| Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-09-11 11:38 -0400 (Thu, 11 Sep 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4824 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" | 4606 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4547 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.14.0 |
| Command: /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.14.0.tar.gz |
| StartedAt: 2025-09-11 00:46:56 -0400 (Thu, 11 Sep 2025) |
| EndedAt: 2025-09-11 01:02:16 -0400 (Thu, 11 Sep 2025) |
| EllapsedTime: 920.2 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.21-bioc/R/site-library --timings HPiP_1.14.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’
* using R version 4.5.1 (2025-06-13)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 33.969 0.361 34.333
FSmethod 32.709 0.643 33.354
corr_plot 32.993 0.334 33.328
pred_ensembel 13.282 0.170 12.090
enrichfindP 0.467 0.030 8.148
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/home/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.21-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.21-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 (2025-06-13) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 97.314418
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 104.684952
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 100.926187
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.583374
final value 94.484210
converged
Fitting Repeat 5
# weights: 103
initial value 97.403068
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 94.136741
iter 10 value 85.232264
iter 20 value 84.402755
iter 30 value 84.348144
final value 84.347930
converged
Fitting Repeat 2
# weights: 305
initial value 96.566881
final value 94.387500
converged
Fitting Repeat 3
# weights: 305
initial value 100.393235
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 99.502235
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 95.843329
final value 94.354396
converged
Fitting Repeat 1
# weights: 507
initial value 98.172538
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 104.064528
iter 10 value 94.387506
final value 94.387500
converged
Fitting Repeat 3
# weights: 507
initial value 130.976203
iter 10 value 94.354645
final value 94.354396
converged
Fitting Repeat 4
# weights: 507
initial value 97.301068
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 97.421451
iter 10 value 88.707765
iter 20 value 87.181301
iter 30 value 87.169920
final value 87.169492
converged
Fitting Repeat 1
# weights: 103
initial value 101.213222
iter 10 value 93.856389
iter 20 value 93.111286
iter 30 value 87.632758
iter 40 value 85.009858
iter 50 value 82.539253
iter 60 value 82.181764
iter 70 value 82.103033
iter 80 value 82.098924
iter 80 value 82.098924
iter 80 value 82.098924
final value 82.098924
converged
Fitting Repeat 2
# weights: 103
initial value 100.856988
iter 10 value 94.478604
iter 20 value 93.811943
iter 30 value 90.049194
iter 40 value 87.653092
iter 50 value 87.192875
iter 60 value 83.847093
iter 70 value 82.289606
iter 80 value 81.976449
iter 90 value 81.758634
iter 100 value 81.684500
final value 81.684500
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.197134
iter 10 value 94.475411
iter 20 value 88.828326
iter 30 value 87.067072
iter 40 value 83.220633
iter 50 value 82.768221
iter 60 value 82.313694
iter 70 value 82.126369
iter 80 value 82.099393
final value 82.098923
converged
Fitting Repeat 4
# weights: 103
initial value 104.170298
iter 10 value 94.446374
iter 20 value 94.105440
iter 30 value 93.932061
iter 40 value 86.318349
iter 50 value 85.493604
iter 60 value 84.894337
iter 70 value 83.034878
iter 80 value 81.047178
iter 90 value 80.986942
iter 100 value 80.766610
final value 80.766610
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.228681
iter 10 value 94.492953
iter 20 value 93.345232
iter 30 value 93.088850
iter 40 value 85.674163
iter 50 value 83.808811
iter 60 value 83.265900
iter 70 value 80.700291
iter 80 value 80.685075
iter 90 value 80.647212
iter 100 value 80.524571
final value 80.524571
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 111.628662
iter 10 value 94.481133
iter 20 value 87.939132
iter 30 value 82.768669
iter 40 value 82.515105
iter 50 value 81.975499
iter 60 value 81.905579
iter 70 value 81.839721
iter 80 value 81.629895
iter 90 value 81.394691
iter 100 value 80.444258
final value 80.444258
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.173768
iter 10 value 94.505402
iter 20 value 93.941735
iter 30 value 88.301319
iter 40 value 86.868574
iter 50 value 83.968122
iter 60 value 82.298088
iter 70 value 81.593443
iter 80 value 81.071121
iter 90 value 80.534252
iter 100 value 80.350511
final value 80.350511
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.314629
iter 10 value 94.534937
iter 20 value 94.131810
iter 30 value 94.006884
iter 40 value 89.325825
iter 50 value 88.784612
iter 60 value 87.569319
iter 70 value 83.707657
iter 80 value 81.119097
iter 90 value 80.500907
iter 100 value 80.167005
final value 80.167005
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.413687
iter 10 value 94.233075
iter 20 value 88.917456
iter 30 value 86.528296
iter 40 value 85.523200
iter 50 value 85.230049
iter 60 value 82.113685
iter 70 value 80.782039
iter 80 value 80.559927
iter 90 value 80.519007
iter 100 value 80.040121
final value 80.040121
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.764724
iter 10 value 94.305306
iter 20 value 86.708705
iter 30 value 82.758342
iter 40 value 81.297032
iter 50 value 80.955325
iter 60 value 80.354725
iter 70 value 80.125531
iter 80 value 79.959882
iter 90 value 79.456941
iter 100 value 79.249609
final value 79.249609
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 127.181559
iter 10 value 96.544041
iter 20 value 87.480623
iter 30 value 85.113931
iter 40 value 84.466177
iter 50 value 83.963392
iter 60 value 81.038226
iter 70 value 80.091136
iter 80 value 79.939687
iter 90 value 79.844874
iter 100 value 79.785858
final value 79.785858
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.858110
iter 10 value 94.763360
iter 20 value 86.156515
iter 30 value 85.666727
iter 40 value 84.602247
iter 50 value 82.451608
iter 60 value 81.304100
iter 70 value 80.605804
iter 80 value 79.606765
iter 90 value 79.157450
