Back to Multiple platform build/check report for BioC 3.23:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-12-02 11:35 -0500 (Tue, 02 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4866
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4572
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 994/2328HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.17.1  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-12-01 13:40 -0500 (Mon, 01 Dec 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: e6c77ab
git_last_commit_date: 2025-11-23 15:13:33 -0500 (Sun, 23 Nov 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    ERROR  
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for HPiP on kjohnson3

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.17.1
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
StartedAt: 2025-12-01 20:30:56 -0500 (Mon, 01 Dec 2025)
EndedAt: 2025-12-01 20:34:29 -0500 (Mon, 01 Dec 2025)
EllapsedTime: 212.7 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: HPiP.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
  Code: function(features, gold_standard, classifier = c("avNNet",
                 "svmRadial", "ranger"), resampling.method = "cv",
                 ncross = 2, repeats = 2, verboseIter = TRUE, plots =
                 FALSE, filename = "plots.pdf")
  Docs: function(features, gold_standard, classifier = c("avNNet",
                 "svmRadial", "ranger"), resampling.method = "cv",
                 ncross = 2, repeats = 2, verboseIter = TRUE, plots =
                 TRUE, filename = "plots.pdf")
  Mismatches in argument default values:
    Name: 'plots' Code: FALSE Docs: TRUE

* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
corr_plot     19.199  0.959  20.814
FSmethod      19.180  0.923  20.928
var_imp       18.571  0.999  20.653
pred_ensembel  6.476  0.106   6.195
enrichfindP    0.201  0.038  15.447
getFASTA       0.031  0.007   5.421
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’
* installing *source* package ‘HPiP’ ...
** this is package ‘HPiP’ version ‘1.17.1’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 95.765373 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.841247 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.003133 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 98.683031 
final  value 94.038251 
converged
Fitting Repeat 5 

# weights:  103
initial  value 101.286881 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 126.226412 
iter  10 value 94.038251
iter  10 value 94.038251
iter  10 value 94.038251
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.961618 
iter  10 value 94.053127
final  value 94.052911 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.737535 
final  value 94.011561 
converged
Fitting Repeat 4 

# weights:  305
initial  value 98.653945 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.078311 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.464441 
final  value 94.038251 
converged
Fitting Repeat 2 

# weights:  507
initial  value 101.917509 
final  value 94.038251 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.245021 
iter  10 value 94.038251
iter  10 value 94.038251
iter  10 value 94.038251
final  value 94.038251 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.873412 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  507
initial  value 136.204420 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.127799 
iter  10 value 87.305325
iter  20 value 84.582410
iter  30 value 84.051062
iter  40 value 83.824464
iter  50 value 83.641893
iter  60 value 83.615499
final  value 83.612559 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.061630 
iter  10 value 93.761473
iter  20 value 88.775602
iter  30 value 87.606282
iter  40 value 86.380090
iter  50 value 83.810620
iter  60 value 83.639591
iter  70 value 83.613548
final  value 83.612559 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.184550 
iter  10 value 94.032020
iter  20 value 92.668697
iter  30 value 91.193770
iter  40 value 87.003483
iter  50 value 85.294085
iter  60 value 84.997955
iter  70 value 84.097931
iter  80 value 83.850696
final  value 83.850662 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.809719 
iter  10 value 94.055714
iter  20 value 93.161415
iter  30 value 85.205777
iter  40 value 84.570132
iter  50 value 83.565054
iter  60 value 83.114633
iter  70 value 83.035515
iter  80 value 82.790782
iter  90 value 82.498138
iter 100 value 82.493506
final  value 82.493506 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 108.982656 
iter  10 value 94.194255
iter  20 value 93.788803
iter  30 value 86.529269
iter  40 value 86.228124
iter  50 value 84.255901
iter  60 value 83.615340
iter  70 value 83.612564
final  value 83.612562 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.209357 
iter  10 value 92.724398
iter  20 value 85.775204
iter  30 value 84.689234
iter  40 value 84.197508
iter  50 value 83.362016
iter  60 value 82.715498
iter  70 value 82.606189
iter  80 value 82.169845
iter  90 value 81.866921
iter 100 value 81.680870
final  value 81.680870 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.711921 
iter  10 value 94.128782
iter  20 value 94.057810
iter  30 value 92.637917
iter  40 value 85.867683
iter  50 value 84.484803
iter  60 value 83.008345
iter  70 value 82.378554
iter  80 value 81.679765
iter  90 value 81.231208
iter 100 value 81.137102
final  value 81.137102 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.212257 
iter  10 value 93.988893
iter  20 value 93.538236
iter  30 value 92.803258
iter  40 value 92.301690
iter  50 value 88.331064
iter  60 value 84.839336
iter  70 value 83.977443
iter  80 value 83.713103
iter  90 value 83.582759
iter 100 value 83.233216
final  value 83.233216 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.035915 
iter  10 value 94.207283
iter  20 value 87.358561
iter  30 value 84.859347
iter  40 value 83.919137
iter  50 value 82.395638
iter  60 value 81.774278
iter  70 value 81.438085
iter  80 value 81.372534
iter  90 value 81.263954
iter 100 value 81.194432
final  value 81.194432 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.513186 
iter  10 value 94.119713
iter  20 value 91.047592
iter  30 value 86.764713
iter  40 value 85.101348
iter  50 value 84.696066
iter  60 value 84.130303
iter  70 value 83.726929
iter  80 value 83.518911
iter  90 value 83.308602
iter 100 value 83.207713
final  value 83.207713 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 103.479598 
iter  10 value 93.596595
iter  20 value 85.101445
iter  30 value 84.309465
iter  40 value 83.979729
iter  50 value 83.373933
iter  60 value 83.363267
iter  70 value 83.330238
iter  80 value 82.830233
iter  90 value 82.112702
iter 100 value 81.759876
final  value 81.759876 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 120.238019 
iter  10 value 92.960359
iter  20 value 88.404118
iter  30 value 86.696969
iter  40 value 85.949203
iter  50 value 84.083608
iter  60 value 83.834420
iter  70 value 83.324147
iter  80 value 82.962233
iter  90 value 82.458570
iter 100 value 82.284098
final  value 82.284098 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 129.849339 
iter  10 value 94.033651
iter  20 value 88.486209
iter  30 value 87.163523
iter  40 value 86.659126
iter  50 value 86.388236
iter  60 value 84.176373
iter  70 value 83.439415
iter  80 value 83.364618
iter  90 value 83.295218
iter 100 value 83.006641
final  value 83.006641 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 129.988531 
iter  10 value 94.556984
iter  20 value 94.320484
iter  30 value 90.241201
iter  40 value 86.556528
iter  50 value 84.111795
iter  60 value 83.334714
iter  70 value 83.207357
iter  80 value 83.115901
iter  90 value 82.861830
iter 100 value 82.302727
final  value 82.302727 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 102.828179 
iter  10 value 94.334644
iter  20 value 93.930147
iter  30 value 92.722660
iter  40 value 87.667609
iter  50 value 84.370612
iter  60 value 82.940680
iter  70 value 82.232530
iter  80 value 81.771007
iter  90 value 81.597173
iter 100 value 81.523413
final  value 81.523413 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 105.633866 
final  value 94.054303 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.750289 
final  value 94.054722 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.947606 
iter  10 value 94.054540
iter  20 value 94.052932
iter  20 value 94.052932
iter  20 value 94.052932
final  value 94.052932 
converged
Fitting Repeat 4 

