| Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-06-11 14:42 -0400 (Tue, 11 Jun 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4757 |
| palomino3 | Windows Server 2022 Datacenter | x64 | 4.4.0 (2024-04-24 ucrt) -- "Puppy Cup" | 4491 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4522 |
| kjohnson3 | macOS 13.6.5 Ventura | arm64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4468 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.6.5 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.10.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz |
| StartedAt: 2024-06-09 20:56:25 -0400 (Sun, 09 Jun 2024) |
| EndedAt: 2024-06-09 21:01:12 -0400 (Sun, 09 Jun 2024) |
| EllapsedTime: 287.2 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck’
* using R version 4.4.0 (2024-04-24)
* using platform: x86_64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.10.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 34.745 1.808 36.762
FSmethod 33.184 1.798 35.098
corr_plot 33.195 1.680 34.986
pred_ensembel 13.744 0.506 10.159
enrichfindP 0.449 0.061 8.823
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.0 (2024-04-24) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 98.158285
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 94.802788
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.471831
final value 93.915746
converged
Fitting Repeat 4
# weights: 103
initial value 101.383071
iter 10 value 93.873759
final value 93.873028
converged
Fitting Repeat 5
# weights: 103
initial value 115.645371
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 105.367596
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 98.297565
final value 93.915746
converged
Fitting Repeat 3
# weights: 305
initial value 108.328088
iter 10 value 93.264204
iter 20 value 92.332967
iter 30 value 92.331664
final value 92.331645
converged
Fitting Repeat 4
# weights: 305
initial value 99.023805
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 98.570715
iter 10 value 94.053352
final value 94.052911
converged
Fitting Repeat 1
# weights: 507
initial value 100.038836
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 110.678308
final value 93.511561
converged
Fitting Repeat 3
# weights: 507
initial value 102.090910
iter 10 value 87.852327
iter 20 value 86.872207
iter 30 value 86.872036
final value 86.872031
converged
Fitting Repeat 4
# weights: 507
initial value 103.957840
final value 93.697740
converged
Fitting Repeat 5
# weights: 507
initial value 123.312580
final value 93.915746
converged
Fitting Repeat 1
# weights: 103
initial value 97.286069
iter 10 value 94.013634
iter 20 value 91.570867
iter 30 value 90.921915
iter 40 value 88.682066
iter 50 value 86.546398
iter 60 value 85.752856
iter 70 value 85.715725
iter 80 value 85.714121
iter 80 value 85.714120
iter 80 value 85.714120
final value 85.714120
converged
Fitting Repeat 2
# weights: 103
initial value 103.232323
iter 10 value 93.942246
iter 20 value 89.467438
iter 30 value 88.986877
iter 40 value 88.773814
iter 50 value 86.256907
iter 60 value 85.184216
iter 70 value 84.264328
iter 80 value 83.818990
iter 90 value 83.736969
iter 100 value 83.678369
final value 83.678369
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.245363
iter 10 value 94.051360
iter 20 value 88.646019
iter 30 value 87.217344
iter 40 value 86.825577
iter 50 value 86.642767
iter 60 value 86.023312
iter 70 value 85.718244
final value 85.714120
converged
Fitting Repeat 4
# weights: 103
initial value 100.175922
iter 10 value 94.056335
iter 20 value 93.137382
iter 30 value 91.604055
iter 40 value 88.459231
iter 50 value 85.856667
iter 60 value 85.548190
iter 70 value 84.611951
iter 80 value 84.327185
iter 90 value 84.265519
iter 100 value 84.239113
final value 84.239113
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 100.740793
iter 10 value 93.862607
iter 20 value 89.308360
iter 30 value 89.065611
iter 40 value 89.011476
iter 50 value 88.728845
iter 60 value 86.060530
iter 70 value 85.881820
iter 80 value 84.728097
iter 90 value 84.330217
iter 100 value 84.208055
final value 84.208055
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 104.621063
iter 10 value 94.068129
iter 20 value 93.822135
iter 30 value 93.742427
iter 40 value 89.326189
iter 50 value 89.222775
iter 60 value 85.081002
iter 70 value 84.172802
iter 80 value 83.591991
iter 90 value 83.153975
iter 100 value 83.000591
final value 83.000591
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.671860
iter 10 value 92.249331
iter 20 value 91.552082
iter 30 value 91.328605
iter 40 value 90.423035
iter 50 value 88.168175
iter 60 value 86.719017
iter 70 value 86.026261
iter 80 value 85.508710
iter 90 value 84.830868
iter 100 value 83.995039
final value 83.995039
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.742973
iter 10 value 94.502583
iter 20 value 91.864063
iter 30 value 85.053329
iter 40 value 83.736974
iter 50 value 83.511527
iter 60 value 83.226140
iter 70 value 83.211401
iter 80 value 83.145491
iter 90 value 83.119164
iter 100 value 83.101790
final value 83.101790
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.159968
iter 10 value 94.061491
iter 20 value 86.921058
iter 30 value 85.456981
iter 40 value 84.129751
iter 50 value 83.376021
iter 60 value 83.076176
iter 70 value 82.681587
iter 80 value 82.457843
iter 90 value 82.424100
iter 100 value 82.418357
final value 82.418357
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.232851
iter 10 value 94.025168
iter 20 value 92.973335
iter 30 value 86.056345
iter 40 value 84.713356
iter 50 value 83.367213
iter 60 value 82.904716
iter 70 value 82.697570
iter 80 value 82.507908
iter 90 value 82.336451
iter 100 value 82.239324
final value 82.239324
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.362888
iter 10 value 94.056048
iter 20 value 86.039621
iter 30 value 85.665703
iter 40 value 84.427912
iter 50 value 83.849088
iter 60 value 83.144665
iter 70 value 82.869798
iter 80 value 82.689361
iter 90 value 82.646447
iter 100 value 82.589017
final value 82.589017
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.535350
iter 10 value 91.680774
iter 20 value 87.162451
iter 30 value 86.058356
iter 40 value 85.574734
iter 50 value 84.871569
iter 60 value 83.863730
iter 70 value 83.142768
