| Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-09-11 12:04 -0400 (Thu, 11 Sep 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" | 4539 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4474 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4519 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4544 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 990/2322 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.15.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz |
| StartedAt: 2025-09-10 22:34:43 -0400 (Wed, 10 Sep 2025) |
| EndedAt: 2025-09-10 22:40:55 -0400 (Wed, 10 Sep 2025) |
| EllapsedTime: 371.6 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.15.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: x86_64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.15.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 35.148 1.714 37.245
FSmethod 33.350 1.612 35.222
corr_plot 33.106 1.597 34.946
pred_ensembel 14.084 0.421 12.531
enrichfindP 0.482 0.053 7.855
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 95.526039
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 107.738830
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.807547
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 100.427975
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 107.656061
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 122.344847
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 95.261376
final value 94.448052
converged
Fitting Repeat 3
# weights: 305
initial value 96.781875
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 104.994052
iter 10 value 94.468123
final value 94.467391
converged
Fitting Repeat 5
# weights: 305
initial value 96.055372
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 97.604964
iter 10 value 93.470621
iter 20 value 93.362073
final value 93.361960
converged
Fitting Repeat 2
# weights: 507
initial value 124.937713
final value 94.467391
converged
Fitting Repeat 3
# weights: 507
initial value 122.697404
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 97.243801
final value 94.467391
converged
Fitting Repeat 5
# weights: 507
initial value 102.545960
final value 94.467391
converged
Fitting Repeat 1
# weights: 103
initial value 99.787151
iter 10 value 94.480458
iter 20 value 93.862111
iter 30 value 93.823851
iter 40 value 88.223578
iter 50 value 86.040828
iter 60 value 84.898830
iter 70 value 84.831114
iter 80 value 84.650710
iter 90 value 84.564448
final value 84.558381
converged
Fitting Repeat 2
# weights: 103
initial value 114.234618
iter 10 value 94.286809
iter 20 value 91.263030
iter 30 value 88.120018
iter 40 value 87.355530
iter 50 value 84.724134
iter 60 value 84.218728
iter 70 value 84.063651
iter 80 value 83.307622
iter 90 value 83.274386
iter 100 value 83.269776
final value 83.269776
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 104.176011
iter 10 value 94.485106
iter 20 value 94.311049
iter 30 value 88.485495
iter 40 value 85.296292
iter 50 value 83.970329
iter 60 value 83.882590
iter 70 value 83.864088
final value 83.859211
converged
Fitting Repeat 4
# weights: 103
initial value 110.221391
iter 10 value 93.853413
iter 20 value 86.138440
iter 30 value 85.207383
iter 40 value 84.889622
iter 50 value 84.791313
iter 60 value 84.616959
iter 70 value 84.576749
iter 80 value 84.538671
final value 84.538433
converged
Fitting Repeat 5
# weights: 103
initial value 97.701528
iter 10 value 94.529011
iter 20 value 94.489265
iter 30 value 94.026418
iter 40 value 92.752076
iter 50 value 85.349467
iter 60 value 84.826008
iter 70 value 84.432383
iter 80 value 84.020211
iter 90 value 83.164119
iter 100 value 83.073529
final value 83.073529
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 107.025562
iter 10 value 94.600031
iter 20 value 91.063826
iter 30 value 86.918273
iter 40 value 84.861860
iter 50 value 84.022691
iter 60 value 83.441125
iter 70 value 82.429702
iter 80 value 82.281169
iter 90 value 81.749855
iter 100 value 81.583564
final value 81.583564
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 145.025351
iter 10 value 94.541839
iter 20 value 89.910808
iter 30 value 88.460633
iter 40 value 87.848872
iter 50 value 84.911399
iter 60 value 84.215999
iter 70 value 83.703871
iter 80 value 83.583511
iter 90 value 83.255363
iter 100 value 83.130157
final value 83.130157
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.328464
iter 10 value 94.661766
iter 20 value 94.043496
iter 30 value 87.800669
iter 40 value 85.890274
iter 50 value 84.021013
iter 60 value 83.531804
iter 70 value 82.626640
iter 80 value 82.194484
iter 90 value 81.786544
iter 100 value 81.534638
final value 81.534638
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.288514
iter 10 value 92.714331
iter 20 value 91.997624
iter 30 value 88.441883
iter 40 value 85.250660
iter 50 value 83.914741
iter 60 value 83.782542
iter 70 value 83.676523
iter 80 value 83.566676
iter 90 value 83.481472
iter 100 value 83.400996
final value 83.400996
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 124.065770
iter 10 value 94.216186
iter 20 value 89.228314
iter 30 value 86.441487
iter 40 value 85.540186
iter 50 value 84.839250
iter 60 value 84.501955
iter 70 value 83.858586
iter 80 value 83.450285
iter 90 value 83.330515
iter 100 value 83.311601
final value 83.311601
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.906704
iter 10 value 96.502462
iter 20 value 90.573865
iter 30 value 86.658329
iter 40 value 85.292051
iter 50 value 84.635626
iter 60 value 84.505061
iter 70 value 84.454658
iter 80 value 84.172345
iter 90 value 83.297895
iter 100 value 82.107527
final value 82.107527
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.552127
iter 10 value 100.026360
iter 20 value 85.450252
iter 30 value 84.837327
iter 40 value 84.375291
iter 50 value 81.822891
iter 60 value 81.555231
iter 70 value 81.313220
iter 80 value 81.000011
iter 90 value 80.910766
iter 100 value 80.885593
final value 80.885593
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 124.978599
iter 10 value 94.455149
iter 20 value 88.463747
iter 30 value 85.969699
iter 40 value 85.634003
iter 50 value 83.124247
iter 60 value 82.354962
iter 70 value 81.915579
iter 80 value 81.714928
iter 90 value 81.295393
iter 100 value 81.089215
final value 81.089215
