| Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-10-18 20:38 -0400 (Fri, 18 Oct 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
| palomino7 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4500 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4530 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4480 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.10.0 |
| Command: /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.19-bioc/R/site-library --timings HPiP_1.10.0.tar.gz |
| StartedAt: 2024-10-17 01:27:31 -0400 (Thu, 17 Oct 2024) |
| EndedAt: 2024-10-17 01:41:07 -0400 (Thu, 17 Oct 2024) |
| EllapsedTime: 816.7 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.19-bioc/R/site-library --timings HPiP_1.10.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
GNU Fortran (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
* running under: Ubuntu 22.04.5 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.10.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 35.459 1.036 36.496
FSmethod 34.335 0.808 35.145
corr_plot 33.998 0.456 34.455
pred_ensembel 14.102 0.719 11.117
enrichfindP 0.488 0.029 10.238
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/home/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.19-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.19-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 101.296530
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 94.871564
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.062683
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.584673
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.577449
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 106.625796
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 94.587275
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 98.015790
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 108.133883
final value 94.466823
converged
Fitting Repeat 5
# weights: 305
initial value 110.718961
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 96.507267
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 120.694655
iter 10 value 93.395503
final value 93.281385
converged
Fitting Repeat 3
# weights: 507
initial value 106.423250
iter 10 value 94.399715
final value 94.395066
converged
Fitting Repeat 4
# weights: 507
initial value 102.091192
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 99.592167
final value 94.466823
converged
Fitting Repeat 1
# weights: 103
initial value 111.523541
iter 10 value 94.416416
iter 20 value 87.625828
iter 30 value 81.142516
iter 40 value 80.401798
iter 50 value 79.863978
iter 60 value 79.674105
iter 70 value 79.455328
iter 80 value 79.401652
final value 79.401649
converged
Fitting Repeat 2
# weights: 103
initial value 108.081188
iter 10 value 95.326050
iter 20 value 94.493758
iter 30 value 94.355645
iter 40 value 88.847815
iter 50 value 86.028940
iter 60 value 83.260925
iter 70 value 81.232117
iter 80 value 80.220478
iter 90 value 79.635379
iter 100 value 79.403342
final value 79.403342
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.779278
iter 10 value 94.458841
iter 20 value 84.749220
iter 30 value 82.305370
iter 40 value 81.792578
iter 50 value 81.425459
iter 60 value 81.288116
iter 70 value 81.214797
final value 81.206619
converged
Fitting Repeat 4
# weights: 103
initial value 112.599421
iter 10 value 94.267588
iter 20 value 84.191168
iter 30 value 82.783154
iter 40 value 81.284726
iter 50 value 80.580162
iter 60 value 79.438718
iter 70 value 79.380498
final value 79.380495
converged
Fitting Repeat 5
# weights: 103
initial value 97.757007
iter 10 value 94.486474
iter 20 value 94.339180
iter 30 value 83.020414
iter 40 value 81.366918
iter 50 value 80.333197
iter 60 value 79.976095
iter 70 value 79.415057
iter 80 value 77.887504
iter 90 value 77.654056
iter 100 value 77.512190
final value 77.512190
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 110.456633
iter 10 value 94.557287
iter 20 value 88.154522
iter 30 value 87.820188
