitting Repeat 1 # weights: 305 initial value 112.281073 iter 10 value 94.058608 iter 20 value 93.804418 iter 30 value 93.524502 iter 40 value 90.253197 iter 50 value 90.243965 iter 60 value 90.208411 iter 70 value 90.185487 iter 80 value 90.153947 iter 90 value 86.418816 iter 100 value 80.836910 final value 80.836910 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 95.122668 iter 10 value 94.056590 iter 20 value 93.608177 iter 30 value 93.536017 final value 93.535525 converged Fitting Repeat 3 # weights: 305 initial value 96.664022 iter 10 value 91.172156 iter 20 value 91.161054 iter 30 value 90.544455 iter 40 value 90.540674 iter 50 value 90.537773 iter 60 value 88.852016 iter 60 value 88.852016 iter 60 value 88.852016 final value 88.852016 converged Fitting Repeat 4 # weights: 305 initial value 94.679628 iter 10 value 94.037549 iter 20 value 94.012657 iter 30 value 93.945105 iter 40 value 93.560796 iter 50 value 93.535501 iter 50 value 93.535500 iter 50 value 93.535500 final value 93.535500 converged Fitting Repeat 5 # weights: 305 initial value 100.311367 iter 10 value 94.061787 iter 20 value 93.886807 iter 30 value 84.770756 iter 40 value 84.446163 iter 50 value 84.416841 iter 60 value 80.712471 final value 80.693017 converged Fitting Repeat 1 # weights: 507 initial value 96.301537 iter 10 value 94.061054 iter 20 value 94.033510 final value 94.033507 converged Fitting Repeat 2 # weights: 507 initial value 105.424028 iter 10 value 94.041209 iter 20 value 94.029402 iter 30 value 84.163927 iter 40 value 83.399832 iter 50 value 81.710112 iter 60 value 80.269353 iter 70 value 79.222180 iter 80 value 79.213728 iter 90 value 78.520193 iter 100 value 78.216279 final value 78.216279 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.335070 iter 10 value 94.041173 iter 20 value 91.080552 iter 30 value 85.657414 iter 40 value 83.869097 iter 50 value 83.221437 iter 60 value 83.219383 iter 70 value 82.544804 iter 80 value 82.529188 iter 90 value 82.314784 final value 82.297387 converged Fitting Repeat 4 # weights: 507 initial value 105.232313 iter 10 value 94.061312 iter 20 value 94.000651 iter 30 value 87.251742 iter 40 value 87.250844 iter 50 value 86.932000 iter 60 value 86.309457 iter 70 value 86.083760 iter 80 value 84.053864 iter 90 value 82.701813 iter 100 value 82.668901 final value 82.668901 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.549019 iter 10 value 93.851315 iter 20 value 93.542874 iter 30 value 93.205432 iter 40 value 83.352183 iter 50 value 82.154849 iter 60 value 81.734757 iter 70 value 78.363939 iter 80 value 77.186843 iter 90 value 76.814032 iter 100 value 76.738024 final value 76.738024 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 122.318114 iter 10 value 117.878635 iter 20 value 117.762103 iter 30 value 117.544607 iter 40 value 113.205514 iter 50 value 103.842548 iter 60 value 103.716600 iter 70 value 103.711592 iter 80 value 103.710737 iter 90 value 103.689837 iter 100 value 103.484417 final value 103.484417 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 150.822363 iter 10 value 117.897873 iter 20 value 117.811432 iter 30 value 106.982130 final value 106.779112 converged Fitting Repeat 3 # weights: 507 initial value 118.597423 iter 10 value 117.895479 iter 20 value 112.184576 iter 30 value 106.795274 iter 40 value 106.783140 iter 50 value 106.781544 iter 50 value 106.781544 final value 106.781544 converged Fitting Repeat 4 # weights: 507 initial value 139.457278 iter 10 value 107.236452 iter 20 value 105.362195 iter 30 value 105.356672 iter 40 value 104.547684 iter 50 value 103.643385 iter 60 value 100.627038 iter 70 value 99.635582 iter 80 value 98.884725 iter 90 value 98.786390 iter 100 value 98.762620 final value 98.762620 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 131.135292 iter 10 value 117.766336 iter 20 value 117.749378 iter 30 value 117.018506 iter 40 value 106.831095 iter 50 value 104.096832 iter 60 value 104.085500 iter 70 value 104.085271 iter 80 value 104.081316 iter 90 value 101.998912 iter 100 value 101.875555 final value 101.875555 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Sep 10 22:40:45 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 42.542 1.647 119.482
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.350 | 1.612 | 35.222 | |
FreqInteractors | 0.243 | 0.011 | 0.256 | |
calculateAAC | 0.038 | 0.008 | 0.046 | |
calculateAutocor | 0.367 | 0.068 | 0.440 | |
calculateCTDC | 0.087 | 0.006 | 0.093 | |
calculateCTDD | 0.669 | 0.029 | 0.710 | |
calculateCTDT | 0.257 | 0.011 | 0.270 | |
calculateCTriad | 0.430 | 0.030 | 0.467 | |
calculateDC | 0.114 | 0.012 | 0.129 | |
calculateF | 0.355 | 0.014 | 0.373 | |
calculateKSAAP | 0.104 | 0.011 | 0.119 | |
calculateQD_Sm | 1.639 | 0.099 | 1.749 | |
calculateTC | 1.712 | 0.141 | 1.868 | |
calculateTC_Sm | 0.234 | 0.017 | 0.260 | |
corr_plot | 33.106 | 1.597 | 34.946 | |
enrichfindP | 0.482 | 0.053 | 7.855 | |
enrichfind_hp | 0.057 | 0.020 | 1.027 | |
enrichplot | 0.372 | 0.007 | 0.380 | |
filter_missing_values | 0.001 | 0.001 | 0.002 | |
getFASTA | 0.068 | 0.010 | 3.527 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0.002 | 0.000 | 0.003 | |
get_positivePPI | 0.001 | 0.000 | 0.000 | |
impute_missing_data | 0.002 | 0.001 | 0.003 | |
plotPPI | 0.075 | 0.005 | 0.080 | |
pred_ensembel | 14.084 | 0.421 | 12.531 | |
var_imp | 35.148 | 1.714 | 37.245 | |