| Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-04-22 13:16 -0400 (Tue, 22 Apr 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4831 |
| palomino7 | Windows Server 2022 Datacenter | x64 | 4.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" | 4573 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4599 |
| kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4553 |
| kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4570 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.14.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz |
| StartedAt: 2025-04-21 21:17:59 -0400 (Mon, 21 Apr 2025) |
| EndedAt: 2025-04-21 21:24:01 -0400 (Mon, 21 Apr 2025) |
| EllapsedTime: 362.0 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’
* using R version 4.5.0 RC (2025-04-04 r88126)
* using platform: x86_64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 35.565 1.755 37.785
FSmethod 33.238 1.686 35.232
corr_plot 32.503 1.610 34.328
pred_ensembel 13.190 0.427 11.691
enrichfindP 0.464 0.055 8.893
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 96.374213
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 102.591906
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.464931
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 95.643263
iter 10 value 94.057708
final value 94.052905
converged
Fitting Repeat 5
# weights: 103
initial value 100.594642
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 100.445462
final value 94.052912
converged
Fitting Repeat 2
# weights: 305
initial value 101.103683
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 102.905772
final value 94.038251
converged
Fitting Repeat 4
# weights: 305
initial value 94.444537
final value 94.038251
converged
Fitting Repeat 5
# weights: 305
initial value 97.192828
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 118.280152
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 97.533854
final value 93.869755
converged
Fitting Repeat 3
# weights: 507
initial value 98.894362
final value 94.052911
converged
Fitting Repeat 4
# weights: 507
initial value 99.186829
iter 10 value 93.977232
iter 20 value 93.969048
final value 93.969041
converged
Fitting Repeat 5
# weights: 507
initial value 101.863296
final value 93.371808
converged
Fitting Repeat 1
# weights: 103
initial value 98.531234
iter 10 value 89.702460
iter 20 value 85.060402
iter 30 value 84.129306
iter 40 value 84.046785
iter 50 value 84.028305
final value 84.027676
converged
Fitting Repeat 2
# weights: 103
initial value 103.588305
iter 10 value 94.057246
iter 20 value 91.063061
iter 30 value 87.058203
iter 40 value 85.550955
iter 50 value 84.838689
iter 60 value 84.800968
iter 70 value 84.795789
final value 84.795779
converged
Fitting Repeat 3
# weights: 103
initial value 97.453513
iter 10 value 94.167451
iter 20 value 94.055076
iter 30 value 93.837029
iter 40 value 93.697291
iter 50 value 93.682364
iter 60 value 89.749056
iter 70 value 86.148659
iter 80 value 84.502271
iter 90 value 84.269500
iter 100 value 83.363996
final value 83.363996
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 98.599709
iter 10 value 94.024970
iter 20 value 93.696414
iter 30 value 93.336917
iter 40 value 87.912385
iter 50 value 85.797846
iter 60 value 85.197758
iter 70 value 83.826887
iter 80 value 82.890462
iter 90 value 82.489875
final value 82.480678
converged
Fitting Repeat 5
# weights: 103
initial value 101.842930
iter 10 value 93.970657
iter 20 value 93.509393
iter 30 value 90.922978
iter 40 value 86.111131
iter 50 value 83.882581
iter 60 value 83.295577
iter 70 value 82.935624
iter 80 value 82.925023
iter 80 value 82.925023
iter 80 value 82.925023
final value 82.925023
converged
Fitting Repeat 1
# weights: 305
initial value 110.500489
iter 10 value 94.820314
iter 20 value 91.935936
iter 30 value 88.829834
iter 40 value 87.712353
iter 50 value 86.725070
iter 60 value 86.125802
iter 70 value 86.022084
iter 80 value 85.708960
iter 90 value 85.424013
iter 100 value 85.118833
final value 85.118833
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.922633
iter 10 value 94.099402
iter 20 value 89.897221
iter 30 value 88.909177
iter 40 value 88.328847
iter 50 value 86.062317
iter 60 value 84.756691
iter 70 value 84.435140
iter 80 value 84.159787
iter 90 value 82.514683
iter 100 value 82.021997
final value 82.021997
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.472021
iter 10 value 93.920240
iter 20 value 87.549792
iter 30 value 86.081336
iter 40 value 85.316524
iter 50 value 84.000436
iter 60 value 83.675240
iter 70 value 82.848061
iter 80 value 82.515058
iter 90 value 82.430807
iter 100 value 82.276131
final value 82.276131
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.154807
iter 10 value 93.927971
iter 20 value 87.806112
iter 30 value 85.707107
iter 40 value 83.571700
iter 50 value 81.996208
iter 60 value 81.096136
iter 70 value 80.807904
iter 80 value 80.640558
iter 90 value 80.594297
iter 100 value 80.583504
final value 80.583504
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.973288
iter 10 value 90.300443
iter 20 value 85.104680
iter 30 value 84.668836
iter 40 value 84.547997
iter 50 value 84.116934
iter 60 value 83.159245
iter 70 value 82.935612
iter 80 value 82.906010
iter 90 value 82.509968
iter 100 value 81.654694
final value 81.654694
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.375860
iter 10 value 88.557209
iter 20 value 87.946134
iter 30 value 87.182174
iter 40 value 83.805335
iter 50 value 83.300539
iter 60 value 83.126156
iter 70 value 82.640806
iter 80 value 81.882911
iter 90 value 81.028673
iter 100 value 80.723049
final value 80.723049
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 121.280896
iter 10 value 94.086369
iter 20 value 88.448716
iter 30 value 85.852052
iter 40 value 84.800714
iter 50 value 83.208169
iter 60 value 82.983757
iter 70 value 82.012781
iter 80 value 81.688294
iter 90 value 81.577639
iter 100 value 81.434365
final value 81.434365
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.454779
iter 10 value 94.534926
iter 20 value 90.688006
iter 30 value 87.285761
iter 40 value 86.144343
iter 50 value 84.708389
iter 60 value 82.417022
iter 70 value 81.332502
iter 80 value 80.874610
iter 90 value 80.531819
iter 100 value 80.464456
final value 80.464456
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.765114