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.541545
iter 10 value 94.652303
iter 20 value 93.603274
iter 30 value 88.959480
iter 40 value 87.874246
iter 50 value 87.684588
iter 60 value 86.400237
iter 70 value 84.231743
iter 80 value 82.616988
iter 90 value 81.606463
iter 100 value 81.094662
final value 81.094662
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 113.162799
iter 10 value 94.603192
iter 20 value 89.465975
iter 30 value 85.210340
iter 40 value 83.966057
iter 50 value 83.335655
iter 60 value 82.274251
iter 70 value 82.029205
iter 80 value 81.252410
iter 90 value 81.097090
iter 100 value 80.940627
final value 80.940627
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.171771
final value 94.485827
converged
Fitting Repeat 2
# weights: 103
initial value 96.308446
iter 10 value 94.485821
iter 20 value 94.484043
iter 30 value 93.406983
final value 93.406974
converged
Fitting Repeat 3
# weights: 103
initial value 98.020767
final value 94.485964
converged
Fitting Repeat 4
# weights: 103
initial value 103.152793
final value 94.485706
converged
Fitting Repeat 5
# weights: 103
initial value 109.863278
final value 94.468562
converged
Fitting Repeat 1
# weights: 305
initial value 100.579956
iter 10 value 94.329775
iter 20 value 94.315018
iter 30 value 94.183843
iter 40 value 94.142949
iter 50 value 93.102322
iter 60 value 93.047905
iter 70 value 93.038192
iter 80 value 92.838846
iter 90 value 92.838525
iter 100 value 92.838177
final value 92.838177
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.710400
iter 10 value 94.472643
iter 20 value 94.467574
final value 94.467570
converged
Fitting Repeat 3
# weights: 305
initial value 102.683642
iter 10 value 94.472258
iter 20 value 94.448058
iter 30 value 92.493224
iter 40 value 91.520961
iter 50 value 90.586509
iter 60 value 83.781641
iter 70 value 83.054818
iter 80 value 82.980282
iter 90 value 82.979048
iter 100 value 82.793997
final value 82.793997
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.744072
iter 10 value 89.252285
iter 20 value 87.566804
iter 30 value 85.742789
iter 40 value 85.740984
iter 50 value 85.735103
iter 60 value 85.734991
final value 85.734723
converged
Fitting Repeat 5
# weights: 305
initial value 98.783239
iter 10 value 94.472381
iter 20 value 94.468530
final value 94.467800
converged
Fitting Repeat 1
# weights: 507
initial value 105.810673
iter 10 value 92.331385
iter 20 value 92.284180
iter 30 value 92.246487
iter 40 value 92.238971
iter 50 value 92.181788
iter 60 value 92.181353
iter 70 value 92.180428
final value 92.180352
converged
Fitting Repeat 2
# weights: 507
initial value 104.380145
iter 10 value 93.881448
iter 20 value 88.318835
iter 30 value 87.033682
iter 40 value 87.031389
iter 50 value 87.030137
iter 60 value 86.674010
iter 70 value 86.612280
iter 80 value 86.611029
iter 90 value 85.047979
iter 100 value 83.591237
final value 83.591237
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.670183
iter 10 value 94.491560
iter 20 value 94.481761
iter 30 value 89.559889
iter 40 value 86.311919
iter 50 value 85.680523
iter 60 value 85.145808
iter 70 value 84.861942
iter 80 value 84.856776
final value 84.854520
converged
Fitting Repeat 4
# weights: 507
initial value 98.107540
iter 10 value 93.353296
iter 20 value 86.840535
iter 30 value 86.693544
iter 40 value 86.688715
iter 50 value 86.662751
iter 60 value 85.979873
iter 70 value 82.419166
iter 80 value 81.048702
iter 90 value 80.613336
iter 100 value 80.429568
final value 80.429568
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 95.133311
iter 10 value 94.475414
iter 20 value 94.461341
iter 30 value 94.453584
iter 40 value 94.088495
iter 50 value 93.798581
iter 60 value 85.053698
iter 70 value 84.457668
iter 80 value 83.031470
iter 90 value 82.185772
iter 100 value 81.090704
final value 81.090704
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.749435
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 101.308201
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.336806
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 99.093627
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 104.442447
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 97.723466
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 95.076898
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 101.287540
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 113.754290
iter 10 value 93.773048
final value 93.772973
converged
Fitting Repeat 5
# weights: 305
initial value 111.755087
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 107.303471
iter 10 value 92.316902
iter 20 value 92.218570
iter 30 value 92.216777
final value 92.216767
converged
Fitting Repeat 2
# weights: 507
initial value 112.253233
iter 10 value 94.450867
final value 94.450826
converged
Fitting Repeat 3
# weights: 507
initial value 100.662361
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 124.715551
iter 10 value 93.601364
final value 93.567525
converged
Fitting Repeat 5
# weights: 507
initial value 97.144541
iter 10 value 89.932078
iter 20 value 88.919709
iter 30 value 87.310115
iter 40 value 86.747863
iter 50 value 86.416962
iter 60 value 86.416413
iter 70 value 85.873005
iter 80 value 85.813758
final value 85.813113
converged
Fitting Repeat 1
# weights: 103
initial value 119.591541
iter 10 value 94.420791
iter 20 value 91.619246
iter 30 value 85.338026
iter 40 value 83.397022
iter 50 value 83.316117
iter 60 value 82.995778
iter 70 value 82.901414
iter 80 value 82.880134
final value 82.880101
converged
Fitting Repeat 2
# weights: 103
initial value 99.115905
iter 10 value 94.473242
iter 20 value 90.065231
iter 30 value 84.425502
iter 40 value 83.896498
iter 50 value 83.279113
iter 60 value 82.933059
iter 70 value 82.897795
iter 80 value 82.880117
final value 82.880101
converged
Fitting Repeat 3
# weights: 103
initial value 114.734989
iter 10 value 94.486621
iter 20 value 93.686232
iter 30 value 93.422753
iter 40 value 84.389219
iter 50 value 84.010285
iter 60 value 83.143198
iter 70 value 81.478165
iter 80 value 81.007859
iter 90 value 80.333648
final value 80.301166
converged
Fitting Repeat 4
# weights: 103
initial value 103.306435
iter 10 value 94.611907
iter 20 value 94.487687
iter 30 value 93.551039
iter 40 value 93.414974
iter 50 value 86.065586