# weights:  103
initial  value 110.396814 
final  value 94.054345 
converged
Fitting Repeat 5 

# weights:  103
initial  value 106.223569 
iter  10 value 94.054608
iter  20 value 94.052917
iter  30 value 89.859677
iter  40 value 84.368179
iter  50 value 82.534057
iter  60 value 82.072783
iter  70 value 81.959094
iter  80 value 81.957533
iter  90 value 81.956277
iter 100 value 81.956005
final  value 81.956005 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 97.297997 
iter  10 value 94.044473
iter  20 value 94.039986
final  value 94.039882 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.693210 
iter  10 value 94.057668
iter  20 value 94.023688
iter  30 value 92.218402
iter  40 value 92.215770
iter  50 value 92.212141
iter  60 value 92.212047
iter  70 value 92.212021
final  value 92.180992 
converged
Fitting Repeat 3 

# weights:  305
initial  value 116.896733 
iter  10 value 94.039567
iter  20 value 94.032171
iter  30 value 93.600794
iter  40 value 90.022014
final  value 89.944762 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.150881 
iter  10 value 94.042933
iter  20 value 94.039216
iter  30 value 94.011966
iter  30 value 94.011965
iter  30 value 94.011965
final  value 94.011965 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.479713 
iter  10 value 94.057705
iter  20 value 93.811532
iter  30 value 84.499308
iter  40 value 84.498934
final  value 84.498887 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.889625 
iter  10 value 85.329474
iter  20 value 84.531063
iter  30 value 84.529658
final  value 84.529651 
converged
Fitting Repeat 2 

# weights:  507
initial  value 103.164134 
iter  10 value 94.060419
iter  20 value 94.017276
iter  30 value 86.143664
iter  40 value 84.504760
iter  50 value 84.493462
iter  60 value 84.483646
iter  70 value 84.482982
iter  80 value 84.482199
iter  90 value 84.481541
iter 100 value 84.478117
final  value 84.478117 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 98.757997 
iter  10 value 94.058226
iter  20 value 93.837914
iter  30 value 90.603650
final  value 90.603648 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.836164 
iter  10 value 89.294909
iter  20 value 83.257819
iter  30 value 82.572204
iter  40 value 82.519703
final  value 82.519553 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.232359 
iter  10 value 93.729701
iter  20 value 93.714782
iter  30 value 93.387704
iter  40 value 91.034407
iter  50 value 84.056612
iter  60 value 83.117979
iter  70 value 83.009392
iter  80 value 82.778525
iter  90 value 82.775962
final  value 82.774357 
converged
Fitting Repeat 1 

# weights:  103
initial  value 100.009657 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.397502 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.953270 
iter  10 value 93.304030
iter  20 value 91.420092
iter  30 value 91.323138
final  value 91.322960 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.890921 
iter  10 value 93.582418
iter  20 value 93.581472
final  value 93.581295 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.483158 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.826998 
iter  10 value 93.624728
final  value 93.582418 
converged
Fitting Repeat 2 