iter 40 value 85.517416
iter 50 value 80.508283
iter 60 value 78.349251
iter 70 value 77.242546
iter 80 value 77.122662
iter 90 value 77.062334
iter 100 value 76.969160
final value 76.969160
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.711123
iter 10 value 95.259639
iter 20 value 94.431045
iter 30 value 88.059398
iter 40 value 87.383208
iter 50 value 84.652553
iter 60 value 81.624558
iter 70 value 80.708795
iter 80 value 79.937537
iter 90 value 78.187995
iter 100 value 77.206747
final value 77.206747
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.423626
iter 10 value 94.511784
iter 20 value 94.387502
iter 30 value 88.050580
iter 40 value 80.570496
iter 50 value 79.868140
iter 60 value 79.384310
iter 70 value 79.191195
iter 80 value 79.125437
iter 90 value 78.464800
iter 100 value 77.643191
final value 77.643191
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.842306
iter 10 value 94.479462
iter 20 value 86.610731
iter 30 value 83.396370
iter 40 value 81.625272
iter 50 value 79.907089
iter 60 value 78.000627
iter 70 value 77.519826
iter 80 value 76.967724
iter 90 value 76.562141
iter 100 value 76.350611
final value 76.350611
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.673372
iter 10 value 90.647955
iter 20 value 83.935573
iter 30 value 81.101200
iter 40 value 78.976610
iter 50 value 78.364561
iter 60 value 77.902507
iter 70 value 77.611306
iter 80 value 77.255919
iter 90 value 76.893908
iter 100 value 76.816981
final value 76.816981
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.156542
iter 10 value 94.622107
iter 20 value 86.600275
iter 30 value 84.953255
iter 40 value 84.689171
iter 50 value 80.948021
iter 60 value 80.626686
iter 70 value 79.831792
iter 80 value 78.118162
iter 90 value 77.292441
iter 100 value 76.410759
final value 76.410759
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.300500
iter 10 value 95.260090
iter 20 value 90.251441
iter 30 value 83.106080
iter 40 value 80.784937
iter 50 value 80.491303
iter 60 value 80.090177
iter 70 value 79.613242
iter 80 value 77.195777
iter 90 value 76.499942
iter 100 value 76.205819
final value 76.205819
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.530623
iter 10 value 94.855655
iter 20 value 84.053899
iter 30 value 82.253672
iter 40 value 80.350734
iter 50 value 77.426696
iter 60 value 76.596123
iter 70 value 76.312298
iter 80 value 76.252508
iter 90 value 76.194542
iter 100 value 76.038975
final value 76.038975
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 129.406483
iter 10 value 94.011991
iter 20 value 83.928760
iter 30 value 83.034844
iter 40 value 80.492435
iter 50 value 79.112078
iter 60 value 77.687844
iter 70 value 76.867128
iter 80 value 76.457957
iter 90 value 76.408218
iter 100 value 76.345699
final value 76.345699
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.527043
iter 10 value 94.490016
iter 20 value 94.327389
iter 30 value 93.972278
iter 40 value 86.242012
iter 50 value 83.390613
iter 60 value 82.524874
iter 70 value 78.567361
iter 80 value 77.205421
iter 90 value 76.301506
iter 100 value 76.105588
final value 76.105588
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.151342
iter 10 value 94.486056
iter 20 value 94.465666
iter 30 value 90.317454
iter 40 value 89.685931
iter 50 value 89.685516
final value 89.685507
converged
Fitting Repeat 2
# weights: 103
initial value 95.489395
final value 94.485754
converged
Fitting Repeat 3
# weights: 103
initial value 95.937461
final value 94.486054
converged
Fitting Repeat 4
# weights: 103
initial value 97.770016
iter 10 value 94.485943
final value 94.484237
converged
Fitting Repeat 5
# weights: 103
initial value 97.728686
final value 94.485908
converged
Fitting Repeat 1
# weights: 305
initial value 103.941561
iter 10 value 94.488925
iter 20 value 94.471647
iter 30 value 83.544844
iter 40 value 78.782075
iter 50 value 78.513664
iter 60 value 78.379114
iter 70 value 78.166245
iter 80 value 77.819234
iter 90 value 77.657444
iter 100 value 77.629281