iter 100 value 79.067295
final value 79.067295
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.776178
iter 10 value 97.619391
iter 20 value 93.623341
iter 30 value 84.957545
iter 40 value 84.436184
iter 50 value 84.003384
iter 60 value 83.914113
iter 70 value 83.818454
iter 80 value 83.423070
iter 90 value 82.220848
iter 100 value 81.083138
final value 81.083138
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.522565
iter 10 value 93.956266
iter 20 value 84.609503
iter 30 value 82.448836
iter 40 value 82.006075
iter 50 value 81.219226
iter 60 value 80.641222
iter 70 value 80.263230
iter 80 value 79.961513
iter 90 value 79.679358
iter 100 value 79.321548
final value 79.321548
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.564892
iter 10 value 94.523280
iter 20 value 93.643584
iter 30 value 90.775462
iter 40 value 89.649308
iter 50 value 87.700767
iter 60 value 87.046639
iter 70 value 84.400538
iter 80 value 81.289723
iter 90 value 80.866388
iter 100 value 79.862435
final value 79.862435
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.106903
final value 94.485642
converged
Fitting Repeat 2
# weights: 103
initial value 96.031078
iter 10 value 94.254787
iter 20 value 92.904226
iter 30 value 84.568218
iter 40 value 83.118511
final value 83.067708
converged
Fitting Repeat 3
# weights: 103
initial value 110.296471
iter 10 value 94.485887
iter 20 value 94.484271
final value 94.484205
converged
Fitting Repeat 4
# weights: 103
initial value 98.567430
final value 94.486032
converged
Fitting Repeat 5
# weights: 103
initial value 98.446257
final value 94.485766
converged
Fitting Repeat 1
# weights: 305
initial value 96.293608
iter 10 value 94.488818
iter 20 value 94.484247
iter 30 value 86.764279
iter 40 value 84.467952
iter 50 value 79.639357
iter 60 value 79.221372
iter 70 value 78.913942
iter 80 value 78.913436
iter 90 value 78.913125
iter 90 value 78.913125
final value 78.913125
converged
Fitting Repeat 2
# weights: 305
initial value 112.254632
iter 10 value 94.168978
iter 20 value 94.165455
final value 94.165453
converged
Fitting Repeat 3
# weights: 305
initial value 98.901528
iter 10 value 94.493752
iter 20 value 94.075864
iter 30 value 94.053608
final value 94.053411
converged
Fitting Repeat 4
# weights: 305
initial value 97.559896
iter 10 value 91.324489
iter 20 value 84.369119
iter 30 value 82.000689
iter 40 value 80.852800
iter 50 value 80.848253
iter 60 value 80.639374
iter 70 value 80.595255
iter 80 value 80.586357
iter 90 value 80.575267
iter 100 value 80.571388
final value 80.571388
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 96.079354
iter 10 value 94.359503
iter 20 value 94.133882
iter 30 value 93.883684
iter 40 value 93.883006
final value 93.882912
converged
Fitting Repeat 1
# weights: 507
initial value 105.962274
iter 10 value 94.488011
iter 20 value 94.283538
iter 30 value 82.315251
iter 40 value 81.687113
iter 50 value 81.683317
iter 60 value 81.648692
iter 70 value 81.111563
iter 80 value 79.296081
iter 90 value 78.506155
iter 100 value 78.143527
final value 78.143527
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 119.564291
iter 10 value 94.491472
iter 20 value 93.794925
iter 30 value 83.365910
final value 83.336972
converged
Fitting Repeat 3
# weights: 507
initial value 95.538813
iter 10 value 92.782218
iter 20 value 86.965060
iter 30 value 86.961771
iter 40 value 85.445416
iter 50 value 83.563198
iter 60 value 83.473088
iter 70 value 83.472032
iter 80 value 83.469058
iter 90 value 83.265117
iter 100 value 80.798626
final value 80.798626
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.615922
iter 10 value 94.126480
iter 20 value 94.065181
iter 30 value 94.056899
iter 40 value 93.901921
iter 50 value 83.475943
iter 60 value 79.993838
iter 70 value 78.941505
iter 80 value 78.850624
iter 90 value 78.644692
iter 100 value 78.533505
final value 78.533505
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 113.799482
iter 10 value 94.145979
iter 20 value 94.142330
iter 30 value 94.139206
final value 94.138978
converged
Fitting Repeat 1
# weights: 103
initial value 94.495745
iter 10 value 94.052917
final value 94.052911
converged
Fitting Repeat 2
# weights: 103
initial value 101.122428
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 126.278194
final value 94.052448
converged
Fitting Repeat 4
# weights: 103
initial value 97.930899
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 100.045826
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 103.951644
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 94.609728
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 104.657122
final value 93.962011
converged
Fitting Repeat 4
# weights: 305
initial value 100.809135
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 106.329321
iter 10 value 94.033150
iter 10 value 94.033149
iter 10 value 94.033149
final value 94.033149
converged
Fitting Repeat 1
# weights: 507
initial value 120.229476
iter 10 value 94.126108
iter 20 value 91.318015
iter 30 value 90.901645
iter 40 value 90.863968
final value 90.863210
converged
Fitting Repeat 2
# weights: 507
initial value 110.596147
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 106.809162
iter 10 value 92.961302
iter 20 value 91.824134
iter 20 value 91.824134
iter 30 value 91.760208
iter 40 value 91.726659
final value 91.726481
converged
Fitting Repeat 4
# weights: 507
initial value 146.056057
iter 10 value 94.008709
final value 94.008696
converged
Fitting Repeat 5
# weights: 507
initial value 94.743909
final value 93.990909
converged
Fitting Repeat 1
# weights: 103
initial value 100.426005
iter 10 value 94.109722
iter 20 value 92.051429
iter 30 value 87.656846
iter 40 value 87.468379
iter 50 value 87.202093
iter 60 value 87.096780
iter 70 value 86.169995
iter 80 value 85.589100
iter 90 value 85.557871
iter 100 value 84.994971
final value 84.994971
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.151901
iter 10 value 94.119468
iter 20 value 93.895904
iter 30 value 88.399102
iter 40 value 86.888778
iter 50 value 86.012889
iter 60 value 85.583667
iter 70 value 85.198062
final value 85.091699
converged
Fitting Repeat 3
# weights: 103
initial value 101.124952
iter 10 value 94.022079
iter 20 value 93.718245
iter 30 value 91.149548
iter 40 value 90.773343
iter 50 value 90.225666
iter 60 value 87.869397
