Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-09-11 12:06 -0400 (Thu, 11 Sep 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" | 4539 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4474 |
kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4519 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4544 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 990/2322 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.15.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz |
StartedAt: 2025-09-10 20:50:11 -0400 (Wed, 10 Sep 2025) |
EndedAt: 2025-09-10 20:53:22 -0400 (Wed, 10 Sep 2025) |
EllapsedTime: 190.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’ * using R version 4.5.1 Patched (2025-09-10 r88807) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 16.0.0 (clang-1600.0.26.6) GNU Fortran (GCC) 14.2.0 * running under: macOS Ventura 13.7.7 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.15.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 17.930 0.708 18.655 FSmethod 17.558 0.674 18.454 corr_plot 17.265 0.659 18.132 pred_ensembel 5.743 0.099 5.234 enrichfindP 0.163 0.029 7.469 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 100.665600 iter 10 value 94.362736 iter 20 value 93.875306 final value 93.874286 converged Fitting Repeat 2 # weights: 103 initial value 103.992714 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 96.452901 iter 10 value 94.264963 iter 20 value 93.922942 iter 30 value 93.922241 iter 40 value 93.722223 iter 40 value 93.722222 iter 40 value 93.722222 final value 93.722222 converged Fitting Repeat 4 # weights: 103 initial value 97.466604 final value 94.400000 converged Fitting Repeat 5 # weights: 103 initial value 108.409433 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 113.368381 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 97.264886 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 111.929425 iter 10 value 88.931941 iter 20 value 86.864253 iter 30 value 86.273978 final value 86.270960 converged Fitting Repeat 4 # weights: 305 initial value 108.911324 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 101.798139 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 100.835718 iter 10 value 94.340758 iter 20 value 94.340406 final value 94.340398 converged Fitting Repeat 2 # weights: 507 initial value 105.755388 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 103.463065 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 115.815893 iter 10 value 93.999909 iter 20 value 87.792290 iter 30 value 87.688184 final value 87.687921 converged Fitting Repeat 5 # weights: 507 initial value 131.860889 final value 94.443244 converged Fitting Repeat 1 # weights: 103 initial value 99.710728 iter 10 value 94.495282 iter 20 value 92.087675 iter 30 value 88.138403 iter 40 value 86.443340 iter 50 value 85.838643 iter 60 value 85.476292 iter 70 value 84.776181 iter 80 value 84.489944 iter 90 value 84.268949 iter 100 value 83.912800 final value 83.912800 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 99.452939 iter 10 value 92.150427 iter 20 value 89.495837 iter 30 value 86.335288 iter 40 value 85.656300 iter 50 value 84.864627 iter 60 value 83.778613 iter 70 value 83.530077 final value 83.528296 converged Fitting Repeat 3 # weights: 103 initial value 99.347646 iter 10 value 94.449928 iter 20 value 89.321235 iter 30 value 88.608383 iter 40 value 88.487312 iter 50 value 85.872689 iter 60 value 84.601384 iter 70 value 84.210723 iter 80 value 84.040237 iter 90 value 83.898350 iter 100 value 83.686058 final value 83.686058 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 109.058661 iter 10 value 94.486424 iter 20 value 94.329328 iter 30 value 92.056564 iter 40 value 86.321335 iter 50 value 85.872964 iter 60 value 85.715250 iter 70 value 85.127057 iter 80 value 84.255123 iter 90 value 84.089425 iter 100 value 83.830999 final value 83.830999 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 97.516001 iter 10 value 94.483110 iter 20 value 94.250157 iter 30 value 94.239074 iter 40 value 92.694236 iter 50 value 88.195139 iter 60 value 87.846413 iter 70 value 87.718972 iter 80 value 87.607902 iter 90 value 87.165022 iter 100 value 86.509989 final value 86.509989 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 123.625405 iter 10 value 94.453358 iter 20 value 88.615693 iter 30 value 87.231521 iter 40 value 86.086757 iter 50 value 84.827983 iter 60 value 84.344295 iter 70 value 83.973906 iter 80 value 83.091750 iter 90 value 82.831795 iter 100 value 82.717312 final value 82.717312 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.674026 iter 10 value 94.509494 iter 20 value 94.290439 iter 30 value 93.497437 iter 40 value 88.225261 iter 50 value 87.613152 iter 60 value 86.008944 iter 70 value 85.064527 iter 80 value 84.020638 iter 90 value 83.665910 iter 100 value 83.321369 final value 83.321369 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 118.689714 iter 10 value 96.342818 iter 20 value 90.058087 iter 30 value 86.959670 iter 40 value 85.282101 iter 50 value 84.172156 iter 60 value 83.946055 iter 70 value 83.893553 iter 80 value 83.830106 iter 90 value 83.754963 iter 100 value 83.603124 final value 83.603124 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.225263 iter 10 value 94.476669 iter 20 value 93.825521 iter 30 value 87.962228 iter 40 value 85.891847 iter 50 value 85.601264 iter 60 value 85.347764 iter 70 value 84.869528 iter 80 value 83.263007 iter 90 value 82.562673 iter 100 value 82.386560 final value 82.386560 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.415168 iter 10 value 94.491445 final value 94.486180 converged Fitting Repeat 1 # weights: 507 initial value 110.650836 iter 10 value 94.498379 iter 20 value 93.937412 iter 30 value 92.805822 iter 40 value 89.881978 iter 50 value 86.112630 iter 60 value 84.552557 iter 70 value 83.436552 iter 80 value 82.523287 iter 90 value 81.920454 iter 100 value 81.736943 final value 81.736943 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.420244 iter 10 value 95.018509 iter 20 value 92.023340 iter 30 value 88.882336 iter 40 value 86.643855 iter 50 value 85.779934 iter 60 value 85.150320 iter 70 value 84.973006 iter 80 value 83.320261 iter 90 value 82.268466 iter 100 value 82.028448 final value 82.028448 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.499277 iter 10 value 95.008214 