| Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-04-22 13:18 -0400 (Tue, 22 Apr 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4831 |
| palomino7 | Windows Server 2022 Datacenter | x64 | 4.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" | 4573 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4599 |
| kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4553 |
| kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4570 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.14.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz |
| StartedAt: 2025-04-21 19:51:01 -0400 (Mon, 21 Apr 2025) |
| EndedAt: 2025-04-21 19:54:15 -0400 (Mon, 21 Apr 2025) |
| EllapsedTime: 193.5 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’
* using R version 4.5.0 RC (2025-04-04 r88126)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 18.505 0.855 19.416
FSmethod 17.938 0.870 19.023
corr_plot 17.615 0.687 18.533
pred_ensembel 5.470 0.115 5.178
enrichfindP 0.167 0.030 9.456
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 103.397143
final value 93.582418
converged
Fitting Repeat 2
# weights: 103
initial value 98.167782
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 104.287687
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 96.782951
final value 94.052448
converged
Fitting Repeat 5
# weights: 103
initial value 96.239730
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.974545
final value 93.671509
converged
Fitting Repeat 2
# weights: 305
initial value 94.620895
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 103.536552
iter 10 value 93.329959
iter 20 value 93.320547
final value 93.320441
converged
Fitting Repeat 4
# weights: 305
initial value 103.023357
iter 10 value 94.032329
iter 10 value 94.032329
iter 10 value 94.032329
final value 94.032329
converged
Fitting Repeat 5
# weights: 305
initial value 100.333376
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 100.042779
final value 93.582418
converged
Fitting Repeat 2
# weights: 507
initial value 97.557488
final value 94.052909
converged
Fitting Repeat 3
# weights: 507
initial value 111.686430
iter 10 value 93.925551
iter 20 value 92.199646
iter 30 value 92.197763
iter 40 value 92.177988
final value 92.177986
converged
Fitting Repeat 4
# weights: 507
initial value 101.270560
iter 10 value 93.582422
final value 93.582418
converged
Fitting Repeat 5
# weights: 507
initial value 121.333775
iter 10 value 93.301910
iter 20 value 86.942629
iter 30 value 86.797060
iter 40 value 86.796910
final value 86.796909
converged
Fitting Repeat 1
# weights: 103
initial value 96.763655
iter 10 value 94.041103
iter 20 value 92.914049
iter 30 value 89.509878
iter 40 value 87.694754
iter 50 value 87.524779
iter 60 value 86.600004
iter 70 value 85.857321
iter 80 value 80.459945
iter 90 value 79.758448
iter 100 value 78.630566
final value 78.630566
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 104.735294
iter 10 value 94.057124
iter 20 value 89.294796
iter 30 value 84.222398
iter 40 value 80.354590
iter 50 value 80.003450
iter 60 value 79.591944
iter 70 value 79.090828
iter 80 value 78.408626
iter 90 value 77.822584
iter 100 value 77.816259
final value 77.816259
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.000122
iter 10 value 93.917010
iter 20 value 82.040920
iter 30 value 81.530169
iter 40 value 81.421388
iter 50 value 80.806656
iter 60 value 80.168432
iter 70 value 79.866429
final value 79.866427
converged
Fitting Repeat 4
# weights: 103
initial value 95.830378
iter 10 value 94.057145
iter 20 value 93.767272
iter 30 value 93.692768
iter 40 value 93.685961
iter 50 value 93.684929
iter 60 value 87.162461
iter 70 value 80.437916
iter 80 value 79.644078
iter 90 value 78.236719
iter 100 value 77.784607
final value 77.784607
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 103.235890
iter 10 value 93.930712
iter 20 value 86.108883
iter 30 value 83.772411
iter 40 value 83.364618
iter 50 value 83.000996
iter 60 value 82.522620
iter 70 value 82.399119
iter 80 value 82.397220
final value 82.397215
converged
Fitting Repeat 1
# weights: 305
initial value 107.645065
iter 10 value 94.035840
iter 20 value 93.658789
iter 30 value 91.183552
iter 40 value 86.751454
iter 50 value 83.384756
iter 60 value 83.016786
iter 70 value 81.300914
iter 80 value 79.311177
iter 90 value 78.679076
iter 100 value 78.492597
final value 78.492597
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.841850
iter 10 value 92.928273
iter 20 value 91.448393
iter 30 value 82.345777
iter 40 value 81.522743
iter 50 value 80.808007
iter 60 value 79.540024
iter 70 value 77.791958
iter 80 value 77.321629
iter 90 value 76.802592
iter 100 value 76.405222
final value 76.405222
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.885916
iter 10 value 94.352446
iter 20 value 90.998284
iter 30 value 90.639263
iter 40 value 90.477613
iter 50 value 90.195775
iter 60 value 84.071247
iter 70 value 79.265821
iter 80 value 78.836283
iter 90 value 78.629532
iter 100 value 78.164870
final value 78.164870
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.037548
iter 10 value 94.072656
iter 20 value 87.303023
iter 30 value 84.699535
iter 40 value 82.738490
iter 50 value 80.480032
iter 60 value 79.623335
iter 70 value 78.532544
iter 80 value 77.322887
iter 90 value 76.795552
iter 100 value 76.674887
final value 76.674887
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.372635
iter 10 value 94.055776
iter 20 value 86.319189
iter 30 value 81.831486
iter 40 value 80.411762
iter 50 value 80.075100
iter 60 value 79.795503
iter 70 value 78.840698
iter 80 value 77.756789
iter 90 value 76.571722
iter 100 value 76.473826
final value 76.473826
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.019408
iter 10 value 92.624389
iter 20 value 91.636667
iter 30 value 86.176472
iter 40 value 82.557087
iter 50 value 80.670946
iter 60 value 79.194526
iter 70 value 77.702049
iter 80 value 76.780386
iter 90 value 76.657900
iter 100 value 76.618396
final value 76.618396
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.814192
iter 10 value 94.022593
iter 20 value 84.534045
iter 30 value 80.460997
iter 40 value 80.034787
iter 50 value 78.301083
iter 60 value 77.625432
iter 70 value 77.474127