final value 77.629281
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.199401
iter 10 value 94.486368
iter 20 value 91.373680
iter 30 value 90.979930
iter 40 value 90.979413
final value 90.979278
converged
Fitting Repeat 3
# weights: 305
initial value 101.537127
iter 10 value 94.515695
iter 20 value 94.509291
iter 30 value 93.291972
iter 40 value 91.831938
iter 50 value 91.470609
iter 60 value 91.206002
iter 70 value 90.939640
iter 80 value 90.933447
iter 90 value 89.974692
iter 100 value 83.061963
final value 83.061963
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 95.999038
iter 10 value 94.471734
iter 20 value 94.467512
iter 30 value 93.403011
iter 40 value 80.852578
iter 50 value 80.791016
iter 60 value 79.342616
iter 70 value 77.058487
iter 80 value 75.923673
iter 90 value 75.696770
iter 100 value 75.692988
final value 75.692988
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.161575
iter 10 value 94.488916
iter 20 value 94.323031
iter 30 value 87.697505
iter 40 value 87.666394
final value 87.663717
converged
Fitting Repeat 1
# weights: 507
initial value 108.510568
iter 10 value 94.492425
iter 20 value 94.485379
iter 30 value 89.088345
iter 40 value 81.426423
iter 50 value 80.840777
final value 80.840702
converged
Fitting Repeat 2
# weights: 507
initial value 103.345788
iter 10 value 85.171351
iter 20 value 85.167399
iter 30 value 85.001200
iter 40 value 85.000646
iter 50 value 83.238472
iter 60 value 83.187419
iter 70 value 83.186430
iter 80 value 83.184446
iter 90 value 83.106604
iter 100 value 83.096999
final value 83.096999
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.648433
iter 10 value 84.274878
iter 20 value 83.004490
final value 83.003932
converged
Fitting Repeat 4
# weights: 507
initial value 104.210726
iter 10 value 94.491845
iter 20 value 86.673908
iter 30 value 81.057599
iter 40 value 80.594667
iter 50 value 80.562616
iter 60 value 80.360217
iter 70 value 80.132632
iter 80 value 76.224006
iter 90 value 75.402453
iter 100 value 75.388463
final value 75.388463
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.165910
iter 10 value 94.475141
iter 20 value 94.452144
iter 30 value 86.365113
iter 40 value 85.897573
final value 85.897526
converged
Fitting Repeat 1
# weights: 103
initial value 95.932506
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 108.865385
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 98.779789
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 100.363328
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.103541
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 97.437553
final value 94.057229
converged
Fitting Repeat 2
# weights: 305
initial value 96.788317
final value 94.443243
converged
Fitting Repeat 3
# weights: 305
initial value 102.953574
iter 10 value 93.625648
iter 20 value 87.305370
iter 30 value 86.830562
iter 40 value 86.827228
iter 50 value 86.826178
final value 86.826175
converged
Fitting Repeat 4
# weights: 305
initial value 97.712069
iter 10 value 92.997053
iter 20 value 89.474451
iter 30 value 89.411810
final value 89.411765
converged
Fitting Repeat 5
# weights: 305
initial value 96.987840
final value 94.443243
converged
Fitting Repeat 1
# weights: 507
initial value 106.510161
final value 94.443243
converged
Fitting Repeat 2
# weights: 507
initial value 97.674796
iter 10 value 94.057230
final value 94.057229
converged
Fitting Repeat 3
# weights: 507
initial value 96.779601
iter 10 value 94.478292
iter 10 value 94.478291
iter 10 value 94.478291
final value 94.478291
converged
Fitting Repeat 4
# weights: 507
initial value 95.122768
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 112.200485
iter 10 value 93.984085
final value 93.984053
converged
Fitting Repeat 1
# weights: 103
initial value 104.506056
iter 10 value 94.081166
iter 20 value 85.885221
iter 30 value 85.743104
iter 40 value 85.617895
iter 50 value 85.608217
final value 85.608096
converged
Fitting Repeat 2
# weights: 103
initial value 103.227178