# weights:  305
initial  value 97.600616 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.734472 
final  value 93.582418 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.644229 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.758992 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.617861 
iter  10 value 93.258753
iter  20 value 91.183404
iter  30 value 87.029006
iter  40 value 86.539095
iter  50 value 86.530949
final  value 86.530903 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.551835 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 111.060478 
iter  10 value 93.594625
final  value 93.582418 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.754936 
final  value 92.953900 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.478816 
final  value 93.582418 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.543429 
iter  10 value 92.741124
iter  20 value 85.498266
iter  30 value 84.476795
iter  40 value 81.006522
iter  50 value 80.521455
iter  60 value 80.290059
final  value 80.283362 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.662865 
iter  10 value 94.068229
iter  20 value 93.810774
iter  30 value 91.415976
iter  40 value 87.151616
iter  50 value 84.788559
iter  60 value 83.710184
iter  70 value 83.631596
final  value 83.626779 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.047956 
iter  10 value 94.085538
iter  20 value 93.951361
iter  30 value 93.452666
iter  40 value 93.448192
iter  50 value 90.395948
iter  60 value 85.276848
iter  70 value 81.546799
iter  80 value 81.136200
iter  90 value 80.334445
iter 100 value 80.283177
final  value 80.283177 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 96.304922 
iter  10 value 93.802817
iter  20 value 93.121013
iter  30 value 91.679855
iter  40 value 86.636085
iter  50 value 85.607467
iter  60 value 83.812147
iter  70 value 82.855693
iter  80 value 82.623198
iter  90 value 82.605230
final  value 82.604838 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.867598 
iter  10 value 94.043613
iter  20 value 85.183970
iter  30 value 83.783988
iter  40 value 83.514254
iter  50 value 83.402060
iter  60 value 83.374116
iter  70 value 83.182900
final  value 83.182225 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.630047 
iter  10 value 94.091410
iter  20 value 93.944621
iter  30 value 93.465139
iter  40 value 92.632179
iter  50 value 86.856001
iter  60 value 85.540355
iter  70 value 82.258085
iter  80 value 81.487206
iter  90 value 81.120928
iter 100 value 80.529051
final  value 80.529051 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 110.517171 
iter  10 value 94.100826
iter  20 value 91.453734
iter  30 value 87.565892
iter  40 value 87.372076
iter  50 value 85.130789
iter  60 value 84.414928
iter  70 value 82.105101
iter  80 value 79.990145
iter  90 value 79.534222
iter 100 value 78.961319
final  value 78.961319 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 110.339154 
iter  10 value 92.899770
iter  20 value 84.946578
iter  30 value 83.858259
iter  40 value 83.454938
iter  50 value 83.351807
iter  60 value 83.130503
iter  70 value 81.712055
iter  80 value 80.968216
iter  90 value 80.627592
iter 100 value 79.970254
final  value 79.970254 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.256250 
iter  10 value 93.773977
iter  20 value 92.860863
iter  30 value 86.161025
iter  40 value 85.595468
iter  50 value 85.214137
iter  60 value 84.264304
iter  70 value 81.739067
iter  80 value 79.945033
iter  90 value 79.358097
iter 100 value 79.305793
final  value 79.305793 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.432739 
iter  10 value 94.229156
iter  20 value 91.011135
iter  30 value 84.156061
iter  40 value 82.883039
iter  50 value 82.276704
iter  60 value 81.806809
iter  70 value 81.643062
iter  80 value 81.331062
iter  90 value 81.101374
iter 100 value 80.857615
final  value 80.857615 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 127.946773 
iter  10 value 95.649942
iter  20 value 92.455224
iter  30 value 86.681422
iter  40 value 82.232002
iter  50 value 81.073445
iter  60 value 80.708586
iter  70 value 80.511350
iter  80 value 80.409820
iter  90 value 80.172653
iter 100 value 79.699740
final  value 79.699740 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 105.365201 
iter  10 value 94.657750
iter  20 value 93.516757
iter  30 value 87.674602
iter  40 value 85.247715
iter  50 value 84.103570
iter  60 value 81.760938
iter  70 value 80.995999
iter  80 value 79.821136
iter  90 value 79.284342
iter 100 value 78.926159
final  value 78.926159 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 124.491984 
iter  10 value 89.587244
iter  20 value 84.545621
iter  30 value 83.579796
iter  40 value 82.158374
iter  50 value 81.890736
iter  60 value 81.316708
iter  70 value 80.930893
iter  80 value 80.367266
iter  90 value 79.904644
iter 100 value 79.588798
final  value 79.588798 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 116.725940 
iter  10 value 94.038651
iter  20 value 92.355579
iter  30 value 87.740582
iter  40 value 82.175862
iter  50 value 81.434207
iter  60 value 80.341068
iter  70 value 80.085105
iter  80 value 79.885923
iter  90 value 79.391905
iter 100 value 79.154571
final  value 79.154571 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 117.604930 
iter  10 value 93.561425
iter  20 value 86.888963
iter  30 value 83.083367
iter  40 value 82.427558
iter  50 value 81.892620
iter  60 value 81.181454
iter  70 value 80.455855
iter  80 value 79.929512
iter  90 value 79.716144
iter 100 value 79.308269
final  value 79.308269 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 103.328207 
final  value 93.373717 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.385560 
final  value 94.054532 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.211119 
iter  10 value 94.101230
iter  20 value 94.095086
iter  30 value 94.055893
final  value 94.052915 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.302952 
final  value 94.054287 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.263574 
final  value 94.054696 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.717254 
iter  10 value 93.901999
iter  20 value 93.711407
iter  30 value 93.706520
final  value 93.669971 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.768614 
iter  10 value 94.057878
iter  20 value 94.053190
iter  30 value 85.453199
iter  40 value 82.004387
iter  50 value 80.056889
iter  60 value 80.053193
iter  60 value 80.053193
iter  60 value 80.053193
final  value 80.053193 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.575871 
iter  10 value 94.053233
iter  20 value 93.362839
final  value 93.356892 
converged
Fitting Repeat 4 

# weights:  305
initial  value 121.095438 
iter  10 value 94.059707
iter  20 value 94.054614
iter  30 value 92.711196
iter  40 value 85.273181
iter  50 value 85.269566
iter  60 value 85.186647
iter  70 value 85.177639
iter  80 value 85.175934
iter  90 value 85.175594
iter  90 value 85.175594
iter  90 value 85.175594
final  value 85.175594 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.026736 
iter  10 value 93.587309
iter  20 value 92.984629
iter  30 value 92.946409
iter  40 value 92.938881
final  value 92.938441 
converged
Fitting Repeat 1 

# weights:  507
initial  value 127.114386 
iter  10 value 94.061247
iter  20 value 94.046822
iter  30 value 91.584910
iter  40 value 90.604128
iter  50 value 90.568673
iter  60 value 90.452712
iter  70 value 90.051313
iter  80 value 90.044707
final  value 90.044504 
converged
Fitting Repeat 2 

# weights:  507
initial  value 137.864140 
iter  10 value 93.617110
iter  20 value 93.611289
iter  30 value 93.605552
iter  40 value 88.998972
iter  50 value 80.969769
iter  60 value 77.842871
iter  70 value 77.694850
iter  80 value 77.624175
iter  90 value 77.600604
iter 100 value 77.598473
final  value 77.598473 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 107.277285 
iter  10 value 93.219387
iter  20 value 92.570648
iter  30 value 92.564550
iter  40 value 89.930116
iter  50 value 89.124452
iter  60 value 89.020837
final  value 89.019863 
converged
Fitting Repeat 4 