iter 80 value 82.883905
iter 90 value 82.711285
iter 100 value 82.584827
final value 82.584827
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.575302
iter 10 value 93.280111
iter 20 value 92.470847
iter 30 value 90.444371
iter 40 value 86.065163
iter 50 value 85.019368
iter 60 value 84.539488
iter 70 value 83.679043
iter 80 value 83.250118
iter 90 value 83.025714
iter 100 value 82.644592
final value 82.644592
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.362537
iter 10 value 93.954517
iter 20 value 87.937939
iter 30 value 86.843202
iter 40 value 84.364973
iter 50 value 83.645174
iter 60 value 83.240986
iter 70 value 82.894885
iter 80 value 82.680082
iter 90 value 82.531835
iter 100 value 82.414400
final value 82.414400
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 132.294727
iter 10 value 93.696932
iter 20 value 88.417370
iter 30 value 86.338600
iter 40 value 85.315610
iter 50 value 84.667456
iter 60 value 84.411005
iter 70 value 84.188150
iter 80 value 83.995148
iter 90 value 83.773393
iter 100 value 83.051681
final value 83.051681
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 116.250269
iter 10 value 92.277973
iter 20 value 91.427474
iter 30 value 91.352936
final value 91.352579
converged
Fitting Repeat 2
# weights: 103
initial value 101.415930
final value 94.054639
converged
Fitting Repeat 3
# weights: 103
initial value 96.579459
final value 94.054479
converged
Fitting Repeat 4
# weights: 103
initial value 95.940955
iter 10 value 93.917504
iter 20 value 93.891459
iter 30 value 85.055774
iter 40 value 84.922215
iter 50 value 84.442317
iter 60 value 84.074552
final value 84.074245
converged
Fitting Repeat 5
# weights: 103
initial value 118.260275
final value 94.054537
converged
Fitting Repeat 1
# weights: 305
initial value 94.438381
iter 10 value 94.058280
iter 20 value 94.053242
iter 30 value 92.502011
iter 40 value 87.322519
iter 50 value 85.425720
iter 60 value 85.172368
iter 70 value 85.171297
iter 70 value 85.171297
final value 85.171297
converged
Fitting Repeat 2
# weights: 305
initial value 130.032368
iter 10 value 94.057759
iter 20 value 93.538265
iter 30 value 85.256711
final value 85.241758
converged
Fitting Repeat 3
# weights: 305
initial value 97.740326
iter 10 value 94.062550
iter 20 value 94.047083
iter 30 value 88.365146
iter 40 value 84.882525
iter 50 value 84.154614
iter 60 value 83.910294
iter 70 value 83.377565
iter 80 value 82.470117
iter 90 value 82.234242
iter 100 value 82.232407
final value 82.232407
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 111.297834
iter 10 value 94.057150
iter 20 value 93.645294
iter 30 value 93.024268
iter 40 value 92.168032
iter 50 value 84.123025
iter 60 value 83.859945
iter 70 value 83.858845
iter 80 value 83.857819
iter 90 value 83.821636
iter 100 value 83.821527
final value 83.821527
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.917783
iter 10 value 94.057892
iter 20 value 93.814879
iter 30 value 93.697814
final value 93.697630
converged
Fitting Repeat 1
# weights: 507
initial value 99.271128
iter 10 value 93.923698
iter 20 value 93.714741
iter 30 value 93.693135
iter 40 value 93.459870
iter 50 value 84.198049
iter 60 value 82.817405
iter 70 value 82.774981
iter 80 value 82.771283
iter 90 value 82.770961
iter 100 value 82.211596
final value 82.211596
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.232694
iter 10 value 93.649389
iter 20 value 90.384673
iter 30 value 86.105553
iter 40 value 86.029926
final value 86.029221
converged
Fitting Repeat 3
# weights: 507
initial value 94.625195
iter 10 value 93.057399
iter 20 value 92.175381
iter 30 value 92.145690
iter 40 value 92.132047
iter 50 value 91.954714
iter 60 value 90.510174
iter 70 value 90.354288
iter 80 value 90.340573
iter 90 value 90.337605
iter 100 value 90.336985
final value 90.336985
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 115.907730
iter 10 value 94.059508
iter 20 value 93.822304
iter 30 value 88.559466
iter 40 value 88.025611
final value 88.007826
converged
Fitting Repeat 5
# weights: 507
initial value 103.279148
iter 10 value 94.060888
iter 20 value 94.035760
iter 30 value 86.899059
iter 40 value 86.878026
final value 86.877874
converged
Fitting Repeat 1
# weights: 103
initial value 107.765411
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.531266
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 109.044948
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 101.715707
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 104.509433
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 99.611618
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 95.875771
iter 10 value 93.728996
iter 20 value 93.726258
iter 30 value 93.090468
final value 92.528601
converged
Fitting Repeat 3
# weights: 305
initial value 95.906006
final value 94.275362
converged
Fitting Repeat 4
# weights: 305
initial value 98.636989
final value 94.275362
converged
Fitting Repeat 5
# weights: 305
initial value 97.036315
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 97.237561
iter 10 value 91.131380
iter 20 value 87.617901
iter 30 value 87.610929
iter 40 value 87.609555
iter 50 value 87.609464
iter 50 value 87.609464
iter 50 value 87.609464
final value 87.609464
converged
Fitting Repeat 2
# weights: 507
initial value 99.212901
iter 10 value 94.483558
iter 20 value 92.166073
iter 30 value 91.671001
iter 40 value 91.667191
final value 91.667169
converged
Fitting Repeat 3
# weights: 507
initial value 109.040895
final value 93.903448
converged
Fitting Repeat 4
# weights: 507
initial value 101.610190
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 95.425317
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 106.381681
iter 10 value 94.490981
iter 20 value 94.305663
iter 30 value 93.582962
iter 40 value 93.370481
iter 50 value 93.346073
iter 60 value 92.438722
iter 70 value 90.758128
iter 80 value 88.059636
iter 90 value 86.390165
iter 100 value 85.196321
final value 85.196321
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 106.258577
iter 10 value 94.431565
iter 20 value 93.212691
iter 30 value 87.779043
iter 40 value 85.706709
iter 50 value 85.230340
iter 60 value 85.197181
iter 70 value 85.171122
iter 80 value 85.137272
iter 90 value 84.581682
iter 100 value 83.845320
