| Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-09-11 11:40 -0400 (Thu, 11 Sep 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4824 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" | 4606 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4547 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.14.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz |
| StartedAt: 2025-09-09 23:44:21 -0400 (Tue, 09 Sep 2025) |
| EndedAt: 2025-09-09 23:51:30 -0400 (Tue, 09 Sep 2025) |
| EllapsedTime: 428.9 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’
* using R version 4.5.1 Patched (2025-06-14 r88325)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.5
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 53.069 2.215 55.386
corr_plot 51.755 1.963 53.768
FSmethod 49.918 2.126 52.226
pred_ensembel 16.271 0.393 15.036
enrichfindP 0.481 0.077 6.571
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 110.293773
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.467635
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 101.625756
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.089249
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 113.530529
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 95.235320
final value 94.466823
converged
Fitting Repeat 2
# weights: 305
initial value 102.970682
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 98.907363
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 94.804116
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 113.493362
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 105.079443
iter 10 value 93.393799
iter 20 value 93.184534
iter 30 value 93.184081
iter 30 value 93.184081
iter 30 value 93.184081
final value 93.184081
converged
Fitting Repeat 2
# weights: 507
initial value 116.908621
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 102.110216
final value 94.466823
converged
Fitting Repeat 4
# weights: 507
initial value 112.220853
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 112.476922
iter 10 value 85.310654
iter 20 value 83.449785
final value 83.449688
converged
Fitting Repeat 1
# weights: 103
initial value 98.474029
iter 10 value 94.409995
iter 20 value 85.469941
iter 30 value 84.372768
iter 40 value 84.116593
iter 50 value 83.742072
iter 60 value 83.546924
final value 83.536421
converged
Fitting Repeat 2
# weights: 103
initial value 101.262666
iter 10 value 94.876144
iter 20 value 94.489593
iter 30 value 94.082743
iter 40 value 92.116548
iter 50 value 87.032756
iter 60 value 86.059690
iter 70 value 85.040086
iter 80 value 84.775112
iter 90 value 84.737028
iter 100 value 83.851064
final value 83.851064
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.736821
iter 10 value 94.523730
iter 20 value 94.475223
iter 30 value 93.353262
iter 40 value 91.757528
iter 50 value 91.354861
iter 60 value 91.167389
iter 70 value 90.974473
final value 90.974454
converged
Fitting Repeat 4
# weights: 103
initial value 103.709639
iter 10 value 94.490458
iter 20 value 94.482284
iter 30 value 93.429553
iter 40 value 92.331457
iter 50 value 92.052283
iter 60 value 89.390633
iter 70 value 86.115734
iter 80 value 85.613336
iter 90 value 85.247639
iter 100 value 84.192540
final value 84.192540
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 101.243347
iter 10 value 94.488567
iter 20 value 93.691494
iter 30 value 91.647590
iter 40 value 91.299117
iter 50 value 91.278284
iter 60 value 91.032839
iter 70 value 90.979374
final value 90.979324
converged
Fitting Repeat 1
# weights: 305
initial value 106.862897
iter 10 value 94.275794
iter 20 value 91.291820
iter 30 value 87.409515
iter 40 value 85.320373
iter 50 value 84.726186
iter 60 value 84.398898
iter 70 value 84.278800
iter 80 value 83.377858
iter 90 value 82.556771
iter 100 value 81.874414
final value 81.874414
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.196187
iter 10 value 92.569100
iter 20 value 85.088783
iter 30 value 84.173286
iter 40 value 83.616301
iter 50 value 83.410394
iter 60 value 83.364584
iter 70 value 83.144220
iter 80 value 82.279287
iter 90 value 81.506488
iter 100 value 81.111005
final value 81.111005
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.037809
iter 10 value 94.705290
iter 20 value 94.500970
iter 30 value 92.191405
iter 40 value 87.550433
iter 50 value 87.080075
iter 60 value 85.723786
iter 70 value 83.143572
iter 80 value 82.705117
iter 90 value 82.112348
iter 100 value 81.907662
final value 81.907662
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.254598
iter 10 value 93.188887
iter 20 value 91.035677
iter 30 value 84.650380
iter 40 value 84.240213
iter 50 value 83.956793
iter 60 value 83.564247
iter 70 value 83.468537
iter 80 value 82.784889
iter 90 value 82.269743
iter 100 value 81.900771
final value 81.900771
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.894085
iter 10 value 94.336240
iter 20 value 89.944084
iter 30 value 88.051570
iter 40 value 85.137673
iter 50 value 83.913430
iter 60 value 82.692812
iter 70 value 82.117188
iter 80 value 81.835851
iter 90 value 81.415495
iter 100 value 81.170294
final value 81.170294
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.101761
iter 10 value 91.335753
iter 20 value 85.199584
iter 30 value 82.964917
iter 40 value 82.031200
iter 50 value 81.527333
iter 60 value 81.219276
iter 70 value 81.027869
iter 80 value 80.948684
iter 90 value 80.906589
iter 100 value 80.895197
final value 80.895197
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 113.412894
iter 10 value 95.828662
iter 20 value 93.239935
iter 30 value 85.569165
iter 40 value 84.954589
iter 50 value 83.649389
iter 60 value 82.707649
iter 70 value 81.655060
iter 80 value 81.413027
iter 90 value 81.092624
iter 100 value 80.930917
final value 80.930917
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.269397
iter 10 value 94.023431
iter 20 value 90.226234
iter 30 value 88.698491
iter 40 value 85.062168
iter 50 value 81.632901
iter 60 value 81.241675
iter 70 value 80.926891
iter 80 value 80.741083
iter 90 value 80.730500
iter 100 value 80.713834
final value 80.713834
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.684711
iter 10 value 94.429514
iter 20 value 89.690041
iter 30 value 86.373690
iter 40 value 85.320479