iter 80 value 77.079186
iter 90 value 76.899587
iter 100 value 76.703574
final value 76.703574
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.684058
iter 10 value 94.094943
iter 20 value 88.551174
iter 30 value 84.488053
iter 40 value 83.083731
iter 50 value 81.040315
iter 60 value 79.007060
iter 70 value 77.841085
iter 80 value 77.567946
iter 90 value 77.227215
iter 100 value 76.558292
final value 76.558292
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.662036
iter 10 value 94.297075
iter 20 value 89.508728
iter 30 value 84.095379
iter 40 value 83.077285
iter 50 value 82.465316
iter 60 value 82.348319
iter 70 value 82.173554
iter 80 value 79.726080
iter 90 value 77.674177
iter 100 value 77.109181
final value 77.109181
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.640331
iter 10 value 93.722608
iter 20 value 86.829061
iter 30 value 81.902622
iter 40 value 81.573166
iter 50 value 80.764688
iter 60 value 80.215935
iter 70 value 78.830188
iter 80 value 77.098624
iter 90 value 76.584977
iter 100 value 76.351326
final value 76.351326
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.444260
iter 10 value 94.054574
final value 94.052912
converged
Fitting Repeat 2
# weights: 103
initial value 95.701250
final value 94.054456
converged
Fitting Repeat 3
# weights: 103
initial value 100.703082
final value 94.054909
converged
Fitting Repeat 4
# weights: 103
initial value 96.048353
final value 94.054784
converged
Fitting Repeat 5
# weights: 103
initial value 104.349408
iter 10 value 94.054950
final value 94.053157
converged
Fitting Repeat 1
# weights: 305
initial value 96.889862
iter 10 value 94.057975
iter 20 value 94.052910
iter 30 value 93.580434
iter 40 value 92.810094
final value 92.803996
converged
Fitting Repeat 2
# weights: 305
initial value 101.239179
iter 10 value 94.057245
iter 20 value 94.052646
iter 30 value 93.664238
final value 93.583182
converged
Fitting Repeat 3
# weights: 305
initial value 103.651203
iter 10 value 93.464666
iter 20 value 93.197047
iter 30 value 93.194591
final value 93.194294
converged
Fitting Repeat 4
# weights: 305
initial value 106.468734
iter 10 value 94.058316
iter 20 value 93.955939
iter 30 value 84.848194
final value 84.745885
converged
Fitting Repeat 5
# weights: 305
initial value 95.223802
iter 10 value 94.057038
iter 20 value 94.052946
final value 94.052916
converged
Fitting Repeat 1
# weights: 507
initial value 103.325088
iter 10 value 94.061461
iter 20 value 92.543324
iter 30 value 81.823816
iter 40 value 79.495736
iter 50 value 79.204485
iter 60 value 79.199798
iter 70 value 78.710928
iter 80 value 77.594874
iter 90 value 75.846498
iter 100 value 75.790993
final value 75.790993
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.386737
iter 10 value 94.061477
iter 20 value 94.016116
iter 30 value 92.862092
iter 30 value 92.862092
iter 30 value 92.862092
final value 92.862092
converged
Fitting Repeat 3
# weights: 507
initial value 105.711377
iter 10 value 92.854443
iter 20 value 92.812371
iter 30 value 92.809211
iter 40 value 92.804427
iter 50 value 92.804339
iter 60 value 92.692725
iter 70 value 92.307924
iter 80 value 89.382946
iter 90 value 78.869347
iter 100 value 76.677023
final value 76.677023
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 94.229809
iter 10 value 94.055122
iter 20 value 93.715270
iter 30 value 87.619572
iter 40 value 87.085280
iter 50 value 86.933876
iter 60 value 86.931343
iter 70 value 85.005982
iter 80 value 84.933061
iter 90 value 84.932558
final value 84.932556
converged
Fitting Repeat 5
# weights: 507
initial value 110.661684
iter 10 value 87.627893
iter 20 value 85.205766
final value 85.202729
converged
Fitting Repeat 1
# weights: 103
initial value 99.178925
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 101.000336
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.521619
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.061083
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.975895
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.822139
final value 94.026542
converged
Fitting Repeat 2
# weights: 305
initial value 114.163767
iter 10 value 94.227298
iter 20 value 91.717281
iter 30 value 91.527710
final value 91.527452
converged
Fitting Repeat 3
# weights: 305
initial value 96.457695
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 97.892860
iter 10 value 94.202038
iter 10 value 94.202037
iter 10 value 94.202037
final value 94.202037
converged
Fitting Repeat 5
# weights: 305
initial value 98.056725
final value 94.448052
converged
Fitting Repeat 1
# weights: 507
initial value 99.304912
iter 10 value 93.786590
iter 20 value 93.696363
final value 93.696359
converged
Fitting Repeat 2
# weights: 507
initial value 100.603393
iter 10 value 93.674449
iter 20 value 93.668311
iter 30 value 93.634576
final value 93.633783
converged
Fitting Repeat 3
# weights: 507
initial value 111.667555
final value 94.484212
converged
Fitting Repeat 4
# weights: 507
initial value 95.690886
iter 10 value 94.355491
iter 20 value 94.354287
iter 20 value 94.354287
iter 20 value 94.354286
final value 94.354286
converged
Fitting Repeat 5
# weights: 507
initial value 101.544669
final value 94.088889
converged
Fitting Repeat 1
# weights: 103
initial value 102.356242
iter 10 value 94.441259
iter 20 value 94.199577
iter 30 value 94.161815
final value 94.161779
converged
Fitting Repeat 2
# weights: 103
initial value 100.062634
iter 10 value 94.421836
iter 20 value 94.126195
iter 30 value 94.125952
iter 40 value 91.618217
iter 50 value 87.745229
iter 60 value 87.445767
iter 70 value 87.161548
iter 80 value 86.025887
iter 90 value 84.336523
iter 100 value 84.099071
final value 84.099071
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 103.773723
iter 10 value 94.475197
iter 20 value 94.203622
iter 30 value 94.141434
iter 40 value 90.354247
iter 50 value 85.588864
iter 60 value 84.725762
iter 70 value 84.599307
iter 80 value 84.464552
iter 90 value 84.444155
iter 100 value 84.443859
final value 84.443859
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 107.468934
iter 10 value 94.208846
iter 20 value 92.651966
iter 30 value 92.287215
iter 40 value 92.285218
final value 92.285205
converged
Fitting Repeat 5