# weights:  507
initial  value 94.778371 
iter  10 value 83.647605
iter  20 value 83.335303
iter  30 value 83.334343
final  value 83.334311 
converged
Fitting Repeat 5 

# weights:  507
initial  value 125.328833 
iter  10 value 93.590959
iter  20 value 93.583109
iter  30 value 92.576739
iter  40 value 87.545073
iter  50 value 86.904766
iter  60 value 86.618623
iter  70 value 85.750920
iter  80 value 85.455603
iter  90 value 85.250620
iter 100 value 85.158392
final  value 85.158392 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 95.986922 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.028192 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 99.079149 
final  value 93.809648 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.179113 
final  value 94.026542 
converged
Fitting Repeat 5 

# weights:  103
initial  value 111.013240 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 101.547761 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.204389 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.403197 
final  value 94.026542 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.750643 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.243044 
iter  10 value 93.809665
final  value 93.809649 
converged
Fitting Repeat 1 

# weights:  507
initial  value 110.396921 
iter  10 value 89.157072
iter  20 value 85.537942
iter  30 value 85.342330
iter  40 value 85.338720
final  value 85.338717 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.238492 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 99.752295 
final  value 94.026542 
converged
Fitting Repeat 4 

# weights:  507
initial  value 104.888105 
final  value 94.026542 
converged
Fitting Repeat 5 

# weights:  507
initial  value 98.726439 
iter  10 value 92.226658
iter  20 value 90.426265
iter  30 value 90.332488
iter  40 value 90.331241
final  value 90.331136 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.968668 
iter  10 value 94.429629
iter  20 value 91.945788
iter  30 value 87.428872
iter  40 value 86.680284
iter  50 value 84.531456
iter  60 value 83.948587
iter  70 value 83.814510
final  value 83.812426 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.194428 
iter  10 value 94.414748
iter  20 value 93.048463
iter  30 value 93.000921
iter  40 value 92.997358
iter  50 value 90.415669
iter  60 value 83.371522
iter  70 value 82.302190
iter  80 value 81.827246
iter  90 value 80.998859
iter 100 value 80.419548
final  value 80.419548 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 101.589458 
iter  10 value 94.731124
iter  20 value 94.488776
iter  30 value 94.210836
iter  40 value 94.139332
iter  50 value 92.317927
iter  60 value 90.255136
iter  70 value 90.120739
iter  80 value 90.087521
final  value 90.087378 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.930915 
iter  10 value 94.519056
iter  20 value 93.497695
iter  30 value 93.019455
iter  40 value 92.943951
iter  50 value 85.218835
iter  60 value 82.620430
iter  70 value 81.829783
iter  80 value 80.918369
iter  90 value 80.711804
iter 100 value 80.336742
final  value 80.336742 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.272344 
iter  10 value 94.494626
iter  20 value 94.294732
iter  30 value 92.768230
iter  40 value 92.384050
iter  50 value 85.701808
iter  60 value 84.052645
iter  70 value 81.182707
iter  80 value 80.848985
iter  90 value 80.390575
iter 100 value 80.352508
final  value 80.352508 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 100.617001 
iter  10 value 95.030867
iter  20 value 86.446743
iter  30 value 84.079057
iter  40 value 83.667201
iter  50 value 82.784085
iter  60 value 80.984415
iter  70 value 79.834451
iter  80 value 79.664374
iter  90 value 79.604753
iter 100 value 79.483555
final  value 79.483555 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 112.857588 
iter  10 value 94.260727
iter  20 value 93.395695
iter  30 value 92.990544
iter  40 value 90.781188
iter  50 value 85.506330
iter  60 value 83.642131
iter  70 value 81.832670
iter  80 value 80.666729
iter  90 value 80.246381
iter 100 value 79.522070
final  value 79.522070 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 106.452041 
iter  10 value 95.001948
iter  20 value 94.071777
iter  30 value 87.953941
iter  40 value 86.683772
iter  50 value 83.638684
iter  60 value 82.766907
iter  70 value 80.650977
iter  80 value 79.892226
iter  90 value 79.699193
iter 100 value 79.493544
final  value 79.493544 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.046692 
iter  10 value 94.949167
iter  20 value 91.895294
iter  30 value 85.200793
iter  40 value 83.455079
iter  50 value 82.270242
iter  60 value 81.902077
iter  70 value 80.805245
iter  80 value 79.997492
iter  90 value 79.809339
iter 100 value 79.586607
final  value 79.586607 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.360893 
iter  10 value 94.251356
iter  20 value 90.514418
iter  30 value 84.987908
iter  40 value 84.163379
iter  50 value 82.628063
iter  60 value 82.407001
iter  70 value 81.592218
iter  80 value 81.028162
iter  90 value 80.759653
iter 100 value 80.406976
final  value 80.406976 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 106.935906 
iter  10 value 93.885127
iter  20 value 90.523353
iter  30 value 86.433052
iter  40 value 85.250199
iter  50 value 83.950944
iter  60 value 83.875601
iter  70 value 83.791377
iter  80 value 83.586880
iter  90 value 81.211651
iter 100 value 80.545320
final  value 80.545320 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 110.606937 
iter  10 value 94.484158
iter  20 value 88.780933
iter  30 value 85.614753
iter  40 value 84.489889
iter  50 value 83.467470
iter  60 value 82.069540
iter  70 value 80.448251
iter  80 value 79.996357
iter  90 value 79.486146
iter 100 value 79.322048
final  value 79.322048 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 116.069711 
iter  10 value 95.391270
iter  20 value 93.428216
iter  30 value 86.972414
iter  40 value 84.964310
iter  50 value 83.220092
iter  60 value 81.958680
iter  70 value 81.593979
iter  80 value 81.094649
iter  90 value 79.755915
iter 100 value 79.624383
final  value 79.624383 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 102.794132 
iter  10 value 93.605402
iter  20 value 93.098062
iter  30 value 88.375169
iter  40 value 86.435371
iter  50 value 85.180331
iter  60 value 82.073205
iter  70 value 80.272467
iter  80 value 79.940950
iter  90 value 79.011650
iter 100 value 78.763770
final  value 78.763770 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.724754 
iter  10 value 94.468163
iter  20 value 87.603517
iter  30 value 86.036614
iter  40 value 83.486518
iter  50 value 80.640178
iter  60 value 79.005162
iter  70 value 78.760907
iter  80 value 78.542843
iter  90 value 78.437721
iter 100 value 78.372021
final  value 78.372021 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.481221 
final  value 94.028112 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.836359 
final  value 94.485726 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.770620 
final  value 94.485901 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.566515 
iter  10 value 94.486042
final  value 94.484215 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.834265 
final  value 94.485838 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.213291 
iter  10 value 94.489233
iter  20 value 94.053577
final  value 94.026957 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.969189 
iter  10 value 94.489213
iter  20 value 94.378656
iter  30 value 92.872255
iter  40 value 92.868975
final  value 92.868972 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.956053 
iter  10 value 94.084176
iter  20 value 88.857528
iter  30 value 88.850420
iter  40 value 85.714705
iter  50 value 85.332584
iter  60 value 85.332394
iter  70 value 85.330060
iter  70 value 85.330059
final  value 85.330059 
converged
Fitting Repeat 4 