iter 70 value 87.109895
iter 80 value 86.802999
iter 90 value 86.771025
iter 100 value 86.752870
final value 86.752870
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.164759
iter 10 value 94.001902
iter 20 value 91.117067
iter 30 value 89.009214
iter 40 value 87.920608
iter 50 value 87.612945
iter 60 value 87.187654
iter 70 value 86.947478
iter 80 value 86.851426
iter 90 value 86.605171
final value 86.596406
converged
Fitting Repeat 5
# weights: 103
initial value 103.097694
iter 10 value 94.120193
iter 20 value 94.028838
iter 30 value 93.612452
iter 40 value 92.933777
iter 50 value 91.399716
iter 60 value 91.182972
iter 70 value 88.090650
iter 80 value 86.919455
iter 90 value 86.760270
iter 100 value 86.496033
final value 86.496033
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 120.664490
iter 10 value 94.333156
iter 20 value 94.065934
iter 30 value 92.981200
iter 40 value 88.568353
iter 50 value 87.040807
iter 60 value 86.651248
iter 70 value 85.514067
iter 80 value 84.796056
iter 90 value 84.765302
iter 100 value 84.356167
final value 84.356167
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 113.182711
iter 10 value 94.162768
iter 20 value 94.055637
iter 30 value 93.966780
iter 40 value 93.181663
iter 50 value 88.064500
iter 60 value 85.690365
iter 70 value 84.319632
iter 80 value 84.184262
iter 90 value 83.741044
iter 100 value 83.598988
final value 83.598988
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.204251
iter 10 value 94.448666
iter 20 value 92.962092
iter 30 value 88.751009
iter 40 value 87.984531
iter 50 value 87.627331
iter 60 value 87.558484
iter 70 value 87.070714
iter 80 value 85.970418
iter 90 value 84.999270
iter 100 value 83.876631
final value 83.876631
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.965345
iter 10 value 94.044199
iter 20 value 92.914872
iter 30 value 89.837578
iter 40 value 88.463510
iter 50 value 87.580923
iter 60 value 87.140940
iter 70 value 87.097994
iter 80 value 87.023773
iter 90 value 85.845350
iter 100 value 85.044797
final value 85.044797
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.628275
iter 10 value 94.030405
iter 20 value 92.862743
iter 30 value 92.460511
iter 40 value 92.266191
iter 50 value 89.058429
iter 60 value 87.447369
iter 70 value 86.998941
iter 80 value 86.168232
iter 90 value 85.017016
iter 100 value 84.341039
final value 84.341039
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 122.071878
iter 10 value 94.124336
iter 20 value 89.232614
iter 30 value 88.872030
iter 40 value 88.274886
iter 50 value 86.658285
iter 60 value 85.021719
iter 70 value 84.209266
iter 80 value 83.887337
iter 90 value 83.735903
iter 100 value 83.504469
final value 83.504469
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.876965
iter 10 value 94.036026
iter 20 value 91.473286
iter 30 value 88.774189
iter 40 value 87.921174
iter 50 value 86.629908
iter 60 value 85.653001
iter 70 value 84.556834
iter 80 value 84.022804
iter 90 value 83.976933
iter 100 value 83.810654
final value 83.810654
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 122.542243
iter 10 value 94.142120
iter 20 value 94.014109
iter 30 value 93.978526
iter 40 value 93.209161
iter 50 value 89.025019
iter 60 value 87.285746
iter 70 value 86.287343
iter 80 value 86.211633
iter 90 value 85.337891
iter 100 value 84.919153
final value 84.919153
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.536617
iter 10 value 93.917698
iter 20 value 88.840126
iter 30 value 87.783781
iter 40 value 87.630943
iter 50 value 84.026352
iter 60 value 83.724793
iter 70 value 83.392651
iter 80 value 83.167390
iter 90 value 83.055515
iter 100 value 82.953253
final value 82.953253
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 117.722040
iter 10 value 94.020796
iter 20 value 89.232076
iter 30 value 86.265357
iter 40 value 84.443717
iter 50 value 84.038220
iter 60 value 83.899504
iter 70 value 83.700439
iter 80 value 83.643939
iter 90 value 83.569371
iter 100 value 83.448735
final value 83.448735
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.557632
final value 94.054543
converged
Fitting Repeat 2
# weights: 103
initial value 98.165538
iter 10 value 94.054778
iter 20 value 94.052902
iter 30 value 89.761323
iter 40 value 89.578616
final value 89.578543
converged
Fitting Repeat 3
# weights: 103
initial value 97.211819
final value 94.054599
converged
Fitting Repeat 4
# weights: 103
initial value 102.467140
final value 94.054325
converged
Fitting Repeat 5
# weights: 103
initial value 100.561403
final value 94.054536
converged
Fitting Repeat 1
# weights: 305
initial value 96.527399
iter 10 value 94.013653
iter 20 value 93.965752
iter 30 value 93.962353
iter 40 value 93.960715
final value 93.960594
converged
Fitting Repeat 2
# weights: 305
initial value 115.559987
iter 10 value 94.014342
iter 20 value 93.967577
iter 30 value 93.965063
final value 93.962202
converged
Fitting Repeat 3
# weights: 305
initial value 108.095237
iter 10 value 94.057385
iter 20 value 94.052962
iter 30 value 93.929511
iter 40 value 92.709684
iter 50 value 92.645207
iter 60 value 92.505923
iter 70 value 92.504367
final value 92.504269
converged
Fitting Repeat 4
# weights: 305
initial value 110.261917
iter 10 value 94.057764
iter 20 value 92.610444
iter 30 value 88.222684
iter 40 value 87.247786
iter 50 value 86.853287
final value 86.797778
converged
Fitting Repeat 5
# weights: 305
initial value 101.398689
iter 10 value 94.057396
final value 94.052914
converged
Fitting Repeat 1
# weights: 507
initial value 95.188445
iter 10 value 94.015259
iter 20 value 94.000456
iter 30 value 93.962238
iter 40 value 93.961783
iter 50 value 93.961735
iter 60 value 93.960589
iter 70 value 91.456747
iter 80 value 89.077826
iter 90 value 88.964045
iter 100 value 88.765351
final value 88.765351
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 96.867763
iter 10 value 94.016986
iter 20 value 93.969028
iter 30 value 93.893745
iter 40 value 87.941776
iter 50 value 86.281090
iter 60 value 86.278171
iter 70 value 85.681786
iter 80 value 85.455944
iter 90 value 85.362417
iter 100 value 85.248417
final value 85.248417
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.538541
iter 10 value 94.016910
iter 20 value 93.978581
iter 30 value 93.960704
iter 40 value 93.960576
final value 93.960575
converged