iter 50 value 83.681375
iter 60 value 82.672824
iter 70 value 81.817898
iter 80 value 81.409865
iter 90 value 81.369234
iter 100 value 81.295437
final value 81.295437
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.064848
iter 10 value 94.064436
iter 20 value 86.602571
iter 30 value 84.661297
iter 40 value 84.199717
iter 50 value 84.051219
iter 60 value 83.502021
iter 70 value 82.872189
iter 80 value 81.685178
iter 90 value 81.333327
iter 100 value 81.283849
final value 81.283849
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.681665
final value 94.485698
converged
Fitting Repeat 2
# weights: 103
initial value 98.886924
iter 10 value 94.485829
iter 20 value 94.206873
iter 30 value 93.175219
iter 40 value 92.276905
final value 92.276903
converged
Fitting Repeat 3
# weights: 103
initial value 100.757913
final value 94.485986
converged
Fitting Repeat 4
# weights: 103
initial value 96.828180
final value 94.327449
converged
Fitting Repeat 5
# weights: 103
initial value 94.900292
final value 94.485900
converged
Fitting Repeat 1
# weights: 305
initial value 99.349607
iter 10 value 94.489071
iter 20 value 94.336961
iter 30 value 86.745336
iter 40 value 84.795212
iter 50 value 84.469094
iter 60 value 84.465030
iter 70 value 84.398883
iter 80 value 84.398532
iter 90 value 83.120799
iter 100 value 82.383214
final value 82.383214
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.104261
iter 10 value 94.488819
iter 20 value 94.302612
iter 30 value 86.360584
iter 40 value 85.442017
iter 50 value 83.093100
iter 60 value 80.998964
iter 70 value 80.224465
iter 80 value 79.995507
iter 90 value 79.915357
iter 100 value 79.678565
final value 79.678565
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 112.960904
iter 10 value 94.489060
iter 20 value 94.208756
iter 30 value 84.791692
iter 40 value 84.030527
iter 50 value 83.965702
iter 60 value 83.965573
final value 83.965568
converged
Fitting Repeat 4
# weights: 305
initial value 116.274574
iter 10 value 94.489502
iter 20 value 94.407120
iter 30 value 92.284841
iter 40 value 92.235971
iter 50 value 84.056643
iter 60 value 83.994843
iter 70 value 83.744649
iter 80 value 82.731751
iter 90 value 82.579765
final value 82.574648
converged
Fitting Repeat 5
# weights: 305
initial value 127.516425
iter 10 value 94.487725
iter 20 value 94.485347
iter 30 value 86.196384
iter 40 value 84.141870
iter 50 value 84.043637
iter 60 value 84.042274
iter 70 value 84.040630
iter 80 value 83.975387
iter 90 value 82.748254
iter 100 value 81.465883
final value 81.465883
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 102.610375
iter 10 value 94.292452
iter 20 value 93.387926
iter 30 value 84.103016
iter 40 value 84.095170
iter 50 value 83.986202
iter 60 value 83.964693
final value 83.964630
converged
Fitting Repeat 2
# weights: 507
initial value 115.350188
iter 10 value 94.492504
iter 20 value 94.476657
iter 30 value 94.473242
iter 40 value 92.871540
iter 50 value 89.441269
iter 60 value 88.813520
iter 70 value 88.808556
iter 80 value 86.024304
final value 86.023690
converged
Fitting Repeat 3
# weights: 507
initial value 94.777096
iter 10 value 94.485118
iter 20 value 86.964675
iter 30 value 85.104770
iter 40 value 84.791945
iter 50 value 84.787327
iter 60 value 84.786144
iter 70 value 84.454793
iter 80 value 84.174670
iter 90 value 84.173518
iter 100 value 84.171414
final value 84.171414
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 126.074332
iter 10 value 94.492019
iter 20 value 94.484895
final value 94.484234
converged
Fitting Repeat 5
# weights: 507
initial value 112.353183
iter 10 value 94.475544
iter 20 value 94.390673
iter 30 value 91.158957
iter 40 value 91.146307
iter 50 value 91.145790
final value 91.145371
converged
Fitting Repeat 1
# weights: 103
initial value 92.352062
iter 10 value 85.321844
iter 20 value 85.321393
final value 85.321379
converged
Fitting Repeat 2
# weights: 103
initial value 100.947073
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.678971
final value 93.653870
converged
Fitting Repeat 4
# weights: 103
initial value 97.429688
iter 10 value 93.328330
final value 93.328261
converged
Fitting Repeat 5
# weights: 103
initial value 99.081178
iter 10 value 93.328272
final value 93.328261
converged
Fitting Repeat 1
# weights: 305
initial value 108.500371
iter 10 value 93.328267
final value 93.328263
converged
Fitting Repeat 2
# weights: 305
initial value 94.325625
iter 10 value 92.805875
final value 92.803260
converged
Fitting Repeat 3
# weights: 305
initial value 118.087939
iter 10 value 93.199102
final value 93.198901
converged
Fitting Repeat 4
# weights: 305
initial value 96.522208
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 96.959117
final value 94.052908
converged
Fitting Repeat 1
# weights: 507
initial value 111.172691
final value 93.328261
converged
Fitting Repeat 2
# weights: 507
initial value 98.906624
final value 93.328261
converged
Fitting Repeat 3
# weights: 507
initial value 96.298613
iter 10 value 93.328261
iter 10 value 93.328261
iter 10 value 93.328261
final value 93.328261
converged
Fitting Repeat 4
# weights: 507
initial value 94.679586
final value 93.328261
converged
Fitting Repeat 5
# weights: 507
initial value 108.984504
iter 10 value 93.745659
iter 20 value 91.169183
iter 30 value 91.083463
iter 40 value 91.079778
iter 50 value 91.057023
iter 60 value 81.281367
iter 70 value 79.004822
iter 80 value 78.755825
iter 90 value 78.512058
final value 78.511755
converged
Fitting Repeat 1
# weights: 103
initial value 99.848966
iter 10 value 93.618118
iter 20 value 88.957188
iter 30 value 85.987834
iter 40 value 85.278419
iter 50 value 82.355748
iter 60 value 81.517602
iter 70 value 81.422243
final value 81.411146
converged
Fitting Repeat 2
# weights: 103
initial value 102.386477
iter 10 value 94.068236
iter 20 value 94.054876
iter 30 value 93.494101
iter 40 value 93.296412
iter 50 value 93.099367
iter 60 value 83.931486
iter 70 value 81.678434
iter 80 value 81.206776
iter 90 value 79.670300
iter 100 value 78.705557
final value 78.705557
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.159134
iter 10 value 94.057087
iter 20 value 88.736800
iter 30 value 85.869681
iter 40 value 84.310522
iter 50 value 83.138225
final value 83.132768
converged
Fitting Repeat 4