final value 83.845320
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.376719
iter 10 value 94.479520
iter 20 value 90.647057
iter 30 value 85.801795
iter 40 value 84.958669
iter 50 value 84.709685
iter 60 value 84.574449
iter 70 value 84.552226
final value 84.552216
converged
Fitting Repeat 4
# weights: 103
initial value 103.306981
iter 10 value 94.441641
iter 20 value 93.774019
iter 30 value 88.355195
iter 40 value 87.535494
iter 50 value 86.844714
iter 60 value 83.755727
iter 70 value 83.746169
final value 83.745712
converged
Fitting Repeat 5
# weights: 103
initial value 102.737808
iter 10 value 94.480499
iter 20 value 94.017081
iter 30 value 93.778830
iter 40 value 93.669704
iter 50 value 85.563474
iter 60 value 83.625652
iter 70 value 82.657078
iter 80 value 82.042722
iter 90 value 81.529695
iter 100 value 81.370840
final value 81.370840
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 105.704001
iter 10 value 94.218329
iter 20 value 92.955535
iter 30 value 84.687176
iter 40 value 83.267466
iter 50 value 82.819780
iter 60 value 82.317386
iter 70 value 81.949710
iter 80 value 81.464303
iter 90 value 80.257559
iter 100 value 79.949572
final value 79.949572
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.509838
iter 10 value 94.487024
iter 20 value 94.452767
iter 30 value 93.716894
iter 40 value 85.151877
iter 50 value 82.512265
iter 60 value 81.972704
iter 70 value 80.657400
iter 80 value 80.077100
iter 90 value 79.862825
iter 100 value 79.707165
final value 79.707165
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.007907
iter 10 value 94.493922
iter 20 value 94.079364
iter 30 value 93.730254
iter 40 value 86.979887
iter 50 value 86.206289
iter 60 value 84.282979
iter 70 value 83.766964
iter 80 value 82.280913
iter 90 value 80.976124
iter 100 value 80.141567
final value 80.141567
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 121.716789
iter 10 value 94.770216
iter 20 value 94.546709
iter 30 value 87.762205
iter 40 value 85.687431
iter 50 value 84.533630
iter 60 value 83.950931
iter 70 value 83.541935
iter 80 value 83.487990
iter 90 value 83.033714
iter 100 value 81.937531
final value 81.937531
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 113.458883
iter 10 value 94.501311
iter 20 value 94.366401
iter 30 value 86.912192
iter 40 value 82.982898
iter 50 value 81.502879
iter 60 value 80.787545
iter 70 value 80.534196
iter 80 value 80.153350
iter 90 value 79.892600
iter 100 value 79.458696
final value 79.458696
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.077012
iter 10 value 94.494483
iter 20 value 91.726388
iter 30 value 86.352332
iter 40 value 84.022532
iter 50 value 81.566855
iter 60 value 79.880356
iter 70 value 79.515463
iter 80 value 79.277515
iter 90 value 79.014599
iter 100 value 78.814782
final value 78.814782
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 121.339025
iter 10 value 94.599047
iter 20 value 93.701037
iter 30 value 92.724117
iter 40 value 90.575319
iter 50 value 83.405939
iter 60 value 82.402040
iter 70 value 81.340020
iter 80 value 80.857324
iter 90 value 80.396954
iter 100 value 80.265021
final value 80.265021
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.155621
iter 10 value 94.549050
iter 20 value 94.342179
iter 30 value 91.605768
iter 40 value 84.202993
iter 50 value 81.362653
iter 60 value 80.881800
iter 70 value 80.612901
iter 80 value 80.385422
iter 90 value 80.040577
iter 100 value 79.580104
final value 79.580104
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.641682
iter 10 value 94.922281
iter 20 value 89.303107
iter 30 value 85.205043
iter 40 value 84.825426
iter 50 value 83.518173
iter 60 value 81.148512
iter 70 value 80.355854
iter 80 value 79.976319
iter 90 value 79.652931
iter 100 value 79.588415
final value 79.588415
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.213789
iter 10 value 95.644466
iter 20 value 85.705184
iter 30 value 84.934873
iter 40 value 83.548517
iter 50 value 82.958439
iter 60 value 81.734368
iter 70 value 81.033038
iter 80 value 80.990628
iter 90 value 80.934865
iter 100 value 80.912075
final value 80.912075
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.416546
final value 94.485827
converged
Fitting Repeat 2
# weights: 103
initial value 95.081729
final value 94.486110
converged
Fitting Repeat 3
# weights: 103
initial value 100.200912
final value 94.485821
converged
Fitting Repeat 4
# weights: 103
initial value 97.332776
final value 94.485706
converged
Fitting Repeat 5
# weights: 103
initial value 109.284391
iter 10 value 94.485932
iter 20 value 94.484236
iter 20 value 94.484235
iter 20 value 94.484235
final value 94.484235
converged
Fitting Repeat 1
# weights: 305
initial value 98.273900
iter 10 value 93.256769
iter 20 value 88.320345
iter 30 value 87.093453
iter 40 value 87.000779
final value 87.000659
converged
Fitting Repeat 2
# weights: 305
initial value 105.144075
iter 10 value 94.521627
iter 20 value 94.514166
iter 30 value 94.360160
iter 40 value 85.902964
iter 50 value 83.452072
iter 60 value 81.052758
iter 70 value 80.466223
iter 80 value 79.964524
iter 90 value 79.455208
iter 100 value 79.261010
final value 79.261010
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.623046
iter 10 value 94.438251
iter 20 value 92.610438
iter 30 value 91.685044
iter 40 value 87.096396
iter 50 value 85.615751
iter 60 value 84.732212
iter 70 value 84.728548
iter 80 value 84.294448
iter 90 value 84.256145
iter 100 value 84.231601
final value 84.231601
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.002019
iter 10 value 93.642726
iter 20 value 93.639339
iter 30 value 93.466588
iter 40 value 90.227695
iter 50 value 89.260291
iter 60 value 83.393402
iter 70 value 81.557183
iter 80 value 81.489316
final value 81.489268
converged
Fitting Repeat 5
# weights: 305
initial value 99.267767
iter 10 value 94.110447
iter 20 value 94.100738
iter 30 value 94.085651
iter 40 value 93.655830
iter 50 value 93.474555
iter 60 value 93.439742
iter 70 value 93.335764
iter 80 value 90.371174
iter 90 value 90.028344
iter 100 value 82.180365
final value 82.180365
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 101.048481
iter 10 value 94.064565
iter 20 value 91.500041
iter 30 value 91.493273
iter 40 value 90.317514