iter 10 value 94.026502
iter 20 value 89.245096
iter 30 value 87.450742
iter 40 value 86.435974
iter 50 value 84.743452
iter 60 value 84.305539
iter 70 value 83.721940
iter 80 value 82.617859
iter 90 value 81.672624
iter 100 value 81.349828
final value 81.349828
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 102.898200
iter 10 value 86.492010
iter 20 value 85.156001
iter 30 value 83.670777
iter 40 value 83.496413
iter 50 value 83.472964
iter 60 value 83.168965
iter 70 value 82.955892
iter 80 value 82.081543
iter 90 value 81.240282
iter 100 value 81.132653
final value 81.132653
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.290529
iter 10 value 91.137312
iter 20 value 88.955078
iter 30 value 88.943420
iter 40 value 88.411842
iter 50 value 85.779446
final value 85.736731
converged
Fitting Repeat 2
# weights: 103
initial value 97.241417
iter 10 value 93.498672
iter 20 value 93.492813
iter 30 value 93.059952
iter 40 value 90.917520
iter 50 value 90.560474
iter 60 value 90.560361
final value 90.560146
converged
Fitting Repeat 3
# weights: 103
initial value 96.629136
iter 10 value 94.039846
iter 20 value 94.038385
final value 94.038268
converged
Fitting Repeat 4
# weights: 103
initial value 104.190976
final value 94.054536
converged
Fitting Repeat 5
# weights: 103
initial value 102.230299
iter 10 value 88.442573
iter 20 value 87.253382
iter 30 value 87.250566
final value 87.250264
converged
Fitting Repeat 1
# weights: 305
initial value 96.503997
iter 10 value 93.876511
iter 20 value 93.873600
iter 30 value 93.858515
iter 40 value 93.232906
final value 93.232871
converged
Fitting Repeat 2
# weights: 305
initial value 98.832135
iter 10 value 94.057584
iter 20 value 93.957029
iter 30 value 93.654378
final value 93.654007
converged
Fitting Repeat 3
# weights: 305
initial value 103.084158
iter 10 value 92.054678
iter 20 value 91.143841
iter 30 value 90.991594
iter 40 value 90.990399
iter 50 value 90.988774
final value 90.988431
converged
Fitting Repeat 4
# weights: 305
initial value 110.355594
iter 10 value 93.864198
iter 20 value 93.862213
iter 30 value 93.859862
iter 40 value 84.746337
iter 50 value 84.115511
iter 60 value 83.534769
iter 70 value 82.737601
iter 80 value 82.327717
iter 90 value 81.177981
iter 100 value 79.847448
final value 79.847448
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 97.112614
iter 10 value 94.043053
iter 20 value 94.039916
iter 30 value 94.033308
iter 40 value 92.204583
iter 50 value 90.789918
final value 90.787339
converged
Fitting Repeat 1
# weights: 507
initial value 107.797748
iter 10 value 91.708189
iter 20 value 91.665671
iter 30 value 91.228468
iter 40 value 91.226984
iter 50 value 91.171311
iter 60 value 91.166792
iter 70 value 91.165333
iter 80 value 91.163822
iter 90 value 91.155247
final value 91.155159
converged
Fitting Repeat 2
# weights: 507
initial value 106.659996
iter 10 value 94.060532
iter 20 value 94.052832
iter 30 value 94.038443
iter 40 value 94.038375
final value 94.038332
converged
Fitting Repeat 3
# weights: 507
initial value 95.174040
iter 10 value 92.206799
iter 20 value 91.142086
iter 30 value 91.140310
iter 40 value 91.134749
iter 50 value 91.134089
iter 60 value 91.133078
iter 70 value 91.132704
iter 80 value 87.518910
iter 90 value 82.527759
iter 100 value 81.924755
final value 81.924755
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 96.925421
iter 10 value 93.833399
iter 20 value 93.827396
iter 30 value 93.620816
iter 40 value 89.867499
iter 50 value 85.962086
iter 60 value 85.950663
final value 85.950640
converged
Fitting Repeat 5
# weights: 507
initial value 130.971677
iter 10 value 94.046857
iter 20 value 94.037365
iter 30 value 91.699861
iter 40 value 90.988154
final value 90.852488
converged
Fitting Repeat 1
# weights: 103
initial value 98.384796
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.465199
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 98.536282
final value 94.449438
converged
Fitting Repeat 4
# weights: 103
initial value 95.990815
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 94.841870
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 101.353623
final value 94.482932
converged
Fitting Repeat 2
# weights: 305
initial value 95.268244
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 115.854695
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 116.334197
final value 94.449438
converged
Fitting Repeat 5
# weights: 305
initial value 95.099402
iter 10 value 94.326560
final value 94.326471
converged
Fitting Repeat 1
# weights: 507
initial value 124.851547
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 100.825674
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 109.224249
iter 10 value 94.354396
iter 10 value 94.354396
iter 10 value 94.354396
final value 94.354396
converged
Fitting Repeat 4
# weights: 507
initial value 120.471281
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 95.643013
iter 10 value 87.706449
iter 20 value 87.184693
iter 30 value 87.169583
iter 40 value 87.059752
final value 87.059441
converged
Fitting Repeat 1
# weights: 103
initial value 100.355132
iter 10 value 87.587684
iter 20 value 84.805997
iter 30 value 81.456345
iter 40 value 81.276660
iter 50 value 80.734191
iter 60 value 80.679911
final value 80.679894
converged
Fitting Repeat 2
# weights: 103
initial value 108.882936
iter 10 value 94.498419
iter 20 value 90.662009
iter 30 value 90.476199
iter 40 value 90.374960
iter 50 value 90.057377
iter 60 value 87.419197
iter 70 value 85.204060
iter 80 value 84.407659
iter 90 value 84.175096
iter 100 value 83.969324
final value 83.969324
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.501689
iter 10 value 94.486324
iter 20 value 94.341289
iter 30 value 90.996796
iter 40 value 83.306119
iter 50 value 82.936598
iter 60 value 82.519970
iter 70 value 82.230118
iter 80 value 81.716745
iter 90 value 81.675066
iter 100 value 81.674667
final value 81.674667
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 104.426955
iter 10 value 94.487050
iter 20 value 94.486550
iter 20 value 94.486550
iter 30 value 90.747998
iter 40 value 85.872749
iter 50 value 83.578537
iter 60 value 83.382065
iter 70 value 82.892895
iter 80 value 82.644430
iter 90 value 82.302290
iter 100 value 82.086292
final value 82.086292