# weights: 103
initial value 97.520671
iter 10 value 94.024525
iter 20 value 93.720253
iter 30 value 93.669344
iter 40 value 90.830019
iter 50 value 89.476306
iter 60 value 85.556135
iter 70 value 85.472413
iter 80 value 82.903735
iter 90 value 82.702171
final value 82.701762
converged
Fitting Repeat 5
# weights: 103
initial value 104.272217
iter 10 value 93.573653
iter 20 value 93.379237
iter 30 value 84.860115
iter 40 value 83.918452
iter 50 value 83.557861
iter 60 value 83.313680
iter 70 value 83.158937
iter 80 value 83.132769
iter 80 value 83.132768
iter 80 value 83.132768
final value 83.132768
converged
Fitting Repeat 1
# weights: 305
initial value 100.852176
iter 10 value 94.024763
iter 20 value 86.294196
iter 30 value 85.317085
iter 40 value 83.501412
iter 50 value 82.902369
iter 60 value 82.679121
iter 70 value 82.319574
iter 80 value 80.061482
iter 90 value 79.506134
iter 100 value 79.327463
final value 79.327463
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.071824
iter 10 value 94.700338
iter 20 value 84.109174
iter 30 value 82.717074
iter 40 value 81.535831
iter 50 value 80.803727
iter 60 value 79.084866
iter 70 value 78.899962
iter 80 value 78.833808
iter 90 value 78.394901
iter 100 value 77.872638
final value 77.872638
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.091000
iter 10 value 94.047610
iter 20 value 87.703648
iter 30 value 86.041991
iter 40 value 81.907448
iter 50 value 80.857049
iter 60 value 80.185266
iter 70 value 78.085531
iter 80 value 77.752265
iter 90 value 77.107535
iter 100 value 76.842712
final value 76.842712
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 114.007224
iter 10 value 94.445854
iter 20 value 93.597594
iter 30 value 92.199938
iter 40 value 84.534257
iter 50 value 81.497439
iter 60 value 79.316721
iter 70 value 78.958267
iter 80 value 78.444837
iter 90 value 77.576981
iter 100 value 77.279475
final value 77.279475
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 122.596653
iter 10 value 94.092945
iter 20 value 93.956515
iter 30 value 93.500172
iter 40 value 82.822394
iter 50 value 82.154438
iter 60 value 80.782087
iter 70 value 79.642727
iter 80 value 78.492638
iter 90 value 77.874010
iter 100 value 77.600668
final value 77.600668
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.893906
iter 10 value 93.682207
iter 20 value 82.527227
iter 30 value 80.258471
iter 40 value 79.250694
iter 50 value 78.806285
iter 60 value 78.672875
iter 70 value 78.519787
iter 80 value 78.486856
iter 90 value 78.423943
iter 100 value 78.036548
final value 78.036548
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.854228
iter 10 value 94.097736
iter 20 value 91.860681
iter 30 value 91.616767
iter 40 value 87.795437
iter 50 value 81.378064
iter 60 value 79.220877
iter 70 value 78.189196
iter 80 value 77.416693
iter 90 value 77.364957
iter 100 value 77.359695
final value 77.359695
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 117.533749
iter 10 value 94.011881
iter 20 value 91.675191
iter 30 value 83.240286
iter 40 value 81.158637
iter 50 value 78.748012
iter 60 value 77.747772
iter 70 value 77.519080
iter 80 value 77.152662
iter 90 value 76.948006
iter 100 value 76.858470
final value 76.858470
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.728028
iter 10 value 95.865299
iter 20 value 85.878875
iter 30 value 85.252882
iter 40 value 84.087903
iter 50 value 82.288146
iter 60 value 78.293916
iter 70 value 77.864560
iter 80 value 77.556619
iter 90 value 77.132408
iter 100 value 76.932480
final value 76.932480
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 121.840343
iter 10 value 93.686971
iter 20 value 90.641267
iter 30 value 86.193045
iter 40 value 85.489656
iter 50 value 84.939732
iter 60 value 81.413394
iter 70 value 78.338210
iter 80 value 77.643650
iter 90 value 77.078034
iter 100 value 76.899966
final value 76.899966
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.140957
iter 10 value 93.222642
iter 20 value 93.211439
final value 93.209713
converged
Fitting Repeat 2
# weights: 103
initial value 95.645321
final value 94.054687
converged
Fitting Repeat 3
# weights: 103
initial value 98.378151
final value 94.054648
converged
Fitting Repeat 4
# weights: 103
initial value 94.700136
iter 10 value 93.750763
iter 20 value 88.167150
iter 30 value 87.711001
iter 40 value 87.472612
iter 50 value 87.471359
iter 60 value 85.400503
iter 70 value 85.102795
final value 85.100457
converged
Fitting Repeat 5
# weights: 103
initial value 97.001290
iter 10 value 94.054713
iter 20 value 94.052908
iter 30 value 84.482188
iter 40 value 83.319183
final value 83.318296
converged
Fitting Repeat 1
# weights: 305
initial value 109.769738
iter 10 value 94.057959
iter 20 value 94.052932
iter 30 value 93.648166
iter 40 value 93.521142
final value 93.521099
converged
Fitting Repeat 2
# weights: 305
initial value 101.420291
iter 10 value 93.544115
iter 20 value 93.522779
iter 30 value 93.499612
iter 40 value 93.496579
iter 50 value 93.486692
iter 60 value 84.816496
iter 70 value 84.348198
final value 84.348173
converged
Fitting Repeat 3
# weights: 305
initial value 96.239228
iter 10 value 94.057246
iter 20 value 94.006231
iter 30 value 92.129269
iter 40 value 84.656213
iter 50 value 84.403262
iter 60 value 84.401727
final value 84.401699
converged
Fitting Repeat 4
# weights: 305
initial value 98.157942
iter 10 value 94.057568
iter 20 value 94.017798
iter 30 value 94.011592
iter 40 value 93.945058
iter 50 value 93.330206
iter 60 value 93.236491
final value 93.210177
converged
Fitting Repeat 5
# weights: 305
initial value 97.854501
iter 10 value 93.333384
iter 20 value 93.327836
iter 30 value 86.236206
iter 40 value 85.173823
final value 85.170900
converged
Fitting Repeat 1
# weights: 507
initial value 108.811956
iter 10 value 94.061136
iter 20 value 94.050928
iter 30 value 85.206443
iter 40 value 83.545624
iter 50 value 79.415532
iter 60 value 78.048148
iter 70 value 77.459908
iter 80 value 77.240928
iter 90 value 77.238379
iter 100 value 77.053521
final value 77.053521
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 97.296607
iter 10 value 93.276982
iter 20 value 93.151794
iter 30 value 93.147044
iter 40 value 93.135107
iter 50 value 89.604452
iter 60 value 81.581657
iter 70 value 81.291719