iter 50 value 85.594113
iter 60 value 85.532411
iter 70 value 85.531719
iter 80 value 84.058164
iter 90 value 82.258038
iter 100 value 82.002273
final value 82.002273
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 113.262133
iter 10 value 94.492366
iter 20 value 94.484169
iter 30 value 94.048554
iter 40 value 93.550967
iter 50 value 84.427253
iter 60 value 83.866693
iter 70 value 83.864487
iter 80 value 83.863778
final value 83.863383
converged
Fitting Repeat 3
# weights: 507
initial value 126.311974
iter 10 value 94.492858
iter 20 value 94.485737
iter 30 value 92.592191
iter 40 value 90.274116
iter 50 value 90.250474
iter 60 value 88.234137
iter 70 value 82.707073
iter 80 value 81.950653
iter 90 value 81.848077
iter 100 value 81.847605
final value 81.847605
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 98.340918
iter 10 value 90.975430
iter 20 value 84.280146
iter 30 value 83.781283
iter 40 value 83.774466
iter 50 value 83.771489
final value 83.770953
converged
Fitting Repeat 5
# weights: 507
initial value 112.587252
iter 10 value 93.645206
iter 20 value 93.639308
iter 30 value 93.467893
iter 40 value 93.409677
final value 93.409570
converged
Fitting Repeat 1
# weights: 103
initial value 108.164732
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.754180
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 110.788574
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.249601
final value 94.484210
converged
Fitting Repeat 5
# weights: 103
initial value 95.762366
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 101.549171
final value 93.813953
converged
Fitting Repeat 2
# weights: 305
initial value 110.039714
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 99.212376
iter 10 value 93.784514
final value 93.783647
converged
Fitting Repeat 4
# weights: 305
initial value 98.367602
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 100.547886
final value 94.275362
converged
Fitting Repeat 1
# weights: 507
initial value 98.781760
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 128.605840
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 101.428565
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 135.819402
iter 10 value 94.275363
iter 10 value 94.275362
iter 10 value 94.275362
final value 94.275362
converged
Fitting Repeat 5
# weights: 507
initial value 97.746528
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 107.261171
iter 10 value 94.488302
iter 20 value 93.441762
iter 30 value 90.221450
iter 40 value 87.130954
iter 50 value 84.222928
iter 60 value 83.043090
iter 70 value 81.529855
iter 80 value 80.942789
iter 90 value 80.873321
final value 80.873267
converged
Fitting Repeat 2
# weights: 103
initial value 96.960206
iter 10 value 94.488847
iter 20 value 94.412059
iter 30 value 87.046774
iter 40 value 85.235153
iter 50 value 83.722164
iter 60 value 83.105349
iter 70 value 83.019415
iter 80 value 82.962858
final value 82.962421
converged
Fitting Repeat 3
# weights: 103
initial value 99.715448
iter 10 value 94.487822
iter 20 value 93.304012
iter 30 value 90.159590
iter 40 value 85.817724
iter 50 value 84.659057
iter 60 value 84.395522
iter 70 value 83.356401
final value 83.086712
converged
Fitting Repeat 4
# weights: 103
initial value 103.922733
iter 10 value 94.492388
iter 20 value 87.512456
iter 30 value 85.860707
iter 40 value 85.442173
iter 50 value 84.243984
iter 60 value 83.256038
iter 70 value 82.963551
iter 80 value 82.962423
final value 82.962421
converged
Fitting Repeat 5
# weights: 103
initial value 100.199955
iter 10 value 94.485819
iter 20 value 88.043304
iter 30 value 87.074576
iter 40 value 86.219063
final value 86.137350
converged
Fitting Repeat 1
# weights: 305
initial value 112.147521
iter 10 value 94.740670
iter 20 value 94.440257
iter 30 value 94.094049
iter 40 value 93.878983
iter 50 value 89.928779
iter 60 value 85.936535
iter 70 value 82.911841
iter 80 value 81.273188
iter 90 value 80.864037
iter 100 value 80.550024
final value 80.550024
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 114.926254
iter 10 value 94.351479
iter 20 value 91.872939
iter 30 value 88.125581
iter 40 value 85.934169
iter 50 value 85.627018
iter 60 value 83.621805
iter 70 value 83.555219
iter 80 value 83.492557
iter 90 value 83.433746
iter 100 value 82.234150
final value 82.234150
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.011665
iter 10 value 93.614343
iter 20 value 84.614414
iter 30 value 83.703441
iter 40 value 83.171516
iter 50 value 82.509913
iter 60 value 82.043110
iter 70 value 81.579164
iter 80 value 81.383613
iter 90 value 81.002364
iter 100 value 80.364590
final value 80.364590
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.123084
iter 10 value 94.837589
iter 20 value 92.076627
iter 30 value 87.428263
iter 40 value 86.965207
iter 50 value 86.485505
iter 60 value 86.339409
iter 70 value 84.283019
iter 80 value 83.054963
iter 90 value 82.635302
iter 100 value 82.368638
final value 82.368638
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.994766
iter 10 value 94.346284
iter 20 value 93.957102
iter 30 value 87.973189
iter 40 value 87.816391
iter 50 value 86.302638
iter 60 value 84.635325
iter 70 value 82.315665
iter 80 value 81.082253
iter 90 value 80.521449
iter 100 value 80.067017
final value 80.067017
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 124.855640
iter 10 value 92.149912
iter 20 value 85.256161
iter 30 value 83.353827
iter 40 value 82.822884
iter 50 value 81.596827
iter 60 value 80.929940
iter 70 value 80.457568
iter 80 value 80.338237
iter 90 value 80.306752
iter 100 value 80.209445
final value 80.209445
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.611747
iter 10 value 94.500156
iter 20 value 91.788743
iter 30 value 91.560819
iter 40 value 88.927710
iter 50 value 85.562257
iter 60 value 82.570818
iter 70 value 81.307125
iter 80 value 81.176553
iter 90 value 80.815688
iter 100 value 80.254096
final value 80.254096
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.742773
iter 10 value 94.866653
iter 20 value 93.378445
iter 30 value 87.828184
iter 40 value 85.755517
iter 50 value 84.278469
iter 60 value 83.303359
iter 70 value 82.671830
iter 80 value 81.483109
iter 90 value 81.321834
iter 100 value 80.648901
final value 80.648901