iter 60 value 84.278295
iter 70 value 81.354582
iter 80 value 80.798238
iter 90 value 80.602869
iter 100 value 80.306831
final value 80.306831
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 105.304651
iter 10 value 94.488615
iter 20 value 93.818238
iter 30 value 92.546470
iter 40 value 88.332562
iter 50 value 87.055472
iter 60 value 86.783853
iter 70 value 86.704461
iter 80 value 86.690802
iter 90 value 86.651485
iter 100 value 86.515781
final value 86.515781
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 100.017574
iter 10 value 92.493947
iter 20 value 84.210389
iter 30 value 83.354210
iter 40 value 82.138509
iter 50 value 80.856227
iter 60 value 80.409653
iter 70 value 80.283327
iter 80 value 79.915539
iter 90 value 79.711791
iter 100 value 79.608918
final value 79.608918
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.178555
iter 10 value 94.492234
iter 20 value 86.788889
iter 30 value 84.604309
iter 40 value 84.242279
iter 50 value 82.193300
iter 60 value 81.841447
iter 70 value 81.726394
iter 80 value 81.606022
iter 90 value 80.632961
iter 100 value 80.010378
final value 80.010378
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 115.958907
iter 10 value 94.558282
iter 20 value 94.076445
iter 30 value 87.152254
iter 40 value 86.444934
iter 50 value 86.171944
iter 60 value 82.632984
iter 70 value 82.498135
iter 80 value 82.479020
iter 90 value 82.268445
iter 100 value 80.974491
final value 80.974491
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.102761
iter 10 value 94.494192
iter 20 value 93.326348
iter 30 value 88.493501
iter 40 value 86.923715
iter 50 value 86.439524
iter 60 value 85.412989
iter 70 value 82.184428
iter 80 value 80.281332
iter 90 value 79.293582
iter 100 value 78.944827
final value 78.944827
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 136.714260
iter 10 value 94.386989
iter 20 value 84.754195
iter 30 value 84.021968
iter 40 value 83.347998
iter 50 value 82.681464
iter 60 value 82.126660
iter 70 value 80.474392
iter 80 value 79.715200
iter 90 value 79.643660
iter 100 value 79.533863
final value 79.533863
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.297533
iter 10 value 94.719347
iter 20 value 92.595313
iter 30 value 87.690733
iter 40 value 81.651170
iter 50 value 80.849468
iter 60 value 79.688511
iter 70 value 79.241549
iter 80 value 79.156648
iter 90 value 79.098823
iter 100 value 78.919758
final value 78.919758
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.747967
iter 10 value 94.400534
iter 20 value 91.911100
iter 30 value 87.080098
iter 40 value 84.987332
iter 50 value 83.434095
iter 60 value 81.742657
iter 70 value 81.123807
iter 80 value 80.333071
iter 90 value 79.765659
iter 100 value 79.416062
final value 79.416062
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 126.165326
iter 10 value 97.875597
iter 20 value 87.276906
iter 30 value 83.325174
iter 40 value 83.069141
iter 50 value 80.728854
iter 60 value 79.708294
iter 70 value 79.613032
iter 80 value 79.474568
iter 90 value 79.261924
iter 100 value 78.882297
final value 78.882297
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.553367
iter 10 value 94.524516
iter 20 value 94.094937
iter 30 value 84.430992
iter 40 value 82.836453
iter 50 value 81.956255
iter 60 value 81.354563
iter 70 value 79.965394
iter 80 value 79.203458
iter 90 value 78.968495
iter 100 value 78.839463
final value 78.839463
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 119.950125
iter 10 value 86.018286
iter 20 value 83.438731
iter 30 value 82.770405
iter 40 value 82.497073
iter 50 value 82.308892
iter 60 value 81.634149
iter 70 value 81.409388
iter 80 value 80.141763
iter 90 value 79.493695
iter 100 value 78.926080
final value 78.926080
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.531770
final value 94.486175
converged
Fitting Repeat 2
# weights: 103
initial value 103.157922
final value 94.485928
converged
Fitting Repeat 3
# weights: 103
initial value 100.109012
final value 94.485602
converged
Fitting Repeat 4
# weights: 103
initial value 97.203644
iter 10 value 93.774829
iter 20 value 93.726013
iter 30 value 93.320008
iter 40 value 93.192059
iter 50 value 93.191991
final value 93.191985
converged
Fitting Repeat 5
# weights: 103
initial value 96.564650
final value 94.485867
converged
Fitting Repeat 1
# weights: 305
initial value 98.421365
iter 10 value 94.488074
final value 94.484364
converged
Fitting Repeat 2
# weights: 305
initial value 97.211962
iter 10 value 87.403765
iter 20 value 84.560159
iter 30 value 83.955812
iter 40 value 83.477958
iter 50 value 80.537305
iter 60 value 78.239869
iter 70 value 77.635149
iter 80 value 77.616121
final value 77.606680
converged
Fitting Repeat 3
# weights: 305
initial value 98.792440
iter 10 value 93.778130
iter 20 value 93.774126
iter 30 value 85.105067
iter 40 value 82.758964
iter 50 value 81.161455
iter 60 value 79.139015
iter 70 value 78.029151
iter 80 value 78.024935
iter 90 value 78.023818
final value 78.023773
converged
Fitting Repeat 4
# weights: 305
initial value 104.459647
iter 10 value 94.489682
iter 20 value 94.404539
iter 30 value 85.384521
iter 40 value 84.860651
iter 50 value 83.698526
iter 60 value 83.571485
iter 70 value 81.252052
iter 80 value 80.168568
iter 90 value 80.161779
iter 100 value 79.932769
final value 79.932769
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 109.616556
iter 10 value 93.392357
iter 20 value 93.389234
final value 93.377140
converged
Fitting Repeat 1
# weights: 507
initial value 103.106061
iter 10 value 94.495127
iter 20 value 94.287758
iter 30 value 82.461466
iter 40 value 82.185427
iter 50 value 82.177523
iter 60 value 82.174712
iter 70 value 82.171604
iter 80 value 82.037798
iter 90 value 81.669781
iter 100 value 81.661198
final value 81.661198
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.789318
iter 10 value 90.079651
iter 20 value 88.636500
iter 30 value 88.635046
iter 40 value 82.982526
iter 50 value 82.152213
iter 60 value 81.994244
iter 70 value 81.993042
iter 80 value 81.988392
iter 90 value 81.943669
final value 81.941646
converged
Fitting Repeat 3
# weights: 507
initial value 108.743117
iter 10 value 94.492437
iter 20 value 94.482947
iter 30 value 93.889481
iter 40 value 87.666367
iter 50 value 86.647715
iter 60 value 86.104555
iter 70 value 85.965732