iter 20 value 91.349253 iter 30 value 86.102372 iter 40 value 84.831221 iter 50 value 84.616089 iter 60 value 84.032018 iter 70 value 83.451677 iter 80 value 82.528937 iter 90 value 82.404659 iter 100 value 82.228405 final value 82.228405 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 118.436583 iter 10 value 94.258566 iter 20 value 89.661229 iter 30 value 84.818672 iter 40 value 84.195565 iter 50 value 83.670130 iter 60 value 83.397391 iter 70 value 82.819197 iter 80 value 82.624077 iter 90 value 82.609271 iter 100 value 82.595957 final value 82.595957 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.957177 iter 10 value 94.511711 iter 20 value 92.572725 iter 30 value 89.478839 iter 40 value 87.316977 iter 50 value 85.436417 iter 60 value 84.415806 iter 70 value 83.866647 iter 80 value 83.676847 iter 90 value 83.453426 iter 100 value 83.367222 final value 83.367222 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 104.516276 iter 10 value 94.486043 iter 20 value 94.484227 final value 94.484220 converged Fitting Repeat 2 # weights: 103 initial value 95.686201 iter 10 value 94.485738 iter 20 value 94.484194 iter 30 value 94.215681 final value 94.214121 converged Fitting Repeat 3 # weights: 103 initial value 100.266850 final value 94.485489 converged Fitting Repeat 4 # weights: 103 initial value 101.049420 iter 10 value 94.486032 iter 20 value 94.478528 iter 30 value 88.882394 iter 40 value 88.407541 iter 50 value 88.380969 iter 60 value 87.821116 iter 70 value 87.687886 iter 80 value 87.685947 iter 90 value 87.024581 final value 86.834674 converged Fitting Repeat 5 # weights: 103 initial value 99.213292 final value 94.486018 converged Fitting Repeat 1 # weights: 305 initial value 96.214540 iter 10 value 94.487885 iter 20 value 94.092184 iter 30 value 88.582630 iter 40 value 87.867951 iter 50 value 87.509773 iter 60 value 86.876960 iter 70 value 86.869250 final value 86.869162 converged Fitting Repeat 2 # weights: 305 initial value 106.589520 iter 10 value 94.158336 iter 20 value 89.011243 iter 30 value 88.766520 iter 40 value 88.766112 final value 88.765517 converged Fitting Repeat 3 # weights: 305 initial value 109.655791 iter 10 value 94.448173 iter 20 value 94.412134 final value 94.263506 converged Fitting Repeat 4 # weights: 305 initial value 112.622585 iter 10 value 94.448188 iter 20 value 89.044912 iter 30 value 87.183630 iter 40 value 87.070622 iter 50 value 87.068191 iter 60 value 86.602012 iter 70 value 86.567555 final value 86.567526 converged Fitting Repeat 5 # weights: 305 initial value 95.032799 iter 10 value 94.399697 iter 20 value 94.327760 iter 30 value 94.323194 iter 40 value 93.393930 iter 50 value 88.687697 iter 60 value 84.944379 iter 70 value 83.157369 iter 80 value 82.260708 iter 90 value 82.253912 iter 100 value 82.250925 final value 82.250925 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 107.525119 iter 10 value 94.492430 iter 20 value 94.438357 iter 30 value 87.426311 final value 87.317799 converged Fitting Repeat 2 # weights: 507 initial value 108.567583 iter 10 value 94.451937 iter 20 value 94.398976 iter 30 value 94.272035 iter 40 value 94.263877 iter 50 value 94.263342 iter 50 value 94.263341 iter 50 value 94.263341 final value 94.263341 converged Fitting Repeat 3 # weights: 507 initial value 126.434393 iter 10 value 94.492402 iter 20 value 94.244404 iter 30 value 88.813047 iter 40 value 86.004654 iter 50 value 84.959974 final value 84.904398 converged Fitting Repeat 4 # weights: 507 initial value 96.306128 iter 10 value 94.179866 iter 20 value 94.174898 iter 30 value 94.170163 iter 40 value 94.139109 iter 50 value 94.127352 iter 60 value 89.071602 iter 70 value 89.011089 iter 80 value 86.114841 iter 90 value 86.016035 iter 100 value 85.993949 final value 85.993949 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 102.758332 iter 10 value 94.408520 iter 20 value 94.407136 iter 30 value 94.067670 iter 40 value 88.221250 iter 50 value 87.437827 iter 60 value 87.285181 iter 70 value 84.046211 iter 80 value 83.149276 iter 90 value 82.066766 iter 100 value 81.089967 final value 81.089967 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.776450 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 111.088040 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 110.244683 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 94.516953 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.134259 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.249929 iter 10 value 94.026551 iter 10 value 94.026550 iter 10 value 94.026550 final value 94.026550 converged Fitting Repeat 2 # weights: 305 initial value 114.416422 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 96.589414 iter 10 value 94.372171 iter 20 value 91.815259 final value 91.815245 converged Fitting Repeat 4 # weights: 305 initial value 110.269121 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 97.534240 iter 10 value 93.671150 iter 20 value 91.425661 final value 91.122771 converged Fitting Repeat 1 # weights: 507 initial value 102.657698 final value 94.026542 converged Fitting Repeat 2 # weights: 507 initial value 100.905196 iter 10 value 94.026543 iter 10 value 94.026542 iter 10 value 94.026542 final value 94.026542 converged Fitting Repeat 3 # weights: 507 initial value 106.173391 iter 10 value 93.894017 final value 93.893997 converged Fitting Repeat 4 # weights: 507 initial value 121.198293 iter 10 value 87.454257 iter 20 value 85.971972 iter 30 value 85.667907 iter 40 value 84.801611 iter 50 value 84.447902 iter 60 value 84.437295 iter 70 value 84.432581 iter 80 value 84.427000 iter 90 value 84.426702 final value 84.426681 converged Fitting Repeat 5 # weights: 507 initial value 118.443704 final value 94.026542 converged Fitting Repeat 1 # weights: 103 initial value 99.287791 iter 10 value 94.488558 iter 10 value 94.488557 iter 10 value 94.488557 final value 94.488557 converged Fitting Repeat 2 # weights: 103 initial value 107.356209 iter 10 value 94.418793 iter 20 value 91.554974 iter 30 value 91.370958 iter 40 value 86.102755 iter 50 value 84.605775 iter 60 value 83.485949 iter 70 value 83.054355 iter 80 value 82.651870 iter 90 value 82.554347 final value 82.554165 converged Fitting Repeat 3 # weights: 103 initial value 99.478246 iter 10 value 94.475093 iter 20 value 89.825712 iter 30 value 85.892187 iter 40 value 85.130283 