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.842395
iter 10 value 94.974164
iter 20 value 90.673450
iter 30 value 83.932110
iter 40 value 83.368386
iter 50 value 83.053351
iter 60 value 82.562938
iter 70 value 81.887020
iter 80 value 80.712171
iter 90 value 80.395594
iter 100 value 80.222052
final value 80.222052
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.476848
iter 10 value 94.798944
iter 20 value 88.550432
iter 30 value 88.036952
iter 40 value 83.469891
iter 50 value 80.833602
iter 60 value 80.516825
iter 70 value 80.297944
iter 80 value 80.039984
iter 90 value 79.964168
iter 100 value 79.861538
final value 79.861538
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 108.370006
iter 10 value 94.276901
iter 10 value 94.276900
iter 10 value 94.276900
final value 94.276900
converged
Fitting Repeat 2
# weights: 103
initial value 116.237800
final value 94.485771
converged
Fitting Repeat 3
# weights: 103
initial value 112.785330
final value 94.485876
converged
Fitting Repeat 4
# weights: 103
initial value 95.336500
final value 94.486011
converged
Fitting Repeat 5
# weights: 103
initial value 101.566041
iter 10 value 94.485874
iter 20 value 94.484124
iter 30 value 88.601409
iter 40 value 88.264918
iter 50 value 88.173339
final value 88.169480
converged
Fitting Repeat 1
# weights: 305
initial value 99.433988
iter 10 value 85.188199
iter 20 value 85.109967
iter 30 value 84.984220
iter 40 value 84.962996
iter 50 value 84.962168
iter 60 value 84.960973
iter 70 value 84.960245
iter 70 value 84.960245
final value 84.960245
converged
Fitting Repeat 2
# weights: 305
initial value 100.110407
iter 10 value 86.444197
iter 20 value 85.736228
iter 30 value 84.818529
iter 40 value 84.661422
iter 50 value 84.660455
iter 60 value 84.658421
iter 70 value 84.656975
iter 80 value 84.651017
iter 90 value 84.494616
final value 84.488525
converged
Fitting Repeat 3
# weights: 305
initial value 101.169562
iter 10 value 94.280506
iter 20 value 94.276170
iter 30 value 94.125626
iter 40 value 86.556702
iter 50 value 86.510373
iter 60 value 84.557159
iter 70 value 84.528580
iter 80 value 84.525170
iter 90 value 84.524585
iter 100 value 84.306989
final value 84.306989
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 127.635840
iter 10 value 94.489786
iter 20 value 94.324064
iter 30 value 87.086427
iter 40 value 84.662292
iter 50 value 83.564115
iter 60 value 83.556154
iter 70 value 83.555340
iter 80 value 83.552078
iter 90 value 82.338097
iter 100 value 80.615413
final value 80.615413
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 96.136369
iter 10 value 93.819376
iter 20 value 93.815287
iter 30 value 93.665957
iter 40 value 85.193928
iter 50 value 84.749748
iter 60 value 84.689866
iter 70 value 84.494396
final value 84.493740
converged
Fitting Repeat 1
# weights: 507
initial value 106.327649
iter 10 value 91.764591
iter 20 value 84.314716
iter 30 value 84.242525
iter 40 value 84.240870
iter 50 value 84.239224
iter 60 value 84.228249
iter 70 value 84.148927
iter 80 value 83.387088
iter 90 value 83.001355
iter 100 value 82.998617
final value 82.998617
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.374387
iter 10 value 94.492624
iter 20 value 94.441925
iter 30 value 88.048888
iter 40 value 87.860249
iter 50 value 86.872480
iter 60 value 86.826395
final value 86.826389
converged
Fitting Repeat 3
# weights: 507
initial value 122.041234
iter 10 value 91.008523
iter 20 value 90.854254
iter 30 value 90.757839
final value 90.737372
converged
Fitting Repeat 4
# weights: 507
initial value 113.779034
iter 10 value 94.283481
iter 20 value 93.573103
iter 30 value 83.447322
iter 40 value 82.869608
iter 50 value 80.523262
iter 60 value 79.661065
iter 70 value 79.375420
iter 80 value 79.237163
iter 90 value 78.936652
iter 100 value 78.701283
final value 78.701283
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 96.622241
iter 10 value 94.283503
iter 20 value 93.934709
iter 30 value 85.819913
iter 40 value 81.704237
iter 50 value 80.738381
iter 60 value 80.076122
iter 70 value 78.485437
iter 80 value 78.283043
iter 90 value 77.986238
iter 100 value 77.856677
final value 77.856677
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 106.450705
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.887143
final value 94.443243
converged
Fitting Repeat 3
# weights: 103
initial value 96.553614
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 113.107884
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.477697
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 103.012578
final value 94.430233
converged
Fitting Repeat 2
# weights: 305
initial value 95.294563
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 100.229761
iter 10 value 93.720836
iter 10 value 93.720836
iter 10 value 93.720836
final value 93.720836
converged
Fitting Repeat 4
# weights: 305
initial value 103.445000
final value 94.032968
converged
Fitting Repeat 5
# weights: 305
initial value 95.939457
iter 10 value 94.174634
iter 20 value 94.165770
final value 94.165746
converged
Fitting Repeat 1
# weights: 507
initial value 101.232440
final value 94.443243
converged
Fitting Repeat 2
# weights: 507
initial value 105.588753
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 115.610869
final value 94.443243
converged
Fitting Repeat 4
# weights: 507
initial value 98.631528
iter 10 value 92.993716
final value 92.929414
converged
Fitting Repeat 5
# weights: 507
initial value 123.795341
final value 94.443243
converged
Fitting Repeat 1
# weights: 103
initial value 113.637485
iter 10 value 94.454918
iter 20 value 82.556066
iter 30 value 81.680188
iter 40 value 81.377640
iter 50 value 81.178609
iter 60 value 81.082165
iter 70 value 78.286596
iter 80 value 78.043214
final value 78.042086
converged
Fitting Repeat 2
# weights: 103
initial value 96.623181
iter 10 value 94.490667
iter 20 value 94.287974
iter 30 value 85.177953
iter 40 value 81.981921
iter 50 value 81.379467
iter 60 value 79.506919
iter 70 value 79.487561
final value 79.487559
converged
Fitting Repeat 3
# weights: 103
initial value 108.063682
iter 10 value 94.476780
iter 20 value 87.513065
iter 30 value 82.769055
iter 40 value 82.595550
iter 50 value 81.793055
iter 60 value 78.859659
iter 70 value 78.466368
iter 80 value 78.242629