iter 10 value 94.505568
iter 20 value 94.483020
iter 30 value 90.288430
iter 40 value 88.997385
iter 50 value 87.272198
iter 60 value 86.679051
iter 70 value 86.655316
final value 86.655216
converged
Fitting Repeat 3
# weights: 103
initial value 97.807040
iter 10 value 94.486613
iter 20 value 94.187741
iter 30 value 89.816779
iter 40 value 88.548896
iter 50 value 84.799930
iter 60 value 83.828781
iter 70 value 83.666250
iter 80 value 83.405005
iter 90 value 83.249052
iter 100 value 83.186260
final value 83.186260
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 101.675507
iter 10 value 94.422722
iter 20 value 88.287171
iter 30 value 86.135246
iter 40 value 85.929871
iter 50 value 85.714687
iter 60 value 85.638595
iter 70 value 85.608104
final value 85.608088
converged
Fitting Repeat 5
# weights: 103
initial value 107.471815
iter 10 value 94.482729
iter 20 value 94.102427
iter 30 value 93.928760
iter 40 value 93.202617
iter 50 value 88.062965
iter 60 value 86.359515
iter 70 value 85.740620
iter 80 value 85.638027
iter 90 value 85.608404
final value 85.608088
converged
Fitting Repeat 1
# weights: 305
initial value 118.213231
iter 10 value 94.510825
iter 20 value 90.861818
iter 30 value 87.516952
iter 40 value 86.079442
iter 50 value 85.522107
iter 60 value 83.859420
iter 70 value 83.283684
iter 80 value 83.100847
iter 90 value 82.954125
iter 100 value 82.637168
final value 82.637168
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.474756
iter 10 value 94.586156
iter 20 value 88.165146
iter 30 value 88.017716
iter 40 value 87.691008
iter 50 value 86.320015
iter 60 value 84.380791
iter 70 value 83.291043
iter 80 value 83.119915
iter 90 value 82.890424
iter 100 value 82.675990
final value 82.675990
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.633985
iter 10 value 94.500320
iter 20 value 93.003056
iter 30 value 84.620815
iter 40 value 83.363473
iter 50 value 82.964143
iter 60 value 82.736214
iter 70 value 82.580905
iter 80 value 82.534504
iter 90 value 82.409472
iter 100 value 82.270573
final value 82.270573
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.609348
iter 10 value 94.605549
iter 20 value 94.498167
iter 30 value 89.386326
iter 40 value 86.533835
iter 50 value 86.140900
iter 60 value 84.222585
iter 70 value 83.818392
iter 80 value 83.604072
iter 90 value 83.469944
iter 100 value 83.244543
final value 83.244543
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.023220
iter 10 value 91.084189
iter 20 value 86.603770
iter 30 value 85.871023
iter 40 value 85.665780
iter 50 value 84.602410
iter 60 value 84.153485
iter 70 value 84.038509
iter 80 value 83.744546
iter 90 value 82.755251
iter 100 value 82.310638
final value 82.310638
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.642099
iter 10 value 96.148653
iter 20 value 88.415509
iter 30 value 87.803136
iter 40 value 86.568190
iter 50 value 84.911830
iter 60 value 84.541285
iter 70 value 84.021059
iter 80 value 83.094027
iter 90 value 82.582987
iter 100 value 82.253121
final value 82.253121
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 124.509373
iter 10 value 94.771909
iter 20 value 89.076084
iter 30 value 86.472744
iter 40 value 84.573824
iter 50 value 83.983691
iter 60 value 83.703198
iter 70 value 83.452247
iter 80 value 83.402820
iter 90 value 83.348119
iter 100 value 83.064583
final value 83.064583
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.607091
iter 10 value 94.620074
iter 20 value 94.397094
iter 30 value 92.544547
iter 40 value 90.646747
iter 50 value 88.083011
iter 60 value 87.811135
iter 70 value 85.557755
iter 80 value 84.353144
iter 90 value 83.681122
iter 100 value 82.862661
final value 82.862661
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.514378
iter 10 value 94.999154
iter 20 value 92.341001
iter 30 value 88.802410
iter 40 value 87.602006
iter 50 value 87.196468
iter 60 value 85.628432
iter 70 value 85.247331
iter 80 value 83.427042
iter 90 value 82.645086
iter 100 value 82.113105
final value 82.113105