iter 50 value 84.436364 iter 60 value 84.024363 iter 70 value 82.880526 iter 80 value 82.811030 iter 90 value 82.801627 iter 100 value 82.792527 final value 82.792527 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 108.785719 iter 10 value 94.397969 iter 20 value 93.041583 iter 30 value 89.127729 iter 40 value 86.584629 iter 50 value 85.985875 iter 60 value 84.088997 iter 70 value 83.414444 iter 80 value 82.941169 iter 90 value 82.558548 iter 100 value 82.554169 final value 82.554169 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 98.518036 iter 10 value 94.486528 iter 20 value 88.007500 iter 30 value 84.976218 iter 40 value 84.404129 iter 50 value 84.310697 iter 60 value 84.305213 iter 60 value 84.305212 iter 60 value 84.305212 final value 84.305212 converged Fitting Repeat 1 # weights: 305 initial value 105.295704 iter 10 value 94.399565 iter 20 value 86.541745 iter 30 value 85.345612 iter 40 value 84.386327 iter 50 value 83.687519 iter 60 value 82.140355 iter 70 value 81.465310 iter 80 value 81.336705 iter 90 value 81.105527 iter 100 value 81.008260 final value 81.008260 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 126.810407 iter 10 value 93.147880 iter 20 value 85.786400 iter 30 value 85.022857 iter 40 value 84.428853 iter 50 value 84.001325 iter 60 value 83.777583 iter 70 value 83.170658 iter 80 value 82.241294 iter 90 value 81.813617 iter 100 value 81.571884 final value 81.571884 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.617114 iter 10 value 94.039062 iter 20 value 86.466985 iter 30 value 85.006274 iter 40 value 84.358910 iter 50 value 84.271578 iter 60 value 83.413280 iter 70 value 83.262151 iter 80 value 83.083771 iter 90 value 82.932872 iter 100 value 82.911954 final value 82.911954 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.949925 iter 10 value 94.504067 iter 20 value 91.007280 iter 30 value 85.263173 iter 40 value 84.468930 iter 50 value 84.029085 iter 60 value 83.217936 iter 70 value 82.700670 iter 80 value 82.002997 iter 90 value 81.884113 iter 100 value 81.764471 final value 81.764471 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 107.006376 iter 10 value 94.283982 iter 20 value 87.240616 iter 30 value 85.490447 iter 40 value 84.718787 iter 50 value 84.337134 iter 60 value 84.066743 iter 70 value 83.215392 iter 80 value 82.249105 iter 90 value 82.161831 iter 100 value 82.002516 final value 82.002516 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 126.927065 iter 10 value 94.533348 iter 20 value 92.013378 iter 30 value 91.334940 iter 40 value 89.884100 iter 50 value 84.780832 iter 60 value 84.451828 iter 70 value 84.090181 iter 80 value 83.946989 iter 90 value 83.504247 iter 100 value 82.584778 final value 82.584778 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 105.608099 iter 10 value 94.114450 iter 20 value 89.829236 iter 30 value 86.518664 iter 40 value 85.856932 iter 50 value 84.250641 iter 60 value 83.778575 iter 70 value 83.375652 iter 80 value 82.049552 iter 90 value 81.510773 iter 100 value 81.377933 final value 81.377933 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.050716 iter 10 value 94.542624 iter 20 value 92.356264 iter 30 value 84.800804 iter 40 value 82.990042 iter 50 value 82.350848 iter 60 value 81.961842 iter 70 value 81.566825 iter 80 value 81.365243 iter 90 value 81.232453 iter 100 value 81.184871 final value 81.184871 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.587893 iter 10 value 94.248208 iter 20 value 87.498958 iter 30 value 84.627290 iter 40 value 83.179985 iter 50 value 82.553668 iter 60 value 81.346657 iter 70 value 81.050297 iter 80 value 80.867175 iter 90 value 80.784210 iter 100 value 80.721654 final value 80.721654 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 104.655032 iter 10 value 94.542098 iter 20 value 86.564198 iter 30 value 85.609615 iter 40 value 84.600156 iter 50 value 83.951682 iter 60 value 83.352496 iter 70 value 82.316257 iter 80 value 81.676501 iter 90 value 81.365075 iter 100 value 81.135376 final value 81.135376 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.576300 iter 10 value 94.327704 iter 20 value 94.028444 iter 30 value 94.026898 final value 94.026859 converged Fitting Repeat 2 # weights: 103 initial value 98.746778 iter 10 value 94.485907 final value 94.485906 converged Fitting Repeat 3 # weights: 103 initial value 96.898073 final value 94.485816 converged Fitting Repeat 4 # weights: 103 initial value 98.329629 final value 94.485846 converged Fitting Repeat 5 # weights: 103 initial value 96.824739 iter 10 value 94.486089 final value 94.484222 converged Fitting Repeat 1 # weights: 305 initial value 107.276414 iter 10 value 94.489475 iter 20 value 94.473452 iter 30 value 93.916559 iter 40 value 91.508173 iter 50 value 91.466007 iter 60 value 91.465576 iter 70 value 91.465162 final value 91.464946 converged Fitting Repeat 2 # weights: 305 initial value 111.155356 iter 10 value 94.031975 iter 20 value 94.027658 iter 30 value 93.265903 iter 40 value 85.528759 iter 50 value 84.839507 iter 60 value 84.749292 iter 70 value 84.341301 iter 80 value 84.199898 iter 90 value 84.180646 iter 100 value 83.561601 final value 83.561601 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.449451 iter 10 value 94.031880 iter 20 value 94.027250 iter 30 value 94.025464 iter 40 value 89.823832 iter 50 value 88.818067 iter 60 value 88.817969 iter 60 value 88.817969 iter 60 value 88.817969 final value 88.817969 converged Fitting Repeat 4 # weights: 305 initial value 96.295371 iter 10 value 94.488857 iter 20 value 94.436695 iter 30 value 93.830216 iter 40 value 91.174277 iter 50 value 91.155672 iter 60 value 91.153122 iter 70 value 91.152911 iter 80 value 91.125587 final value 91.120625 converged Fitting Repeat 5 # weights: 305 initial value 101.574936 iter 10 value 94.037117 iter 20 value 94.031095 iter 30 value 94.026711 iter 40 value 93.448483 iter 50 value 89.732195 iter 60 value 86.891206 iter 70 value 86.745019 iter 80 value 86.744310 iter 90 value 85.492256 iter 100 value 84.324170 final value 84.324170 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 117.659005 iter 10 value 88.457684 iter 20 value 85.013650 iter 30 value 84.916165 iter 40 value 84.663352 iter 50 value 83.975998 iter 60 value 83.676237 iter 70 value 83.651797 iter 80 value 83.651030 iter 90 value 82.961885 iter 100 value 82.316160 final