iter 90 value 78.160551
iter 100 value 78.065151
final value 78.065151
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.750186
iter 10 value 88.047609
iter 20 value 81.310514
iter 30 value 78.562661
iter 40 value 78.242958
iter 50 value 78.166193
iter 60 value 78.047471
iter 70 value 78.045414
final value 78.045342
converged
Fitting Repeat 5
# weights: 103
initial value 112.790835
iter 10 value 94.423028
iter 20 value 83.965952
iter 30 value 81.373193
iter 40 value 81.261670
iter 50 value 78.811925
iter 60 value 78.083943
final value 78.042085
converged
Fitting Repeat 1
# weights: 305
initial value 102.624160
iter 10 value 94.547700
iter 20 value 94.427989
iter 30 value 92.203394
iter 40 value 85.163226
iter 50 value 82.157499
iter 60 value 80.702142
iter 70 value 79.473827
iter 80 value 76.484949
iter 90 value 75.988750
iter 100 value 75.457663
final value 75.457663
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.144103
iter 10 value 94.523941
iter 20 value 94.302859
iter 30 value 93.938094
iter 40 value 93.842959
iter 50 value 89.430284
iter 60 value 79.956221
iter 70 value 79.083397
iter 80 value 77.021313
iter 90 value 76.327326
iter 100 value 76.149481
final value 76.149481
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 113.428741
iter 10 value 94.442965
iter 20 value 86.497119
iter 30 value 82.297222
iter 40 value 78.856492
iter 50 value 78.039366
iter 60 value 77.515783
iter 70 value 77.283784
iter 80 value 77.027982
iter 90 value 76.847902
iter 100 value 76.777733
final value 76.777733
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.713893
iter 10 value 94.741744
iter 20 value 89.271517
iter 30 value 83.122591
iter 40 value 80.767970
iter 50 value 80.567181
iter 60 value 79.601162
iter 70 value 79.166695
iter 80 value 78.623853
iter 90 value 78.467980
iter 100 value 78.251649
final value 78.251649
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.631753
iter 10 value 94.008481
iter 20 value 82.167111
iter 30 value 79.233531
iter 40 value 78.744029
iter 50 value 77.846901
iter 60 value 76.895820
iter 70 value 76.689676
iter 80 value 76.400381
iter 90 value 76.336768
iter 100 value 76.048101
final value 76.048101
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.089199
iter 10 value 94.591347
iter 20 value 94.364342
iter 30 value 93.382361
iter 40 value 90.818437
iter 50 value 88.823679
iter 60 value 83.522432
iter 70 value 78.327899
iter 80 value 75.819249
iter 90 value 75.466411
iter 100 value 75.132568
final value 75.132568
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 125.363477
iter 10 value 94.750850
iter 20 value 93.909612
iter 30 value 83.368364
iter 40 value 81.826560
iter 50 value 79.384058
iter 60 value 78.232540
iter 70 value 77.884109
iter 80 value 77.077339
iter 90 value 76.524295
iter 100 value 75.692824
final value 75.692824
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.247639
iter 10 value 94.463725
iter 20 value 82.101311
iter 30 value 81.216276
iter 40 value 81.096213
iter 50 value 79.688231
iter 60 value 76.408529
iter 70 value 75.876064
iter 80 value 75.771715
iter 90 value 75.693479
iter 100 value 75.596767
final value 75.596767
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.342023
iter 10 value 97.770723
iter 20 value 89.260883
iter 30 value 87.224214
iter 40 value 79.386477
iter 50 value 76.425142
iter 60 value 76.063099
iter 70 value 75.919332
iter 80 value 75.785636
iter 90 value 75.697217
iter 100 value 75.692697
final value 75.692697
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.801155
iter 10 value 95.092202
iter 20 value 93.525566
iter 30 value 89.738826
iter 40 value 86.233205
iter 50 value 80.821698
iter 60 value 78.899777
iter 70 value 77.367805
iter 80 value 76.763147
iter 90 value 76.217028
iter 100 value 75.898083
final value 75.898083
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.233128
final value 94.485951
converged
Fitting Repeat 2
# weights: 103
initial value 99.158789
final value 94.485750
converged
Fitting Repeat 3
# weights: 103
initial value 99.630068
final value 94.485976
converged
Fitting Repeat 4
# weights: 103
initial value 99.610788
iter 10 value 94.485781
iter 20 value 94.484228
final value 94.484215
converged
Fitting Repeat 5
# weights: 103
initial value 100.391416
final value 94.485800
converged
Fitting Repeat 1
# weights: 305
initial value 100.349551
iter 10 value 94.488915
iter 20 value 94.328087
iter 30 value 86.359379
iter 40 value 80.460616
iter 50 value 80.446890
iter 60 value 78.286649
iter 70 value 77.025954
iter 80 value 76.856863
iter 90 value 76.803655
iter 100 value 76.165072
final value 76.165072
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.815078
iter 10 value 94.485350
iter 20 value 90.467525
iter 30 value 80.883158
iter 40 value 80.839906
iter 50 value 80.714996
iter 60 value 80.704602
iter 70 value 79.917398
iter 80 value 79.445977
iter 90 value 79.428899
iter 100 value 79.422880
final value 79.422880
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.134618
iter 10 value 94.489811
iter 20 value 94.343323
iter 30 value 92.839218
iter 40 value 89.980276
iter 50 value 89.915597
iter 60 value 89.521382
final value 89.408282
converged
Fitting Repeat 4
# weights: 305
initial value 109.633696
iter 10 value 94.489226
iter 20 value 94.471973
iter 30 value 93.753600
iter 40 value 87.911246
iter 50 value 86.491266
iter 60 value 86.353569
final value 86.350653
converged
Fitting Repeat 5
# weights: 305
initial value 107.122510
iter 10 value 92.623514
iter 20 value 92.110175
iter 30 value 91.790897
iter 40 value 81.348638
iter 50 value 81.321839
iter 60 value 80.458614
iter 70 value 79.599976
iter 80 value 79.596966
final value 79.596949
converged
Fitting Repeat 1
# weights: 507
initial value 95.131504
iter 10 value 94.333591
iter 20 value 94.326149
iter 30 value 84.441458
iter 40 value 84.405582
iter 50 value 84.402948
final value 84.402940
converged
Fitting Repeat 2
# weights: 507
initial value 100.379786
iter 10 value 94.491517
iter 20 value 93.814320
iter 30 value 92.109123
iter 40 value 90.587286
final value 90.549188
converged
Fitting Repeat 3
# weights: 507
initial value 100.886224
iter 10 value 94.490294
iter 20 value 93.902767
iter 30 value 85.826433
iter 40 value 81.338138
iter 50 value 79.732015