# weights: 103
initial value 96.731647
iter 10 value 94.486457
iter 20 value 94.146656
iter 30 value 94.126017
iter 40 value 93.843778
iter 50 value 86.364927
iter 60 value 85.085579
iter 70 value 84.623751
iter 80 value 84.533575
iter 90 value 84.427748
iter 100 value 84.216809
final value 84.216809
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 111.803910
iter 10 value 94.461486
iter 20 value 93.300945
iter 30 value 87.372629
iter 40 value 86.817036
iter 50 value 86.634003
iter 60 value 84.616718
iter 70 value 83.759819
iter 80 value 83.612735
iter 90 value 83.488159
iter 100 value 82.784699
final value 82.784699
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 120.049909
iter 10 value 89.028176
iter 20 value 85.292666
iter 30 value 85.166392
iter 40 value 84.850678
iter 50 value 84.352235
iter 60 value 84.210566
iter 70 value 83.844392
iter 80 value 82.399191
iter 90 value 81.346789
iter 100 value 81.240042
final value 81.240042
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.653766
iter 10 value 94.519827
iter 20 value 88.354000
iter 30 value 85.878194
iter 40 value 85.409147
iter 50 value 84.801098
iter 60 value 83.513639
iter 70 value 81.990502
iter 80 value 81.776182
iter 90 value 81.538298
iter 100 value 81.336134
final value 81.336134
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.394448
iter 10 value 94.462242
iter 20 value 86.481864
iter 30 value 85.720527
iter 40 value 85.208020
iter 50 value 84.446298
iter 60 value 82.658976
iter 70 value 81.472677
iter 80 value 81.333433
iter 90 value 81.204537
iter 100 value 81.025398
final value 81.025398
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.317111
iter 10 value 94.583471
iter 20 value 94.509658
iter 30 value 94.481290
iter 40 value 92.426419
iter 50 value 87.954501
iter 60 value 87.478115
iter 70 value 84.507997
iter 80 value 82.702872
iter 90 value 82.439991
iter 100 value 82.274194
final value 82.274194
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 118.282124
iter 10 value 95.157012
iter 20 value 94.312063
iter 30 value 94.133845
iter 40 value 92.337473
iter 50 value 88.352692
iter 60 value 86.564553
iter 70 value 85.152881
iter 80 value 83.480819
iter 90 value 82.533980
iter 100 value 81.902786
final value 81.902786
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 113.117710
iter 10 value 95.034940
iter 20 value 94.830989
iter 30 value 86.213660
iter 40 value 85.414318
iter 50 value 84.604475
iter 60 value 84.250106
iter 70 value 84.070054
iter 80 value 83.990852
iter 90 value 83.961779
iter 100 value 83.951864
final value 83.951864
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.311416
iter 10 value 94.649192
iter 20 value 92.461276
iter 30 value 88.376245
iter 40 value 87.340868
iter 50 value 86.285464
iter 60 value 84.123993
iter 70 value 83.017510
iter 80 value 81.668653
iter 90 value 81.313869
iter 100 value 81.095206
final value 81.095206
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.863073
iter 10 value 94.882703
iter 20 value 94.051363
iter 30 value 93.995723
iter 40 value 93.946555
iter 50 value 89.205399
iter 60 value 88.085877
iter 70 value 85.775480
iter 80 value 84.782377
iter 90 value 84.350670
iter 100 value 83.592744
final value 83.592744
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 99.813790
iter 10 value 85.631025
iter 20 value 84.726934
iter 30 value 83.335307
iter 40 value 82.253082
iter 50 value 82.108527
iter 60 value 81.926014
iter 70 value 81.490745
iter 80 value 81.139009
iter 90 value 81.029534
iter 100 value 80.859178
final value 80.859178
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.309554
final value 94.485676
converged
Fitting Repeat 2
# weights: 103
initial value 107.186493
final value 94.485953
converged
Fitting Repeat 3
# weights: 103
initial value 102.169772
iter 10 value 94.485930
final value 94.485406
converged
Fitting Repeat 4
# weights: 103
initial value 102.728977
final value 94.028597
converged
Fitting Repeat 5
# weights: 103
initial value 96.684453
iter 10 value 94.449829
iter 20 value 94.448567
final value 94.448099
converged
Fitting Repeat 1
# weights: 305
initial value 112.501781
iter 10 value 94.031633
iter 20 value 94.011503
iter 30 value 92.542687
iter 40 value 88.792867
iter 50 value 88.501778
final value 88.496746
converged
Fitting Repeat 2
# weights: 305
initial value 104.593362
iter 10 value 94.494168
iter 20 value 94.465117
iter 30 value 88.450457
iter 40 value 87.597568
iter 50 value 87.407858
iter 60 value 84.417547
iter 70 value 84.407145
iter 80 value 84.404785
iter 90 value 83.311163
iter 100 value 82.840255
final value 82.840255
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.361767
iter 10 value 94.031503
iter 20 value 93.943745
iter 30 value 86.341460
iter 40 value 84.439105
iter 50 value 84.380150
iter 60 value 84.379540
iter 70 value 84.379488
iter 80 value 84.379102
final value 84.377628
converged
Fitting Repeat 4
# weights: 305
initial value 96.847165
iter 10 value 94.489428
iter 20 value 94.481699
iter 30 value 94.030088
iter 40 value 94.028069
iter 50 value 93.979408
final value 93.975597
converged
Fitting Repeat 5
# weights: 305
initial value 97.386984
iter 10 value 94.485726
iter 20 value 94.423534
iter 30 value 94.021494
iter 40 value 91.339946
iter 50 value 87.150712
iter 60 value 87.037768
iter 70 value 86.943755
iter 80 value 86.930469
iter 90 value 84.360685
iter 100 value 83.059178
final value 83.059178
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 95.040897
iter 10 value 93.677288
iter 20 value 93.675146
iter 30 value 86.198101
iter 40 value 86.183722
iter 50 value 86.176308
iter 60 value 86.174382
iter 70 value 86.110831
iter 80 value 86.109522
final value 86.109508
converged
Fitting Repeat 2
# weights: 507
initial value 100.556273
iter 10 value 93.800906
iter 20 value 93.796544
iter 30 value 93.791508
iter 40 value 93.226290
iter 50 value 89.373864
iter 60 value 85.106683
iter 70 value 85.068455
iter 80 value 84.869073
iter 90 value 84.695184
iter 100 value 84.674790
final value 84.674790
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.376505
iter 10 value 94.485268
iter 20 value 93.320630
iter 30 value 83.425223
iter 40 value 82.829625
iter 50 value 82.557041
final value 82.556849