iter 80 value 81.248820
iter 90 value 81.224531
iter 100 value 80.562556
final value 80.562556
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 95.036488
iter 10 value 94.060680
iter 20 value 83.098092
iter 30 value 82.558612
iter 40 value 82.555896
iter 50 value 82.554295
iter 60 value 82.304789
final value 82.299153
converged
Fitting Repeat 4
# weights: 507
initial value 114.175628
iter 10 value 93.349193
iter 20 value 93.336652
iter 30 value 93.144848
iter 40 value 82.526588
iter 50 value 81.799292
final value 81.788298
converged
Fitting Repeat 5
# weights: 507
initial value 97.134147
iter 10 value 93.284090
iter 20 value 93.116923
iter 30 value 92.070597
iter 40 value 82.721907
iter 50 value 82.009290
iter 60 value 78.850324
iter 70 value 78.471799
iter 80 value 78.450610
final value 78.450556
converged
Fitting Repeat 1
# weights: 103
initial value 99.933376
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.932251
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 98.488213
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 106.932863
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.297329
final value 94.430233
converged
Fitting Repeat 1
# weights: 305
initial value 100.130516
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.030211
final value 94.057229
converged
Fitting Repeat 3
# weights: 305
initial value 95.167209
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 96.609898
final value 94.354396
converged
Fitting Repeat 5
# weights: 305
initial value 107.711779
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 102.498537
final value 94.354396
converged
Fitting Repeat 2
# weights: 507
initial value 100.856012
iter 10 value 94.240912
iter 20 value 94.199646
iter 30 value 94.196991
final value 94.196989
converged
Fitting Repeat 3
# weights: 507
initial value 101.882973
iter 10 value 94.331125
iter 20 value 94.325916
iter 30 value 94.311428
final value 94.311251
converged
Fitting Repeat 4
# weights: 507
initial value 96.694509
iter 10 value 89.883315
iter 20 value 82.478741
iter 30 value 82.440663
final value 82.440657
converged
Fitting Repeat 5
# weights: 507
initial value 106.753826
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 94.437055
iter 10 value 88.062880
iter 20 value 84.582103
iter 30 value 82.920794
iter 40 value 82.873188
iter 50 value 82.698537
iter 60 value 82.371345
iter 70 value 82.178710
iter 80 value 82.116391
final value 82.116323
converged
Fitting Repeat 2
# weights: 103
initial value 98.584534
iter 10 value 94.571807
iter 20 value 94.488274
iter 30 value 94.097897
iter 40 value 94.062839
iter 50 value 88.186880
iter 60 value 87.573312
iter 70 value 85.874708
iter 80 value 83.924995
iter 90 value 83.887081
iter 100 value 83.876361
final value 83.876361
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.235831
iter 10 value 94.284705
iter 20 value 93.040046
iter 30 value 91.261788
iter 40 value 90.904905
iter 50 value 90.888696
final value 90.888691
converged
Fitting Repeat 4
# weights: 103
initial value 98.486803
iter 10 value 94.571344
iter 20 value 94.185549
iter 30 value 88.116462
iter 40 value 85.999950
iter 50 value 84.089511
iter 60 value 83.243374
iter 70 value 83.120717
iter 80 value 83.091689
final value 83.091673
converged
Fitting Repeat 5
# weights: 103
initial value 101.615335
iter 10 value 94.489909
iter 20 value 94.427471
iter 30 value 94.135158
iter 40 value 94.129934
iter 50 value 93.640257
iter 60 value 91.389513
iter 70 value 90.293205
iter 80 value 87.220257
iter 90 value 87.010661
iter 100 value 86.957745
final value 86.957745
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 102.596913
iter 10 value 94.451940
iter 20 value 92.883626
iter 30 value 89.119027
iter 40 value 85.629624
iter 50 value 83.523339
iter 60 value 82.781602
iter 70 value 81.667669
iter 80 value 80.720764
iter 90 value 80.323568
iter 100 value 79.938409
final value 79.938409
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.860293
iter 10 value 94.349328
iter 20 value 94.100908
iter 30 value 94.002019
iter 40 value 86.216850
iter 50 value 85.641089
iter 60 value 84.100095
iter 70 value 82.467237
iter 80 value 81.606719
iter 90 value 80.688925
iter 100 value 80.451425
final value 80.451425
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.307387
iter 10 value 94.506860
iter 20 value 87.363735
iter 30 value 85.503597
iter 40 value 84.831017
iter 50 value 84.359111
iter 60 value 83.045809
iter 70 value 81.401893
iter 80 value 81.130159
iter 90 value 80.561143
iter 100 value 80.051899
final value 80.051899
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.763534
iter 10 value 94.519683
iter 20 value 91.267467
iter 30 value 87.146987
iter 40 value 87.100791
iter 50 value 85.788437
iter 60 value 84.159199
iter 70 value 80.494369
iter 80 value 79.876674
iter 90 value 79.820715
iter 100 value 79.766467
final value 79.766467
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.701200
iter 10 value 93.961489
iter 20 value 89.097334
iter 30 value 87.852386
iter 40 value 85.088145
iter 50 value 83.746737
iter 60 value 83.104203
iter 70 value 81.811981
iter 80 value 81.747654
iter 90 value 81.196332
iter 100 value 80.297900
final value 80.297900
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 125.636990
iter 10 value 94.766612
iter 20 value 88.449973
iter 30 value 87.959452
iter 40 value 87.784450
iter 50 value 86.460437
iter 60 value 83.000358
iter 70 value 80.373593
iter 80 value 79.761931
iter 90 value 79.537804
iter 100 value 79.356391
final value 79.356391
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.051309
iter 10 value 94.587796
iter 20 value 94.493379
iter 30 value 93.925380
iter 40 value 88.569699
iter 50 value 80.730526
iter 60 value 79.947482
iter 70 value 79.751587
iter 80 value 79.431660
iter 90 value 79.166961
iter 100 value 79.081083
final value 79.081083
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.986320
iter 10 value 94.547246
iter 20 value 93.859622
iter 30 value 88.681358
iter 40 value 87.272717
iter 50 value 87.078939
iter 60 value 83.978665
iter 70 value 81.704706
iter 80 value 80.624022
iter 90 value 80.156493
iter 100 value 79.821697
final value 79.821697
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 116.097414