Fitting Repeat 4
# weights: 507
initial value 98.821916
iter 10 value 93.199195
iter 20 value 92.897169
iter 30 value 92.834770
iter 40 value 91.828053
iter 50 value 91.826863
iter 60 value 91.530177
iter 70 value 88.193044
iter 80 value 88.192069
iter 90 value 88.191822
iter 100 value 88.191132
final value 88.191132
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 100.743071
iter 10 value 94.061031
iter 20 value 93.745348
iter 30 value 89.922678
iter 40 value 89.375955
iter 50 value 89.047991
iter 60 value 89.045886
iter 60 value 89.045885
iter 60 value 89.045885
final value 89.045885
converged
Fitting Repeat 1
# weights: 103
initial value 98.471453
final value 94.466823
converged
Fitting Repeat 2
# weights: 103
initial value 102.748195
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 98.952665
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 119.885130
final value 94.466823
converged
Fitting Repeat 5
# weights: 103
initial value 97.419076
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 99.946259
iter 10 value 94.466829
final value 94.466823
converged
Fitting Repeat 2
# weights: 305
initial value 96.626944
final value 94.484227
converged
Fitting Repeat 3
# weights: 305
initial value 104.525493
final value 94.466823
converged
Fitting Repeat 4
# weights: 305
initial value 95.962688
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 100.165552
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 98.147779
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 103.587200
iter 10 value 94.144702
iter 10 value 94.144701
iter 10 value 94.144701
final value 94.144701
converged
Fitting Repeat 3
# weights: 507
initial value 114.661588
final value 94.466823
converged
Fitting Repeat 4
# weights: 507
initial value 100.690191
iter 10 value 93.103496
final value 93.102857
converged
Fitting Repeat 5
# weights: 507
initial value 120.669955
final value 94.466823
converged
Fitting Repeat 1
# weights: 103
initial value 97.138096
iter 10 value 94.497271
iter 20 value 91.695344
iter 30 value 91.294165
iter 40 value 91.242880
iter 50 value 87.799443
iter 60 value 85.405613
iter 70 value 84.225077
iter 80 value 83.084997
iter 90 value 82.876819
final value 82.875880
converged
Fitting Repeat 2
# weights: 103
initial value 97.802388
iter 10 value 94.471847
iter 20 value 92.929632
iter 30 value 86.248187
iter 40 value 85.248853
iter 50 value 85.106907
iter 60 value 85.075248
iter 70 value 85.042908
iter 80 value 84.252090
iter 90 value 83.206732
iter 100 value 83.173851
final value 83.173851
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.810281
iter 10 value 94.531403
iter 20 value 94.488493
iter 30 value 94.287642
iter 40 value 93.422248
iter 50 value 87.284508
iter 60 value 84.856969
iter 70 value 84.434009
iter 80 value 83.913662
iter 90 value 83.775621
iter 100 value 83.767008
final value 83.767008
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.727273
iter 10 value 94.485339
iter 20 value 92.268462
iter 30 value 91.201523
iter 40 value 91.134334
iter 50 value 91.103042
iter 60 value 91.066506
iter 70 value 91.066363
final value 91.066266
converged
Fitting Repeat 5
# weights: 103
initial value 96.918089
iter 10 value 94.502898
iter 20 value 86.825157
iter 30 value 83.685062
iter 40 value 83.081217
iter 50 value 81.565929
iter 60 value 81.110312
iter 70 value 81.065809
iter 80 value 80.637672
iter 90 value 80.588699
final value 80.588692
converged
Fitting Repeat 1
# weights: 305
initial value 107.987601
iter 10 value 94.487292
iter 20 value 88.348110
iter 30 value 86.474635
iter 40 value 85.693538
iter 50 value 85.401490
iter 60 value 85.263465
iter 70 value 85.196355
iter 80 value 85.143238
iter 90 value 85.117606
iter 100 value 84.258240
final value 84.258240
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.460586
iter 10 value 93.701018
iter 20 value 87.783663
iter 30 value 84.288734
iter 40 value 83.527077
iter 50 value 83.286485
iter 60 value 82.878467
iter 70 value 82.029689
iter 80 value 81.006772
iter 90 value 80.894311
iter 100 value 79.735298
final value 79.735298
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.006686
iter 10 value 94.291418
iter 20 value 87.398419
iter 30 value 86.174799
iter 40 value 83.866644
iter 50 value 82.559871
iter 60 value 81.360099
iter 70 value 80.616155
iter 80 value 79.734807
iter 90 value 79.299348
iter 100 value 79.249092
final value 79.249092
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 108.164657
iter 10 value 91.196949
iter 20 value 85.885478
iter 30 value 85.648977
iter 40 value 84.933268
iter 50 value 83.463186
iter 60 value 83.120849
iter 70 value 82.632625
iter 80 value 82.453875
iter 90 value 81.730942
iter 100 value 81.550191
final value 81.550191
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.735414
iter 10 value 94.420028
iter 20 value 86.522622
iter 30 value 85.677916
iter 40 value 85.500440
iter 50 value 85.441487
iter 60 value 85.410689
iter 70 value 83.375579
iter 80 value 82.196186
iter 90 value 81.103278
iter 100 value 81.056146
final value 81.056146
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 115.200103
iter 10 value 90.162957
iter 20 value 86.108807
iter 30 value 84.672273
iter 40 value 83.942624
iter 50 value 80.074330
iter 60 value 79.411822
iter 70 value 79.333318
iter 80 value 79.250244
iter 90 value 79.156498
iter 100 value 79.148961
final value 79.148961
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.335143
iter 10 value 94.595413
iter 20 value 91.022023
iter 30 value 84.507502
iter 40 value 82.001727
iter 50 value 80.205274
iter 60 value 79.510308
iter 70 value 79.409113
iter 80 value 79.133530
iter 90 value 78.873996
iter 100 value 78.527964
final value 78.527964
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.653080
iter 10 value 94.150767
iter 20 value 84.737220
iter 30 value 83.597117
iter 40 value 82.309859
iter 50 value 81.693815
iter 60 value 80.672836
iter 70 value 79.591824
iter 80 value 79.278959
iter 90 value 78.705201
iter 100 value 78.524668
final value 78.524668
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 118.206702
iter 10 value 95.119747
iter 20 value 91.882379
iter 30 value 86.341681
iter 40 value 83.882737
iter 50 value 83.351307
iter 60 value 82.665560
iter 70 value 82.160255
iter 80 value 81.142435
iter 90 value 80.627280
iter 100 value 80.525019