converged
Fitting Repeat 4
# weights: 507
initial value 102.302711
iter 10 value 94.495249
iter 20 value 94.486620
iter 30 value 94.236557
iter 40 value 92.465425
iter 50 value 92.110351
iter 60 value 92.109090
iter 70 value 88.433249
iter 80 value 83.156448
iter 90 value 82.799509
iter 100 value 82.567278
final value 82.567278
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 94.698578
iter 10 value 94.485382
iter 20 value 93.346266
iter 30 value 92.605542
iter 40 value 91.977712
iter 50 value 87.580255
iter 60 value 87.529888
iter 70 value 87.100198
iter 80 value 87.095628
iter 80 value 87.095628
final value 87.095628
converged
Fitting Repeat 1
# weights: 103
initial value 97.342097
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 100.050645
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 104.115582
iter 10 value 90.110983
iter 20 value 86.307333
iter 30 value 86.120102
iter 40 value 86.108297
iter 50 value 86.033314
iter 60 value 85.943423
final value 85.942126
converged
Fitting Repeat 4
# weights: 103
initial value 96.164373
iter 10 value 88.757917
iter 20 value 86.193330
iter 30 value 85.962100
iter 40 value 85.960530
iter 40 value 85.960529
iter 40 value 85.960529
final value 85.960529
converged
Fitting Repeat 5
# weights: 103
initial value 99.431493
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 104.802166
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 95.329905
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 118.553577
iter 10 value 94.052910
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 93.416893
iter 10 value 88.166968
iter 20 value 86.316401
iter 30 value 86.088392
iter 40 value 85.939953
final value 85.939856
converged
Fitting Repeat 5
# weights: 305
initial value 112.018159
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 96.875185
final value 93.874286
converged
Fitting Repeat 2
# weights: 507
initial value 101.963051
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 99.489508
final value 94.032967
converged
Fitting Repeat 4
# weights: 507
initial value 97.609894
iter 10 value 92.487607
iter 20 value 89.216322
iter 30 value 89.131840
iter 40 value 89.125490
final value 89.125064
converged
Fitting Repeat 5
# weights: 507
initial value 94.799673
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 108.897790
iter 10 value 90.578664
iter 20 value 87.750920
iter 30 value 84.862691
iter 40 value 84.803880
iter 50 value 84.794607
iter 60 value 84.763162
iter 70 value 84.678546
iter 80 value 84.612228
final value 84.604455
converged
Fitting Repeat 2
# weights: 103
initial value 99.144078
iter 10 value 94.056842
iter 20 value 94.054701
iter 30 value 91.192759
iter 40 value 86.764781
iter 50 value 86.397926
iter 60 value 85.829565
iter 70 value 85.742656
iter 80 value 84.565691
iter 90 value 83.810291
iter 100 value 83.098839
final value 83.098839
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 100.842902
iter 10 value 94.054892
iter 20 value 89.638829
iter 30 value 88.500086
iter 40 value 85.873371
iter 50 value 85.156048
iter 60 value 85.101774
iter 70 value 84.793094
iter 80 value 84.647220
iter 90 value 84.612777
iter 100 value 84.607381
final value 84.607381
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.223862
iter 10 value 94.005430
iter 20 value 86.134128
iter 30 value 85.943530
iter 40 value 85.217842
iter 50 value 84.679076
iter 60 value 84.433972
iter 70 value 83.326630
iter 80 value 82.791200
final value 82.790918
converged
Fitting Repeat 5
# weights: 103
initial value 103.016605
iter 10 value 94.211396
iter 20 value 91.888945
iter 30 value 87.480737
iter 40 value 86.772640
iter 50 value 85.802758
iter 60 value 85.352690
iter 70 value 85.120740
iter 80 value 83.657995
iter 90 value 82.818040
iter 100 value 82.790952
final value 82.790952
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.026861
iter 10 value 94.112615
iter 20 value 92.027649
iter 30 value 85.416830
iter 40 value 84.677912
iter 50 value 84.226737
iter 60 value 84.176630
iter 70 value 83.978609
iter 80 value 83.268879
iter 90 value 82.637018
iter 100 value 82.274388
final value 82.274388
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.073102
iter 10 value 94.119822
iter 20 value 94.045617
iter 30 value 92.877328
iter 40 value 86.670294
iter 50 value 86.393751
iter 60 value 84.827446
iter 70 value 84.043082
iter 80 value 83.483861
iter 90 value 83.455281
iter 100 value 83.228679
final value 83.228679
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.594927
iter 10 value 94.018803
iter 20 value 92.967959
iter 30 value 92.791021
iter 40 value 92.409933
iter 50 value 92.136429
iter 60 value 86.894896
iter 70 value 86.121779
iter 80 value 84.928056
iter 90 value 83.878545
iter 100 value 83.541298
final value 83.541298
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.177839
iter 10 value 94.246361
iter 20 value 89.853771
iter 30 value 85.973603
iter 40 value 85.459299
iter 50 value 84.737416
iter 60 value 84.434158
iter 70 value 84.125508
iter 80 value 82.684763
iter 90 value 82.453851
iter 100 value 81.789312
final value 81.789312
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.136717
iter 10 value 93.934209
iter 20 value 92.652478
iter 30 value 89.121629
iter 40 value 88.109657
iter 50 value 85.205402
iter 60 value 83.245099
iter 70 value 82.800150
iter 80 value 82.596691
iter 90 value 82.473534
iter 100 value 82.406653
final value 82.406653
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 144.373062
iter 10 value 94.057670
iter 20 value 93.887991
iter 30 value 89.956591
iter 40 value 87.112962
iter 50 value 86.562181
iter 60 value 85.421944
iter 70 value 83.743658
iter 80 value 83.394630
iter 90 value 83.254278
iter 100 value 82.826099
final value 82.826099
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.598791
iter 10 value 93.994931
iter 20 value 92.002332
iter 30 value 91.598765
iter 40 value 89.222134
iter 50 value 86.814466
iter 60 value 86.004228
iter 70 value 84.622950
iter 80 value 83.720971
iter 90 value 83.424803
iter 100 value 82.998537
final value 82.998537
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 118.843479
iter 10 value 94.334353
iter 20 value 94.235978
iter 30 value 93.664584
iter 40 value 92.631880