# weights:  305
initial  value 107.871879 
iter  10 value 94.488677
iter  20 value 93.254373
iter  30 value 92.845724
final  value 92.842522 
converged
Fitting Repeat 5 

# weights:  305
initial  value 111.366380 
iter  10 value 94.500108
final  value 94.495053 
converged
Fitting Repeat 1 

# weights:  507
initial  value 113.243204 
iter  10 value 94.487250
iter  20 value 94.287090
iter  30 value 92.888682
iter  40 value 92.873196
iter  50 value 92.860195
iter  60 value 92.856878
iter  70 value 92.853495
iter  80 value 92.851141
iter  90 value 90.970001
iter 100 value 86.070912
final  value 86.070912 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 105.745179 
iter  10 value 94.492438
iter  20 value 94.480818
iter  30 value 86.682546
iter  40 value 85.512378
final  value 85.512367 
converged
Fitting Repeat 3 

# weights:  507
initial  value 108.328641 
iter  10 value 92.736368
iter  20 value 92.407739
iter  30 value 92.403092
iter  40 value 91.320680
iter  50 value 89.750465
iter  60 value 89.567201
iter  70 value 89.558765
iter  80 value 89.557536
iter  90 value 89.557182
iter 100 value 89.556657
final  value 89.556657 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 101.119867 
iter  10 value 94.490508
final  value 94.484395 
converged
Fitting Repeat 5 

# weights:  507
initial  value 96.803551 
iter  10 value 94.489739
iter  20 value 93.298695
iter  30 value 92.870815
iter  40 value 92.864993
iter  50 value 85.162798
iter  60 value 81.109535
iter  70 value 79.006231
iter  80 value 78.797894
iter  90 value 78.796451
final  value 78.795880 
converged
Fitting Repeat 1 

# weights:  103
initial  value 108.641710 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.246732 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.850513 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 108.031793 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 115.749532 
iter  10 value 93.891222
final  value 93.837462 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.955429 
iter  10 value 83.199149
iter  20 value 83.122051
final  value 83.121885 
converged
Fitting Repeat 2 

# weights:  305
initial  value 114.539225 
final  value 94.026542 
converged
Fitting Repeat 3 

# weights:  305
initial  value 96.120180 
iter  10 value 94.191972
final  value 94.191925 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.126546 
final  value 94.436782 
converged
Fitting Repeat 5 

# weights:  305
initial  value 105.022688 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 125.127466 
final  value 94.436782 
converged
Fitting Repeat 2 

# weights:  507
initial  value 98.378155 
iter  10 value 88.720885
iter  20 value 80.417946
iter  30 value 78.733045
iter  40 value 78.622343
iter  50 value 78.599743
iter  60 value 78.451032
iter  70 value 78.258659
iter  80 value 78.134865
iter  90 value 78.117736
iter 100 value 78.116834
final  value 78.116834 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 112.687571 
iter  10 value 94.026523
iter  20 value 93.822792
final  value 93.822754 
converged
Fitting Repeat 4 