iter 80 value 85.960277
final value 85.959630
converged
Fitting Repeat 4
# weights: 507
initial value 109.182379
iter 10 value 94.492879
iter 20 value 94.478217
iter 30 value 89.758593
iter 40 value 88.602214
iter 50 value 88.449078
final value 88.448544
converged
Fitting Repeat 5
# weights: 507
initial value 97.739144
iter 10 value 93.781023
iter 20 value 93.777929
iter 30 value 84.698564
iter 40 value 83.986370
iter 50 value 83.375704
iter 60 value 83.299400
iter 70 value 83.286540
iter 70 value 83.286539
final value 83.286539
converged
Fitting Repeat 1
# weights: 103
initial value 100.455890
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 93.161661
iter 10 value 83.894585
iter 20 value 83.685550
iter 30 value 83.364760
final value 83.364499
converged
Fitting Repeat 3
# weights: 103
initial value 95.019138
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 96.947845
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.017796
final value 94.466823
converged
Fitting Repeat 1
# weights: 305
initial value 101.666446
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 106.937571
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 95.291775
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 98.361447
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 103.106450
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 96.318663
iter 10 value 94.309860
final value 94.309797
converged
Fitting Repeat 2
# weights: 507
initial value 98.774469
iter 10 value 94.424304
final value 94.424079
converged
Fitting Repeat 3
# weights: 507
initial value 98.073415
iter 10 value 93.175047
final value 93.175041
converged
Fitting Repeat 4
# weights: 507
initial value 113.798401
iter 10 value 94.480520
iter 10 value 94.480519
iter 10 value 94.480519
final value 94.480519
converged
Fitting Repeat 5
# weights: 507
initial value 117.367627
iter 10 value 94.466748
final value 94.466667
converged
Fitting Repeat 1
# weights: 103
initial value 102.469479
iter 10 value 93.950092
iter 20 value 87.210550
iter 30 value 86.308049
iter 40 value 86.232378
iter 50 value 85.696444
iter 60 value 85.069009
iter 70 value 84.707055
iter 80 value 84.645506
final value 84.645481
converged
Fitting Repeat 2
# weights: 103
initial value 97.018840
iter 10 value 94.547200
iter 20 value 94.487685
iter 30 value 93.945842
iter 40 value 93.275031
iter 50 value 89.738780
iter 60 value 88.753513
iter 70 value 86.308125
iter 80 value 86.097724
iter 90 value 85.992036
iter 100 value 85.935847
final value 85.935847
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 118.882498
iter 10 value 94.330881
iter 20 value 87.759561
iter 30 value 86.649746
iter 40 value 86.548182
iter 50 value 86.355894
iter 60 value 84.789282
iter 70 value 84.265329
final value 84.265044
converged
Fitting Repeat 4
# weights: 103
initial value 99.911279
iter 10 value 94.486463
iter 20 value 89.822568
iter 30 value 86.746980
iter 40 value 85.977338
iter 50 value 84.740867
iter 60 value 82.984600
iter 70 value 82.542206
final value 82.496234
converged
Fitting Repeat 5
# weights: 103
initial value 97.750807
iter 10 value 94.470185
iter 20 value 86.845952
iter 30 value 86.302879
iter 40 value 86.194914
iter 50 value 86.019706
iter 60 value 85.495936
iter 70 value 84.778382
iter 80 value 84.586287
iter 90 value 84.392533
iter 100 value 84.285147
final value 84.285147
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 102.827003
iter 10 value 94.011753
iter 20 value 87.041293
iter 30 value 85.210023
iter 40 value 82.903295
iter 50 value 81.313689
iter 60 value 80.813906
iter 70 value 80.728526
iter 80 value 80.682968
iter 90 value 80.657454
iter 100 value 80.580334
final value 80.580334
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.806336
iter 10 value 93.861141
iter 20 value 87.445989
iter 30 value 85.329800
iter 40 value 85.075248
iter 50 value 84.938982
iter 60 value 83.936210
iter 70 value 82.639566
iter 80 value 82.436658
iter 90 value 82.364493
iter 100 value 82.145541
final value 82.145541
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.860135
iter 10 value 94.784489
iter 20 value 94.493753
iter 30 value 94.379339
iter 40 value 92.930940
iter 50 value 87.388512
iter 60 value 86.648408
iter 70 value 86.211121
iter 80 value 85.085592
iter 90 value 83.332506
iter 100 value 81.893878
final value 81.893878
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 131.393831
iter 10 value 94.497780
iter 20 value 94.029037
iter 30 value 86.155567
iter 40 value 85.258117
iter 50 value 81.884037
iter 60 value 81.199915
iter 70 value 80.964147
iter 80 value 80.938365
iter 90 value 80.831825
iter 100 value 80.746283
final value 80.746283
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 108.492635
iter 10 value 94.486563
iter 20 value 89.770147
iter 30 value 85.771386
iter 40 value 85.081208
iter 50 value 83.807644
iter 60 value 83.160582
iter 70 value 81.391051
iter 80 value 81.044254
iter 90 value 80.996717
iter 100 value 80.972173
final value 80.972173
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.764241
iter 10 value 94.242383
iter 20 value 89.553664
iter 30 value 86.401573
iter 40 value 85.371749
iter 50 value 83.845884
iter 60 value 83.332817
iter 70 value 83.237467
iter 80 value 83.172840
iter 90 value 82.969999
iter 100 value 82.469080
final value 82.469080
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.819263
iter 10 value 95.574386
iter 20 value 86.476533
iter 30 value 85.984919
iter 40 value 85.174741
iter 50 value 83.735221
iter 60 value 82.944993
iter 70 value 82.717256
iter 80 value 82.390424
iter 90 value 82.290712
iter 100 value 82.255094
final value 82.255094
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.908273
iter 10 value 94.739323
iter 20 value 88.815017
iter 30 value 87.031185
iter 40 value 86.258238
iter 50 value 85.812347
iter 60 value 83.943795
iter 70 value 82.810537
iter 80 value 82.421696
iter 90 value 82.130554
iter 100 value 81.523672
final value 81.523672
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.875301
iter 10 value 94.355271
iter 20 value 86.405517
iter 30 value 85.381919
iter 40 value 84.815897
iter 50 value 82.900786
iter 60 value 82.006156
iter 70 value 81.760805
iter 80 value 81.240221
iter 90 value 81.012452
iter 100 value 80.879362
final value 80.879362