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 103.846302
iter 10 value 94.483986
iter 20 value 92.189792
iter 30 value 85.469761
iter 40 value 84.453437
iter 50 value 84.180029
iter 60 value 84.163900
iter 70 value 83.959176
iter 80 value 83.906234
iter 90 value 83.806991
final value 83.805239
converged
Fitting Repeat 1
# weights: 305
initial value 119.036250
iter 10 value 94.459164
iter 20 value 85.523815
iter 30 value 84.466396
iter 40 value 83.268376
iter 50 value 82.438519
iter 60 value 82.163118
iter 70 value 81.424616
iter 80 value 80.540767
iter 90 value 80.221015
iter 100 value 80.106450
final value 80.106450
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.619589
iter 10 value 94.420748
iter 20 value 93.719368
iter 30 value 89.495224
iter 40 value 89.270254
iter 50 value 86.604888
iter 60 value 84.566601
iter 70 value 82.166614
iter 80 value 81.303356
iter 90 value 80.886489
iter 100 value 79.668912
final value 79.668912
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.014034
iter 10 value 93.962401
iter 20 value 88.539924
iter 30 value 85.302693
iter 40 value 84.867030
iter 50 value 84.390637
iter 60 value 83.902192
iter 70 value 82.697284
iter 80 value 81.365775
iter 90 value 81.202414
iter 100 value 80.627414
final value 80.627414
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.856225
iter 10 value 94.796305
iter 20 value 94.710060
iter 30 value 94.481913
iter 40 value 93.441410
iter 50 value 86.233847
iter 60 value 85.782253
iter 70 value 82.947499
iter 80 value 81.509388
iter 90 value 79.754860
iter 100 value 79.339275
final value 79.339275
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.922286
iter 10 value 90.052311
iter 20 value 83.804766
iter 30 value 83.283599
iter 40 value 82.652565
iter 50 value 82.192568
iter 60 value 80.825770
iter 70 value 80.501929
iter 80 value 80.377117
iter 90 value 80.154444
iter 100 value 79.460607
final value 79.460607
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 125.656010
iter 10 value 94.815963
iter 20 value 84.653311
iter 30 value 83.041322
iter 40 value 82.983328
iter 50 value 82.719270
iter 60 value 82.327187
iter 70 value 82.090339
iter 80 value 81.803234
iter 90 value 81.651168
iter 100 value 80.548253
final value 80.548253
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 155.125860
iter 10 value 96.226130
iter 20 value 95.187135
iter 30 value 92.893762
iter 40 value 90.334349
iter 50 value 87.118330
iter 60 value 84.419978
iter 70 value 81.784397
iter 80 value 80.228593
iter 90 value 79.761332
iter 100 value 79.477712
final value 79.477712
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.477877
iter 10 value 94.433639
iter 20 value 93.297852
iter 30 value 85.729012
iter 40 value 83.569223
iter 50 value 80.371283
iter 60 value 79.577112
iter 70 value 79.276756
iter 80 value 79.089156
iter 90 value 78.893716
iter 100 value 78.667763
final value 78.667763
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.854994
iter 10 value 89.489529
iter 20 value 87.955360
iter 30 value 87.762112
iter 40 value 87.477037
iter 50 value 84.077212
iter 60 value 81.675434
iter 70 value 81.040872
iter 80 value 80.574819
iter 90 value 79.774460
iter 100 value 79.638232
final value 79.638232
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.209937
iter 10 value 92.682894
iter 20 value 86.174309
iter 30 value 81.470145
iter 40 value 80.373377
iter 50 value 80.059707
iter 60 value 79.838537
iter 70 value 79.291491
iter 80 value 78.839411
iter 90 value 78.742318
iter 100 value 78.639510
final value 78.639510
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.824176
final value 94.485959
converged
Fitting Repeat 2
# weights: 103
initial value 101.667541
final value 94.485814
converged
Fitting Repeat 3
# weights: 103
initial value 107.739857
final value 94.485757
converged
Fitting Repeat 4
# weights: 103
initial value 97.257836
final value 94.485854
converged
Fitting Repeat 5
# weights: 103
initial value 95.397724
final value 94.487217
converged
Fitting Repeat 1
# weights: 305
initial value 101.558698
iter 10 value 94.488516
iter 20 value 94.355058
iter 30 value 94.277453
iter 40 value 89.350011
iter 50 value 88.460606
iter 60 value 86.415436
iter 70 value 82.435989
iter 80 value 77.535675
iter 90 value 77.321059
iter 100 value 77.277921
final value 77.277921
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.263176
iter 10 value 94.488631
iter 20 value 93.721466
iter 30 value 87.457267
iter 40 value 83.197370
iter 50 value 82.683816
iter 60 value 82.489261
iter 70 value 82.439959
final value 82.438722
converged
Fitting Repeat 3
# weights: 305
initial value 98.331321
iter 10 value 94.451961
iter 20 value 93.601736
iter 30 value 93.210295
final value 93.210216
converged
Fitting Repeat 4
# weights: 305
initial value 107.333948
iter 10 value 94.488979
iter 20 value 94.484423
iter 30 value 91.637761
iter 40 value 91.081508
iter 50 value 89.869421
final value 89.868485
converged
Fitting Repeat 5
# weights: 305
initial value 125.399952
iter 10 value 94.489156
iter 20 value 94.452986
iter 30 value 87.891673
iter 40 value 87.580245
iter 50 value 85.535560
iter 60 value 82.671270
iter 70 value 82.314241
iter 80 value 82.070736
final value 82.068638
converged
Fitting Repeat 1
# weights: 507
initial value 98.901177
iter 10 value 94.334612
iter 20 value 94.026183
iter 30 value 88.225471
iter 40 value 84.198213
iter 50 value 84.137432
iter 60 value 84.042092
iter 70 value 83.627020
iter 80 value 83.624973
final value 83.624844
converged
Fitting Repeat 2
# weights: 507
initial value 124.083386
iter 10 value 89.513447
iter 20 value 88.380496
iter 30 value 87.818922
iter 40 value 87.815139
iter 50 value 87.813297
iter 60 value 85.887630
iter 70 value 85.551197
iter 80 value 85.485201
iter 90 value 85.445363
iter 100 value 85.444113
final value 85.444113
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.453436
iter 10 value 94.487254
iter 20 value 94.479523
iter 30 value 94.453042
iter 40 value 91.822547
iter 50 value 90.384352
iter 60 value 90.301843
iter 70 value 90.301403
iter 80 value 89.744851
iter 90 value 89.611516
iter 100 value 88.395650
final value 88.395650
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 98.382836
iter 10 value 94.362364
iter 20 value 92.391171
iter 30 value 90.692323
iter 40 value 90.596408
iter 50 value 90.577469