iter 10 value 94.504063
iter 20 value 93.947624
iter 30 value 92.077933
iter 40 value 90.750180
iter 50 value 87.774029
iter 60 value 84.568985
iter 70 value 83.030855
iter 80 value 82.802107
iter 90 value 82.694709
iter 100 value 82.654063
final value 82.654063
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.214854
iter 10 value 94.344039
iter 20 value 87.167606
iter 30 value 85.464565
iter 40 value 82.486883
iter 50 value 81.616881
iter 60 value 80.648088
iter 70 value 79.465712
iter 80 value 79.331018
iter 90 value 79.272600
iter 100 value 79.263500
final value 79.263500
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.063368
iter 10 value 94.485942
iter 20 value 94.483506
iter 30 value 90.701928
iter 40 value 87.460619
final value 87.284851
converged
Fitting Repeat 2
# weights: 103
initial value 103.876122
iter 10 value 94.059121
iter 20 value 94.058627
iter 30 value 94.050034
final value 94.049793
converged
Fitting Repeat 3
# weights: 103
initial value 96.429301
final value 94.355757
converged
Fitting Repeat 4
# weights: 103
initial value 95.157490
final value 94.485676
converged
Fitting Repeat 5
# weights: 103
initial value 97.217032
final value 94.487003
converged
Fitting Repeat 1
# weights: 305
initial value 98.046207
iter 10 value 94.489099
iter 20 value 94.484353
iter 30 value 94.046709
iter 40 value 88.003319
iter 50 value 87.074444
iter 50 value 87.074444
final value 87.074444
converged
Fitting Repeat 2
# weights: 305
initial value 97.321503
iter 10 value 93.767308
iter 20 value 87.687843
iter 30 value 87.341000
iter 40 value 87.307026
iter 50 value 83.984402
iter 60 value 81.762519
iter 70 value 81.761870
iter 80 value 81.752775
iter 90 value 81.698080
iter 100 value 81.494116
final value 81.494116
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 96.115517
iter 10 value 94.489139
final value 94.485469
converged
Fitting Repeat 4
# weights: 305
initial value 95.691185
iter 10 value 94.106047
iter 20 value 94.062075
iter 30 value 94.054862
iter 40 value 86.684478
iter 50 value 85.894353
iter 60 value 85.871646
iter 70 value 85.870020
iter 80 value 85.869915
iter 90 value 82.767086
iter 100 value 81.548299
final value 81.548299
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.040514
iter 10 value 94.525106
iter 20 value 94.382496
iter 30 value 94.081592
iter 40 value 94.077683
iter 50 value 94.070738
iter 60 value 94.051444
iter 70 value 93.984936
iter 80 value 90.724459
iter 90 value 90.526363
iter 100 value 89.726324
final value 89.726324
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 98.194213
iter 10 value 94.492237
iter 20 value 94.382522
iter 30 value 84.740764
iter 40 value 83.390843
iter 50 value 83.379354
iter 60 value 83.379181
iter 70 value 83.362229
iter 80 value 81.246474
iter 90 value 80.550214
iter 100 value 80.539523
final value 80.539523
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 132.161264
iter 10 value 94.362639
iter 20 value 92.988813
iter 30 value 83.028010
final value 83.027982
converged
Fitting Repeat 3
# weights: 507
initial value 137.806601
iter 10 value 94.362381
iter 20 value 94.355032
iter 30 value 87.606449
iter 40 value 85.156368
iter 50 value 85.143794
iter 60 value 85.126371
iter 70 value 85.126007
iter 80 value 85.125911
final value 85.125905
converged
Fitting Repeat 4
# weights: 507
initial value 120.931964
iter 10 value 94.058432
iter 20 value 94.056045
iter 30 value 94.051346
iter 40 value 94.050861
iter 50 value 94.048412
iter 60 value 93.886870
iter 70 value 90.739606
iter 80 value 88.468689
iter 90 value 83.078769
iter 100 value 82.654065
final value 82.654065
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 117.929333
iter 10 value 94.363347
iter 20 value 94.354683
final value 94.354595
converged
Fitting Repeat 1
# weights: 103
initial value 104.304098
iter 10 value 94.052920
final value 94.052911
converged
Fitting Repeat 2
# weights: 103
initial value 97.249173
iter 10 value 93.836067
final value 93.836066
converged
Fitting Repeat 3
# weights: 103
initial value 103.175629
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 102.242694
final value 93.836066
converged
Fitting Repeat 5
# weights: 103
initial value 95.791356
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 120.792497
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 96.539965
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 120.767860
final value 93.988095
converged
Fitting Repeat 4
# weights: 305
initial value 109.853434
final value 93.836066
converged
Fitting Repeat 5
# weights: 305
initial value 99.648168
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 133.722361
iter 10 value 93.836062
final value 93.835715
converged
Fitting Repeat 2
# weights: 507
initial value 97.136694
iter 10 value 93.759127
final value 93.745930
converged
Fitting Repeat 3
# weights: 507
initial value 99.098347
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 100.463481
iter 10 value 88.816841
iter 20 value 85.153623
final value 85.046177
converged
Fitting Repeat 5
# weights: 507
initial value 110.963047
iter 10 value 94.011548
iter 20 value 93.973817
iter 30 value 93.969054
final value 93.969041
converged
Fitting Repeat 1
# weights: 103
initial value 96.461432
iter 10 value 94.073675
iter 20 value 94.028699
iter 30 value 93.756840
iter 40 value 90.067859
iter 50 value 87.370837
iter 60 value 86.251122
iter 70 value 85.030897
final value 85.027874
converged
Fitting Repeat 2
# weights: 103
initial value 100.408433
iter 10 value 93.695384
iter 20 value 88.254820
iter 30 value 86.654725
iter 40 value 86.413336
iter 50 value 86.268782
iter 60 value 86.229293
iter 70 value 86.114696
final value 86.112439
converged
Fitting Repeat 3
# weights: 103
initial value 98.308323
iter 10 value 94.055628
iter 20 value 93.335728
iter 30 value 89.388247
iter 40 value 87.663215
iter 50 value 87.102754
iter 60 value 86.680208
iter 70 value 86.447459
iter 80 value 85.668660
iter 90 value 85.060359
iter 100 value 85.028452
final value 85.028452
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.173489
iter 10 value 94.057033
iter 20 value 91.258059
iter 30 value 89.732590
iter 40 value 89.070134
iter 50 value 87.523710
iter 60 value 87.036099
iter 70 value 87.028403
iter 70 value 87.028402
iter 70 value 87.028402