iter 50 value 91.737309
iter 60 value 87.941086
iter 70 value 85.233673
iter 80 value 83.732345
iter 90 value 83.298575
iter 100 value 83.258040
final value 83.258040
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 126.424226
iter 10 value 94.218320
iter 20 value 94.043618
iter 30 value 92.322585
iter 40 value 86.819768
iter 50 value 86.192813
iter 60 value 84.277151
iter 70 value 83.351712
iter 80 value 82.535684
iter 90 value 81.976272
iter 100 value 81.643615
final value 81.643615
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.959603
iter 10 value 94.039088
iter 20 value 87.422345
iter 30 value 85.545849
iter 40 value 82.735456
iter 50 value 82.502285
iter 60 value 82.394409
iter 70 value 82.257475
iter 80 value 82.080345
iter 90 value 81.841679
iter 100 value 81.725968
final value 81.725968
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 110.858339
final value 94.054672
converged
Fitting Repeat 2
# weights: 103
initial value 114.067128
iter 10 value 94.054316
iter 20 value 93.921535
iter 30 value 85.617670
final value 85.600350
converged
Fitting Repeat 3
# weights: 103
initial value 99.135148
final value 94.054528
converged
Fitting Repeat 4
# weights: 103
initial value 103.817902
final value 94.054348
converged
Fitting Repeat 5
# weights: 103
initial value 97.001714
final value 94.054537
converged
Fitting Repeat 1
# weights: 305
initial value 114.368996
iter 10 value 94.038065
iter 20 value 94.034688
iter 30 value 93.805916
iter 40 value 87.056557
iter 50 value 85.327593
iter 60 value 84.751316
final value 84.736616
converged
Fitting Repeat 2
# weights: 305
initial value 99.279352
iter 10 value 93.278237
iter 20 value 91.597023
iter 30 value 91.536478
iter 40 value 91.517853
iter 50 value 91.474648
iter 60 value 91.184129
final value 91.182278
converged
Fitting Repeat 3
# weights: 305
initial value 94.330903
iter 10 value 94.026445
iter 20 value 90.386738
iter 30 value 86.048698
iter 40 value 85.457486
iter 40 value 85.457485
iter 40 value 85.457485
final value 85.457485
converged
Fitting Repeat 4
# weights: 305
initial value 95.181820
iter 10 value 93.918600
iter 20 value 93.901654
iter 30 value 93.858341
iter 40 value 93.853939
final value 93.852218
converged
Fitting Repeat 5
# weights: 305
initial value 94.414844
iter 10 value 94.057634
iter 20 value 94.036337
iter 30 value 93.377603
iter 40 value 93.141432
iter 50 value 91.147698
iter 60 value 85.561850
iter 70 value 85.542150
iter 80 value 85.541807
iter 90 value 85.472565
iter 100 value 85.470119
final value 85.470119
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 99.644630
iter 10 value 94.041107
iter 20 value 93.433416
iter 30 value 86.636823
iter 30 value 86.636822
iter 30 value 86.636822
final value 86.636822
converged
Fitting Repeat 2
# weights: 507
initial value 111.623806
iter 10 value 93.883320
iter 20 value 90.235293
iter 30 value 89.012739
iter 40 value 84.875009
iter 50 value 83.776292
iter 60 value 83.733881
iter 70 value 82.989716
iter 80 value 82.895448
iter 90 value 82.858039
iter 100 value 82.837323
final value 82.837323
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.683034
iter 10 value 94.061120
iter 20 value 94.053163
iter 30 value 93.542599
iter 40 value 93.539819
final value 93.539801
converged
Fitting Repeat 4
# weights: 507
initial value 94.665070
iter 10 value 94.060730
iter 20 value 93.201317
iter 30 value 86.550246
iter 40 value 85.908591
iter 50 value 85.886326
iter 60 value 83.470599
iter 70 value 83.397941
iter 80 value 83.396041
iter 90 value 83.392577
iter 100 value 83.390508
final value 83.390508
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.622063
iter 10 value 84.197391
iter 20 value 83.728440
iter 30 value 82.929802
iter 40 value 81.443693
iter 50 value 81.218743
iter 60 value 80.727437
iter 70 value 80.651345
iter 80 value 80.568077
iter 90 value 80.311967
iter 100 value 80.178350
final value 80.178350
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.996587
final value 94.443243
converged
Fitting Repeat 2
# weights: 103
initial value 102.008911
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.674829
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 96.189879
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 100.407044
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 105.480910
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 106.880600
final value 94.443243
converged
Fitting Repeat 3
# weights: 305
initial value 105.157780
final value 94.443243
converged
Fitting Repeat 4
# weights: 305
initial value 96.639135
final value 94.132871
converged
Fitting Repeat 5
# weights: 305
initial value 108.704652
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 100.006814
iter 10 value 94.275183
iter 20 value 94.057031
iter 30 value 94.051994
final value 94.051984
converged
Fitting Repeat 2
# weights: 507
initial value 113.722857
final value 94.312038
converged
Fitting Repeat 3
# weights: 507
initial value 94.352546
iter 10 value 91.200167
iter 20 value 91.120763
iter 30 value 91.119871
final value 91.119852
converged
Fitting Repeat 4
# weights: 507
initial value 114.238956
iter 10 value 94.432863
final value 94.409639
converged
Fitting Repeat 5
# weights: 507
initial value 94.627131
final value 94.443243
converged
Fitting Repeat 1
# weights: 103
initial value 99.875352
iter 10 value 94.486576
iter 20 value 94.358634
iter 30 value 89.272009
iter 40 value 88.861667
iter 50 value 81.310976
iter 60 value 81.042089
iter 70 value 80.187963
iter 80 value 79.673165
iter 90 value 79.566381
iter 100 value 79.555875
final value 79.555875
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.219848
iter 10 value 94.362790
iter 20 value 88.723050
iter 30 value 84.333056
iter 40 value 83.714393
iter 50 value 83.032801
iter 60 value 82.559990
iter 70 value 82.141161
iter 80 value 82.115161
final value 82.109848
converged
Fitting Repeat 3
# weights: 103
initial value 105.462865
iter 10 value 94.247602
iter 20 value 91.911639
iter 30 value 90.155224
iter 40 value 90.003293
iter 50 value 89.687764
iter 60 value 89.654270
iter 70 value 83.595709
iter 80 value 81.651000
iter 90 value 80.940905
iter 100 value 80.620574
final value 80.620574
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.608145