iter 60 value 90.577294
iter 70 value 90.511458
iter 80 value 88.800396
iter 90 value 84.876091
iter 100 value 84.104896
final value 84.104896
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 111.049855
iter 10 value 94.362513
iter 20 value 94.362016
iter 30 value 94.354023
iter 40 value 92.772044
iter 50 value 83.596891
iter 60 value 80.898439
iter 70 value 80.894323
iter 80 value 80.892183
iter 90 value 80.876147
iter 100 value 80.773723
final value 80.773723
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.541217
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 94.795340
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 101.022108
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 103.870561
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 99.800578
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 97.160379
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 100.822827
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 103.942091
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 109.761058
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 95.671266
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 108.371261
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 98.246480
final value 94.032967
converged
Fitting Repeat 3
# weights: 507
initial value 99.130868
iter 10 value 93.962475
iter 20 value 93.943880
final value 93.943842
converged
Fitting Repeat 4
# weights: 507
initial value 93.238060
iter 10 value 84.165878
iter 20 value 83.836808
iter 30 value 83.436573
iter 40 value 83.337450
iter 50 value 83.185978
iter 60 value 83.067341
iter 70 value 83.059876
iter 80 value 83.059498
iter 90 value 83.059454
final value 83.059450
converged
Fitting Repeat 5
# weights: 507
initial value 99.669368
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 99.315726
iter 10 value 94.052037
iter 20 value 93.968814
iter 30 value 86.338434
iter 40 value 84.359852
iter 50 value 83.947727
iter 60 value 83.658343
iter 70 value 83.377181
iter 80 value 83.375594
final value 83.375012
converged
Fitting Repeat 2
# weights: 103
initial value 102.036803
iter 10 value 94.056635
iter 20 value 89.855462
iter 30 value 85.787118
iter 40 value 82.713167
iter 50 value 82.274123
iter 60 value 81.851908
iter 70 value 81.443260
iter 80 value 81.254378
final value 81.211204
converged
Fitting Repeat 3
# weights: 103
initial value 100.607240
iter 10 value 94.020824
iter 20 value 90.157963
iter 30 value 87.247776
iter 40 value 85.838118
iter 50 value 84.960268
iter 60 value 84.373419
iter 70 value 84.138242
iter 80 value 83.996188
final value 83.987670
converged
Fitting Repeat 4
# weights: 103
initial value 97.164529
iter 10 value 94.124484
iter 20 value 94.056387
iter 30 value 94.052952
iter 40 value 85.120896
iter 50 value 84.113433
iter 60 value 83.478327
iter 70 value 83.387941
iter 80 value 83.367740
final value 83.367635
converged
Fitting Repeat 5
# weights: 103
initial value 101.865752
iter 10 value 94.052471
iter 20 value 88.681194
iter 30 value 86.421247
iter 40 value 85.953023
iter 50 value 85.296289
iter 60 value 85.008319
iter 70 value 84.223887
iter 80 value 84.043930
final value 83.987670
converged
Fitting Repeat 1
# weights: 305
initial value 102.101914
iter 10 value 93.869160
iter 20 value 89.684474
iter 30 value 85.993266
iter 40 value 85.429381
iter 50 value 81.696188
iter 60 value 81.030874
iter 70 value 80.709449
iter 80 value 80.605288
iter 90 value 80.569986
iter 100 value 80.516792
final value 80.516792
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.881969
iter 10 value 94.032314
iter 20 value 90.247285
iter 30 value 88.286112
iter 40 value 88.093474
iter 50 value 85.144210
iter 60 value 81.056473
iter 70 value 80.841330
iter 80 value 80.716842
iter 90 value 80.508529
iter 100 value 80.215834
final value 80.215834
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.615596
iter 10 value 94.275507
iter 20 value 93.920161
iter 30 value 93.313958
iter 40 value 87.939923
iter 50 value 86.508521
iter 60 value 84.611390
iter 70 value 83.118632
iter 80 value 82.674132
iter 90 value 82.173851
iter 100 value 81.416514
final value 81.416514
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.813883
iter 10 value 93.443515
iter 20 value 87.421131
iter 30 value 85.811426
iter 40 value 84.707153
iter 50 value 84.076539
iter 60 value 83.972554
iter 70 value 83.867112
iter 80 value 83.618018
iter 90 value 83.561758
iter 100 value 83.494096
final value 83.494096
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.285336
iter 10 value 94.163234
iter 20 value 93.341014
iter 30 value 88.708640
iter 40 value 85.955374
iter 50 value 83.319943
iter 60 value 82.427655
iter 70 value 81.933731
iter 80 value 81.574893
iter 90 value 81.444579
iter 100 value 81.047259
final value 81.047259
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 116.036366
iter 10 value 94.044109
iter 20 value 89.997634
iter 30 value 85.727101
iter 40 value 83.473758
iter 50 value 82.537851
iter 60 value 81.722771
iter 70 value 81.363975
iter 80 value 80.435430
iter 90 value 80.181371
iter 100 value 79.860422
final value 79.860422
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.990515
iter 10 value 93.090815
iter 20 value 88.492460
iter 30 value 84.929831
iter 40 value 84.007413
iter 50 value 83.638458
iter 60 value 82.179113
iter 70 value 81.333464
iter 80 value 80.723722
iter 90 value 80.240728
iter 100 value 79.772021
final value 79.772021
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.013681
iter 10 value 94.628705
iter 20 value 93.274962
iter 30 value 85.563883
iter 40 value 84.092895
iter 50 value 83.092097
iter 60 value 81.288073
iter 70 value 80.791081
iter 80 value 80.509091
iter 90 value 80.250930
iter 100 value 80.194891
final value 80.194891
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.761543
iter 10 value 97.967981
iter 20 value 90.850617
iter 30 value 89.675230
iter 40 value 84.101364
iter 50 value 82.380493
iter 60 value 81.508130
iter 70 value 80.470844
iter 80 value 80.062755
iter 90 value 79.912634
iter 100 value 79.699920
final value 79.699920
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.142208
iter 10 value 91.376120
iter 20 value 85.948172
iter 30 value 84.261012
iter 40 value 81.691925
iter 50 value 81.031135
iter 60 value 80.719547
iter 70 value 79.995297