# weights:  507
initial  value 120.252247 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 113.546511 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.387987 
iter  10 value 94.442951
iter  20 value 87.846826
iter  30 value 86.835736
iter  40 value 84.763942
iter  50 value 83.567222
iter  60 value 81.969378
iter  70 value 81.562852
iter  80 value 81.443585
iter  90 value 81.375073
iter 100 value 81.250939
final  value 81.250939 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 101.079352 
iter  10 value 94.720044
iter  20 value 94.487326
iter  30 value 94.137500
iter  40 value 88.160893
iter  50 value 84.725737
iter  60 value 84.638678
iter  70 value 84.586658
iter  80 value 84.385097
iter  90 value 84.254603
iter 100 value 84.143578
final  value 84.143578 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 103.100436 
iter  10 value 89.951408
iter  20 value 86.991401
iter  30 value 84.132972
iter  40 value 83.920289
iter  50 value 83.322711
iter  60 value 83.143387
iter  70 value 83.139483
final  value 83.139478 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.595553 
iter  10 value 91.861721
iter  20 value 87.277127
iter  30 value 84.673952
iter  40 value 82.510647
iter  50 value 81.502424
iter  60 value 81.411606
iter  70 value 81.238712
final  value 81.214691 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.198521 
iter  10 value 94.241668
iter  20 value 93.954304
iter  30 value 90.423878
iter  40 value 86.427290
iter  50 value 84.101697
iter  60 value 83.278507
iter  70 value 81.596810
iter  80 value 81.133636
iter  90 value 80.952883
iter 100 value 80.899454
final  value 80.899454 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 106.518928 
iter  10 value 94.219696
iter  20 value 85.975448
iter  30 value 84.129137
iter  40 value 83.949755
iter  50 value 83.910041
iter  60 value 83.328599
iter  70 value 82.998574
iter  80 value 82.812464
iter  90 value 81.562795
iter 100 value 80.892520
final  value 80.892520 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 115.027744 
iter  10 value 94.249796
iter  20 value 94.036929
iter  30 value 93.897523
iter  40 value 87.510762
iter  50 value 85.001124
iter  60 value 84.422619
iter  70 value 82.525147
iter  80 value 81.747007
iter  90 value 81.320539
iter 100 value 80.874719
final  value 80.874719 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 107.681776 
iter  10 value 94.437847
iter  20 value 85.533792
iter  30 value 83.337314
iter  40 value 83.288546
iter  50 value 82.676904
iter  60 value 81.039815
iter  70 value 80.466473
iter  80 value 80.157568
iter  90 value 79.968617
iter 100 value 79.925455
final  value 79.925455 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 111.834956 
iter  10 value 95.429104
iter  20 value 89.794112
iter  30 value 86.262825
iter  40 value 83.260569
iter  50 value 81.397175
iter  60 value 81.098694
iter  70 value 80.858163
iter  80 value 80.709946
iter  90 value 80.534800
iter 100 value 80.368402
final  value 80.368402 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 99.757128 
iter  10 value 91.771047
iter  20 value 87.719985
iter  30 value 85.103379
iter  40 value 82.595919
iter  50 value 82.485915
iter  60 value 81.436273
iter  70 value 80.600169
iter  80 value 80.257091
iter  90 value 80.075914
iter 100 value 79.993124
final  value 79.993124 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.256969 
iter  10 value 86.929178
iter  20 value 84.139086
iter  30 value 83.951123
iter  40 value 83.793431
iter  50 value 82.810286
iter  60 value 81.332596
iter  70 value 80.298775
iter  80 value 79.753945
iter  90 value 79.638479
iter 100 value 79.540609
final  value 79.540609 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 128.550789 
iter  10 value 96.023778
iter  20 value 88.302887
iter  30 value 85.603412
iter  40 value 84.376422
iter  50 value 82.668582
iter  60 value 81.707420
iter  70 value 81.569937
iter  80 value 81.182655
iter  90 value 80.224508
iter 100 value 80.149354
final  value 80.149354 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.814000 
iter  10 value 96.119077
iter  20 value 95.251329
iter  30 value 90.006963
iter  40 value 85.953575
iter  50 value 82.632812
iter  60 value 81.941591
iter  70 value 81.233433
iter  80 value 81.005282
iter  90 value 80.480400
iter 100 value 80.081197
final  value 80.081197 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.539166 
iter  10 value 94.045545
iter  20 value 91.652936
iter  30 value 84.771330
iter  40 value 83.207190
iter  50 value 82.388339
iter  60 value 81.853663
iter  70 value 80.954530
iter  80 value 80.635022
iter  90 value 79.832859
iter 100 value 79.676601
final  value 79.676601 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.716932 
iter  10 value 94.460674
iter  20 value 88.888254
iter  30 value 85.518420
iter  40 value 83.786475
iter  50 value 82.508980
iter  60 value 82.149139
iter  70 value 81.347462
iter  80 value 81.132443
iter  90 value 80.585857
iter 100 value 80.110845
final  value 80.110845 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.060738 
final  value 94.486114 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.130628 
final  value 94.485843 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.750955 
final  value 94.485900 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.064103 
final  value 93.913489 
converged
Fitting Repeat 5 

# weights:  103
initial  value 111.122347 
final  value 94.313737 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.527901 
iter  10 value 94.488954
iter  20 value 92.592555
iter  30 value 87.323499
iter  40 value 81.043017
iter  50 value 80.998954
iter  60 value 80.831322
iter  70 value 80.240400
iter  80 value 79.333932
iter  90 value 79.319493
iter 100 value 79.319403
final  value 79.319403 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 102.924763 
iter  10 value 94.489167
iter  20 value 94.174603
iter  30 value 91.392908
iter  40 value 91.373441
iter  50 value 91.357895
iter  60 value 91.354058
final  value 91.354011 
converged
Fitting Repeat 3 

# weights:  305
initial  value 110.496418 
iter  10 value 95.350229
iter  20 value 93.706985
iter  30 value 88.260294
iter  40 value 83.702218
final  value 83.686199 
converged
Fitting Repeat 4 

# weights:  305
initial  value 96.974233 
iter  10 value 94.031848
iter  20 value 94.027507
iter  30 value 94.027433
iter  40 value 94.027001
final  value 94.026995 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.834672 
iter  10 value 87.152536
iter  20 value 86.876727
iter  30 value 84.229553
iter  40 value 84.228608
iter  50 value 84.226752
final  value 84.226746 
converged
Fitting Repeat 1 

# weights:  507
initial  value 124.773337 
iter  10 value 94.034761
iter  20 value 94.028420
final  value 94.027005 
converged
Fitting Repeat 2 

# weights:  507
initial  value 97.290036 
iter  10 value 94.034630
iter  20 value 94.029098
final  value 93.823095 
converged
Fitting Repeat 3 

# weights:  507
initial  value 105.586868 
iter  10 value 93.830994
iter  20 value 93.828033
iter  30 value 93.825360
final  value 93.825334 
converged
Fitting Repeat 4 

# weights:  507
initial  value 105.838784 
iter  10 value 94.061080
iter  20 value 93.816371
iter  30 value 85.408385
iter  40 value 84.347101
final  value 84.346668 
converged
Fitting Repeat 5 