iter 10 value 94.498108
iter 20 value 94.456631
iter 30 value 94.192138
iter 40 value 94.100496
iter 50 value 94.089710
iter 60 value 90.565517
iter 70 value 85.707302
iter 80 value 84.089555
iter 90 value 83.319011
iter 100 value 82.947491
final value 82.947491
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 102.903459
iter 10 value 94.345714
iter 20 value 91.852735
iter 30 value 91.622611
iter 40 value 91.609429
iter 50 value 91.543603
iter 60 value 89.909048
iter 70 value 89.665859
iter 80 value 89.653248
iter 90 value 84.824597
iter 100 value 82.043673
final value 82.043673
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 104.681755
iter 10 value 94.491295
iter 20 value 90.848493
iter 30 value 87.708713
iter 40 value 84.424483
iter 50 value 83.297340
iter 60 value 81.153910
iter 70 value 80.745441
iter 80 value 80.098612
iter 90 value 79.578689
iter 100 value 78.718202
final value 78.718202
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.440727
iter 10 value 94.600282
iter 20 value 94.496093
iter 30 value 93.453131
iter 40 value 86.586849
iter 50 value 81.219227
iter 60 value 80.882433
iter 70 value 80.830532
iter 80 value 80.236297
iter 90 value 79.278043
iter 100 value 78.342729
final value 78.342729
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.531361
iter 10 value 94.327390
iter 20 value 83.733387
iter 30 value 80.694578
iter 40 value 80.118269
iter 50 value 79.013878
iter 60 value 78.726741
iter 70 value 78.430701
iter 80 value 78.266164
iter 90 value 78.196963
iter 100 value 78.163892
final value 78.163892
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 124.111912
iter 10 value 94.774320
iter 20 value 94.492521
iter 30 value 94.450111
iter 40 value 90.426634
iter 50 value 87.491512
iter 60 value 83.984109
iter 70 value 83.110861
iter 80 value 80.286059
iter 90 value 79.636662
iter 100 value 79.302262
final value 79.302262
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.900414
iter 10 value 94.523369
iter 20 value 87.541078
iter 30 value 83.551638
iter 40 value 83.244965
iter 50 value 81.714642
iter 60 value 80.347883
iter 70 value 79.115939
iter 80 value 78.867187
iter 90 value 78.610470
iter 100 value 78.108743
final value 78.108743
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.447854
iter 10 value 94.498176
iter 20 value 87.807066
iter 30 value 84.738955
iter 40 value 81.989059
iter 50 value 81.646740
iter 60 value 80.512974
iter 70 value 79.925466
iter 80 value 79.309774
iter 90 value 78.869684
iter 100 value 78.715711
final value 78.715711
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.268297
iter 10 value 93.870369
iter 20 value 85.863260
iter 30 value 83.704617
iter 40 value 83.321019
iter 50 value 81.374938
iter 60 value 80.524486
iter 70 value 79.268380
iter 80 value 78.996711
iter 90 value 78.735916
iter 100 value 78.610060
final value 78.610060
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 128.850853
iter 10 value 95.151411
iter 20 value 92.733224
iter 30 value 84.765077
iter 40 value 83.846944
iter 50 value 83.171949
iter 60 value 82.408891
iter 70 value 81.441222
iter 80 value 80.804070
iter 90 value 80.669812
iter 100 value 80.341928
final value 80.341928
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 137.964872
iter 10 value 102.410921
iter 20 value 93.561749
iter 30 value 87.803687
iter 40 value 85.275935
iter 50 value 84.849923
iter 60 value 83.298221
iter 70 value 82.036324
iter 80 value 80.382269
iter 90 value 79.620921
iter 100 value 79.181852
final value 79.181852
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.818178
iter 10 value 94.331257
iter 20 value 85.370179
iter 30 value 83.974110
iter 40 value 82.181469
iter 50 value 81.435470
iter 60 value 80.882415
iter 70 value 80.542905
iter 80 value 80.420121
iter 90 value 79.983957
iter 100 value 79.369980
final value 79.369980
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.208992
iter 10 value 94.485872
iter 20 value 94.484271
final value 94.484216
converged
Fitting Repeat 2
# weights: 103
initial value 98.222357
iter 10 value 94.445047
iter 20 value 94.443368
iter 30 value 94.209711
iter 40 value 94.057850
final value 94.057463
converged
Fitting Repeat 3
# weights: 103
initial value 96.825515
iter 10 value 85.886915
iter 20 value 84.360516
iter 30 value 83.711348
iter 40 value 83.693636
iter 50 value 83.692995
final value 83.692908
converged
Fitting Repeat 4
# weights: 103
initial value 107.516907
final value 94.485691
converged
Fitting Repeat 5
# weights: 103
initial value 98.192624
final value 94.485706
converged
Fitting Repeat 1
# weights: 305
initial value 98.732953
iter 10 value 94.488566
iter 20 value 94.461764
iter 30 value 85.989832
iter 40 value 83.841500
iter 50 value 83.837484
final value 83.837465
converged
Fitting Repeat 2
# weights: 305
initial value 97.431106
iter 10 value 94.487686
iter 20 value 88.198190
iter 30 value 87.084555
iter 40 value 86.414308
iter 50 value 86.410757
iter 60 value 86.352975
iter 70 value 85.981420
iter 80 value 85.977839
iter 90 value 85.976955
iter 100 value 85.439898
final value 85.439898
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 117.901966
iter 10 value 94.490940
iter 20 value 90.005354
iter 30 value 87.816574
iter 40 value 87.363148
iter 50 value 86.098072
final value 86.097726
converged
Fitting Repeat 4
# weights: 305
initial value 101.502605
iter 10 value 94.489052
iter 20 value 94.484341
iter 30 value 94.465590
iter 40 value 94.058668
iter 50 value 94.057759
final value 94.057735
converged
Fitting Repeat 5
# weights: 305
initial value 102.069057
iter 10 value 94.316716
iter 20 value 94.312264
iter 30 value 94.162952
iter 40 value 94.052151
iter 50 value 90.747071
iter 60 value 83.498615
iter 70 value 83.498228
iter 80 value 83.481297
iter 90 value 83.405709
iter 100 value 82.037930
final value 82.037930
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 101.904178
iter 10 value 94.243513
iter 20 value 84.360088
iter 30 value 82.872026
iter 40 value 82.719176
iter 50 value 82.714605
iter 60 value 82.711565
iter 70 value 82.710310
iter 80 value 82.698027
iter 90 value 82.627078
iter 100 value 81.946016
final value 81.946016
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.921918