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.828336
iter 10 value 93.676452
iter 20 value 82.345942
iter 30 value 80.921601
iter 40 value 80.533236
iter 50 value 80.374653
iter 60 value 80.333897
iter 70 value 80.308451
iter 80 value 80.227377
iter 90 value 80.223999
iter 100 value 80.189497
final value 80.189497
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.340547
final value 94.485644
converged
Fitting Repeat 2
# weights: 103
initial value 97.835750
final value 94.482087
converged
Fitting Repeat 3
# weights: 103
initial value 96.141949
final value 94.486692
converged
Fitting Repeat 4
# weights: 103
initial value 102.621213
final value 94.486043
converged
Fitting Repeat 5
# weights: 103
initial value 94.973791
final value 94.485894
converged
Fitting Repeat 1
# weights: 305
initial value 127.859450
iter 10 value 94.491832
iter 20 value 94.485211
iter 30 value 94.046880
iter 40 value 86.612510
iter 50 value 84.949695
iter 60 value 84.941524
iter 70 value 84.940886
iter 80 value 84.939620
iter 90 value 84.939183
iter 100 value 84.920226
final value 84.920226
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.564325
iter 10 value 94.315066
iter 20 value 94.311796
iter 30 value 93.132594
iter 40 value 92.899787
final value 92.898381
converged
Fitting Repeat 3
# weights: 305
initial value 99.383116
iter 10 value 94.433599
iter 20 value 94.416435
iter 30 value 86.936145
iter 40 value 86.874315
iter 50 value 86.873411
iter 60 value 86.872864
iter 70 value 86.786673
iter 80 value 86.746155
iter 90 value 86.745403
final value 86.745185
converged
Fitting Repeat 4
# weights: 305
initial value 118.216792
iter 10 value 94.431299
iter 20 value 94.427832
iter 30 value 92.752034
iter 40 value 83.760974
iter 50 value 83.153880
iter 60 value 83.153667
final value 83.153629
converged
Fitting Repeat 5
# weights: 305
initial value 94.924845
iter 10 value 94.485814
iter 20 value 94.245988
iter 30 value 90.541821
iter 40 value 87.724621
iter 50 value 83.286712
iter 60 value 82.551981
iter 70 value 82.546295
iter 80 value 82.399635
iter 90 value 82.393891
final value 82.393870
converged
Fitting Repeat 1
# weights: 507
initial value 119.814442
iter 10 value 94.488451
iter 20 value 94.474189
iter 30 value 94.470843
iter 40 value 93.600385
iter 50 value 82.760820
iter 60 value 81.968736
iter 70 value 81.441831
iter 80 value 80.754719
iter 90 value 80.364539
iter 100 value 80.005306
final value 80.005306
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 97.826532
iter 10 value 92.503223
iter 20 value 86.625130
iter 30 value 86.579053
iter 40 value 86.576373
iter 50 value 84.545310
iter 60 value 84.430812
iter 70 value 83.890693
iter 80 value 82.034909
iter 90 value 81.251599
iter 100 value 81.013799
final value 81.013799
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.514853
iter 10 value 94.475222
iter 20 value 94.467278
iter 30 value 94.196932
iter 40 value 87.848730
iter 50 value 87.826511
iter 60 value 87.778887
iter 70 value 87.774499
iter 80 value 87.187846
iter 90 value 86.505254
iter 100 value 84.670207
final value 84.670207
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.571108
iter 10 value 91.772960
iter 20 value 83.780234
iter 30 value 83.776921
iter 40 value 83.593804
iter 50 value 83.217696
iter 60 value 83.215409
iter 70 value 83.201767
iter 80 value 82.866737
iter 90 value 82.795705
iter 100 value 82.792677
final value 82.792677
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 101.585888
iter 10 value 86.737230
iter 20 value 86.708195
iter 30 value 86.702127
iter 40 value 86.681987
iter 50 value 86.592824
iter 60 value 86.588516
iter 70 value 86.578209
iter 80 value 85.246290
iter 90 value 84.765567
final value 84.765316
converged
Fitting Repeat 1
# weights: 103
initial value 103.136039
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 107.042088
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 99.094056
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 102.354840
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 97.369708
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 122.720220
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 96.435610
final value 94.025290
converged
Fitting Repeat 3
# weights: 305
initial value 96.220866
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 96.586449
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 94.224739
iter 10 value 93.582418
iter 10 value 93.582418
iter 10 value 93.582418
final value 93.582418
converged
Fitting Repeat 1
# weights: 507
initial value 97.628185
iter 10 value 93.430672
final value 93.430422
converged
Fitting Repeat 2
# weights: 507
initial value 99.289600
iter 10 value 94.052912
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 101.706480
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 97.729802
final value 93.582418
converged
Fitting Repeat 5
# weights: 507
initial value 103.039938
iter 10 value 93.529068
final value 93.528329
converged
Fitting Repeat 1
# weights: 103
initial value 102.777595
iter 10 value 94.032649
iter 20 value 93.614012
iter 30 value 93.415690
iter 40 value 92.700848
iter 50 value 85.989809
iter 60 value 85.744154
iter 70 value 85.378207
iter 80 value 85.306116
iter 90 value 84.994263
iter 100 value 84.633605
final value 84.633605
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.654826
iter 10 value 96.329124
iter 20 value 94.049396
iter 30 value 89.152266
iter 40 value 87.103182
iter 50 value 86.074878
iter 60 value 84.575871
iter 70 value 82.532404
iter 80 value 81.952883
iter 90 value 81.918029
final value 81.916407
converged
Fitting Repeat 3
# weights: 103
initial value 97.844543
iter 10 value 94.056724
iter 20 value 87.213760
iter 30 value 85.491168
iter 40 value 84.405890
iter 50 value 83.571735
iter 60 value 83.155068
iter 70 value 82.575223
iter 80 value 82.132484
iter 90 value 82.103927
final value 82.102331
converged
Fitting Repeat 4
# weights: 103
initial value 98.312347
iter 10 value 94.065541
iter 20 value 94.059309
iter 30 value 88.847694
iter 40 value 87.196580
iter 50 value 86.951959
iter 60 value 86.898583
iter 70 value 86.516558
iter 80 value 86.359221
iter 90 value 83.523766
iter 100 value 83.459009
final value 83.459009
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 100.040224
iter 10 value 93.888889
iter 20 value 85.816842