value 82.316160 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 134.262150 iter 10 value 94.493505 iter 20 value 94.486760 iter 30 value 92.253799 iter 40 value 88.357313 iter 50 value 88.292424 iter 60 value 88.087107 iter 70 value 86.954432 iter 80 value 86.905723 iter 90 value 83.705753 iter 100 value 82.826397 final value 82.826397 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 100.403428 iter 10 value 92.789529 iter 20 value 86.996467 iter 30 value 86.956530 iter 40 value 86.951437 iter 50 value 86.105966 iter 60 value 84.861879 iter 70 value 81.927384 iter 80 value 81.914404 iter 90 value 81.914305 iter 90 value 81.914304 iter 90 value 81.914304 final value 81.914304 converged Fitting Repeat 4 # weights: 507 initial value 106.308278 iter 10 value 94.491922 iter 20 value 93.074661 iter 30 value 83.715412 final value 83.670347 converged Fitting Repeat 5 # weights: 507 initial value 108.125156 iter 10 value 94.122708 iter 20 value 93.950804 iter 30 value 92.134975 iter 40 value 91.567072 iter 50 value 91.566480 iter 60 value 91.255130 final value 91.191617 converged Fitting Repeat 1 # weights: 103 initial value 95.581680 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.491231 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 104.406484 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.815368 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 110.006587 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.531344 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 105.004587 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 108.967122 iter 10 value 91.310278 iter 20 value 91.070900 iter 30 value 91.064094 final value 91.064092 converged Fitting Repeat 4 # weights: 305 initial value 109.344861 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 110.769256 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 109.179903 final value 94.466823 converged Fitting Repeat 2 # weights: 507 initial value 134.231706 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 113.017732 iter 10 value 93.637386 iter 10 value 93.637386 iter 10 value 93.637386 final value 93.637386 converged Fitting Repeat 4 # weights: 507 initial value 110.136765 final value 94.466823 converged Fitting Repeat 5 # weights: 507 initial value 119.758861 final value 94.088889 converged Fitting Repeat 1 # weights: 103 initial value 103.825901 iter 10 value 92.762755 iter 20 value 91.711823 iter 30 value 88.835465 iter 40 value 85.494512 iter 50 value 84.867105 iter 60 value 82.908348 iter 70 value 81.999584 iter 80 value 81.530340 iter 90 value 81.525931 final value 81.524475 converged Fitting Repeat 2 # weights: 103 initial value 112.804868 iter 10 value 94.442309 iter 20 value 92.588066 iter 30 value 90.434851 iter 40 value 87.402173 iter 50 value 85.349892 iter 60 value 82.385316 iter 70 value 81.632280 iter 80 value 81.540184 iter 90 value 81.530373 iter 100 value 81.529267 final value 81.529267 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.625404 iter 10 value 94.461024 iter 20 value 89.124208 iter 30 value 85.194995 iter 40 value 83.291702 iter 50 value 82.836703 iter 60 value 82.076183 iter 70 value 81.699682 iter 80 value 81.677435 iter 90 value 81.666903 final value 81.666870 converged Fitting Repeat 4 # weights: 103 initial value 105.164044 iter 10 value 94.426870 iter 20 value 93.584201 iter 30 value 93.393411 iter 40 value 88.652881 iter 50 value 86.061033 iter 60 value 84.995361 iter 70 value 82.572088 iter 80 value 82.364756 iter 90 value 82.211576 iter 100 value 81.545750 final value 81.545750 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 106.929727 iter 10 value 94.453773 iter 20 value 94.036847 iter 30 value 92.729410 iter 40 value 92.634194 iter 50 value 91.470263 iter 60 value 86.758597 iter 70 value 86.001749 iter 80 value 84.532472 iter 90 value 82.295865 iter 100 value 81.974171 final value 81.974171 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 112.981245 iter 10 value 94.117644 iter 20 value 89.179425 iter 30 value 86.503864 iter 40 value 84.662088 iter 50 value 83.452765 iter 60 value 82.398802 iter 70 value 82.006581 iter 80 value 81.960495 iter 90 value 81.792688 iter 100 value 81.513486 final value 81.513486 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.774111 iter 10 value 96.074493 iter 20 value 88.303341 iter 30 value 87.532087 iter 40 value 86.698595 iter 50 value 84.717578 iter 60 value 82.657453 iter 70 value 81.616918 iter 80 value 81.535305 iter 90 value 81.380953 iter 100 value 81.337783 final value 81.337783 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.994045 iter 10 value 94.499643 iter 20 value 92.795196 iter 30 value 88.717908 iter 40 value 85.977778 iter 50 value 84.013714 iter 60 value 82.981114 iter 70 value 81.944616 iter 80 value 81.472935 iter 90 value 81.402617 iter 100 value 81.169341 final value 81.169341 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.324937 iter 10 value 96.289339 iter 20 value 94.709881 iter 30 value 86.989619 iter 40 value 84.533620 iter 50 value 83.699874 iter 60 value 82.368140 iter 70 value 81.844741 iter 80 value 81.832000 iter 90 value 81.721239 iter 100 value 81.061756 final value 81.061756 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.845321 iter 10 value 94.114968 iter 20 value 87.460939 iter 30 value 86.897516 iter 40 value 85.356733 iter 50 value 83.647612 iter 60 value 83.346393 iter 70 value 82.957174 iter 80 value 82.210162 iter 90 value 81.562427 iter 100 value 80.575637 final value 80.575637 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.144600 iter 10 value 94.658673 iter 20 value 94.450723 iter 30 value 93.453395 iter 40 value 89.432076 iter 50 value 87.287210 iter 60 value 85.628733 iter 70 value 85.129652 iter 80 value 82.013680 iter 90 value 81.679629 iter 100 value 81.402037 final value 81.402037 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 114.739676 iter 10 value 91.992017 iter 20 value 89.269357 iter 30 value 86.800726 iter 40 value 86.442965 iter 50 value 83.340059 iter 60 value 82.495240 iter 70 value 82.006501 iter 80 value 81.530703 iter 90 value 81.243119 iter 100 value 81.042524 final value 81.042524 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.094347 iter 10 value 94.361120 iter 20 value 89.850594 iter 30 value 87.508168 iter 40 value 86.600960 iter 50 value 86.393117 iter 