iter 10 value 94.491308
iter 20 value 94.473721
iter 30 value 83.644357
iter 40 value 81.434795
iter 50 value 80.542384
iter 60 value 80.535809
iter 70 value 79.706913
iter 80 value 78.976015
iter 90 value 78.970459
iter 100 value 78.829601
final value 78.829601
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.437692
iter 10 value 88.176255
iter 20 value 88.155781
iter 30 value 86.595596
iter 40 value 86.593952
iter 50 value 86.012017
iter 60 value 83.891898
iter 70 value 80.929806
iter 80 value 80.923929
iter 90 value 80.457491
iter 100 value 78.891608
final value 78.891608
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 99.162595
iter 10 value 94.451872
iter 20 value 94.428055
iter 30 value 93.131294
iter 40 value 84.063376
iter 50 value 82.008649
iter 60 value 81.410060
final value 81.404722
converged
Fitting Repeat 5
# weights: 507
initial value 103.183152
iter 10 value 86.727472
iter 20 value 86.242854
iter 30 value 86.242404
iter 40 value 85.746920
iter 50 value 85.055172
iter 60 value 85.054964
final value 85.054784
converged
Fitting Repeat 1
# weights: 103
initial value 97.963873
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 98.600049
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 112.216226
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.695489
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.980440
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 102.038039
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.845574
final value 94.467391
converged
Fitting Repeat 3
# weights: 305
initial value 99.728300
final value 94.467391
converged
Fitting Repeat 4
# weights: 305
initial value 100.645907
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 106.986964
iter 10 value 94.443270
final value 94.443265
converged
Fitting Repeat 1
# weights: 507
initial value 100.120647
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 95.839811
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 119.332060
iter 10 value 94.484193
iter 20 value 94.473946
final value 94.467391
converged
Fitting Repeat 4
# weights: 507
initial value 110.143646
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 101.132595
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 106.805845
iter 10 value 94.216542
iter 20 value 88.999559
iter 30 value 86.536928
iter 40 value 85.763336
iter 50 value 85.598314
iter 60 value 85.568085
iter 70 value 85.540754
iter 80 value 85.532692
final value 85.531180
converged
Fitting Repeat 2
# weights: 103
initial value 97.770725
iter 10 value 94.312509
iter 20 value 92.894480
iter 30 value 91.855605
iter 40 value 90.972073
iter 50 value 89.503898
iter 60 value 84.784396
iter 70 value 83.724914
iter 80 value 83.632259
final value 83.632143
converged
Fitting Repeat 3
# weights: 103
initial value 96.974923
iter 10 value 94.436481
iter 20 value 88.433863
iter 30 value 86.080701
iter 40 value 85.939250
iter 50 value 85.915561
iter 60 value 85.901254
final value 85.901121
converged
Fitting Repeat 4
# weights: 103
initial value 103.375445
iter 10 value 94.414090
iter 20 value 93.394444
iter 30 value 91.140519
iter 40 value 90.922933
iter 50 value 87.071587
iter 60 value 86.066818
iter 70 value 85.976474
final value 85.976109
converged
Fitting Repeat 5
# weights: 103
initial value 105.378256
iter 10 value 94.388109
iter 20 value 87.158800
iter 30 value 85.191258
iter 40 value 84.845468
iter 50 value 84.611920
iter 60 value 84.393099
final value 84.390892
converged
Fitting Repeat 1
# weights: 305
initial value 103.551655
iter 10 value 94.411902
iter 20 value 87.051667
iter 30 value 86.931608
iter 40 value 86.746728
iter 50 value 85.630185
iter 60 value 85.528623
iter 70 value 85.481299
iter 80 value 84.943016
iter 90 value 84.682435
iter 100 value 83.805505
final value 83.805505
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.857140
iter 10 value 94.464563
iter 20 value 92.418309
iter 30 value 90.801266
iter 40 value 90.025946
iter 50 value 89.401807
iter 60 value 88.342890
iter 70 value 85.659786
iter 80 value 85.052392
iter 90 value 84.655696
iter 100 value 84.469741
final value 84.469741
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 112.629290
iter 10 value 94.030415
iter 20 value 87.754201
iter 30 value 85.523017
iter 40 value 84.630372
iter 50 value 84.176055
iter 60 value 83.928443
iter 70 value 83.589061
iter 80 value 82.789770
iter 90 value 82.725600
iter 100 value 82.720816
final value 82.720816
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.199160
iter 10 value 94.276131
iter 20 value 87.448354
iter 30 value 86.056309
iter 40 value 85.629647
iter 50 value 85.419760
iter 60 value 85.367235
iter 70 value 84.460561
iter 80 value 83.456713
iter 90 value 83.123562
iter 100 value 82.750484
final value 82.750484
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.706429
iter 10 value 94.657163
iter 20 value 94.513187
iter 30 value 91.882824
iter 40 value 89.652869
iter 50 value 88.230888
iter 60 value 87.532839
iter 70 value 86.349196
iter 80 value 86.022959
iter 90 value 85.950802
iter 100 value 85.725891
final value 85.725891
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 130.328278
iter 10 value 94.675631
iter 20 value 94.502176
iter 30 value 88.373722
iter 40 value 86.334681
iter 50 value 85.740291
iter 60 value 85.115870
iter 70 value 84.435585
iter 80 value 83.106097
iter 90 value 82.463729
iter 100 value 82.412180
final value 82.412180
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 124.068943
iter 10 value 94.835276
iter 20 value 91.064129
iter 30 value 88.162275
iter 40 value 86.811124
iter 50 value 86.552058
iter 60 value 84.780111
iter 70 value 83.779999
iter 80 value 82.784531
iter 90 value 82.378156
iter 100 value 82.163641
final value 82.163641
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.449115
iter 10 value 95.029859
iter 20 value 90.111447
iter 30 value 86.168836
iter 40 value 85.817231
iter 50 value 85.602029
iter 60 value 85.453223
iter 70 value 84.722059
iter 80 value 83.376951
iter 90 value 82.951984
iter 100 value 82.459103
final value 82.459103
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 109.445848
iter 10 value 94.763088
iter 20 value 94.546032
iter 30 value 94.374304