iter 80 value 79.657708
iter 90 value 79.572500
iter 100 value 79.450148
final value 79.450148
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.280829
final value 94.054226
converged
Fitting Repeat 2
# weights: 103
initial value 98.563846
final value 94.054428
converged
Fitting Repeat 3
# weights: 103
initial value 98.639466
iter 10 value 86.832906
iter 20 value 84.242444
iter 30 value 83.966681
iter 40 value 83.935219
iter 50 value 83.934484
final value 83.933129
converged
Fitting Repeat 4
# weights: 103
initial value 105.710884
final value 94.054495
converged
Fitting Repeat 5
# weights: 103
initial value 104.628314
final value 94.054623
converged
Fitting Repeat 1
# weights: 305
initial value 109.700433
iter 10 value 94.038025
iter 20 value 93.982830
iter 30 value 93.810410
final value 93.809460
converged
Fitting Repeat 2
# weights: 305
initial value 101.225467
iter 10 value 93.730020
iter 20 value 93.715773
iter 30 value 85.544544
iter 40 value 85.177521
iter 50 value 85.176581
iter 60 value 83.912763
iter 70 value 82.851502
iter 80 value 82.687729
iter 90 value 82.640883
iter 100 value 82.637639
final value 82.637639
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 97.632661
iter 10 value 94.056975
iter 20 value 93.381221
iter 30 value 92.878118
iter 40 value 92.736868
iter 50 value 92.723930
iter 60 value 91.681993
iter 70 value 91.678497
final value 91.678352
converged
Fitting Repeat 4
# weights: 305
initial value 98.301627
iter 10 value 94.058100
iter 20 value 94.052918
iter 30 value 92.876378
iter 40 value 85.929772
iter 50 value 82.942896
iter 60 value 82.625302
iter 70 value 82.620918
iter 80 value 82.546089
iter 90 value 82.104971
iter 100 value 82.049168
final value 82.049168
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.071943
iter 10 value 94.057903
iter 20 value 94.053059
iter 30 value 87.532723
iter 40 value 85.331353
iter 50 value 85.321059
iter 60 value 85.318751
iter 70 value 84.447321
iter 80 value 83.214196
iter 90 value 80.306947
iter 100 value 80.097892
final value 80.097892
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.376628
iter 10 value 94.061074
iter 20 value 94.018338
iter 30 value 87.779302
iter 40 value 84.350125
iter 50 value 84.318339
iter 60 value 84.301053
iter 70 value 83.336806
iter 80 value 81.373731
iter 90 value 80.479816
iter 100 value 80.339043
final value 80.339043
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 98.873321
iter 10 value 93.286482
iter 20 value 93.246335
iter 30 value 92.638808
iter 40 value 92.499853
iter 50 value 92.498516
iter 50 value 92.498515
iter 60 value 92.498116
iter 70 value 92.496696
iter 80 value 92.494079
iter 90 value 91.899976
iter 100 value 85.661498
final value 85.661498
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.906414
iter 10 value 94.040870
iter 20 value 93.626259
iter 30 value 92.738502
iter 40 value 92.577145
iter 50 value 92.547832
iter 60 value 92.546397
final value 92.545240
converged
Fitting Repeat 4
# weights: 507
initial value 94.531071
iter 10 value 94.060090
iter 20 value 90.804213
iter 30 value 85.385043
iter 40 value 85.314914
iter 50 value 83.947289
iter 60 value 82.705469
iter 70 value 82.300157
iter 80 value 82.021240
final value 82.021135
converged
Fitting Repeat 5
# weights: 507
initial value 125.535878
iter 10 value 94.044927
iter 20 value 94.040059
iter 30 value 86.304493
iter 40 value 84.561654
iter 50 value 84.508150
iter 60 value 84.364053
iter 70 value 84.352102
iter 80 value 84.161712
iter 90 value 81.174652
iter 100 value 80.820932
final value 80.820932
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.938168
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 102.195002
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.542125
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.159591
iter 10 value 93.772973
iter 10 value 93.772973
iter 10 value 93.772973
final value 93.772973
converged
Fitting Repeat 5
# weights: 103
initial value 105.461517
iter 10 value 92.597607
iter 20 value 88.847252
iter 30 value 87.324243
iter 40 value 86.747756
iter 50 value 86.747308
iter 50 value 86.747308
iter 50 value 86.747308
final value 86.747308
converged
Fitting Repeat 1
# weights: 305
initial value 97.922530
iter 10 value 93.772994
final value 93.772973
converged
Fitting Repeat 2
# weights: 305
initial value 118.885430
iter 10 value 93.773441
final value 93.772973
converged
Fitting Repeat 3
# weights: 305
initial value 100.781021
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 99.567847
final value 93.691092
converged
Fitting Repeat 5
# weights: 305
initial value 103.266449
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 95.900328
final value 93.772973
converged
Fitting Repeat 2
# weights: 507
initial value 105.481847
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 118.524562
iter 10 value 92.137006
final value 92.019542
converged
Fitting Repeat 4
# weights: 507
initial value 105.944518
iter 10 value 93.772974
iter 10 value 93.772974
iter 10 value 93.772974
final value 93.772974
converged
Fitting Repeat 5
# weights: 507
initial value 115.810481
iter 10 value 94.484211
iter 10 value 94.484211
iter 10 value 94.484211
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 100.597760
iter 10 value 94.488405
iter 20 value 94.221520
iter 30 value 92.359760
iter 40 value 84.394353
iter 50 value 81.855957
iter 60 value 81.785798
iter 70 value 81.778707
iter 80 value 81.775890
iter 90 value 81.775668
iter 100 value 81.774824
final value 81.774824
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 110.885703
iter 10 value 93.605408
iter 20 value 87.228318
iter 30 value 84.367965
iter 40 value 83.116849
iter 50 value 82.625283
iter 60 value 82.086047
iter 70 value 82.070504
iter 80 value 82.058214
final value 82.058182
converged
Fitting Repeat 3
# weights: 103
initial value 101.757680
iter 10 value 94.483829
iter 20 value 93.420294
iter 30 value 93.153041
iter 40 value 89.503993
iter 50 value 87.306048
iter 60 value 86.806548
iter 70 value 86.572361
iter 80 value 85.583267
iter 90 value 84.578668
iter 100 value 84.556220
final value 84.556220
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.099082
iter 10 value 93.421692
iter 20 value 87.425302
iter 30 value 85.718018
iter 40 value 84.618827
iter 50 value 84.591399
iter 60 value 84.587891