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 128.350384
iter 10 value 94.357602
iter 20 value 88.666240
iter 30 value 88.030728
iter 40 value 87.549039
iter 50 value 85.580728
iter 60 value 84.039682
iter 70 value 82.031816
iter 80 value 81.646369
iter 90 value 81.499920
iter 100 value 81.409344
final value 81.409344
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.295250
final value 94.444954
converged
Fitting Repeat 2
# weights: 103
initial value 99.919434
final value 94.485946
converged
Fitting Repeat 3
# weights: 103
initial value 94.044150
iter 10 value 90.400241
iter 20 value 90.119583
iter 30 value 90.058463
final value 90.058460
converged
Fitting Repeat 4
# weights: 103
initial value 100.233751
final value 94.485727
converged
Fitting Repeat 5
# weights: 103
initial value 100.767631
final value 94.485665
converged
Fitting Repeat 1
# weights: 305
initial value 96.787720
iter 10 value 94.488300
iter 20 value 94.481071
iter 30 value 87.389673
iter 40 value 87.372379
iter 50 value 87.319577
iter 60 value 86.506799
iter 70 value 86.401193
iter 80 value 86.388609
iter 90 value 84.812808
iter 100 value 83.768974
final value 83.768974
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 97.811104
iter 10 value 94.488070
final value 94.484279
converged
Fitting Repeat 3
# weights: 305
initial value 103.569325
iter 10 value 94.488913
iter 20 value 94.480506
iter 30 value 93.716174
iter 40 value 93.568201
iter 50 value 93.191249
iter 60 value 93.107643
iter 70 value 91.582415
iter 80 value 91.386811
iter 90 value 91.283733
iter 100 value 91.283197
final value 91.283197
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 96.760404
iter 10 value 94.448254
iter 20 value 87.178471
iter 30 value 86.636352
final value 86.505371
converged
Fitting Repeat 5
# weights: 305
initial value 97.736708
iter 10 value 94.119211
iter 20 value 93.568297
iter 30 value 84.715198
iter 40 value 84.170226
final value 84.114422
converged
Fitting Repeat 1
# weights: 507
initial value 99.833010
iter 10 value 94.494435
iter 20 value 94.486827
iter 30 value 86.189139
iter 40 value 83.373444
iter 50 value 83.369354
iter 60 value 83.302595
iter 70 value 82.474706
iter 80 value 82.409339
iter 90 value 82.408644
final value 82.407615
converged
Fitting Repeat 2
# weights: 507
initial value 108.724629
iter 10 value 94.271422
iter 20 value 94.185542
iter 30 value 94.079834
iter 40 value 94.078270
final value 94.077805
converged
Fitting Repeat 3
# weights: 507
initial value 122.235471
iter 10 value 94.491641
iter 20 value 94.481852
iter 30 value 87.678627
iter 40 value 87.317019
iter 50 value 87.289819
iter 60 value 87.286099
iter 70 value 87.157359
iter 80 value 86.560798
iter 90 value 83.157661
iter 100 value 82.303911
final value 82.303911
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.885270
iter 10 value 94.491889
iter 20 value 93.653087
iter 30 value 88.397823
iter 40 value 88.007132
iter 50 value 87.765016
iter 60 value 85.595428
iter 70 value 84.027919
iter 80 value 83.886657
iter 90 value 83.259294
iter 100 value 82.526119
final value 82.526119
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.048131
iter 10 value 94.236252
iter 20 value 94.233001
iter 30 value 91.352371
iter 40 value 88.353760
iter 50 value 87.629431
iter 60 value 87.275396
iter 70 value 87.101549
iter 80 value 86.719270
final value 86.719165
converged
Fitting Repeat 1
# weights: 103
initial value 100.263243
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.558227
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.679651
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 97.305809
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 98.411714
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 99.052340
iter 10 value 94.053050
final value 94.052874
converged
Fitting Repeat 2
# weights: 305
initial value 94.058738
final value 93.582418
converged
Fitting Repeat 3
# weights: 305
initial value 97.888862
iter 10 value 93.582418
iter 10 value 93.582417