60 value 85.829317 iter 70 value 85.426048 iter 80 value 84.444785 iter 90 value 82.432522 iter 100 value 81.055073 final value 81.055073 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.034611 iter 10 value 94.555646 iter 20 value 93.279990 iter 30 value 87.187320 iter 40 value 86.400063 iter 50 value 84.833925 iter 60 value 82.777449 iter 70 value 81.990567 iter 80 value 81.135728 iter 90 value 80.523295 iter 100 value 80.309828 final value 80.309828 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.075176 iter 10 value 95.702594 iter 20 value 94.492300 iter 30 value 91.418757 iter 40 value 87.930647 iter 50 value 85.090241 iter 60 value 84.781072 iter 70 value 84.602042 iter 80 value 84.296655 iter 90 value 82.422004 iter 100 value 81.871885 final value 81.871885 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.393973 final value 94.486092 converged Fitting Repeat 2 # weights: 103 initial value 98.473230 final value 94.485820 converged Fitting Repeat 3 # weights: 103 initial value 101.797887 final value 94.485754 converged Fitting Repeat 4 # weights: 103 initial value 97.769415 final value 94.468571 converged Fitting Repeat 5 # weights: 103 initial value 94.609731 final value 94.485849 converged Fitting Repeat 1 # weights: 305 initial value 97.263702 iter 10 value 94.471387 iter 20 value 94.329974 iter 30 value 87.548401 iter 40 value 87.546620 iter 50 value 87.123125 iter 60 value 87.074453 iter 70 value 87.073997 iter 80 value 86.402649 iter 90 value 84.602938 iter 100 value 83.767107 final value 83.767107 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.016582 iter 10 value 94.489532 iter 20 value 94.431090 iter 30 value 86.629469 final value 85.920367 converged Fitting Repeat 3 # weights: 305 initial value 105.169901 iter 10 value 94.489074 iter 20 value 94.435406 iter 30 value 89.049140 iter 40 value 86.618808 iter 50 value 86.349532 iter 60 value 85.807581 iter 70 value 85.442053 iter 80 value 85.209874 iter 90 value 85.207500 final value 85.207497 converged Fitting Repeat 4 # weights: 305 initial value 96.633956 iter 10 value 94.433136 iter 20 value 94.428641 iter 30 value 94.427782 iter 40 value 88.382481 iter 50 value 88.378922 iter 60 value 88.372733 iter 70 value 88.356020 final value 88.323198 converged Fitting Repeat 5 # weights: 305 initial value 109.078411 iter 10 value 93.881651 iter 20 value 93.822013 iter 30 value 93.770173 final value 93.766461 converged Fitting Repeat 1 # weights: 507 initial value 97.039797 iter 10 value 94.474998 final value 94.434768 converged Fitting Repeat 2 # weights: 507 initial value 96.044394 iter 10 value 92.156782 iter 20 value 91.090823 iter 30 value 91.089735 iter 40 value 91.072169 iter 50 value 91.022974 iter 60 value 91.022061 iter 70 value 91.016088 iter 80 value 91.015509 iter 90 value 90.971693 iter 100 value 90.777825 final value 90.777825 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.605590 iter 10 value 94.488847 iter 20 value 93.248080 iter 30 value 85.380081 iter 40 value 84.915787 iter 50 value 84.915456 iter 60 value 84.915169 iter 70 value 83.769317 iter 80 value 83.120769 iter 90 value 82.992510 iter 100 value 80.860910 final value 80.860910 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 135.349674 iter 10 value 94.119078 iter 20 value 94.095525 iter 30 value 92.123258 iter 40 value 88.453862 iter 50 value 88.223627 iter 60 value 88.169520 iter 70 value 87.920215 iter 80 value 87.780369 final value 87.780169 converged Fitting Repeat 5 # weights: 507 initial value 104.162475 iter 10 value 92.103843 iter 20 value 90.772278 iter 30 value 90.506976 iter 40 value 89.332858 iter 50 value 89.200860 iter 60 value 89.198840 final value 89.198049 converged Fitting Repeat 1 # weights: 103 initial value 118.647505 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 98.538582 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.743015 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.269538 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 94.960969 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.682912 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 97.545568 final value 94.044524 converged Fitting Repeat 3 # weights: 305 initial value 95.788057 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 95.827549 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.625410 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 114.157084 iter 10 value 91.347736 iter 20 value 90.049232 iter 30 value 90.048733 iter 30 value 90.048733 iter 30 value 90.048733 final value 90.048733 converged Fitting Repeat 2 # weights: 507 initial value 101.165204 iter 10 value 93.582418 iter 10 value 93.582418 iter 10 value 93.582418 final value 93.582418 converged Fitting Repeat 3 # weights: 507 initial value 109.742464 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 110.169521 final value 93.869756 converged Fitting Repeat 5 # weights: 507 initial value 121.382835 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 107.385720 iter 10 value 94.059029 iter 20 value 88.222958 iter 30 value 86.158658 iter 40 value 84.796230 iter 50 value 84.271941 iter 60 value 82.069648 iter 70 value 81.824103 iter 80 value 81.815857 iter 90 value 81.814583 iter 100 value 81.814400 final value 81.814400 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.861125 iter 10 value 94.056693 iter 20 value 93.715557 iter 30 value 87.073626 iter 40 value 82.360896 iter 50 value 81.564208 iter 60 value 81.032849 iter 70 value 80.621898 iter 80 value 79.961818 iter 90 value 79.937079 iter 100 value 79.922088 final value 79.922088 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.582038 iter 10 value 94.057094 iter 20 value 93.720027 iter 30 value 93.685033 iter 40 value 90.700825 iter 50 value 84.792359 iter 60 value 80.865500 iter 70 value 80.773797 iter 80 value 80.743380 iter 90 value 80.587259 iter 100 value 80.464705 final value 80.464705 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.771871 iter 10 value 94.059778 iter 20 value 92.619410 iter 30 value 87.223528 iter 40 value 85.892797 iter 50 value 85.577782 iter 60 value 85.268450 iter 70 value 85.253667 iter 80 value 85.227990 iter 90 value 83.332390 iter 100 value 82.414487 final value 82.414487 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.618694 iter 10 value 94.048160 iter 20 value 85.698277 iter 30 value 