final value 87.028402
converged
Fitting Repeat 5
# weights: 103
initial value 98.007915
iter 10 value 94.045891
iter 20 value 93.914415
iter 30 value 92.727165
iter 40 value 88.847867
iter 50 value 88.571591
iter 60 value 87.657184
iter 70 value 87.075073
final value 87.069553
converged
Fitting Repeat 1
# weights: 305
initial value 103.921781
iter 10 value 94.120002
iter 20 value 91.961493
iter 30 value 89.789605
iter 40 value 88.209886
iter 50 value 84.339175
iter 60 value 84.009299
iter 70 value 83.724788
iter 80 value 83.647992
iter 90 value 83.631649
iter 100 value 83.629804
final value 83.629804
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.152533
iter 10 value 94.030225
iter 20 value 89.149259
iter 30 value 88.064986
iter 40 value 87.493163
iter 50 value 85.835238
iter 60 value 85.786313
iter 70 value 85.719731
iter 80 value 84.944328
iter 90 value 83.869343
iter 100 value 83.435163
final value 83.435163
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.568938
iter 10 value 95.170486
iter 20 value 94.682099
iter 30 value 94.331487
iter 40 value 92.223784
iter 50 value 88.889646
iter 60 value 88.647892
iter 70 value 88.422132
iter 80 value 86.227245
iter 90 value 85.696327
iter 100 value 85.427960
final value 85.427960
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.765504
iter 10 value 94.036012
iter 20 value 90.812722
iter 30 value 89.138304
iter 40 value 86.708354
iter 50 value 86.206806
iter 60 value 85.750498
iter 70 value 84.243335
iter 80 value 83.778820
iter 90 value 83.517932
iter 100 value 83.422494
final value 83.422494
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.428120
iter 10 value 93.120643
iter 20 value 91.877466
iter 30 value 91.308089
iter 40 value 87.510930
iter 50 value 86.833266
iter 60 value 86.333015
iter 70 value 86.051899
iter 80 value 85.833259
iter 90 value 85.048195
iter 100 value 83.784935
final value 83.784935
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.104430
iter 10 value 93.842650
iter 20 value 87.658957
iter 30 value 87.443434
iter 40 value 87.062453
iter 50 value 85.997166
iter 60 value 85.875216
iter 70 value 85.669265
iter 80 value 84.743500
iter 90 value 84.272769
iter 100 value 83.905462
final value 83.905462
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.695038
iter 10 value 94.033657
iter 20 value 87.792413
iter 30 value 87.154133
iter 40 value 86.982499
iter 50 value 85.880212
iter 60 value 84.406513
iter 70 value 84.026954
iter 80 value 83.704103
iter 90 value 83.583326
iter 100 value 83.512213
final value 83.512213
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 112.007272
iter 10 value 93.992029
iter 20 value 89.884770
iter 30 value 86.576827
iter 40 value 85.827743
iter 50 value 85.502452
iter 60 value 84.842235
iter 70 value 84.449686
iter 80 value 83.797548
iter 90 value 83.414188
iter 100 value 83.222597
final value 83.222597
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 138.575164
iter 10 value 96.200115
iter 20 value 92.266487
iter 30 value 88.851427
iter 40 value 88.274919
iter 50 value 85.927897
iter 60 value 85.318329
iter 70 value 84.344452
iter 80 value 84.008412
iter 90 value 83.916282
iter 100 value 83.888070
final value 83.888070
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 124.567432
iter 10 value 94.105999
iter 20 value 93.219541
iter 30 value 90.776149
iter 40 value 90.372542
iter 50 value 87.534843
iter 60 value 86.419982
iter 70 value 84.699591
iter 80 value 83.889126
iter 90 value 83.652930
iter 100 value 83.600736
final value 83.600736
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.587524
final value 94.054301
converged
Fitting Repeat 2
# weights: 103
initial value 96.386326
iter 10 value 93.787453
iter 20 value 93.785367
iter 30 value 88.841927
iter 40 value 86.993400
iter 50 value 86.992954
iter 50 value 86.992953
iter 50 value 86.992953
final value 86.992953
converged
Fitting Repeat 3
# weights: 103
initial value 97.564638
final value 94.054554
converged
Fitting Repeat 4
# weights: 103
initial value 95.565327
iter 10 value 85.758160
iter 20 value 84.730922
iter 30 value 84.368249
iter 40 value 84.367888
final value 84.367455
converged
Fitting Repeat 5
# weights: 103
initial value 94.638701
final value 94.054737
converged
Fitting Repeat 1
# weights: 305
initial value 99.844017
iter 10 value 94.056791
iter 20 value 92.925796
iter 30 value 87.042526
iter 40 value 86.991929
final value 86.991845
converged
Fitting Repeat 2
# weights: 305
initial value 103.548640
iter 10 value 94.057722
iter 20 value 94.056927
iter 30 value 94.039021
iter 40 value 93.083146
iter 50 value 93.005171
iter 60 value 93.002178
final value 93.002099
converged
Fitting Repeat 3
# weights: 305
initial value 103.985059
iter 10 value 94.057628
iter 20 value 93.909186
iter 30 value 92.412820
iter 40 value 89.387516
iter 50 value 89.188116
iter 60 value 89.146279
iter 70 value 89.060898
iter 80 value 89.059354
iter 90 value 89.058312
iter 100 value 89.057635
final value 89.057635
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 120.137435
iter 10 value 94.057361
iter 20 value 94.025747
iter 30 value 92.707871
iter 40 value 88.430752
iter 50 value 88.234157
iter 60 value 85.435907
iter 70 value 84.448399
final value 84.271950
converged
Fitting Repeat 5
# weights: 305
initial value 114.809344
iter 10 value 94.058122
iter 20 value 94.053116
final value 94.052930
converged
Fitting Repeat 1
# weights: 507
initial value 107.555653
iter 10 value 93.952282
iter 20 value 93.801293
iter 30 value 88.795917
iter 40 value 87.250001
iter 50 value 85.358462
iter 60 value 84.492700
iter 70 value 83.879607
iter 80 value 83.833965
iter 90 value 83.833213
final value 83.833204
converged
Fitting Repeat 2
# weights: 507
initial value 99.742693
iter 10 value 93.826810
iter 20 value 93.820573
iter 30 value 92.977842
iter 40 value 88.364409
iter 50 value 86.076445
iter 60 value 84.021883
iter 70 value 83.832063
iter 80 value 83.814042
iter 90 value 83.810408
iter 100 value 83.808679
final value 83.808679
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.561312
iter 10 value 94.061675
iter 20 value 94.053170
final value 94.053057
converged
Fitting Repeat 4
# weights: 507
initial value 107.211197
iter 10 value 93.829373
iter 20 value 93.759986
iter 30 value 90.190920