iter 60 value 84.587891
iter 60 value 84.587891
final value 84.587891
converged
Fitting Repeat 5
# weights: 103
initial value 100.151634
iter 10 value 94.244327
iter 20 value 89.088795
iter 30 value 87.740661
iter 40 value 86.320899
iter 50 value 85.703498
iter 60 value 85.468604
iter 70 value 85.353813
iter 80 value 84.197912
iter 90 value 82.289991
iter 100 value 82.227633
final value 82.227633
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 117.121155
iter 10 value 94.464684
iter 20 value 90.257033
iter 30 value 86.904175
iter 40 value 84.160341
iter 50 value 82.767054
iter 60 value 81.927579
iter 70 value 81.386983
iter 80 value 81.037455
iter 90 value 80.826124
iter 100 value 80.727901
final value 80.727901
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.414355
iter 10 value 94.933912
iter 20 value 92.710450
iter 30 value 89.505455
iter 40 value 87.353307
iter 50 value 85.394515
iter 60 value 82.708021
iter 70 value 81.987977
iter 80 value 81.781002
iter 90 value 81.678688
iter 100 value 81.667909
final value 81.667909
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.014346
iter 10 value 95.203584
iter 20 value 94.492177
iter 30 value 94.161169
iter 40 value 91.044030
iter 50 value 90.713618
iter 60 value 90.473873
iter 70 value 90.448862
iter 80 value 89.856638
iter 90 value 84.714721
iter 100 value 82.461063
final value 82.461063
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.872088
iter 10 value 93.942400
iter 20 value 89.242739
iter 30 value 86.414916
iter 40 value 85.953645
iter 50 value 85.777201
iter 60 value 85.570627
iter 70 value 85.547661
iter 80 value 85.527217
iter 90 value 85.381430
iter 100 value 83.586846
final value 83.586846
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 123.943785
iter 10 value 94.218687
iter 20 value 85.462847
iter 30 value 84.023546
iter 40 value 82.886914
iter 50 value 82.295001
iter 60 value 82.040888
iter 70 value 81.770290
iter 80 value 81.389115
iter 90 value 80.932511
iter 100 value 80.772557
final value 80.772557
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 128.053903
iter 10 value 96.568631
iter 20 value 94.490511
iter 30 value 87.610338
iter 40 value 86.120614
iter 50 value 84.578683
iter 60 value 82.113320
iter 70 value 81.833922
iter 80 value 81.173764
iter 90 value 80.756869
iter 100 value 80.584301
final value 80.584301
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.252841
iter 10 value 95.631882
iter 20 value 94.741109
iter 30 value 92.834821
iter 40 value 86.248666
iter 50 value 85.706463
iter 60 value 85.173880
iter 70 value 83.171118
iter 80 value 82.151982
iter 90 value 81.490629
iter 100 value 80.951829
final value 80.951829
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.062022
iter 10 value 94.920520
iter 20 value 93.333143
iter 30 value 87.298084
iter 40 value 84.929945
iter 50 value 83.904963
iter 60 value 82.796643
iter 70 value 81.023977
iter 80 value 80.265854
iter 90 value 80.062218
iter 100 value 79.962483
final value 79.962483
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 124.266515
iter 10 value 94.526166
iter 20 value 93.382770
iter 30 value 87.590471
iter 40 value 87.113126
iter 50 value 85.510221
iter 60 value 85.207943
iter 70 value 84.763216
iter 80 value 83.887581
iter 90 value 82.623723
iter 100 value 81.368584
final value 81.368584
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 137.316064
iter 10 value 94.490101
iter 20 value 93.892015
iter 30 value 93.359744
iter 40 value 88.289556
iter 50 value 84.429234
iter 60 value 83.148643
iter 70 value 83.003481
iter 80 value 82.950210
iter 90 value 82.753028
iter 100 value 82.051546
final value 82.051546
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.380789
final value 94.485837
converged
Fitting Repeat 2
# weights: 103
initial value 95.036084
iter 10 value 94.485904
iter 20 value 94.484252
final value 94.484215
converged
Fitting Repeat 3
# weights: 103
initial value 95.600812
iter 10 value 94.485794
iter 20 value 94.484214
iter 20 value 94.484214
iter 20 value 94.484214
final value 94.484214
converged
Fitting Repeat 4
# weights: 103
initial value 103.201579
final value 94.254801
converged
Fitting Repeat 5
# weights: 103
initial value 97.070934
final value 94.486015
converged
Fitting Repeat 1
# weights: 305
initial value 97.615177
iter 10 value 94.215373
iter 20 value 93.777994
iter 30 value 93.511166
iter 40 value 93.475857
iter 50 value 93.008859
iter 60 value 93.007116
iter 70 value 88.258007
iter 80 value 86.246723
iter 90 value 84.556439
iter 100 value 84.216654
final value 84.216654
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 109.259374
iter 10 value 93.778650
iter 20 value 93.776532
iter 30 value 93.435625
iter 40 value 92.057237
iter 50 value 86.531019
iter 60 value 82.632446
iter 70 value 80.780124
iter 80 value 80.014889
iter 90 value 80.005827
final value 80.005107
converged
Fitting Repeat 3
# weights: 305
initial value 97.348733
iter 10 value 94.488930
iter 20 value 94.483843
iter 30 value 94.291987
final value 93.773421
converged
Fitting Repeat 4
# weights: 305
initial value 111.900534
iter 10 value 94.489121
iter 20 value 94.477932
iter 30 value 92.347971
iter 40 value 85.391004
iter 50 value 85.095540
final value 85.093744
converged
Fitting Repeat 5
# weights: 305
initial value 102.870979
iter 10 value 94.489654
iter 20 value 93.312304
iter 30 value 93.302509
iter 40 value 93.262478
iter 50 value 84.221628
iter 60 value 82.629614
iter 70 value 81.102885
iter 80 value 80.007350
final value 80.007129
converged
Fitting Repeat 1
# weights: 507
initial value 110.525597
iter 10 value 94.493145
iter 20 value 94.485130
iter 30 value 93.412690
iter 40 value 88.053075
iter 50 value 87.401856
iter 60 value 87.391761
iter 70 value 87.391251
final value 87.387364
converged
Fitting Repeat 2
# weights: 507
initial value 127.560902
iter 10 value 94.492311
iter 20 value 94.431418
iter 30 value 92.983461
iter 40 value 91.800668
iter 50 value 91.467813
iter 60 value 91.466045
iter 70 value 91.465076
iter 80 value 91.464513
iter 80 value 91.464513
final value 91.464513
converged
Fitting Repeat 3
# weights: 507
initial value 106.379592
iter 10 value 93.781665
iter 20 value 93.779072
iter 30 value 91.081940
iter 40 value 91.011845
iter 50 value 90.703142
iter 60 value 90.501526
iter 70 value 90.446539