82.349186 iter 40 value 82.329685 iter 50 value 82.319543 iter 50 value 82.319543 final value 82.319543 converged Fitting Repeat 1 # weights: 305 initial value 101.322809 iter 10 value 93.281296 iter 20 value 87.096660 iter 30 value 84.850239 iter 40 value 82.601701 iter 50 value 81.859342 iter 60 value 81.616686 iter 70 value 80.925875 iter 80 value 80.623825 iter 90 value 80.200933 iter 100 value 79.921238 final value 79.921238 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.923709 iter 10 value 94.108426 iter 20 value 94.061266 iter 30 value 93.688506 iter 40 value 87.192809 iter 50 value 83.652835 iter 60 value 82.761601 iter 70 value 81.790597 iter 80 value 81.265664 iter 90 value 80.707188 iter 100 value 80.145130 final value 80.145130 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 104.381443 iter 10 value 93.721584 iter 20 value 85.107778 iter 30 value 83.614336 iter 40 value 82.995570 iter 50 value 82.948833 iter 60 value 82.806726 iter 70 value 82.578349 iter 80 value 82.330020 iter 90 value 82.104906 iter 100 value 82.068290 final value 82.068290 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.687611 iter 10 value 91.783845 iter 20 value 86.684643 iter 30 value 85.871604 iter 40 value 85.026696 iter 50 value 83.259465 iter 60 value 82.888697 iter 70 value 81.843710 iter 80 value 81.206807 iter 90 value 80.113915 iter 100 value 79.159469 final value 79.159469 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 123.555617 iter 10 value 94.083854 iter 20 value 90.351545 iter 30 value 83.148453 iter 40 value 81.720599 iter 50 value 79.575116 iter 60 value 78.379827 iter 70 value 78.253807 iter 80 value 78.047426 iter 90 value 77.661662 iter 100 value 77.571064 final value 77.571064 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.999548 iter 10 value 93.402431 iter 20 value 88.581978 iter 30 value 84.452955 iter 40 value 82.325882 iter 50 value 81.722713 iter 60 value 81.126787 iter 70 value 79.378357 iter 80 value 78.859175 iter 90 value 78.146641 iter 100 value 77.965058 final value 77.965058 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 117.260629 iter 10 value 94.121004 iter 20 value 89.832306 iter 30 value 88.370695 iter 40 value 83.800877 iter 50 value 82.637745 iter 60 value 82.396376 iter 70 value 81.360974 iter 80 value 80.872896 iter 90 value 80.236048 iter 100 value 79.989688 final value 79.989688 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 129.737120 iter 10 value 93.761785 iter 20 value 89.464925 iter 30 value 89.070341 iter 40 value 86.615087 iter 50 value 83.009953 iter 60 value 80.067167 iter 70 value 79.688586 iter 80 value 78.659637 iter 90 value 78.094935 iter 100 value 78.002377 final value 78.002377 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 117.170352 iter 10 value 94.079564 iter 20 value 93.937948 iter 30 value 93.463754 iter 40 value 93.417476 iter 50 value 92.885550 iter 60 value 83.988518 iter 70 value 81.272861 iter 80 value 79.715956 iter 90 value 78.952025 iter 100 value 78.267657 final value 78.267657 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 128.113237 iter 10 value 93.947592 iter 20 value 86.846239 iter 30 value 82.640189 iter 40 value 80.183590 iter 50 value 79.034531 iter 60 value 78.733121 iter 70 value 78.363590 iter 80 value 78.018993 iter 90 value 77.933818 iter 100 value 77.894048 final value 77.894048 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.807106 final value 94.054694 converged Fitting Repeat 2 # weights: 103 initial value 96.894698 iter 10 value 93.584376 iter 20 value 93.382972 final value 93.366568 converged Fitting Repeat 3 # weights: 103 initial value 95.107249 iter 10 value 93.018926 iter 20 value 91.085190 iter 30 value 91.070489 iter 40 value 91.069994 iter 50 value 91.068020 iter 60 value 90.166486 iter 70 value 83.746542 iter 80 value 83.007252 iter 90 value 82.791984 iter 100 value 82.660489 final value 82.660489 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 98.388208 final value 94.054943 converged Fitting Repeat 5 # weights: 103 initial value 97.000721 final value 94.054605 converged Fitting Repeat 1 # weights: 305 initial value 95.397178 iter 10 value 93.587399 iter 20 value 93.575815 iter 30 value 93.130002 iter 40 value 85.130284 iter 50 value 83.172566 iter 60 value 83.149088 final value 83.148943 converged Fitting Repeat 2 # weights: 305 initial value 102.772795 iter 10 value 93.383762 iter 20 value 93.370849 iter 30 value 93.365375 iter 40 value 87.407399 iter 50 value 85.561356 iter 60 value 84.721431 iter 70 value 84.604639 final value 84.603766 converged Fitting Repeat 3 # weights: 305 initial value 94.377776 iter 10 value 94.054104 iter 20 value 94.003284 iter 30 value 85.762019 iter 40 value 85.389634 iter 50 value 85.388306 iter 60 value 85.386871 final value 85.386313 converged Fitting Repeat 4 # weights: 305 initial value 103.418170 iter 10 value 94.032099 iter 20 value 93.533178 iter 30 value 93.417274 iter 40 value 93.305197 iter 50 value 93.302287 iter 60 value 93.301437 final value 93.301012 converged Fitting Repeat 5 # weights: 305 initial value 107.880370 iter 10 value 93.415220 iter 20 value 93.409437 iter 30 value 93.382071 iter 40 value 93.358649 iter 50 value 93.301614 final value 93.301603 converged Fitting Repeat 1 # weights: 507 initial value 94.882075 iter 10 value 93.462955 iter 10 value 93.462955 final value 93.462955 converged Fitting Repeat 2 # weights: 507 initial value 104.119781 iter 10 value 93.883721 iter 20 value 93.877838 iter 30 value 93.870565 iter 40 value 93.295629 iter 50 value 88.479244 iter 60 value 88.141208 iter 70 value 87.910132 final value 87.897956 converged Fitting Repeat 3 # weights: 507 initial value 95.689878 iter 10 value 93.590796 iter 20 value 93.565089 iter 30 value 85.637124 iter 40 value 85.390489 iter 50 value 84.107041 iter 60 value 80.637132 iter 70 value 80.341364 final value 80.340504 converged Fitting Repeat 4 # weights: 507 initial value 123.134202 iter 10 value 93.590926 iter 20 value 93.584250 iter 30 value 93.242264 iter 40 value 91.958622 iter 50 value 89.400944 iter 60 value 86.598624 iter 70 value 86.372002 iter 80 value 86.351895 iter 90 value 86.351697 iter 100 value 86.350326 final value 86.350326 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.680316 iter 10 value 94.060352 iter 20 value 85.580118 final value 82.988567 converged