final value 80.525019
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.879626
iter 10 value 95.863125
iter 20 value 94.512615
iter 30 value 90.504388
iter 40 value 83.776883
iter 50 value 81.307845
iter 60 value 80.501536
iter 70 value 79.495593
iter 80 value 79.157307
iter 90 value 78.930896
iter 100 value 78.823039
final value 78.823039
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.922653
final value 94.485945
converged
Fitting Repeat 2
# weights: 103
initial value 96.535459
final value 94.485759
converged
Fitting Repeat 3
# weights: 103
initial value 105.013951
final value 94.485682
converged
Fitting Repeat 4
# weights: 103
initial value 101.312600
final value 94.485754
converged
Fitting Repeat 5
# weights: 103
initial value 103.975333
final value 94.489696
converged
Fitting Repeat 1
# weights: 305
initial value 98.480355
iter 10 value 94.488815
iter 20 value 94.324419
iter 30 value 85.528146
iter 40 value 85.527967
final value 85.527949
converged
Fitting Repeat 2
# weights: 305
initial value 99.980941
iter 10 value 92.733707
iter 20 value 92.713671
iter 30 value 92.606240
iter 40 value 92.602461
iter 50 value 92.600695
iter 60 value 92.531841
final value 92.530692
converged
Fitting Repeat 3
# weights: 305
initial value 100.589363
iter 10 value 91.711762
iter 20 value 91.697541
iter 30 value 91.697007
iter 40 value 91.696567
iter 50 value 91.694686
final value 91.694082
converged
Fitting Repeat 4
# weights: 305
initial value 98.137722
iter 10 value 88.510118
iter 20 value 86.103481
iter 30 value 85.921676
iter 40 value 85.916432
iter 50 value 85.914389
iter 60 value 85.913505
iter 70 value 85.911784
iter 80 value 85.911611
final value 85.911593
converged
Fitting Repeat 5
# weights: 305
initial value 107.671009
iter 10 value 94.491187
iter 20 value 94.467954
iter 30 value 87.909534
iter 40 value 86.786523
iter 50 value 86.619218
iter 60 value 85.772965
final value 85.744226
converged
Fitting Repeat 1
# weights: 507
initial value 96.461601
iter 10 value 94.495063
iter 20 value 94.486868
iter 30 value 93.736248
iter 40 value 90.813252
iter 50 value 90.804437
final value 90.804225
converged
Fitting Repeat 2
# weights: 507
initial value 102.627907
iter 10 value 94.491745
iter 20 value 94.459150
iter 30 value 92.791629
iter 40 value 90.624649
iter 50 value 81.374398
iter 60 value 80.552675
iter 70 value 80.470305
iter 80 value 80.303228
iter 90 value 80.058804
iter 100 value 80.058286
final value 80.058286
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 100.809912
iter 10 value 94.474964
iter 20 value 94.348242
iter 30 value 87.441352
iter 40 value 81.273957
iter 50 value 78.308010
iter 60 value 77.253590
iter 70 value 77.155009
iter 80 value 77.144968
iter 90 value 77.134051
iter 100 value 77.133231
final value 77.133231
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.409765
iter 10 value 94.474861
iter 20 value 93.870843
iter 30 value 90.460319
iter 40 value 90.447248
iter 50 value 90.446888
iter 50 value 90.446888
final value 90.446888
converged
Fitting Repeat 5
# weights: 507
initial value 108.105657
iter 10 value 94.491598
iter 20 value 94.469464
iter 30 value 92.605890
iter 40 value 92.603633
final value 92.603614
converged
Fitting Repeat 1
# weights: 103
initial value 95.959700
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.025056
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.191164
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.809627
iter 10 value 94.253256
final value 94.252921
converged
Fitting Repeat 5
# weights: 103
initial value 103.455987
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 100.253051
final value 94.443243
converged
Fitting Repeat 2
# weights: 305
initial value 120.264322
iter 10 value 94.536229
iter 20 value 94.484285
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 94.791450
final value 94.443243
converged
Fitting Repeat 4
# weights: 305
initial value 98.535659
iter 10 value 94.075416
iter 20 value 93.922750
iter 20 value 93.922749
iter 20 value 93.922749
final value 93.922749
converged
Fitting Repeat 5
# weights: 305
initial value 101.641573
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 115.584445
iter 10 value 94.443243
iter 10 value 94.443243
iter 10 value 94.443243
final value 94.443243
converged
Fitting Repeat 2
# weights: 507
initial value 127.416126
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 99.348777
iter 10 value 93.638377
iter 20 value 91.664912
iter 30 value 83.355558
iter 40 value 82.747662
iter 50 value 82.733330
final value 82.733272
converged
Fitting Repeat 4
# weights: 507
initial value 117.902259
final value 94.443243
converged
Fitting Repeat 5
# weights: 507
initial value 118.539022
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 106.788174
iter 10 value 94.425786
iter 20 value 92.863347
iter 30 value 89.140592
iter 40 value 85.927414
iter 50 value 84.252693
iter 60 value 83.561388
iter 70 value 82.672224
iter 80 value 81.101119
iter 90 value 80.460348
iter 100 value 80.457497
final value 80.457497
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.648816
iter 10 value 94.472752
iter 20 value 93.300850
iter 30 value 83.475750
iter 40 value 82.619668
iter 50 value 82.352963
iter 60 value 81.900569
final value 81.894449
converged
Fitting Repeat 3
# weights: 103
initial value 96.492579
iter 10 value 94.488588
iter 20 value 93.990221
iter 30 value 92.112736
iter 40 value 91.971657
iter 50 value 91.812427
final value 91.806358
converged
Fitting Repeat 4
# weights: 103
initial value 97.288882
iter 10 value 94.483483
iter 20 value 94.260980
iter 30 value 94.082137
iter 40 value 93.791612
iter 50 value 91.977058
iter 60 value 87.276018
iter 70 value 86.846985
iter 80 value 83.808018
iter 90 value 82.574358
iter 100 value 82.299047
final value 82.299047
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.076575
iter 10 value 94.487363
iter 20 value 90.070178
iter 30 value 86.529532
iter 40 value 85.208526
iter 50 value 83.894954
iter 60 value 83.593806
iter 70 value 82.713587
iter 80 value 82.475101
final value 82.469301
converged
Fitting Repeat 1
# weights: 305
initial value 118.448088
iter 10 value 94.385080
iter 20 value 88.822679
iter 30 value 85.829460
iter 40 value 84.091862
iter 50 value 79.685917
iter 60 value 78.881365
iter 70 value 78.739420
iter 80 value 78.715290