iter 30 value 85.156275
iter 40 value 84.871404
iter 50 value 83.800427
iter 60 value 83.470134
iter 70 value 83.457873
final value 83.457841
converged
Fitting Repeat 1
# weights: 305
initial value 105.436349
iter 10 value 94.495724
iter 20 value 94.097540
iter 30 value 88.064720
iter 40 value 84.821816
iter 50 value 84.022370
iter 60 value 83.536324
iter 70 value 83.442563
iter 80 value 83.431853
iter 90 value 83.211952
iter 100 value 83.125680
final value 83.125680
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.492323
iter 10 value 93.764955
iter 20 value 86.995435
iter 30 value 85.589248
iter 40 value 85.407934
iter 50 value 84.851701
iter 60 value 84.623669
iter 70 value 83.929377
iter 80 value 83.627857
iter 90 value 82.277593
iter 100 value 81.517524
final value 81.517524
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.335704
iter 10 value 92.928497
iter 20 value 91.219815
iter 30 value 86.769803
iter 40 value 86.423128
iter 50 value 83.873762
iter 60 value 82.077149
iter 70 value 81.323345
iter 80 value 81.141019
iter 90 value 81.056368
iter 100 value 81.000251
final value 81.000251
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.202022
iter 10 value 95.354777
iter 20 value 91.936854
iter 30 value 87.149124
iter 40 value 85.475974
iter 50 value 84.939186
iter 60 value 84.325340
iter 70 value 83.970450
iter 80 value 83.520069
final value 83.482547
converged
Fitting Repeat 5
# weights: 305
initial value 110.060564
iter 10 value 94.036839
iter 20 value 87.868228
iter 30 value 86.382117
iter 40 value 83.810187
iter 50 value 82.690778
iter 60 value 82.378157
iter 70 value 81.978703
iter 80 value 81.201322
iter 90 value 80.968170
iter 100 value 80.944273
final value 80.944273
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 117.460926
iter 10 value 93.908965
iter 20 value 87.816693
iter 30 value 85.977839
iter 40 value 84.758494
iter 50 value 84.449183
iter 60 value 84.069372
iter 70 value 83.490126
iter 80 value 82.282211
iter 90 value 80.830736
iter 100 value 80.312121
final value 80.312121
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.668546
iter 10 value 92.294214
iter 20 value 89.650443
iter 30 value 87.662310
iter 40 value 87.262228
iter 50 value 85.942705
iter 60 value 83.870901
iter 70 value 82.487447
iter 80 value 81.401863
iter 90 value 81.159011
iter 100 value 80.907005
final value 80.907005
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.621547
iter 10 value 94.288630
iter 20 value 90.880811
iter 30 value 85.202027
iter 40 value 84.026604
iter 50 value 82.005534
iter 60 value 80.935398
iter 70 value 80.715841
iter 80 value 80.632647
iter 90 value 80.610675
iter 100 value 80.604674
final value 80.604674
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 115.781728
iter 10 value 93.916182
iter 20 value 89.503857
iter 30 value 85.112525
iter 40 value 83.311117
iter 50 value 82.211291
iter 60 value 81.640779
iter 70 value 81.152653
iter 80 value 80.590992
iter 90 value 80.452892
iter 100 value 80.390849
final value 80.390849
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.913823
iter 10 value 93.819487
iter 20 value 90.739547
iter 30 value 83.695814
iter 40 value 82.666218
iter 50 value 82.407057
iter 60 value 81.754938
iter 70 value 80.968095
iter 80 value 80.700890
iter 90 value 80.515270
iter 100 value 80.349573
final value 80.349573
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.779872
iter 10 value 94.043801
iter 20 value 94.029681
iter 30 value 94.028309
iter 40 value 92.832151
iter 50 value 89.008426
iter 60 value 88.999298
iter 70 value 86.517745
iter 80 value 86.491811
iter 90 value 86.463355
iter 100 value 86.224650
final value 86.224650
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 100.410478
final value 94.054713
converged
Fitting Repeat 3
# weights: 103
initial value 101.714896
final value 94.054414
converged
Fitting Repeat 4
# weights: 103
initial value 98.720004
final value 94.054785
converged
Fitting Repeat 5
# weights: 103
initial value 97.474582
iter 10 value 93.584085
iter 20 value 93.582874
final value 93.528532
converged
Fitting Repeat 1
# weights: 305
initial value 97.663075
iter 10 value 94.057955
iter 20 value 93.629891
iter 30 value 92.014737
iter 40 value 89.836650
iter 50 value 89.659452
final value 89.656488
converged
Fitting Repeat 2
# weights: 305
initial value 99.591000
iter 10 value 93.609614
iter 20 value 93.535119
iter 30 value 93.102450
iter 40 value 87.319014
iter 50 value 86.460071
iter 60 value 86.445349
iter 70 value 85.247427
iter 80 value 85.090587
iter 90 value 85.068513
iter 100 value 84.847937
final value 84.847937
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.160874
iter 10 value 94.057688
iter 20 value 94.051442
iter 30 value 93.585338
iter 40 value 93.361498
iter 50 value 91.067983
iter 60 value 91.019530
iter 70 value 91.018699
iter 80 value 91.018493
final value 91.018491
converged
Fitting Repeat 4
# weights: 305
initial value 107.093726
iter 10 value 94.057895
iter 20 value 93.806827
iter 30 value 93.604743
final value 93.604723
converged
Fitting Repeat 5
# weights: 305
initial value 98.484275
iter 10 value 93.587534
iter 20 value 93.584950
iter 30 value 93.448303
iter 40 value 86.609499
iter 50 value 84.640227
iter 60 value 84.185859
iter 70 value 84.176189
iter 80 value 84.174893
iter 90 value 84.167084
iter 100 value 82.718883
final value 82.718883
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 98.362052
iter 10 value 93.590208
iter 20 value 93.584469
iter 30 value 93.528637
final value 93.528634
converged
Fitting Repeat 2
# weights: 507
initial value 102.772486
iter 10 value 92.240191
iter 20 value 91.964594
iter 30 value 91.603011
iter 40 value 91.364150
iter 50 value 91.361843
iter 60 value 91.349624
iter 70 value 90.813639
iter 80 value 90.812722
iter 90 value 90.812483
iter 100 value 90.812312
final value 90.812312
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.568062
iter 10 value 94.067023
iter 20 value 94.058103
iter 30 value 92.936191
iter 40 value 87.616452
iter 50 value 87.590321
iter 60 value 84.247975
iter 70 value 83.521018
iter 80 value 82.699626
iter 90 value 82.065500
iter 100 value 81.479944
final value 81.479944
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 101.198952
iter 10 value 94.060651
iter 20 value 94.053265