iter 40 value 93.235285
iter 50 value 92.973668
iter 60 value 92.261423
iter 70 value 92.169631
iter 80 value 90.563424
iter 90 value 89.235800
iter 100 value 88.552046
final value 88.552046
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.453235
iter 10 value 94.536032
iter 20 value 93.741214
iter 30 value 87.433783
iter 40 value 85.182810
iter 50 value 84.601065
iter 60 value 84.451202
iter 70 value 84.325465
iter 80 value 83.512071
iter 90 value 82.846998
iter 100 value 82.658584
final value 82.658584
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.044577
final value 94.469049
converged
Fitting Repeat 2
# weights: 103
initial value 104.796753
final value 94.485789
converged
Fitting Repeat 3
# weights: 103
initial value 103.866582
iter 10 value 94.485741
iter 20 value 94.484271
iter 30 value 94.410242
iter 40 value 93.773400
final value 93.773391
converged
Fitting Repeat 4
# weights: 103
initial value 105.093618
final value 94.468621
converged
Fitting Repeat 5
# weights: 103
initial value 102.705073
final value 94.485833
converged
Fitting Repeat 1
# weights: 305
initial value 105.449434
iter 10 value 94.487764
iter 20 value 94.474553
iter 30 value 94.105455
final value 94.105351
converged
Fitting Repeat 2
# weights: 305
initial value 96.080381
iter 10 value 94.487094
iter 20 value 92.401932
iter 30 value 89.467747
iter 40 value 88.826759
iter 50 value 88.735837
iter 60 value 88.470201
iter 70 value 88.464687
iter 80 value 88.355945
iter 90 value 88.195389
final value 88.195203
converged
Fitting Repeat 3
# weights: 305
initial value 100.463763
iter 10 value 94.489021
iter 20 value 94.412983
iter 30 value 89.968774
iter 40 value 84.986865
iter 50 value 84.970061
final value 84.967988
converged
Fitting Repeat 4
# weights: 305
initial value 98.717413
iter 10 value 94.488695
iter 20 value 94.444871
iter 30 value 87.049215
iter 40 value 86.931068
iter 50 value 86.612142
iter 60 value 86.507132
iter 70 value 86.372679
final value 86.370864
converged
Fitting Repeat 5
# weights: 305
initial value 116.322344
iter 10 value 94.489260
iter 20 value 94.481924
iter 30 value 88.439729
iter 40 value 86.221683
iter 50 value 86.185597
iter 60 value 86.154435
iter 70 value 85.912452
iter 80 value 85.887882
final value 85.887826
converged
Fitting Repeat 1
# weights: 507
initial value 101.654432
iter 10 value 94.490568
iter 20 value 94.347672
iter 30 value 92.715145
iter 40 value 90.441414
iter 50 value 86.219542
iter 60 value 86.195470
iter 70 value 86.188441
iter 80 value 86.186270
iter 90 value 86.163815
iter 100 value 85.419474
final value 85.419474
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 99.573763
iter 10 value 94.488912
iter 20 value 94.172677
iter 30 value 93.459234
iter 40 value 93.407239
iter 50 value 92.956781
iter 60 value 90.006269
iter 70 value 89.586930
iter 80 value 89.547021
final value 89.546285
converged
Fitting Repeat 3
# weights: 507
initial value 109.574640
iter 10 value 94.160901
iter 20 value 92.421542
iter 30 value 85.853659
iter 40 value 84.917991
iter 50 value 81.981810
iter 60 value 81.720652
iter 70 value 81.719810
final value 81.718941
converged
Fitting Repeat 4
# weights: 507
initial value 102.288497
iter 10 value 94.483995
iter 20 value 94.467964
iter 30 value 94.448466
iter 40 value 94.448275
final value 94.448233
converged
Fitting Repeat 5
# weights: 507
initial value 101.098405
iter 10 value 94.492804
iter 20 value 94.198867
iter 30 value 86.546517
iter 40 value 86.334966
iter 50 value 84.547845
iter 60 value 84.154194
iter 70 value 84.151364
iter 80 value 84.145182
iter 80 value 84.145182
final value 84.145182
converged
Fitting Repeat 1
# weights: 305
initial value 130.890093
iter 10 value 117.895204
iter 20 value 117.890544
iter 30 value 117.574090
iter 40 value 105.870816
iter 50 value 105.530126
final value 105.529989
converged
Fitting Repeat 2
# weights: 305
initial value 129.099745
iter 10 value 117.763907
iter 20 value 117.616116
iter 30 value 114.535607
iter 40 value 111.492842
iter 50 value 111.474067
iter 60 value 111.298591
iter 70 value 111.291031
iter 80 value 111.289433
iter 90 value 111.288706
iter 100 value 111.282885
final value 111.282885
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 138.642476
iter 10 value 117.895067
iter 20 value 117.736993
iter 30 value 107.050886
iter 40 value 106.487387
iter 50 value 106.414671
iter 60 value 106.413531
iter 70 value 106.412385
iter 80 value 105.131342
iter 90 value 100.963500
iter 100 value 100.294022
final value 100.294022
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 134.767372
iter 10 value 117.894731
iter 20 value 111.447953
iter 30 value 104.639030
iter 40 value 103.231720
iter 50 value 102.870748
iter 60 value 102.009039
final value 101.432752
converged
Fitting Repeat 5
# weights: 305
initial value 129.293701
iter 10 value 117.805977
iter 20 value 117.748070
iter 30 value 117.518048
final value 117.512041
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Mon Apr 21 19:54:11 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
17.208 0.453 78.260
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 17.938 | 0.870 | 19.023 | |
| FreqInteractors | 0.076 | 0.004 | 0.080 | |
| calculateAAC | 0.013 | 0.002 | 0.016 | |
| calculateAutocor | 0.130 | 0.024 | 0.155 | |
| calculateCTDC | 0.026 | 0.002 | 0.029 | |
| calculateCTDD | 0.180 | 0.012 | 0.193 | |
| calculateCTDT | 0.080 | 0.007 | 0.087 | |
| calculateCTriad | 0.145 | 0.013 | 0.159 | |
| calculateDC | 0.030 | 0.003 | 0.033 | |
| calculateF | 0.100 | 0.005 | 0.105 | |
| calculateKSAAP | 0.032 | 0.004 | 0.034 | |
| calculateQD_Sm | 0.616 | 0.085 | 0.704 | |
| calculateTC | 0.555 | 0.061 | 0.616 | |
| calculateTC_Sm | 0.103 | 0.007 | 0.110 | |
| corr_plot | 17.615 | 0.687 | 18.533 | |
| enrichfindP | 0.167 | 0.030 | 9.456 | |
| enrichfind_hp | 0.026 | 0.007 | 1.024 | |
| enrichplot | 0.124 | 0.003 | 0.130 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.028 | 0.006 | 3.150 | |
| getHPI | 0.000 | 0.000 | 0.004 | |
| get_negativePPI | 0.001 | 0.000 | 0.001 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.000 | 0.001 | 0.001 | |
| plotPPI | 0.024 | 0.002 | 0.026 | |
| pred_ensembel | 5.470 | 0.115 | 5.178 | |
| var_imp | 18.505 | 0.855 | 19.416 | |