Fitting Repeat 1 # weights: 103 initial value 96.229820 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 94.774142 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 95.274868 iter 10 value 94.035322 iter 20 value 93.601603 final value 93.601516 converged Fitting Repeat 4 # weights: 103 initial value 98.947519 iter 10 value 86.142138 iter 20 value 85.016326 iter 30 value 84.989398 final value 84.989362 converged Fitting Repeat 5 # weights: 103 initial value 97.055216 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 124.395226 final value 93.991525 converged Fitting Repeat 2 # weights: 305 initial value 95.479789 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 119.821949 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 102.463151 iter 10 value 93.949469 iter 20 value 93.850031 final value 93.849361 converged Fitting Repeat 5 # weights: 305 initial value 99.428108 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 96.153055 iter 10 value 93.543003 iter 20 value 91.887487 iter 30 value 91.475707 iter 40 value 91.474079 final value 91.474034 converged Fitting Repeat 2 # weights: 507 initial value 108.760093 iter 10 value 91.824177 iter 10 value 91.824176 iter 10 value 91.824176 final value 91.824176 converged Fitting Repeat 3 # weights: 507 initial value 117.952882 iter 10 value 92.600394 final value 92.597507 converged Fitting Repeat 4 # weights: 507 initial value 100.792366 iter 10 value 91.824217 final value 91.824176 converged Fitting Repeat 5 # weights: 507 initial value 94.359094 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 111.356883 iter 10 value 93.883095 iter 20 value 81.615859 iter 30 value 79.882217 iter 40 value 79.860036 iter 50 value 79.826720 iter 60 value 79.590796 iter 70 value 79.576175 iter 80 value 79.532155 iter 90 value 79.479804 final value 79.479774 converged Fitting Repeat 2 # weights: 103 initial value 100.090224 iter 10 value 94.050659 iter 20 value 93.554141 iter 30 value 84.278935 iter 40 value 82.705431 iter 50 value 81.408294 iter 60 value 79.039290 iter 70 value 77.978847 iter 80 value 77.814732 iter 90 value 77.597306 iter 100 value 77.510377 final value 77.510377 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.611057 iter 10 value 94.076516 iter 20 value 94.058240 iter 30 value 91.243012 iter 40 value 88.932582 iter 50 value 86.455291 iter 60 value 80.055094 iter 70 value 79.579552 iter 80 value 79.576037 iter 90 value 79.510852 iter 100 value 79.480728 final value 79.480728 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.322094 iter 10 value 94.107304 iter 20 value 93.483210 iter 30 value 92.773682 iter 40 value 92.382697 iter 50 value 80.723793 iter 60 value 79.873022 iter 70 value 79.582937 iter 80 value 79.576848 iter 90 value 79.529100 iter 100 value 79.485520 final value 79.485520 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 99.268949 iter 10 value 84.685451 iter 20 value 84.427236 iter 30 value 84.403017 iter 30 value 84.403016 iter 30 value 84.403016 final value 84.403016 converged Fitting Repeat 1 # weights: 305 initial value 116.394898 iter 10 value 94.378798 iter 20 value 82.569741 iter 30 value 80.646515 iter 40 value 79.697417 iter 50 value 78.510776 iter 60 value 77.620682 iter 70 value 77.161451 iter 80 value 77.053192 iter 90 value 75.426349 iter 100 value 75.053758 final value 75.053758 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.081676 iter 10 value 94.270252 iter 20 value 91.515130 iter 30 value 79.210057 iter 40 value 79.031927 iter 50 value 78.983826 iter 60 value 78.654515 iter 70 value 77.730264 iter 80 value 76.922254 iter 90 value 76.817308 iter 100 value 76.798794 final value 76.798794 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.922187 iter 10 value 93.890008 iter 20 value 84.926462 iter 30 value 83.395193 iter 40 value 79.293023 iter 50 value 78.373884 iter 60 value 78.064975 iter 70 value 77.853894 iter 80 value 77.717309 iter 90 value 77.610735 iter 100 value 77.321939 final value 77.321939 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 117.878151 iter 10 value 94.085248 iter 20 value 91.163708 iter 30 value 84.716941 iter 40 value 82.726271 iter 50 value 81.298982 iter 60 value 78.994778 iter 70 value 77.934389 iter 80 value 77.558186 iter 90 value 77.216783 iter 100 value 76.227870 final value 76.227870 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.126106 iter 10 value 93.947454 iter 20 value 90.490152 iter 30 value 88.006165 iter 40 value 87.066263 iter 50 value 85.970336 iter 60 value 80.393812 iter 70 value 77.803952 iter 80 value 77.568993 iter 90 value 77.449785 iter 100 value 77.322894 final value 77.322894 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 117.761754 iter 10 value 95.104984 iter 20 value 91.072733 iter 30 value 86.384703 iter 40 value 80.827649 iter 50 value 78.561783 iter 60 value 78.473024 iter 70 value 78.362440 iter 80 value 78.290258 iter 90 value 78.247291 iter 100 value 78.177545 final value 78.177545 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 115.735479 iter 10 value 95.889004 iter 20 value 91.345839 iter 30 value 83.984299 iter 40 value 83.749673 iter 50 value 83.602907 iter 60 value 83.316038 iter 70 value 79.956708 iter 80 value 78.602456 iter 90 value 77.963655 iter 100 value 76.882536 final value 76.882536 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.551819 iter 10 value 93.698819 iter 20 value 86.855804 iter 30 value 80.364746 iter 40 value 78.660871 iter 50 value 76.967092 iter 60 value 75.780060 iter 70 value 75.593213 iter 80 value 75.563230 iter 90 value 75.511381 iter 100 value 75.370649 final value 75.370649 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 106.749915 iter 10 value 94.061703 iter 20 value 91.130679 iter 30 value 82.720718 iter 40 value 78.854315 iter 50 value 77.624107 iter 60 value 77.320009 iter 70 value 77.189676 iter 80 value 77.155317 iter 90 value 77.090756 iter 100 value 76.909985 final value 76.909985 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.364742 iter 10 value 95.294640 iter 20 value 92.933645 iter 30 value 84.348532 iter 40 value 84.128005 iter 50 value 79.678561 iter 60 value 79.367589 iter 70 value 79.163921 iter 80 value 79.066441 iter 90 value 78.347150 iter 100 value 77.315668 final value 77.315668 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.686123 final value 94.054672 