iter 30 value 93.585829
final value 93.582602
converged
Fitting Repeat 5
# weights: 507
initial value 109.551229
iter 10 value 94.059896
iter 20 value 94.044328
iter 30 value 93.649799
iter 40 value 93.605350
iter 50 value 93.604959
final value 93.604940
converged
Fitting Repeat 1
# weights: 103
initial value 104.691718
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.749875
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.230884
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 96.077996
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 107.152491
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 109.466202
final value 94.032967
converged
Fitting Repeat 2
# weights: 305
initial value 94.916444
final value 94.032967
converged
Fitting Repeat 3
# weights: 305
initial value 101.679008
final value 94.032967
converged
Fitting Repeat 4
# weights: 305
initial value 112.565612
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 96.218432
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 95.461493
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 110.033478
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 126.707259
iter 10 value 94.052910
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 102.884273
final value 94.032967
converged
Fitting Repeat 5
# weights: 507
initial value 134.343961
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 97.573815
iter 10 value 94.047709
iter 20 value 92.474061
iter 30 value 92.337309
iter 40 value 85.327406
iter 50 value 83.118560
iter 60 value 82.683115
iter 70 value 82.582179
iter 80 value 81.951751
iter 90 value 81.903979
iter 100 value 81.889229
final value 81.889229
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.743214
iter 10 value 92.902591
iter 20 value 84.776366
iter 30 value 84.301645
iter 40 value 84.119615
iter 50 value 83.963521
iter 60 value 83.904647
iter 70 value 83.867996
iter 80 value 83.866481
final value 83.865560
converged
Fitting Repeat 3
# weights: 103
initial value 99.361445
iter 10 value 94.020187
iter 20 value 93.639446
iter 30 value 92.632804
iter 40 value 84.075736
iter 50 value 82.857806
iter 60 value 82.627253
iter 70 value 82.155536
iter 80 value 81.914401
iter 90 value 81.909527
iter 100 value 81.907588
final value 81.907588
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 102.032942
iter 10 value 94.522178
iter 20 value 93.986598
iter 30 value 87.219130
iter 40 value 85.824850
iter 50 value 83.763689
iter 60 value 83.596855
iter 70 value 83.495817
iter 80 value 83.483241
iter 80 value 83.483241
iter 80 value 83.483241
final value 83.483241
converged
Fitting Repeat 5
# weights: 103
initial value 103.414658
iter 10 value 94.057137
iter 20 value 93.199084
iter 30 value 92.537633
iter 40 value 90.047322
iter 50 value 82.113423
iter 60 value 80.405740
iter 70 value 80.004206
iter 80 value 79.897674
iter 90 value 79.580915
iter 100 value 79.523289
final value 79.523289
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 108.964985
iter 10 value 93.820787
iter 20 value 87.839686
iter 30 value 87.524143
iter 40 value 87.353053
iter 50 value 85.597903
iter 60 value 83.615305
iter 70 value 81.714181
iter 80 value 81.243742
iter 90 value 79.613405
iter 100 value 79.031880
final value 79.031880
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.978408
iter 10 value 94.058721
iter 20 value 91.714647
iter 30 value 89.008036
iter 40 value 87.100851
iter 50 value 83.333280
iter 60 value 80.823064
iter 70 value 79.897897
iter 80 value 79.859603
iter 90 value 79.773748
iter 100 value 79.311786
final value 79.311786
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.371660
iter 10 value 91.294930
iter 20 value 84.196723
iter 30 value 83.931238
iter 40 value 83.835246
iter 50 value 83.654934
iter 60 value 83.605634
iter 70 value 83.575550
iter 80 value 83.516464
iter 90 value 83.237200
iter 100 value 82.846684
final value 82.846684
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.953371
iter 10 value 94.034995
iter 20 value 88.128929
iter 30 value 86.952679
iter 40 value 85.647856
iter 50 value 82.692073
iter 60 value 80.728300
iter 70 value 79.932650
iter 80 value 79.438203
iter 90 value 78.715212
iter 100 value 78.278234
final value 78.278234
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.210450
iter 10 value 94.144823
iter 20 value 93.719446
iter 30 value 88.160346
iter 40 value 82.605396
iter 50 value 81.007849
iter 60 value 80.341276
iter 70 value 79.990806
iter 80 value 78.847029
iter 90 value 78.197938
iter 100 value 78.065960
final value 78.065960
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.242479
iter 10 value 93.073312
iter 20 value 86.921366
iter 30 value 83.502142
iter 40 value 81.148624
iter 50 value 80.386472
iter 60 value 79.773986
iter 70 value 79.639166
iter 80 value 79.044833
iter 90 value 78.809177
iter 100 value 78.775176
final value 78.775176
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.696094
iter 10 value 94.052001
iter 20 value 92.088798
iter 30 value 90.804199
iter 40 value 90.415945
iter 50 value 87.682605
iter 60 value 84.649938
iter 70 value 80.227320
iter 80 value 79.648306
iter 90 value 79.160823
iter 100 value 78.892631
final value 78.892631
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 112.630484
iter 10 value 94.090503
iter 20 value 86.304170
iter 30 value 82.427535
iter 40 value 82.109646
iter 50 value 80.443325
iter 60 value 80.037009
iter 70 value 78.854355
iter 80 value 78.577629
iter 90 value 78.531690
iter 100 value 78.450739
final value 78.450739
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 118.574747
iter 10 value 94.320965
iter 20 value 92.020259
iter 30 value 84.014225
iter 40 value 82.746815
iter 50 value 82.416708
iter 60 value 81.966068
iter 70 value 81.695149
iter 80 value 81.223322
iter 90 value 79.692722
iter 100 value 79.235178
final value 79.235178
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.018027
iter 10 value 94.007165
iter 20 value 92.034748
iter 30 value 89.325973
iter 40 value 87.601129
iter 50 value 87.518296
iter 60 value 87.453716
iter 70 value 87.271082
iter 80 value 85.789577
iter 90 value 83.298251
iter 100 value 78.947399
final value 78.947399
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 104.649411
final value 94.054692
converged
Fitting Repeat 2
# weights: 103
initial value 102.138044