iter 60 value 79.315853
iter 70 value 79.256464
iter 80 value 79.212381
iter 90 value 79.210811
iter 100 value 79.207650
final value 79.207650
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 100.686392
iter 10 value 94.491571
iter 20 value 92.280697
iter 30 value 83.552158
iter 40 value 82.812258
iter 50 value 78.049120
iter 60 value 76.986863
iter 70 value 76.519048
iter 80 value 75.902774
final value 75.887373
converged
Fitting Repeat 5
# weights: 507
initial value 102.772987
iter 10 value 90.426002
iter 20 value 89.739994
iter 30 value 89.159564
iter 40 value 89.105808
iter 50 value 88.664842
iter 60 value 88.647521
iter 70 value 88.646093
iter 80 value 88.639312
iter 90 value 80.836331
iter 100 value 77.799961
final value 77.799961
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.133040
final value 94.052909
converged
Fitting Repeat 2
# weights: 103
initial value 99.594748
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.360700
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 99.471404
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 96.087986
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 117.018243
final value 94.032967
converged
Fitting Repeat 2
# weights: 305
initial value 104.928745
final value 93.714286
converged
Fitting Repeat 3
# weights: 305
initial value 96.597832
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 95.913302
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 121.443090
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 110.283940
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 95.751330
iter 10 value 93.538438
final value 93.538420
converged
Fitting Repeat 3
# weights: 507
initial value 95.461324
iter 10 value 93.994407
iter 20 value 93.991529
final value 93.991526
converged
Fitting Repeat 4
# weights: 507
initial value 115.070541
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 101.218559
final value 94.032967
converged
Fitting Repeat 1
# weights: 103
initial value 115.735087
iter 10 value 93.973434
iter 20 value 88.557569
iter 30 value 86.678604
iter 40 value 85.493959
iter 50 value 85.121095
iter 60 value 83.663312
iter 70 value 83.596375
iter 80 value 83.265378
iter 90 value 83.144384
final value 83.142865
converged
Fitting Repeat 2
# weights: 103
initial value 106.749184
iter 10 value 94.060091
iter 20 value 94.054888
iter 30 value 93.704922
iter 40 value 93.219853
iter 50 value 90.227961
iter 60 value 86.886515
iter 70 value 85.383979
iter 80 value 84.990221
iter 90 value 84.795891
final value 84.794175
converged
Fitting Repeat 3
# weights: 103
initial value 96.742345
iter 10 value 94.055665
iter 20 value 94.055019
iter 30 value 93.154915
iter 40 value 86.226603
iter 50 value 85.724671
iter 60 value 85.559840
iter 70 value 85.119132
iter 80 value 84.848688
iter 90 value 84.574873
iter 100 value 84.557789
final value 84.557789
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 101.297506
iter 10 value 93.994609
iter 20 value 93.577034
iter 30 value 87.629125
iter 40 value 87.189976
iter 50 value 87.062009
iter 60 value 85.198890
iter 70 value 85.006284
iter 80 value 84.978468
final value 84.978361
converged
Fitting Repeat 5
# weights: 103
initial value 97.463388
iter 10 value 93.973039
iter 20 value 93.733812
iter 30 value 93.687822
iter 40 value 89.756332
iter 50 value 85.849268
iter 60 value 85.160830
iter 70 value 84.749112
iter 80 value 84.550551
iter 90 value 83.891609
iter 100 value 83.718915
final value 83.718915
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 104.845337
iter 10 value 94.036360
iter 20 value 93.729005
iter 30 value 93.292718
iter 40 value 87.864346
iter 50 value 87.292297
iter 60 value 87.108960
iter 70 value 86.292777
iter 80 value 85.560416
iter 90 value 84.885450
iter 100 value 84.769113
final value 84.769113
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 122.340315
iter 10 value 94.206308
iter 20 value 85.856781
iter 30 value 85.353143
iter 40 value 84.997029
iter 50 value 84.569310
iter 60 value 83.050898
iter 70 value 82.439559
iter 80 value 82.109720
iter 90 value 81.695600
iter 100 value 81.611870
final value 81.611870
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.006577
iter 10 value 95.070989
iter 20 value 86.376339
iter 30 value 85.628845
iter 40 value 85.384114
iter 50 value 85.147152
iter 60 value 84.705968
iter 70 value 84.618758
iter 80 value 84.581462
iter 90 value 84.538218
iter 100 value 84.452618
final value 84.452618
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.143374
iter 10 value 94.087389
iter 20 value 92.695274
iter 30 value 92.473232
iter 40 value 91.884161
iter 50 value 88.271118
iter 60 value 85.402671
iter 70 value 84.803127
iter 80 value 84.185275
iter 90 value 83.980344
iter 100 value 83.726538
final value 83.726538
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.196333
iter 10 value 92.849844
iter 20 value 87.283064
iter 30 value 85.279944
iter 40 value 84.960362
iter 50 value 84.696132
iter 60 value 84.375462
iter 70 value 84.249822
iter 80 value 83.677996
iter 90 value 82.762269
iter 100 value 82.593236
final value 82.593236
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.927408
iter 10 value 95.763601
iter 20 value 94.720298
iter 30 value 91.035474
iter 40 value 87.063970
iter 50 value 86.747867
iter 60 value 85.992460
iter 70 value 83.780317
iter 80 value 82.107829
iter 90 value 81.877885
iter 100 value 81.661745
final value 81.661745
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.906333
iter 10 value 94.407087
iter 20 value 93.237797
iter 30 value 89.149423
iter 40 value 86.550812
iter 50 value 84.851313
iter 60 value 83.297182
iter 70 value 81.739717
iter 80 value 81.350796
iter 90 value 81.103630
iter 100 value 80.948090
final value 80.948090
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 135.274226
iter 10 value 94.434862
iter 20 value 94.071099
iter 30 value 89.395333
iter 40 value 85.402482
iter 50 value 84.944006
iter 60 value 84.760711
iter 70 value 84.656514
iter 80 value 84.653645
iter 90 value 84.601371
iter 100 value 83.161693
final value 83.161693
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.341000
iter 10 value 93.607848
iter 20 value 91.439400
iter 30 value 89.147361
iter 40 value 83.809704
iter 50 value 82.443208