iter 10 value 93.582417
final value 93.582417
converged
Fitting Repeat 4
# weights: 305
initial value 109.516891
final value 93.582418
converged
Fitting Repeat 5
# weights: 305
initial value 98.680487
iter 10 value 88.075673
iter 20 value 88.016499
final value 88.016394
converged
Fitting Repeat 1
# weights: 507
initial value 99.580558
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 102.934247
final value 94.025289
converged
Fitting Repeat 3
# weights: 507
initial value 100.849623
final value 93.469994
converged
Fitting Repeat 4
# weights: 507
initial value 105.738766
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 112.823051
iter 10 value 94.025831
final value 94.025290
converged
Fitting Repeat 1
# weights: 103
initial value 102.942740
iter 10 value 90.011203
iter 20 value 86.827826
iter 30 value 86.186280
iter 40 value 85.866521
iter 50 value 83.033182
iter 60 value 82.802209
iter 70 value 82.780318
iter 80 value 82.740726
final value 82.740502
converged
Fitting Repeat 2
# weights: 103
initial value 105.138507
iter 10 value 94.057582
iter 20 value 93.984324
iter 30 value 93.771346
iter 40 value 89.145450
iter 50 value 88.219390
iter 60 value 88.144605
iter 70 value 87.970379
iter 80 value 86.023863
iter 90 value 85.512265
iter 100 value 83.904349
final value 83.904349
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.826896
iter 10 value 94.191300
iter 20 value 93.747508
iter 30 value 93.443790
iter 40 value 88.036590
iter 50 value 86.789887
iter 60 value 86.295174
iter 70 value 85.174194
iter 80 value 84.992436
iter 90 value 82.754965
final value 82.689849
converged
Fitting Repeat 4
# weights: 103
initial value 97.377776
iter 10 value 94.041065
iter 20 value 93.691136
iter 30 value 92.994902
iter 40 value 90.745519
iter 50 value 90.142297
iter 60 value 87.686405
iter 70 value 86.892545
iter 80 value 86.630173
iter 90 value 86.052929
iter 100 value 85.853571
final value 85.853571
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.178317
iter 10 value 93.777698
iter 20 value 90.486846
iter 30 value 90.277238
iter 40 value 89.824650
iter 50 value 88.021864
iter 60 value 85.356420
iter 70 value 83.980542
iter 80 value 83.428361
iter 90 value 82.791968
iter 100 value 82.755005
final value 82.755005
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 100.057814
iter 10 value 94.057883
iter 20 value 93.717728
iter 30 value 93.463932
iter 40 value 88.069998
iter 50 value 87.005977
iter 60 value 85.628987
iter 70 value 83.616915
iter 80 value 83.050333
iter 90 value 82.689265
iter 100 value 82.579771
final value 82.579771
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.771317
iter 10 value 94.198460
iter 20 value 88.340441
iter 30 value 86.912737
iter 40 value 84.814965
iter 50 value 83.990971
iter 60 value 83.756387
iter 70 value 82.891176
iter 80 value 82.826029
iter 90 value 82.634254
iter 100 value 81.981925
final value 81.981925
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.208631
iter 10 value 94.122438
iter 20 value 93.861271
iter 30 value 90.343446
iter 40 value 88.112973
iter 50 value 86.346192
iter 60 value 86.183630
iter 70 value 85.191584
iter 80 value 83.765244
iter 90 value 82.641265
iter 100 value 82.366959
final value 82.366959
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.615324
iter 10 value 94.183741
iter 20 value 93.816134
iter 30 value 92.112804
iter 40 value 87.817355
iter 50 value 86.072494
iter 60 value 85.640704
iter 70 value 85.097455
iter 80 value 84.441833
iter 90 value 83.376944
iter 100 value 83.057122
final value 83.057122
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 115.784686
iter 10 value 92.172795
iter 20 value 88.107136
iter 30 value 86.024440
iter 40 value 85.524923
iter 50 value 83.508946
iter 60 value 82.282694
iter 70 value 82.107043
iter 80 value 81.636344
iter 90 value 81.600842
iter 100 value 81.596840
final value 81.596840
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.487513
iter 10 value 94.144085
iter 20 value 86.240448
iter 30 value 84.547438