iter 90 value 78.701046
iter 100 value 78.696869
final value 78.696869
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 130.291472
iter 10 value 94.484324
iter 20 value 93.796043
iter 30 value 91.834338
iter 40 value 91.546942
iter 50 value 91.257347
iter 60 value 87.125592
iter 70 value 82.872677
iter 80 value 82.159818
iter 90 value 81.556119
iter 100 value 80.656893
final value 80.656893
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 115.657529
iter 10 value 94.456925
iter 20 value 83.663103
iter 30 value 82.452917
iter 40 value 82.315383
iter 50 value 81.655777
iter 60 value 81.304386
iter 70 value 80.844009
iter 80 value 79.956351
iter 90 value 79.689880
iter 100 value 79.542787
final value 79.542787
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 114.237623
iter 10 value 94.512147
iter 20 value 85.747270
iter 30 value 85.300068
iter 40 value 83.557027
iter 50 value 81.763009
iter 60 value 81.246137
iter 70 value 80.856732
iter 80 value 80.753277
iter 90 value 80.533404
iter 100 value 79.618274
final value 79.618274
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.612889
iter 10 value 94.603396
iter 20 value 94.348710
iter 30 value 91.721494
iter 40 value 88.247233
iter 50 value 83.689003
iter 60 value 82.986968
iter 70 value 82.864059
iter 80 value 82.476933
iter 90 value 82.285554
iter 100 value 79.904536
final value 79.904536
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.909859
iter 10 value 94.759646
iter 20 value 93.367800
iter 30 value 85.936653
iter 40 value 83.029921
iter 50 value 80.731777
iter 60 value 80.037550
iter 70 value 79.820634
iter 80 value 79.535536
iter 90 value 79.483664
iter 100 value 79.326310
final value 79.326310
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 119.283681
iter 10 value 93.097750
iter 20 value 83.733444
iter 30 value 83.141562
iter 40 value 82.036969
iter 50 value 81.322574
iter 60 value 80.001960
iter 70 value 79.420991
iter 80 value 78.943946
iter 90 value 78.704806
iter 100 value 78.520453
final value 78.520453
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.584212
iter 10 value 94.458105
iter 20 value 90.348346
iter 30 value 84.032599
iter 40 value 82.201599
iter 50 value 81.818531
iter 60 value 80.578772
iter 70 value 79.253982
iter 80 value 79.012447
iter 90 value 78.843553
iter 100 value 78.784146
final value 78.784146
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 144.069857
iter 10 value 109.185607
iter 20 value 86.697787
iter 30 value 84.481405
iter 40 value 81.763373
iter 50 value 80.633356
iter 60 value 80.182919
iter 70 value 79.950960
iter 80 value 79.283905
iter 90 value 79.002313
iter 100 value 78.857338
final value 78.857338
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.254983
iter 10 value 93.985802
iter 20 value 89.394988
iter 30 value 84.802795
iter 40 value 84.373812
iter 50 value 81.606825
iter 60 value 79.561686
iter 70 value 79.440567
iter 80 value 79.275644
iter 90 value 79.075784
iter 100 value 78.880345
final value 78.880345
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.662977
iter 10 value 94.485979
iter 20 value 94.484277
iter 30 value 94.320783
iter 40 value 93.724596
iter 50 value 93.688887
iter 60 value 93.688800
iter 60 value 93.688799
iter 60 value 93.688799
final value 93.688799
converged
Fitting Repeat 2
# weights: 103
initial value 96.405580
final value 94.486059
converged
Fitting Repeat 3
# weights: 103
initial value 99.973692
final value 94.485774
converged
Fitting Repeat 4
# weights: 103
initial value 95.930664
final value 94.485756
converged
Fitting Repeat 5
# weights: 103
initial value 101.012526
final value 94.485570
converged
Fitting Repeat 1
# weights: 305
initial value 94.926469
iter 10 value 94.486926
iter 20 value 94.475620
iter 30 value 88.201026
iter 40 value 82.201462
iter 50 value 82.078232
iter 60 value 82.049436
iter 70 value 81.965411
iter 80 value 81.535067
iter 90 value 81.534557
final value 81.534401
converged
Fitting Repeat 2
# weights: 305
initial value 127.553551
iter 10 value 94.448337
iter 20 value 94.443748
iter 30 value 88.410078
iter 40 value 86.331006
iter 50 value 86.310032
iter 60 value 85.848535
iter 70 value 82.870024
iter 80 value 82.705829
iter 90 value 82.670277
iter 100 value 82.670084
final value 82.670084
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.008411
iter 10 value 94.489054
final value 94.484408
converged
Fitting Repeat 4
# weights: 305
initial value 119.642900
iter 10 value 94.448073
iter 20 value 94.172424
iter 30 value 89.462622
iter 40 value 88.938367
iter 50 value 88.670252
iter 60 value 87.348803
iter 70 value 86.566626
final value 86.564172
converged
Fitting Repeat 5
# weights: 305
initial value 99.617532
iter 10 value 94.488745
iter 20 value 94.390612
iter 30 value 82.990368
iter 40 value 80.597103
iter 50 value 80.174722
iter 60 value 79.392673
iter 70 value 77.285279
iter 80 value 77.264896
iter 90 value 77.263661
iter 100 value 77.262945
final value 77.262945
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 97.698107
iter 10 value 83.542961
iter 20 value 82.754286
iter 30 value 81.913489
iter 40 value 81.850764
iter 50 value 81.847028
iter 60 value 81.842943
iter 70 value 81.696791
iter 80 value 81.278491
iter 90 value 81.247817
iter 100 value 80.265428
final value 80.265428
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.981002
iter 10 value 94.451037
iter 20 value 94.447171
iter 30 value 94.415164
iter 40 value 90.380603
iter 50 value 89.388305
iter 60 value 85.043534
iter 70 value 81.341726
iter 80 value 80.690335
iter 90 value 80.397224
iter 100 value 80.338752
final value 80.338752
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 95.155720
iter 10 value 89.173535
iter 20 value 89.172605
iter 30 value 84.660988
iter 40 value 84.428986
iter 50 value 84.419894
iter 60 value 84.302438
iter 70 value 84.301508
iter 80 value 84.300750
iter 90 value 84.299232
iter 100 value 84.298955
final value 84.298955
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.263183
iter 10 value 94.492692
iter 20 value 94.483974
iter 20 value 94.483974
iter 30 value 87.061993
iter 40 value 86.957098
iter 50 value 83.598185
iter 60 value 83.430087
iter 70 value 83.428784
final value 83.428781
converged
Fitting Repeat 5
# weights: 507
initial value 96.545773
iter 10 value 94.402762