iter 60 value 81.952623
iter 70 value 81.852057
iter 80 value 81.654872
iter 90 value 81.533824
iter 100 value 81.461424
final value 81.461424
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 115.492082
iter 10 value 94.026267
iter 20 value 91.233827
iter 30 value 88.564203
iter 40 value 84.879493
iter 50 value 84.058464
iter 60 value 83.677442
iter 70 value 82.577738
iter 80 value 82.027875
iter 90 value 81.839692
iter 100 value 81.595847
final value 81.595847
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.488492
final value 94.054551
converged
Fitting Repeat 2
# weights: 103
initial value 105.580156
final value 93.658974
converged
Fitting Repeat 3
# weights: 103
initial value 100.081323
iter 10 value 94.054644
iter 20 value 94.052927
final value 94.052911
converged
Fitting Repeat 4
# weights: 103
initial value 96.257306
final value 94.054491
converged
Fitting Repeat 5
# weights: 103
initial value 100.549423
final value 94.054595
converged
Fitting Repeat 1
# weights: 305
initial value 102.259667
iter 10 value 84.908883
iter 20 value 83.859892
iter 30 value 83.412157
iter 40 value 83.411137
iter 50 value 83.407510
iter 60 value 83.258116
iter 70 value 83.165055
final value 83.163916
converged
Fitting Repeat 2
# weights: 305
initial value 115.522864
iter 10 value 94.057712
iter 20 value 94.053634
iter 30 value 93.991856
iter 40 value 93.077876
final value 93.069581
converged
Fitting Repeat 3
# weights: 305
initial value 101.741309
iter 10 value 94.010738
iter 20 value 94.004945
iter 30 value 94.002192
iter 40 value 92.528094
final value 92.418313
converged
Fitting Repeat 4
# weights: 305
initial value 101.825438
iter 10 value 94.028506
iter 20 value 94.024252
iter 30 value 93.780006
iter 40 value 93.749851
iter 50 value 93.749659
iter 60 value 93.657834
iter 70 value 93.651514
final value 93.651150
converged
Fitting Repeat 5
# weights: 305
initial value 115.179691
iter 10 value 94.057635
iter 20 value 93.971105
iter 30 value 88.903570
iter 40 value 84.279500
iter 50 value 84.103475
iter 60 value 83.851252
iter 70 value 83.743271
final value 83.743165
converged
Fitting Repeat 1
# weights: 507
initial value 95.822651
iter 10 value 93.913194
iter 20 value 92.414204
iter 30 value 84.296822
iter 40 value 83.646595
iter 50 value 83.621055
iter 60 value 81.686151
iter 70 value 80.965535
iter 80 value 80.041273
iter 90 value 79.934312
iter 100 value 79.921002
final value 79.921002
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.924369
iter 10 value 94.040788
iter 20 value 94.034108
iter 30 value 93.732159
iter 40 value 93.217235
iter 50 value 93.216689
iter 60 value 92.903019
iter 70 value 84.338903
iter 80 value 84.003261
iter 90 value 83.625755
iter 100 value 83.615534
final value 83.615534
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.122941
iter 10 value 93.621482
iter 20 value 93.617916
iter 30 value 93.607880
iter 40 value 93.272674
iter 50 value 91.557723
iter 60 value 91.003463
iter 70 value 90.402961
iter 80 value 90.400358
iter 90 value 90.399348
iter 100 value 90.398297
final value 90.398297
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.639232
iter 10 value 93.996573
iter 20 value 93.994707
iter 30 value 93.987136
iter 40 value 93.827301
iter 50 value 92.089920
iter 60 value 91.749529
iter 70 value 91.682636
iter 80 value 91.682442
iter 80 value 91.682441
iter 80 value 91.682441
final value 91.682441
converged
Fitting Repeat 5
# weights: 507
initial value 104.927894
iter 10 value 94.101491
iter 20 value 94.059998
iter 30 value 94.040909
iter 40 value 94.038906
iter 50 value 94.037167
iter 60 value 94.035632
iter 70 value 93.615959
iter 80 value 92.916741
iter 90 value 91.456693
iter 100 value 85.147952
final value 85.147952
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 122.389158
iter 10 value 117.968506
iter 20 value 117.958735
iter 30 value 117.890366
final value 117.890332
converged
Fitting Repeat 2
# weights: 305
initial value 125.656936
iter 10 value 117.894638
iter 20 value 117.877308
iter 30 value 116.670149
iter 40 value 108.194894
iter 50 value 105.161858
iter 60 value 102.990174
iter 70 value 102.116158
iter 80 value 100.272855
iter 90 value 100.071035
iter 100 value 99.990322
final value 99.990322
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 120.418478
iter 10 value 117.763986
iter 20 value 117.376956
final value 117.208275
converged
Fitting Repeat 4
# weights: 305
initial value 119.982260
iter 10 value 117.763480
iter 20 value 117.758336
iter 30 value 109.635027
iter 40 value 104.926843
iter 50 value 104.132265
iter 60 value 104.024313
iter 70 value 104.019931
iter 80 value 104.003827
iter 90 value 103.442676
iter 100 value 100.552095
final value 100.552095
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 120.631816
iter 10 value 116.871963
iter 20 value 116.805304
iter 30 value 116.804821
iter 40 value 116.800540
iter 50 value 115.963050
final value 115.957511
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Sun Jun 9 21:01:03 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
41.364 1.897 42.527
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 33.184 | 1.798 | 35.098 | |
| FreqInteractors | 0.201 | 0.012 | 0.214 | |
| calculateAAC | 0.042 | 0.008 | 0.050 | |
| calculateAutocor | 0.604 | 0.078 | 0.691 | |
| calculateCTDC | 0.080 | 0.005 | 0.086 | |
| calculateCTDD | 0.571 | 0.022 | 0.595 | |
| calculateCTDT | 0.210 | 0.008 | 0.218 | |
| calculateCTriad | 0.342 | 0.036 | 0.379 | |
| calculateDC | 0.098 | 0.012 | 0.112 | |
| calculateF | 0.335 | 0.011 | 0.347 | |
| calculateKSAAP | 0.108 | 0.011 | 0.120 | |
| calculateQD_Sm | 1.396 | 0.140 | 1.539 | |
| calculateTC | 1.506 | 0.154 | 1.662 | |
| calculateTC_Sm | 0.313 | 0.041 | 0.356 | |
| corr_plot | 33.195 | 1.680 | 34.986 | |
| enrichfindP | 0.449 | 0.061 | 8.823 | |
| enrichfind_hp | 0.070 | 0.020 | 1.104 | |
| enrichplot | 0.323 | 0.009 | 0.334 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.071 | 0.011 | 4.036 | |
| getHPI | 0.001 | 0.000 | 0.001 | |
| get_negativePPI | 0.002 | 0.000 | 0.002 | |
| get_positivePPI | 0.000 | 0.001 | 0.000 | |
| impute_missing_data | 0.002 | 0.000 | 0.002 | |
| plotPPI | 0.080 | 0.003 | 0.084 | |
| pred_ensembel | 13.744 | 0.506 | 10.159 | |
| var_imp | 34.745 | 1.808 | 36.762 | |