converged Fitting Repeat 2 # weights: 103 initial value 105.922744 final value 94.054467 converged Fitting Repeat 3 # weights: 103 initial value 95.267772 final value 94.054358 converged Fitting Repeat 4 # weights: 103 initial value 99.456551 final value 94.054674 converged Fitting Repeat 5 # weights: 103 initial value 109.072867 iter 10 value 91.827890 iter 20 value 91.827130 iter 30 value 91.189390 iter 40 value 87.640669 iter 50 value 80.621814 iter 60 value 80.529885 iter 70 value 80.524820 iter 80 value 80.524176 iter 90 value 78.133613 iter 100 value 77.597798 final value 77.597798 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 101.905419 iter 10 value 94.058009 iter 20 value 93.863427 iter 30 value 85.162507 iter 40 value 80.352570 iter 50 value 78.779799 iter 60 value 78.775605 iter 70 value 78.691578 iter 80 value 78.244554 iter 90 value 78.229911 iter 100 value 78.029405 final value 78.029405 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.350034 iter 10 value 91.830040 iter 20 value 91.827326 iter 30 value 82.878075 final value 82.869593 converged Fitting Repeat 3 # weights: 305 initial value 109.560060 iter 10 value 94.058148 iter 20 value 94.016017 iter 30 value 93.327878 iter 40 value 93.287921 iter 50 value 93.286118 final value 93.285950 converged Fitting Repeat 4 # weights: 305 initial value 108.202890 iter 10 value 94.055460 iter 20 value 93.962988 iter 30 value 77.744871 iter 40 value 77.634608 iter 50 value 77.633563 iter 60 value 77.633221 iter 70 value 77.534248 iter 80 value 75.408101 iter 90 value 73.736380 iter 100 value 73.276338 final value 73.276338 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 92.774579 iter 10 value 84.482802 iter 20 value 82.739201 iter 30 value 82.734761 iter 40 value 82.718307 iter 50 value 82.666395 iter 60 value 82.664062 iter 70 value 82.660683 iter 80 value 82.660501 final value 82.660486 converged Fitting Repeat 1 # weights: 507 initial value 95.544236 iter 10 value 87.313300 iter 20 value 79.629500 iter 30 value 76.908580 iter 40 value 76.484602 iter 50 value 76.467515 iter 50 value 76.467514 iter 60 value 76.404936 iter 70 value 76.109257 iter 80 value 76.084710 iter 90 value 76.083706 iter 100 value 74.419111 final value 74.419111 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.963140 iter 10 value 94.047022 iter 20 value 92.610662 iter 30 value 87.538462 iter 40 value 87.511214 iter 50 value 87.510932 iter 60 value 87.508934 iter 70 value 87.508309 iter 70 value 87.508308 iter 70 value 87.508308 final value 87.508308 converged Fitting Repeat 3 # weights: 507 initial value 111.827511 iter 10 value 94.046384 iter 20 value 93.909574 iter 30 value 85.611942 iter 40 value 85.608460 iter 50 value 85.586246 iter 60 value 81.010428 iter 70 value 80.150376 iter 80 value 75.991417 iter 90 value 74.559796 iter 100 value 74.298301 final value 74.298301 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 98.764058 iter 10 value 94.046474 iter 20 value 94.033515 iter 30 value 80.905720 iter 40 value 79.986589 iter 50 value 76.863913 iter 60 value 76.461847 iter 70 value 76.387407 final value 76.386377 converged Fitting Repeat 5 # weights: 507 initial value 115.219861 iter 10 value 94.046981 iter 20 value 94.039683 iter 30 value 84.552579 iter 40 value 77.580468 iter 50 value 77.551959 iter 60 value 77.544677 iter 70 value 77.542554 iter 80 value 77.541541 final value 77.541525 converged Fitting Repeat 1 # weights: 507 initial value 133.224763 iter 10 value 117.529303 iter 20 value 114.941724 iter 30 value 108.853767 iter 40 value 104.073696 iter 50 value 102.118678 iter 60 value 101.870560 iter 70 value 101.280164 iter 80 value 100.891489 iter 90 value 100.874543 iter 100 value 100.820798 final value 100.820798 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 152.552900 iter 10 value 117.955558 iter 20 value 109.786141 iter 30 value 106.332947 iter 40 value 105.448834 iter 50 value 102.386736 iter 60 value 102.090944 iter 70 value 101.914364 iter 80 value 101.744772 iter 90 value 101.510146 iter 100 value 101.012682 final value 101.012682 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 131.118077 iter 10 value 119.385967 iter 20 value 117.505494 iter 30 value 115.134321 iter 40 value 107.086890 iter 50 value 105.592315 iter 60 value 105.212344 iter 70 value 104.005693 iter 80 value 103.175473 iter 90 value 102.501583 iter 100 value 101.658040 final value 101.658040 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 133.298412 iter 10 value 118.069499 iter 20 value 117.813230 iter 30 value 115.661407 iter 40 value 113.828804 iter 50 value 110.849774 iter 60 value 110.591661 iter 70 value 108.941623 iter 80 value 106.938959 iter 90 value 104.700353 iter 100 value 103.127604 final value 103.127604 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 135.303825 iter 10 value 117.982820 iter 20 value 115.864713 iter 30 value 115.394683 iter 40 value 111.203219 iter 50 value 108.058627 iter 60 value 106.203347 iter 70 value 103.256510 iter 80 value 103.145275 iter 90 value 103.072977 iter 100 value 102.806371 final value 102.806371 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Wed Sep 10 20:53:18 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 18.574 0.412 78.518
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 17.558 | 0.674 | 18.454 | |
FreqInteractors | 0.076 | 0.003 | 0.079 | |
calculateAAC | 0.014 | 0.002 | 0.015 | |
calculateAutocor | 0.129 | 0.018 | 0.147 | |
calculateCTDC | 0.026 | 0.001 | 0.027 | |
calculateCTDD | 0.177 | 0.005 | 0.183 | |
calculateCTDT | 0.081 | 0.002 | 0.083 | |
calculateCTriad | 0.151 | 0.009 | 0.160 | |
calculateDC | 0.030 | 0.003 | 0.033 | |
calculateF | 0.099 | 0.003 | 0.102 | |
calculateKSAAP | 0.033 | 0.003 | 0.034 | |
calculateQD_Sm | 0.608 | 0.025 | 0.635 | |
calculateTC | 0.598 | 0.052 | 0.650 | |
calculateTC_Sm | 0.092 | 0.005 | 0.097 | |
corr_plot | 17.265 | 0.659 | 18.132 | |
enrichfindP | 0.163 | 0.029 | 7.469 | |
enrichfind_hp | 0.023 | 0.007 | 0.970 | |
enrichplot | 0.120 | 0.002 | 0.122 | |
filter_missing_values | 0.000 | 0.000 | 0.001 | |
getFASTA | 0.029 | 0.006 | 3.839 | |
getHPI | 0 | 0 | 0 | |
get_negativePPI | 0 | 0 | 0 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.001 | 0.001 | 0.000 | |
plotPPI | 0.024 | 0.001 | 0.026 | |
pred_ensembel | 5.743 | 0.099 | 5.234 | |
var_imp | 17.930 | 0.708 | 18.655 | |