# weights:  507
initial  value 101.954106 
iter  10 value 93.986602
iter  20 value 93.921286
iter  30 value 93.880391
iter  40 value 93.861930
iter  50 value 93.861278
iter  60 value 87.018856
iter  70 value 84.093146
iter  80 value 83.732940
iter  90 value 83.211748
iter 100 value 82.847649
final  value 82.847649 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.604186 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 102.141119 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.188948 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.516512 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.538130 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 96.772429 
iter  10 value 94.112905
final  value 94.112903 
converged
Fitting Repeat 2 

# weights:  305
initial  value 98.079293 
iter  10 value 94.188021
final  value 94.112903 
converged
Fitting Repeat 3 

# weights:  305
initial  value 112.024065 
iter  10 value 94.275362
iter  10 value 94.275362
iter  10 value 94.275362
final  value 94.275362 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.591794 
final  value 94.291892 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.207615 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 109.389515 
iter  10 value 93.727123
iter  20 value 93.277831
iter  30 value 88.498833
iter  40 value 81.956343
iter  50 value 81.930111
final  value 81.929091 
converged
Fitting Repeat 2 

# weights:  507
initial  value 112.823263 
iter  10 value 94.259993
iter  20 value 92.005839
iter  30 value 88.462098
iter  40 value 87.723801
iter  50 value 87.672623
iter  60 value 87.518861
iter  70 value 87.503456
iter  70 value 87.503455
final  value 87.503455 
converged
Fitting Repeat 3 

# weights:  507
initial  value 102.173713 
final  value 94.283324 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.009803 
final  value 94.291892 
converged
Fitting Repeat 5 

# weights:  507
initial  value 121.808149 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 101.562138 
iter  10 value 95.510460
iter  20 value 93.091595
iter  30 value 84.672159
iter  40 value 84.093893
iter  50 value 83.923536
iter  60 value 83.882878
iter  70 value 83.298061
final  value 83.297471 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.241207 
iter  10 value 94.582626
iter  20 value 94.384423
iter  30 value 92.836435
iter  40 value 91.950765
iter  50 value 87.656988
iter  60 value 87.104691
iter  70 value 87.008490
iter  80 value 87.007916
iter  90 value 86.717714
iter 100 value 83.868486
final  value 83.868486 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 102.029735 
iter  10 value 94.463500
iter  20 value 85.816682
iter  30 value 83.943165
iter  40 value 83.352908
iter  50 value 83.255580
iter  60 value 83.240015
iter  70 value 83.178832
iter  80 value 83.147837
final  value 83.147833 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.444527 
iter  10 value 94.541866
iter  20 value 89.642046
iter  30 value 88.972796
iter  40 value 85.749611
iter  50 value 85.089157
iter  60 value 82.861754
iter  70 value 82.735829
iter  80 value 82.734418
iter  90 value 82.734324
iter 100 value 82.734108
final  value 82.734108 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 100.422910 
iter  10 value 94.362036
iter  20 value 85.752840
iter  30 value 83.915287
iter  40 value 83.119343
iter  50 value 82.342918
iter  60 value 81.725109
iter  70 value 81.688434
final  value 81.688433 
converged
Fitting Repeat 1 

# weights:  305
initial  value 104.709458 
iter  10 value 94.989152
iter  20 value 87.804822
iter  30 value 84.202856
iter  40 value 83.528164
iter  50 value 83.324947
iter  60 value 82.891421
iter  70 value 81.450298
iter  80 value 80.863373
iter  90 value 80.672592
iter 100 value 80.402551
final  value 80.402551 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 116.131606 
iter  10 value 94.506534
iter  20 value 93.360549
iter  30 value 86.697629
iter  40 value 84.412774
iter  50 value 82.460234
iter  60 value 82.352385
iter  70 value 82.057356
iter  80 value 81.793191
iter  90 value 81.269382
iter 100 value 80.326228
final  value 80.326228 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.616818 
iter  10 value 93.627111
iter  20 value 92.054225
iter  30 value 91.036398
iter  40 value 86.438819
iter  50 value 82.824736
iter  60 value 81.413699
iter  70 value 80.885173
iter  80 value 80.187289
iter  90 value 79.544377
iter 100 value 79.245818
final  value 79.245818 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 102.279203 
iter  10 value 89.764823
iter  20 value 87.175382
iter  30 value 81.024054
iter  40 value 80.195142
iter  50 value 79.847251
iter  60 value 79.794966
iter  70 value 79.729569
iter  80 value 79.371437
iter  90 value 79.198580
iter 100 value 79.067170
final  value 79.067170 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 104.078471 
iter  10 value 95.013540
iter  20 value 94.121595
iter  30 value 88.515006
iter  40 value 84.873683
iter  50 value 84.445926
iter  60 value 84.025910
iter  70 value 83.487057
iter  80 value 82.726791
iter  90 value 80.578706
iter 100 value 80.264371
final  value 80.264371 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.432266 
iter  10 value 92.557967
iter  20 value 83.375630
iter  30 value 81.471139
iter  40 value 80.485646
iter  50 value 80.171640
iter  60 value 79.724411
iter  70 value 79.274222
iter  80 value 78.876383
iter  90 value 78.325829
iter 100 value 78.249452
final  value 78.249452 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 102.721052 
iter  10 value 94.589576
iter  20 value 94.468297
iter  30 value 92.909428
iter  40 value 90.808660
iter  50 value 89.189511
iter  60 value 88.541620
iter  70 value 84.961576
iter  80 value 82.329690
iter  90 value 81.135744
iter 100 value 80.508060
final  value 80.508060 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 112.395872 
iter  10 value 94.497011
iter  20 value 87.517984
iter  30 value 85.130035
iter  40 value 83.709186
iter  50 value 82.873024
iter  60 value 81.779385
iter  70 value 80.423219
iter  80 value 79.737038
iter  90 value 79.195662
iter 100 value 79.000689
final  value 79.000689 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 129.089413 
iter  10 value 94.937718
iter  20 value 94.481820
iter  30 value 87.827890
iter  40 value 83.241088
iter  50 value 80.520034
iter  60 value 79.973686
iter  70 value 79.091926
iter  80 value 78.974525
iter  90 value 78.802925
iter 100 value 78.658863
final  value 78.658863 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 105.974994 
iter  10 value 94.562722
iter  20 value 92.619630
iter  30 value 87.439768
iter  40 value 84.354007
iter  50 value 84.118441
iter  60 value 83.572726
iter  70 value 83.155049
iter  80 value 82.846899
iter  90 value 82.744944
iter 100 value 82.694623
final  value 82.694623 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 104.586600 
final  value 94.486301 
converged
Fitting Repeat 2 