iter 20 value 94.271933
iter 30 value 94.085125
iter 40 value 94.084983
iter 50 value 94.084181
iter 60 value 94.083853
iter 60 value 94.083852
iter 60 value 94.083852
final value 94.083852
converged
Fitting Repeat 1
# weights: 103
initial value 100.725283
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 100.464263
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.613539
final value 93.582418
converged
Fitting Repeat 4
# weights: 103
initial value 100.377436
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 99.700388
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 98.483169
iter 10 value 89.243192
iter 20 value 86.210751
iter 30 value 81.481416
iter 40 value 81.196304
iter 50 value 80.817625
final value 80.817248
converged
Fitting Repeat 2
# weights: 305
initial value 94.857465
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 108.075578
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 97.402228
iter 10 value 93.604520
iter 10 value 93.604520
iter 10 value 93.604520
final value 93.604520
converged
Fitting Repeat 5
# weights: 305
initial value 99.986351
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 103.976773
final value 93.582418
converged
Fitting Repeat 2
# weights: 507
initial value 104.379399
iter 10 value 89.630147
iter 20 value 89.621723
final value 89.621672
converged
Fitting Repeat 3
# weights: 507
initial value 100.128287
final value 93.582418
converged
Fitting Repeat 4
# weights: 507
initial value 100.625246
iter 10 value 90.897930
iter 20 value 83.046572
iter 30 value 81.120974
iter 40 value 80.797404
iter 50 value 80.793375
final value 80.793371
converged
Fitting Repeat 5
# weights: 507
initial value 98.556077
final value 93.084594
converged
Fitting Repeat 1
# weights: 103
initial value 107.568873
iter 10 value 93.997477
iter 20 value 92.578577
iter 30 value 91.697957
iter 40 value 81.940155
iter 50 value 81.661541
iter 60 value 81.048076
iter 70 value 80.794246
iter 80 value 80.285863
iter 90 value 79.997650
iter 100 value 79.944920
final value 79.944920
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 95.757075
iter 10 value 94.055468
iter 20 value 93.898873
iter 30 value 92.544866
iter 40 value 92.496270
iter 50 value 92.495317
iter 60 value 86.396404
iter 70 value 83.076151
iter 80 value 82.392439
iter 90 value 82.079871
iter 100 value 82.071620
final value 82.071620
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.789154
iter 10 value 94.070209
iter 20 value 92.397277
iter 30 value 92.233743
iter 40 value 92.145526
iter 50 value 91.508340
iter 60 value 87.673544
iter 70 value 82.523836
iter 80 value 81.680755
iter 90 value 81.615246
final value 81.615104
converged
Fitting Repeat 4
# weights: 103
initial value 99.310131
iter 10 value 93.529552
iter 20 value 87.187913
iter 30 value 82.305819
iter 40 value 82.092710
iter 50 value 82.087809
iter 60 value 82.079631
iter 70 value 82.071772
final value 82.071617
converged
Fitting Repeat 5
# weights: 103
initial value 99.961920
iter 10 value 94.055617
iter 20 value 93.502897
iter 30 value 93.061583
iter 40 value 92.502744
iter 50 value 88.570705
iter 60 value 83.325611
iter 70 value 82.378469
iter 80 value 82.089820
iter 90 value 81.271733
iter 100 value 80.669086
final value 80.669086
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 114.102795
iter 10 value 94.196758
iter 20 value 92.330221
iter 30 value 82.855601
iter 40 value 81.733788
iter 50 value 81.347426
iter 60 value 80.426365
iter 70 value 80.039385
iter 80 value 79.769604
iter 90 value 79.645432
iter 100 value 79.598334
final value 79.598334
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.689492
iter 10 value 90.473074
iter 20 value 89.718844
iter 30 value 88.326571
iter 40 value 84.144097
iter 50 value 83.227041
iter 60 value 82.775884
iter 70 value 82.654773
iter 80 value 81.548762
iter 90 value 79.487669
iter 100 value 78.900740
final value 78.900740
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 118.012750
iter 10 value 90.319315
iter 20 value 86.138924
iter 30 value 85.142316
iter 40 value 82.410387
iter 50 value 81.476060
iter 60 value 81.117200
iter 70 value 80.616415
iter 80 value 79.739693
iter 90 value 79.459527
iter 100 value 79.055486
final value 79.055486
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.586167
iter 10 value 90.605567
iter 20 value 86.622249
iter 30 value 81.010669
iter 40 value 79.431837
iter 50 value 79.097226
iter 60 value 78.903668
iter 70 value 78.777122
iter 80 value 78.730968
iter 90 value 78.654118
iter 100 value 78.599795
final value 78.599795
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.640135
iter 10 value 93.792299
iter 20 value 84.269905
iter 30 value 83.201744
iter 40 value 82.178038
iter 50 value 81.347423
iter 60 value 81.066200
iter 70 value 80.421029
iter 80 value 79.881633
iter 90 value 79.681916
iter 100 value 79.030669
final value 79.030669
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 117.527014
iter 10 value 94.597420
iter 20 value 88.101749
iter 30 value 86.408701
iter 40 value 85.443846
iter 50 value 81.950719
iter 60 value 79.643100
iter 70 value 79.175442
iter 80 value 79.102579
iter 90 value 79.022407
iter 100 value 78.993967
final value 78.993967
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 134.549207
iter 10 value 94.061298
iter 20 value 86.666059
iter 30 value 83.167100
iter 40 value 82.362550
iter 50 value 80.856084
iter 60 value 80.293398
iter 70 value 79.744833
iter 80 value 79.629760
iter 90 value 79.030566
iter 100 value 78.635666
final value 78.635666
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 121.295084
iter 10 value 94.774585
iter 20 value 94.078008
iter 30 value 91.093570
iter 40 value 83.129552
iter 50 value 81.512849
iter 60 value 80.625216
iter 70 value 80.353100
iter 80 value 80.059982
iter 90 value 79.348613
iter 100 value 78.845260
final value 78.845260
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.119177
iter 10 value 93.949102
iter 20 value 91.414947
iter 30 value 82.028516
iter 40 value 81.069614
iter 50 value 79.860390
iter 60 value 79.757285
iter 70 value 79.669351
iter 80 value 79.587330
iter 90 value 79.240793
iter 100 value 79.059438
final value 79.059438
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.505442
iter 10 value 95.363147
iter 20 value 84.917080
iter 30 value 82.148222