final value 94.054564
converged
Fitting Repeat 3
# weights: 103
initial value 95.875061
iter 10 value 94.053210
iter 20 value 94.011249
iter 30 value 92.043397
iter 40 value 89.944977
iter 50 value 89.781012
iter 60 value 89.705346
iter 70 value 83.018109
iter 80 value 83.016143
iter 90 value 83.015605
final value 83.015298
converged
Fitting Repeat 4
# weights: 103
initial value 96.954869
iter 10 value 94.034688
iter 20 value 93.870905
iter 30 value 89.821601
iter 40 value 85.707742
iter 50 value 85.644147
iter 60 value 85.639876
iter 70 value 85.638066
iter 80 value 85.636362
iter 90 value 85.632582
iter 100 value 85.630462
final value 85.630462
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 96.245914
iter 10 value 94.054509
iter 20 value 94.052280
iter 30 value 92.894850
iter 40 value 92.893986
final value 92.893973
converged
Fitting Repeat 1
# weights: 305
initial value 112.281073
iter 10 value 94.058608
iter 20 value 93.804418
iter 30 value 93.524502
iter 40 value 90.253197
iter 50 value 90.243965
iter 60 value 90.208411
iter 70 value 90.185487
iter 80 value 90.153947
iter 90 value 86.418816
iter 100 value 80.836910
final value 80.836910
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 95.122668
iter 10 value 94.056590
iter 20 value 93.608177
iter 30 value 93.536017
final value 93.535525
converged
Fitting Repeat 3
# weights: 305
initial value 96.664022
iter 10 value 91.172156
iter 20 value 91.161054
iter 30 value 90.544455
iter 40 value 90.540674
iter 50 value 90.537773
iter 60 value 88.852016
iter 60 value 88.852016
iter 60 value 88.852016
final value 88.852016
converged
Fitting Repeat 4
# weights: 305
initial value 94.679628
iter 10 value 94.037549
iter 20 value 94.012657
iter 30 value 93.945105
iter 40 value 93.560796
iter 50 value 93.535501
iter 50 value 93.535500
iter 50 value 93.535500
final value 93.535500
converged
Fitting Repeat 5
# weights: 305
initial value 100.311367
iter 10 value 94.061787
iter 20 value 93.886807
iter 30 value 84.770756
iter 40 value 84.446163
iter 50 value 84.416841
iter 60 value 80.712471
final value 80.693017
converged
Fitting Repeat 1
# weights: 507
initial value 96.301537
iter 10 value 94.061054
iter 20 value 94.033510
final value 94.033507
converged
Fitting Repeat 2
# weights: 507
initial value 105.424028
iter 10 value 94.041209
iter 20 value 94.029402
iter 30 value 84.163927
iter 40 value 83.399832
iter 50 value 81.710112
iter 60 value 80.269353
iter 70 value 79.222180
iter 80 value 79.213728
iter 90 value 78.520193
iter 100 value 78.216279
final value 78.216279
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.335070
iter 10 value 94.041173
iter 20 value 91.080552
iter 30 value 85.657414
iter 40 value 83.869097
iter 50 value 83.221437
iter 60 value 83.219383
iter 70 value 82.544804
iter 80 value 82.529188
iter 90 value 82.314784
final value 82.297387
converged
Fitting Repeat 4
# weights: 507
initial value 105.232313
iter 10 value 94.061312
iter 20 value 94.000651
iter 30 value 87.251742
iter 40 value 87.250844
iter 50 value 86.932000
iter 60 value 86.309457
iter 70 value 86.083760
iter 80 value 84.053864
iter 90 value 82.701813
iter 100 value 82.668901
final value 82.668901
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.549019
iter 10 value 93.851315
iter 20 value 93.542874
iter 30 value 93.205432
iter 40 value 83.352183
iter 50 value 82.154849
iter 60 value 81.734757
iter 70 value 78.363939
iter 80 value 77.186843
iter 90 value 76.814032
iter 100 value 76.738024
final value 76.738024
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 122.318114
iter 10 value 117.878635
iter 20 value 117.762103
iter 30 value 117.544607
iter 40 value 113.205514
iter 50 value 103.842548
iter 60 value 103.716600
iter 70 value 103.711592
iter 80 value 103.710737
iter 90 value 103.689837
iter 100 value 103.484417
final value 103.484417
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 150.822363
iter 10 value 117.897873
iter 20 value 117.811432
iter 30 value 106.982130
final value 106.779112
converged
Fitting Repeat 3
# weights: 507
initial value 118.597423
iter 10 value 117.895479
iter 20 value 112.184576
iter 30 value 106.795274
iter 40 value 106.783140
iter 50 value 106.781544
iter 50 value 106.781544
final value 106.781544
converged
Fitting Repeat 4
# weights: 507
initial value 139.457278
iter 10 value 107.236452
iter 20 value 105.362195
iter 30 value 105.356672
iter 40 value 104.547684
iter 50 value 103.643385
iter 60 value 100.627038
iter 70 value 99.635582
iter 80 value 98.884725
iter 90 value 98.786390
iter 100 value 98.762620
final value 98.762620
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 131.135292
iter 10 value 117.766336
iter 20 value 117.749378
iter 30 value 117.018506
iter 40 value 106.831095
iter 50 value 104.096832
iter 60 value 104.085500
iter 70 value 104.085271
iter 80 value 104.081316
iter 90 value 101.998912
iter 100 value 101.875555
final value 101.875555
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Wed Sep 10 22:40:45 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
42.542 1.647 119.482
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 33.350 | 1.612 | 35.222 | |
| FreqInteractors | 0.243 | 0.011 | 0.256 | |
| calculateAAC | 0.038 | 0.008 | 0.046 | |
| calculateAutocor | 0.367 | 0.068 | 0.440 | |
| calculateCTDC | 0.087 | 0.006 | 0.093 | |
| calculateCTDD | 0.669 | 0.029 | 0.710 | |
| calculateCTDT | 0.257 | 0.011 | 0.270 | |
| calculateCTriad | 0.430 | 0.030 | 0.467 | |
| calculateDC | 0.114 | 0.012 | 0.129 | |
| calculateF | 0.355 | 0.014 | 0.373 | |
| calculateKSAAP | 0.104 | 0.011 | 0.119 | |
| calculateQD_Sm | 1.639 | 0.099 | 1.749 | |
| calculateTC | 1.712 | 0.141 | 1.868 | |
| calculateTC_Sm | 0.234 | 0.017 | 0.260 | |
| corr_plot | 33.106 | 1.597 | 34.946 | |
| enrichfindP | 0.482 | 0.053 | 7.855 | |
| enrichfind_hp | 0.057 | 0.020 | 1.027 | |
| enrichplot | 0.372 | 0.007 | 0.380 | |
| filter_missing_values | 0.001 | 0.001 | 0.002 | |
| getFASTA | 0.068 | 0.010 | 3.527 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0.002 | 0.000 | 0.003 | |
| get_positivePPI | 0.001 | 0.000 | 0.000 | |
| impute_missing_data | 0.002 | 0.001 | 0.003 | |
| plotPPI | 0.075 | 0.005 | 0.080 | |
| pred_ensembel | 14.084 | 0.421 | 12.531 | |
| var_imp | 35.148 | 1.714 | 37.245 | |