final value 90.444447
converged
Fitting Repeat 4
# weights: 507
initial value 102.043078
iter 10 value 93.515587
iter 20 value 93.508579
iter 30 value 93.139729
final value 93.085679
converged
Fitting Repeat 5
# weights: 507
initial value 110.066638
iter 10 value 94.334646
iter 20 value 90.675825
iter 30 value 84.025893
iter 40 value 83.986560
iter 50 value 83.986323
iter 50 value 83.986323
iter 50 value 83.986323
final value 83.986323
converged
Fitting Repeat 1
# weights: 103
initial value 100.644988
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 100.052226
iter 10 value 93.996119
final value 93.994891
converged
Fitting Repeat 3
# weights: 103
initial value 98.594727
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 99.062522
iter 10 value 92.929142
iter 20 value 92.923556
final value 92.923530
converged
Fitting Repeat 5
# weights: 103
initial value 106.310569
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 100.670672
final value 94.275362
converged
Fitting Repeat 2
# weights: 305
initial value 101.692397
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 102.637298
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 96.006993
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 95.039120
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 131.513985
iter 10 value 94.276223
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 103.937186
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 108.754009
final value 94.274404
converged
Fitting Repeat 4
# weights: 507
initial value 106.490400
iter 10 value 94.307530
iter 20 value 94.274445
final value 94.274405
converged
Fitting Repeat 5
# weights: 507
initial value 102.324329
iter 10 value 93.286594
final value 93.286550
converged
Fitting Repeat 1
# weights: 103
initial value 100.887608
iter 10 value 94.440802
iter 20 value 92.830547
iter 30 value 87.782987
iter 40 value 83.880196
iter 50 value 82.446399
iter 60 value 82.367485
iter 70 value 82.315505
iter 80 value 82.148531
iter 90 value 81.999379
final value 81.992302
converged
Fitting Repeat 2
# weights: 103
initial value 111.868626
iter 10 value 94.439876
iter 20 value 94.117562
iter 30 value 93.669313
iter 40 value 93.655860
iter 50 value 92.988252
iter 60 value 90.656743
iter 70 value 88.694614
iter 80 value 86.396836
iter 90 value 86.246725
iter 100 value 82.384225
final value 82.384225
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.195172
iter 10 value 94.490208
iter 20 value 91.434970
iter 30 value 87.845934
final value 86.399884
converged
Fitting Repeat 4
# weights: 103
initial value 97.107977
iter 10 value 94.497333
iter 20 value 94.332052
iter 30 value 93.490485
iter 40 value 90.669631
iter 50 value 89.320943
iter 60 value 82.186748
iter 70 value 81.799461
iter 80 value 81.663638
iter 90 value 81.504081
iter 100 value 81.453771
final value 81.453771
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 103.564593
iter 10 value 92.498124
iter 20 value 82.189223
iter 30 value 81.789849
iter 40 value 81.547881
iter 50 value 81.455754
final value 81.453729
converged
Fitting Repeat 1
# weights: 305
initial value 102.820290
iter 10 value 94.373590
iter 20 value 89.384907
iter 30 value 85.357090
iter 40 value 81.919632
iter 50 value 81.674592
iter 60 value 81.089621
iter 70 value 79.961273
iter 80 value 79.659350
iter 90 value 79.042625
iter 100 value 78.949815
final value 78.949815
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 118.393740
iter 10 value 94.382274
iter 20 value 88.957419
iter 30 value 87.408522
iter 40 value 86.671652
iter 50 value 85.417718
iter 60 value 84.641976
iter 70 value 82.850355
iter 80 value 81.292986
iter 90 value 80.686825
iter 100 value 80.518350
final value 80.518350
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 112.025402
iter 10 value 94.515293
iter 20 value 86.978046
iter 30 value 86.261918
iter 40 value 84.034468
iter 50 value 83.051405
iter 60 value 82.043703
iter 70 value 80.517882
iter 80 value 80.376736
iter 90 value 80.105537
iter 100 value 79.858753
final value 79.858753
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.538577
iter 10 value 93.945451
iter 20 value 85.894749
iter 30 value 85.765661
iter 40 value 84.596303
iter 50 value 82.227562
iter 60 value 80.609929
iter 70 value 80.415219
final value 80.347898
converged
Fitting Repeat 5
# weights: 305
initial value 104.264935
iter 10 value 94.312307
iter 20 value 92.478943
iter 30 value 84.313824
iter 40 value 82.775417
iter 50 value 82.424531
iter 60 value 81.576502
iter 70 value 80.619949
iter 80 value 79.662022
iter 90 value 79.220819
iter 100 value 79.110906
final value 79.110906
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.992862
iter 10 value 92.507850
iter 20 value 87.390201
iter 30 value 86.454474
iter 40 value 85.547081
iter 50 value 84.189758
iter 60 value 80.644485
iter 70 value 80.470875
iter 80 value 80.157452
iter 90 value 79.372316
iter 100 value 79.058714
final value 79.058714
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 129.608405
iter 10 value 94.992133
iter 20 value 87.821214
iter 30 value 84.367979
iter 40 value 82.705241
iter 50 value 82.270013
iter 60 value 81.225934
iter 70 value 80.890564
iter 80 value 80.399630
iter 90 value 79.916049
iter 100 value 79.550830
final value 79.550830
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.806860
iter 10 value 95.103841
iter 20 value 85.101120
iter 30 value 82.227711
iter 40 value 81.879184
iter 50 value 80.750813
iter 60 value 79.972365
iter 70 value 79.563639
iter 80 value 79.511746
iter 90 value 79.364472
iter 100 value 79.214213
final value 79.214213
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.464627
iter 10 value 85.485759
iter 20 value 83.250465
iter 30 value 82.037680
iter 40 value 81.404124
iter 50 value 80.421905
iter 60 value 79.719054
iter 70 value 79.560789
iter 80 value 79.468052
iter 90 value 79.295020
iter 100 value 79.192762
final value 79.192762
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 102.526589
iter 10 value 91.247131
iter 20 value 84.988398
iter 30 value 81.754115
iter 40 value 81.423692
iter 50 value 80.795922
iter 60 value 79.946923
iter 70 value 79.710649
iter 80 value 79.687034
iter 90 value 79.653022
iter 100 value 79.538410
final value 79.538410
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.368250
final value 94.486018