iter 40 value 89.186514
iter 50 value 85.763379
iter 60 value 83.478998
iter 70 value 83.285080
iter 80 value 83.087797
iter 90 value 83.083858
iter 100 value 83.083222
final value 83.083222
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.420904
iter 10 value 94.060960
iter 20 value 94.054066
final value 94.053794
converged
Fitting Repeat 1
# weights: 103
initial value 95.354730
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 101.126617
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 109.678218
iter 10 value 93.567527
final value 93.567525
converged
Fitting Repeat 4
# weights: 103
initial value 98.369212
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 94.921455
iter 10 value 93.772981
final value 93.772976
converged
Fitting Repeat 1
# weights: 305
initial value 117.873466
final value 94.252920
converged
Fitting Repeat 2
# weights: 305
initial value 94.515267
iter 10 value 86.408098
iter 20 value 86.054679
iter 30 value 85.563580
iter 40 value 85.562872
iter 40 value 85.562871
iter 40 value 85.562871
final value 85.562871
converged
Fitting Repeat 3
# weights: 305
initial value 94.859389
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 101.308370
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 101.111903
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 107.900823
iter 10 value 92.783002
iter 20 value 90.324480
iter 30 value 90.306393
iter 40 value 90.025643
iter 50 value 89.996759
final value 89.996747
converged
Fitting Repeat 2
# weights: 507
initial value 96.411102
iter 10 value 94.467391
iter 10 value 94.467391
iter 10 value 94.467391
final value 94.467391
converged
Fitting Repeat 3
# weights: 507
initial value 100.286420
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 105.345688
iter 10 value 94.465747
iter 20 value 94.418981
iter 30 value 94.416674
iter 30 value 94.416673
iter 30 value 94.416673
final value 94.416673
converged
Fitting Repeat 5
# weights: 507
initial value 103.184424
iter 10 value 94.421976
iter 20 value 94.420728
iter 30 value 93.803770
iter 40 value 93.763129
final value 93.762185
converged
Fitting Repeat 1
# weights: 103
initial value 102.067031
iter 10 value 94.419008
iter 20 value 87.049987
iter 30 value 85.522361
iter 40 value 85.070318
iter 50 value 84.939190
iter 60 value 82.634834
iter 70 value 82.528362
final value 82.458355
converged
Fitting Repeat 2
# weights: 103
initial value 104.889721
iter 10 value 94.433807
iter 20 value 86.801098
iter 30 value 85.019495
iter 40 value 83.816764
iter 50 value 83.122220
iter 60 value 83.016727
final value 82.978387
converged
Fitting Repeat 3
# weights: 103
initial value 97.381594
iter 10 value 94.486952
iter 20 value 93.771419
iter 30 value 87.441467
iter 40 value 85.072182
iter 50 value 84.393135
iter 60 value 84.100664
iter 70 value 83.928343
iter 80 value 83.680675
iter 90 value 80.839367
iter 100 value 80.312047
final value 80.312047
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.985225
iter 10 value 94.477779
iter 20 value 91.956999
iter 30 value 89.223917
iter 40 value 86.760374
iter 50 value 83.679552
iter 60 value 83.392746
iter 70 value 83.269111
iter 80 value 83.000414
final value 82.978350
converged
Fitting Repeat 5
# weights: 103
initial value 115.555031
iter 10 value 88.766597
iter 20 value 84.879119
iter 30 value 84.843452
iter 40 value 83.456913
iter 50 value 82.981193
iter 60 value 82.978364
final value 82.978350
converged
Fitting Repeat 1
# weights: 305
initial value 102.253400
iter 10 value 94.280102
iter 20 value 93.871449
iter 30 value 93.792350
iter 40 value 88.212582
iter 50 value 85.521174
iter 60 value 84.729854
iter 70 value 82.251594
iter 80 value 80.984446
iter 90 value 79.979552
iter 100 value 79.570438
final value 79.570438
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.883463
iter 10 value 94.346980
iter 20 value 85.951271
iter 30 value 83.248448
iter 40 value 82.197778
iter 50 value 81.326598
iter 60 value 80.826940
iter 70 value 80.018613
iter 80 value 79.822734
iter 90 value 79.077748
iter 100 value 78.502901
final value 78.502901
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.636335
iter 10 value 94.570091
iter 20 value 94.503479
iter 30 value 93.994432
iter 40 value 86.288844
iter 50 value 85.465368
iter 60 value 82.526550
iter 70 value 81.016355
iter 80 value 80.019832
iter 90 value 78.682118
iter 100 value 78.547576
final value 78.547576
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.416681
iter 10 value 96.461550
iter 20 value 86.142371
iter 30 value 83.956377
iter 40 value 80.939441
iter 50 value 79.776664
iter 60 value 79.353787
iter 70 value 79.300001
iter 80 value 79.232756
iter 90 value 78.811090
iter 100 value 78.319595
final value 78.319595
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 115.776611
iter 10 value 94.000594
iter 20 value 83.811122
iter 30 value 82.371898
iter 40 value 80.993369
iter 50 value 80.379831
iter 60 value 79.606921
iter 70 value 78.932196
iter 80 value 78.413218
iter 90 value 78.245467
iter 100 value 78.166168
final value 78.166168
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.138920
iter 10 value 96.459939
iter 20 value 86.133552
iter 30 value 81.634400
iter 40 value 79.660239
iter 50 value 79.089143
iter 60 value 78.299688
iter 70 value 77.985486
iter 80 value 77.887644
iter 90 value 77.851799
iter 100 value 77.675631
final value 77.675631
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 116.696672
iter 10 value 94.983714
iter 20 value 94.569477
iter 30 value 87.317676
iter 40 value 85.153983
iter 50 value 83.033101
iter 60 value 80.723459
iter 70 value 79.671197
iter 80 value 79.485859
iter 90 value 79.281546
iter 100 value 79.204195
final value 79.204195
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.015764
iter 10 value 94.500580
iter 20 value 88.127523
iter 30 value 86.197367
iter 40 value 81.704185
iter 50 value 79.983578
iter 60 value 78.740300
iter 70 value 78.308321
iter 80 value 78.144177
iter 90 value 78.112068
iter 100 value 78.004204
final value 78.004204
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.377221
iter 10 value 93.796866
iter 20 value 91.107322
iter 30 value 90.884903
iter 40 value 85.738302
iter 50 value 84.492473
iter 60 value 82.216276
iter 70 value 80.416924
iter 80 value 78.811069