# weights:  103
initial  value 94.811744 
final  value 94.485817 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.992094 
iter  10 value 94.331319
final  value 94.327562 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.811959 
final  value 94.485845 
converged
Fitting Repeat 5 

# weights:  103
initial  value 104.679753 
iter  10 value 94.485925
iter  20 value 94.392962
iter  30 value 87.509118
iter  40 value 87.433659
iter  50 value 87.433307
iter  60 value 87.433123
final  value 87.433078 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.869473 
iter  10 value 94.296713
iter  20 value 94.292460
final  value 94.291979 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.010867 
iter  10 value 94.489140
iter  20 value 94.338795
iter  30 value 90.920862
iter  40 value 90.911735
iter  50 value 90.908412
iter  60 value 90.895168
iter  70 value 90.216068
iter  80 value 80.052148
iter  90 value 79.775916
final  value 79.775461 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.260813 
iter  10 value 94.489150
iter  20 value 94.484365
iter  30 value 92.639997
iter  40 value 92.627109
iter  50 value 91.716251
iter  60 value 84.524931
iter  70 value 84.521438
iter  80 value 84.515202
iter  90 value 84.328391
iter 100 value 82.171418
final  value 82.171418 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 103.175875 
iter  10 value 94.296848
iter  20 value 94.293968
final  value 94.292852 
converged
Fitting Repeat 5 

# weights:  305
initial  value 103.840025 
iter  10 value 94.489354
iter  20 value 94.480243
iter  30 value 93.191536
iter  40 value 88.488313
iter  50 value 88.328685
iter  60 value 88.323066
iter  70 value 88.322509
iter  80 value 88.322031
iter  90 value 88.321350
final  value 88.321344 
converged
Fitting Repeat 1 

# weights:  507
initial  value 98.551224 
iter  10 value 94.300246
iter  20 value 93.115428
iter  30 value 92.627967
iter  40 value 92.515653
iter  50 value 92.510143
final  value 92.510129 
converged
Fitting Repeat 2 

# weights:  507
initial  value 109.721504 
iter  10 value 94.300185
iter  20 value 94.293169
iter  30 value 94.259942
iter  40 value 92.138914
final  value 91.998486 
converged
Fitting Repeat 3 

# weights:  507
initial  value 123.213111 
iter  10 value 85.273969
iter  20 value 82.013250
iter  30 value 81.959124
iter  40 value 81.916629
iter  50 value 81.914781
iter  60 value 81.912800
iter  70 value 81.912231
iter  80 value 81.904135
iter  90 value 81.884294
iter 100 value 81.880428
final  value 81.880428 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 95.882438 
iter  10 value 94.334407
iter  20 value 93.757631
iter  30 value 93.443380
iter  40 value 93.389813
final  value 93.389577 
converged
Fitting Repeat 5 

# weights:  507
initial  value 112.320958 
iter  10 value 84.548398
iter  20 value 82.561013
iter  30 value 82.559207
iter  40 value 82.555871
iter  50 value 82.554181
final  value 82.552717 
converged
Fitting Repeat 1 

# weights:  507
initial  value 133.673435 
iter  10 value 117.767044
iter  20 value 116.763222
iter  30 value 113.391046
iter  40 value 109.123980
iter  50 value 108.771245
iter  60 value 108.619415
iter  70 value 107.726844
iter  80 value 107.625060
iter  90 value 107.622519
iter 100 value 107.197756
final  value 107.197756 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 151.604736 
iter  10 value 117.898288
iter  20 value 117.859803
iter  30 value 117.251962
iter  40 value 112.475245
iter  50 value 112.075270
iter  60 value 112.007317
iter  70 value 111.252657
iter  80 value 106.684517
iter  90 value 102.505410
iter 100 value 101.439684
final  value 101.439684 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 127.712756 
iter  10 value 117.527522
iter  20 value 117.517944
final  value 117.511455 
converged
Fitting Repeat 4 

# weights:  507
initial  value 133.619496 
iter  10 value 117.602375
iter  20 value 117.596169
iter  30 value 117.594645
iter  40 value 117.511505
final  value 117.500050 
converged
Fitting Repeat 5 

# weights:  507
initial  value 141.443391 
iter  10 value 117.898367
iter  20 value 117.869914
iter  30 value 114.409593
iter  40 value 114.324950
iter  50 value 114.324700
final  value 114.324677 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Mon Dec  1 20:34:24 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 20.841   0.491  73.702 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod19.180 0.92320.928
FreqInteractors0.1710.0140.198
calculateAAC0.0130.0020.016
calculateAutocor0.2720.0310.319
calculateCTDC0.0340.0050.039
calculateCTDD0.1600.0070.169
calculateCTDT0.0600.0030.067
calculateCTriad0.1520.0160.169
calculateDC0.0340.0040.039
calculateF0.1070.0080.121
calculateKSAAP0.0340.0040.043
calculateQD_Sm0.6750.0630.749
calculateTC0.7320.0700.816
calculateTC_Sm0.0990.0130.114
corr_plot19.199 0.95920.814
enrichfindP 0.201 0.03815.447
enrichfind_hp0.0140.0030.992
enrichplot0.1750.0080.186
filter_missing_values0.0000.0010.000
getFASTA0.0310.0075.421
getHPI0.0010.0000.000
get_negativePPI0.0000.0000.001
get_positivePPI000
impute_missing_data0.0010.0000.001
plotPPI0.0320.0020.034
pred_ensembel6.4760.1066.195
var_imp18.571 0.99920.653