iter 40 value 79.719434
iter 50 value 78.680652
iter 60 value 78.372649
iter 70 value 78.246095
iter 80 value 78.198881
iter 90 value 78.110377
iter 100 value 78.048549
final value 78.048549
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.091411
iter 10 value 94.055084
final value 94.053115
converged
Fitting Repeat 2
# weights: 103
initial value 103.577110
final value 94.054666
converged
Fitting Repeat 3
# weights: 103
initial value 95.539316
iter 10 value 94.054704
iter 20 value 94.052920
iter 30 value 83.321233
iter 40 value 82.563018
iter 50 value 82.548807
iter 60 value 82.546687
iter 70 value 81.640329
iter 80 value 81.621138
iter 90 value 81.577994
iter 100 value 80.964105
final value 80.964105
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.672620
final value 94.054888
converged
Fitting Repeat 5
# weights: 103
initial value 102.565900
final value 94.054572
converged
Fitting Repeat 1
# weights: 305
initial value 97.800903
iter 10 value 94.057850
iter 20 value 93.950565
iter 30 value 92.390201
final value 92.390192
converged
Fitting Repeat 2
# weights: 305
initial value 97.831099
iter 10 value 94.057734
iter 20 value 93.694786
iter 30 value 84.462467
iter 40 value 84.451686
iter 50 value 84.451499
iter 60 value 82.443057
iter 70 value 82.389277
iter 80 value 82.388485
iter 90 value 81.058793
iter 100 value 80.310471
final value 80.310471
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 127.813969
iter 10 value 94.059062
iter 20 value 94.053813
final value 94.053783
converged
Fitting Repeat 4
# weights: 305
initial value 118.715347
iter 10 value 93.587916
iter 20 value 93.583523
final value 93.582685
converged
Fitting Repeat 5
# weights: 305
initial value 118.475980
iter 10 value 94.057462
iter 20 value 94.004229
iter 30 value 85.117268
iter 40 value 81.615977
final value 81.615264
converged
Fitting Repeat 1
# weights: 507
initial value 108.279520
iter 10 value 92.492073
iter 20 value 92.487194
iter 30 value 91.705442
iter 40 value 90.749465
iter 50 value 90.256676
iter 60 value 89.893360
iter 70 value 89.516321
iter 80 value 89.258174
iter 90 value 89.255433
final value 89.255181
converged
Fitting Repeat 2
# weights: 507
initial value 105.537173
iter 10 value 87.160781
iter 20 value 81.623522
iter 30 value 81.402670
iter 40 value 80.966355
iter 50 value 80.944675
iter 60 value 80.938729
iter 70 value 80.937086
iter 80 value 80.135034
iter 90 value 78.596276
iter 100 value 78.560818
final value 78.560818
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.529850
iter 10 value 92.450532
iter 20 value 92.396090
iter 30 value 92.311808
iter 40 value 92.308176
final value 92.306837
converged
Fitting Repeat 4
# weights: 507
initial value 100.433767
iter 10 value 93.093218
iter 20 value 93.091170
iter 30 value 93.090142
iter 40 value 92.019249
iter 50 value 85.001744
iter 60 value 81.251717
iter 70 value 78.922108
iter 80 value 78.267605
iter 90 value 78.195843
iter 100 value 78.192222
final value 78.192222
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 102.389890
iter 10 value 94.055919
iter 20 value 93.984320
iter 30 value 93.348356
iter 40 value 86.310228
iter 50 value 84.456335
iter 60 value 84.455037
iter 70 value 84.454957
iter 80 value 84.454905
iter 90 value 84.454551
final value 84.454473
converged
Fitting Repeat 1
# weights: 305
initial value 128.901616
iter 10 value 117.582867
iter 20 value 114.524614
iter 30 value 108.951092
iter 40 value 107.598443
iter 50 value 106.973265
iter 60 value 106.489027
iter 70 value 106.323030
iter 80 value 105.763755
iter 90 value 103.785957
iter 100 value 103.057388
final value 103.057388
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 167.332223
iter 10 value 117.767359
iter 20 value 115.458870
iter 30 value 114.922054
iter 40 value 114.587947
iter 50 value 114.306398
iter 60 value 111.693999
iter 70 value 105.847873
iter 80 value 102.837617
iter 90 value 101.821326
iter 100 value 101.047965
final value 101.047965
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 126.648184
iter 10 value 113.493345
iter 20 value 106.480379
iter 30 value 106.118860
iter 40 value 105.668683
iter 50 value 104.343702
iter 60 value 103.363344
iter 70 value 101.983025
iter 80 value 101.386303
iter 90 value 101.085500
iter 100 value 100.824213
final value 100.824213
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 130.921020
iter 10 value 117.737434
iter 20 value 110.159686
iter 30 value 108.903573
iter 40 value 108.279682
iter 50 value 105.020908
iter 60 value 104.664367
iter 70 value 104.511102
iter 80 value 104.474607
iter 90 value 103.909604
iter 100 value 102.642496
final value 102.642496
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 124.493162
iter 10 value 117.926356
iter 20 value 116.328678
iter 30 value 115.346952
iter 40 value 108.648554
iter 50 value 105.304948
iter 60 value 103.955690
iter 70 value 102.596547
iter 80 value 101.633330
iter 90 value 101.087555
iter 100 value 100.973930
final value 100.973930
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Thu Sep 11 00:52:31 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
39.371 0.971 126.388
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 32.709 | 0.643 | 33.354 | |
| FreqInteractors | 0.203 | 0.010 | 0.214 | |
| calculateAAC | 0.035 | 0.003 | 0.037 | |
| calculateAutocor | 0.299 | 0.015 | 0.314 | |
| calculateCTDC | 0.07 | 0.00 | 0.07 | |
| calculateCTDD | 0.493 | 0.000 | 0.494 | |
| calculateCTDT | 0.182 | 0.008 | 0.190 | |
| calculateCTriad | 0.380 | 0.020 | 0.401 | |
| calculateDC | 0.080 | 0.008 | 0.088 | |
| calculateF | 0.294 | 0.002 | 0.297 | |
| calculateKSAAP | 0.091 | 0.007 | 0.100 | |
| calculateQD_Sm | 1.693 | 0.049 | 1.742 | |
| calculateTC | 1.492 | 0.157 | 1.648 | |
| calculateTC_Sm | 0.258 | 0.005 | 0.263 | |
| corr_plot | 32.993 | 0.334 | 33.328 | |
| enrichfindP | 0.467 | 0.030 | 8.148 | |
| enrichfind_hp | 0.098 | 0.006 | 1.042 | |
| enrichplot | 0.345 | 0.001 | 0.345 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.506 | 0.007 | 3.716 | |
| getHPI | 0.001 | 0.001 | 0.002 | |
| get_negativePPI | 0.002 | 0.002 | 0.004 | |
| get_positivePPI | 0.000 | 0.000 | 0.001 | |
| impute_missing_data | 0.002 | 0.002 | 0.004 | |
| plotPPI | 0.079 | 0.002 | 0.082 | |
| pred_ensembel | 13.282 | 0.170 | 12.090 | |
| var_imp | 33.969 | 0.361 | 34.333 | |