iter 90 value 78.070925
iter 100 value 77.870432
final value 77.870432
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.055764
iter 10 value 93.190123
iter 20 value 84.763615
iter 30 value 82.976526
iter 40 value 82.633953
iter 50 value 81.357737
iter 60 value 80.077162
iter 70 value 78.943378
iter 80 value 78.239488
iter 90 value 78.106441
iter 100 value 78.031840
final value 78.031840
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.488639
final value 94.485818
converged
Fitting Repeat 2
# weights: 103
initial value 99.109788
final value 94.485694
converged
Fitting Repeat 3
# weights: 103
initial value 105.529813
final value 94.485819
converged
Fitting Repeat 4
# weights: 103
initial value 106.881078
final value 94.485844
converged
Fitting Repeat 5
# weights: 103
initial value 104.028945
final value 94.486263
converged
Fitting Repeat 1
# weights: 305
initial value 98.080025
iter 10 value 94.489152
iter 20 value 94.454203
iter 30 value 92.145597
iter 40 value 92.107738
final value 92.107724
converged
Fitting Repeat 2
# weights: 305
initial value 107.924971
iter 10 value 94.489375
iter 20 value 94.445784
iter 30 value 94.322643
iter 40 value 83.047604
iter 50 value 81.703615
iter 60 value 81.303196
iter 70 value 80.893994
iter 80 value 80.677672
final value 80.677665
converged
Fitting Repeat 3
# weights: 305
initial value 110.212577
iter 10 value 94.390500
iter 20 value 93.751477
iter 30 value 84.703849
iter 40 value 83.764992
iter 50 value 83.709565
iter 60 value 83.617636
iter 70 value 83.607255
final value 83.607228
converged
Fitting Repeat 4
# weights: 305
initial value 104.807719
iter 10 value 94.486569
iter 20 value 93.951372
iter 30 value 93.684984
iter 30 value 93.684984
iter 30 value 93.684984
final value 93.684984
converged
Fitting Repeat 5
# weights: 305
initial value 97.853935
iter 10 value 94.472317
iter 20 value 94.467715
iter 30 value 94.355888
iter 40 value 83.944042
iter 50 value 81.986385
iter 60 value 81.877613
iter 70 value 81.672232
iter 80 value 81.668183
iter 90 value 81.151821
iter 100 value 80.192124
final value 80.192124
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 96.794564
iter 10 value 94.260936
iter 20 value 94.256725
final value 94.256674
converged
Fitting Repeat 2
# weights: 507
initial value 98.172507
iter 10 value 89.036974
iter 20 value 86.063853
iter 30 value 84.715698
iter 40 value 83.821268
iter 50 value 83.819546
iter 60 value 83.719775
iter 70 value 83.536924
iter 80 value 82.657084
iter 90 value 82.220427
iter 100 value 82.061280
final value 82.061280
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.456884
iter 10 value 92.017030
iter 20 value 90.597255
iter 30 value 90.505267
iter 40 value 90.501646
iter 50 value 90.493292
iter 60 value 90.488005
iter 70 value 90.457445
iter 80 value 90.395431
final value 90.394742
converged
Fitting Repeat 4
# weights: 507
initial value 103.661258
iter 10 value 94.476079
iter 20 value 94.469209
iter 30 value 91.441002
final value 90.948162
converged
Fitting Repeat 5
# weights: 507
initial value 103.419012
iter 10 value 94.489768
iter 20 value 94.475580
iter 30 value 94.472928
iter 40 value 92.356537
iter 50 value 90.641548
iter 60 value 90.548984
final value 90.548488
converged
Fitting Repeat 1
# weights: 507
initial value 127.964277
iter 10 value 118.059175
iter 20 value 107.276020
iter 30 value 106.025505
iter 40 value 104.066143
iter 50 value 103.134957
iter 60 value 102.922470
iter 70 value 102.545624
iter 80 value 101.923888
iter 90 value 101.349948
iter 100 value 101.239345
final value 101.239345
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 131.632243
iter 10 value 118.125823
iter 20 value 109.786451
iter 30 value 106.205068
iter 40 value 105.694099
iter 50 value 105.208589
iter 60 value 105.158532
iter 70 value 105.046741
iter 80 value 105.009850
iter 90 value 104.933647
iter 100 value 103.629390
final value 103.629390
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 150.509651
iter 10 value 118.071706
iter 20 value 117.823518
iter 30 value 117.127998
iter 40 value 108.198043
iter 50 value 104.071284
iter 60 value 103.328199
iter 70 value 102.830748
iter 80 value 102.696646
iter 90 value 102.511169
iter 100 value 102.083936
final value 102.083936
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 142.591625
iter 10 value 117.257431
iter 20 value 115.549547
iter 30 value 115.006874
iter 40 value 114.465459
iter 50 value 110.615541
iter 60 value 107.027843
iter 70 value 106.164062
iter 80 value 105.263954
iter 90 value 104.126737
iter 100 value 103.439866
final value 103.439866
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 144.601276
iter 10 value 117.931648
iter 20 value 116.394149
iter 30 value 112.795082
iter 40 value 110.300765
iter 50 value 106.844287
iter 60 value 104.615775
iter 70 value 103.787074
iter 80 value 102.942107
iter 90 value 102.673646
iter 100 value 102.272392
final value 102.272392
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Sep 9 23:51:20 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
55.723 1.769 141.583
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 49.918 | 2.126 | 52.226 | |
| FreqInteractors | 0.230 | 0.013 | 0.243 | |
| calculateAAC | 0.039 | 0.007 | 0.046 | |
| calculateAutocor | 0.383 | 0.082 | 0.468 | |
| calculateCTDC | 0.081 | 0.011 | 0.104 | |
| calculateCTDD | 0.571 | 0.042 | 0.615 | |
| calculateCTDT | 0.249 | 0.025 | 0.275 | |
| calculateCTriad | 0.471 | 0.058 | 0.531 | |
| calculateDC | 0.095 | 0.010 | 0.106 | |
| calculateF | 0.320 | 0.021 | 0.341 | |
| calculateKSAAP | 0.096 | 0.012 | 0.108 | |
| calculateQD_Sm | 1.835 | 0.254 | 2.093 | |
| calculateTC | 1.723 | 0.178 | 1.902 | |
| calculateTC_Sm | 0.279 | 0.033 | 0.313 | |
| corr_plot | 51.755 | 1.963 | 53.768 | |
| enrichfindP | 0.481 | 0.077 | 6.571 | |
| enrichfind_hp | 0.064 | 0.021 | 0.694 | |
| enrichplot | 0.373 | 0.008 | 0.381 | |
| filter_missing_values | 0.001 | 0.000 | 0.002 | |
| getFASTA | 0.086 | 0.013 | 0.841 | |
| getHPI | 0.001 | 0.001 | 0.001 | |
| get_negativePPI | 0.002 | 0.000 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.002 | 0.000 | 0.001 | |
| plotPPI | 0.072 | 0.006 | 0.078 | |
| pred_ensembel | 16.271 | 0.393 | 15.036 | |
| var_imp | 53.069 | 2.215 | 55.386 | |