converged
Fitting Repeat 2
# weights: 103
initial value 95.913501
iter 10 value 86.663996
iter 20 value 84.943073
iter 30 value 84.872630
iter 40 value 84.871262
iter 50 value 80.894271
iter 60 value 80.890548
iter 70 value 80.886699
final value 80.886460
converged
Fitting Repeat 3
# weights: 103
initial value 102.423700
final value 94.485679
converged
Fitting Repeat 4
# weights: 103
initial value 98.905608
final value 94.485888
converged
Fitting Repeat 5
# weights: 103
initial value 95.490092
final value 94.485890
converged
Fitting Repeat 1
# weights: 305
initial value 99.284544
iter 10 value 94.280100
iter 20 value 94.230017
iter 30 value 85.170387
iter 40 value 85.169266
iter 50 value 85.081038
iter 60 value 84.657846
iter 70 value 84.657736
final value 84.657343
converged
Fitting Repeat 2
# weights: 305
initial value 112.273031
iter 10 value 94.489167
iter 20 value 94.475886
iter 30 value 81.401482
iter 40 value 80.903380
iter 50 value 80.891120
iter 60 value 80.236519
iter 70 value 78.759276
iter 80 value 78.087287
iter 90 value 77.987859
iter 100 value 77.922841
final value 77.922841
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.461442
iter 10 value 94.488688
iter 20 value 94.479505
iter 30 value 90.988301
iter 40 value 90.590623
iter 50 value 90.212279
iter 60 value 81.908794
iter 70 value 79.829390
iter 80 value 79.643586
iter 90 value 79.071536
iter 100 value 78.966227
final value 78.966227
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.687312
iter 10 value 94.280382
iter 20 value 94.097174
iter 30 value 94.000694
iter 40 value 93.322102
iter 50 value 92.607166
iter 60 value 92.604139
iter 70 value 92.494205
iter 80 value 92.492846
final value 92.492844
converged
Fitting Repeat 5
# weights: 305
initial value 116.419867
iter 10 value 94.489012
iter 20 value 94.401743
iter 30 value 93.512813
final value 93.512409
converged
Fitting Repeat 1
# weights: 507
initial value 98.752872
iter 10 value 94.491837
iter 20 value 94.484333
iter 30 value 94.424953
iter 40 value 93.549037
iter 50 value 91.919740
iter 60 value 84.366443
iter 70 value 82.088483
iter 80 value 81.589658
iter 90 value 81.562362
iter 100 value 81.486399
final value 81.486399
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.025595
iter 10 value 85.343165
iter 20 value 85.029209
iter 30 value 84.673396
iter 40 value 84.637632
iter 50 value 84.475073
iter 60 value 81.960319
iter 70 value 81.508930
iter 80 value 81.245350
iter 90 value 81.115923
iter 100 value 81.112752
final value 81.112752
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.537593
iter 10 value 94.417469
iter 20 value 94.261620
iter 30 value 94.258679
iter 40 value 94.201594
iter 50 value 94.200915
final value 94.200839
converged
Fitting Repeat 4
# weights: 507
initial value 108.900967
iter 10 value 94.283583
iter 20 value 94.278067
iter 30 value 90.529820
iter 40 value 89.250691
iter 50 value 89.250231
final value 89.250162
converged
Fitting Repeat 5
# weights: 507
initial value 117.260558
iter 10 value 94.284003
iter 20 value 94.276496
iter 30 value 94.010455
iter 40 value 81.785552
iter 50 value 81.760003
iter 60 value 80.943419
iter 70 value 80.699971
iter 80 value 80.459539
iter 90 value 80.410546
iter 100 value 80.407682
final value 80.407682
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 128.461476
iter 10 value 115.931822
iter 20 value 108.902929
iter 30 value 106.776232
iter 40 value 106.215554
iter 50 value 106.181481
iter 60 value 105.602640
iter 70 value 105.097079
iter 80 value 104.930519
iter 90 value 104.894980
iter 100 value 103.399607
final value 103.399607
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 147.599776
iter 10 value 118.269112
iter 20 value 111.033687
iter 30 value 108.384544
iter 40 value 106.235522
iter 50 value 103.257456
iter 60 value 102.704258
iter 70 value 102.073482
iter 80 value 101.975601
iter 90 value 101.620961
iter 100 value 101.409006
final value 101.409006
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 128.783917
iter 10 value 117.399555
iter 20 value 108.981639
iter 30 value 105.782761
iter 40 value 105.109005
iter 50 value 103.754435
iter 60 value 103.394735
iter 70 value 102.464978
iter 80 value 101.701405
iter 90 value 101.640014
iter 100 value 101.595584
final value 101.595584
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 148.430198
iter 10 value 117.555166
iter 20 value 116.341361
iter 30 value 108.277063
iter 40 value 107.193950
iter 50 value 105.677732
iter 60 value 105.276287
iter 70 value 104.367916
iter 80 value 103.399914
iter 90 value 102.260248
iter 100 value 101.316455
final value 101.316455
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 146.991779
iter 10 value 117.850538
iter 20 value 117.426965
iter 30 value 115.527923
iter 40 value 110.351161
iter 50 value 107.042947
iter 60 value 105.576141
iter 70 value 104.503503
iter 80 value 102.258114
iter 90 value 101.313183
iter 100 value 100.921845
final value 100.921845
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Mon Apr 21 21:23:52 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
40.175 1.601 119.849
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 33.238 | 1.686 | 35.232 | |
| FreqInteractors | 0.259 | 0.013 | 0.275 | |
| calculateAAC | 0.038 | 0.006 | 0.043 | |
| calculateAutocor | 0.343 | 0.063 | 0.408 | |
| calculateCTDC | 0.088 | 0.006 | 0.096 | |
| calculateCTDD | 0.599 | 0.028 | 0.631 | |
| calculateCTDT | 0.215 | 0.009 | 0.225 | |
| calculateCTriad | 0.372 | 0.023 | 0.397 | |
| calculateDC | 0.096 | 0.010 | 0.106 | |
| calculateF | 0.356 | 0.016 | 0.376 | |
| calculateKSAAP | 0.102 | 0.009 | 0.112 | |
| calculateQD_Sm | 1.742 | 0.097 | 1.851 | |
| calculateTC | 1.797 | 0.155 | 1.966 | |
| calculateTC_Sm | 0.277 | 0.016 | 0.295 | |
| corr_plot | 32.503 | 1.610 | 34.328 | |
| enrichfindP | 0.464 | 0.055 | 8.893 | |
| enrichfind_hp | 0.074 | 0.021 | 1.057 | |
| enrichplot | 0.396 | 0.007 | 0.406 | |
| filter_missing_values | 0.001 | 0.001 | 0.001 | |
| getFASTA | 0.069 | 0.010 | 3.749 | |
| getHPI | 0.000 | 0.000 | 0.001 | |
| get_negativePPI | 0.002 | 0.001 | 0.002 | |
| get_positivePPI | 0.000 | 0.001 | 0.000 | |
| impute_missing_data | 0.001 | 0.001 | 0.002 | |
| plotPPI | 0.076 | 0.003 | 0.081 | |
| pred_ensembel | 13.190 | 0.427 | 11.691 | |
| var_imp | 35.565 | 1.755 | 37.785 | |