iter 40 value 83.964204
iter 50 value 83.617858
iter 60 value 83.535632
iter 70 value 83.382175
iter 80 value 83.204721
iter 90 value 82.728417
iter 100 value 82.372988
final value 82.372988
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.393062
iter 10 value 94.025013
iter 20 value 90.230449
iter 30 value 86.305079
iter 40 value 85.173054
iter 50 value 84.120228
iter 60 value 83.626736
iter 70 value 83.269247
iter 80 value 82.623961
iter 90 value 82.500613
iter 100 value 82.486231
final value 82.486231
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 128.717069
iter 10 value 94.292866
iter 20 value 93.568856
iter 30 value 87.914737
iter 40 value 84.713373
iter 50 value 84.197868
iter 60 value 83.285807
iter 70 value 82.520691
iter 80 value 82.051542
iter 90 value 81.963758
iter 100 value 81.573742
final value 81.573742
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.915771
iter 10 value 93.934778
iter 20 value 90.984274
iter 30 value 85.985366
iter 40 value 84.744208
iter 50 value 84.115989
iter 60 value 83.346028
iter 70 value 82.734268
iter 80 value 82.158125
iter 90 value 81.572310
iter 100 value 81.296648
final value 81.296648
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 116.536052
iter 10 value 94.210218
iter 20 value 93.821790
iter 30 value 93.369073
iter 40 value 88.538141
iter 50 value 86.062997
iter 60 value 84.239181
iter 70 value 82.374495
iter 80 value 82.247613
iter 90 value 82.141003
iter 100 value 82.102458
final value 82.102458
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 109.630480
iter 10 value 93.969293
iter 20 value 93.901874
iter 30 value 93.901251
final value 93.900064
converged
Fitting Repeat 2
# weights: 103
initial value 104.741176
iter 10 value 94.054676
iter 20 value 93.884119
iter 30 value 87.037875
final value 86.235576
converged
Fitting Repeat 3
# weights: 103
initial value 98.250429
final value 94.054707
converged
Fitting Repeat 4
# weights: 103
initial value 101.621688
final value 94.054966
converged
Fitting Repeat 5
# weights: 103
initial value 100.422779
final value 94.054457
converged
Fitting Repeat 1
# weights: 305
initial value 101.157646
iter 10 value 94.058124
iter 20 value 93.760814
iter 30 value 86.370071
iter 40 value 83.873181
iter 50 value 82.286478
iter 60 value 82.133953
iter 70 value 82.120625
iter 80 value 81.643942
iter 90 value 81.610665
iter 100 value 81.599423
final value 81.599423
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.282545
iter 10 value 90.964203
iter 20 value 90.299093
iter 30 value 90.239324
iter 40 value 90.235563
iter 50 value 89.971265
iter 60 value 89.962877
iter 70 value 89.887480
iter 80 value 89.882795
iter 90 value 89.841870
iter 100 value 85.253317
final value 85.253317
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 112.479907
iter 10 value 93.893264
iter 20 value 93.585985
iter 30 value 93.583493
iter 40 value 93.324867
iter 50 value 89.325467
iter 60 value 83.569036
iter 70 value 83.189230
iter 80 value 83.178679
iter 90 value 83.087625
iter 100 value 83.006615
final value 83.006615
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 114.617406
iter 10 value 92.410939
iter 20 value 91.602197
iter 30 value 91.435432
iter 40 value 91.431608
iter 50 value 91.429376
iter 60 value 91.428838
iter 70 value 91.428410
iter 80 value 91.427846
final value 91.427596
converged
Fitting Repeat 5
# weights: 305
initial value 111.859683
iter 10 value 93.587572
iter 20 value 93.582937
final value 93.582589
converged
Fitting Repeat 1
# weights: 507
initial value 110.813176
iter 10 value 93.938126
iter 20 value 90.864923
iter 30 value 87.506065
iter 40 value 87.276106
iter 50 value 84.952592
iter 60 value 84.888917
iter 70 value 84.576150
iter 80 value 83.836892
iter 90 value 82.378319
iter 100 value 81.028891
final value 81.028891
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.905169
iter 10 value 94.058621
iter 20 value 92.236019
iter 30 value 85.597014
iter 40 value 84.887803
iter 50 value 84.874914
iter 60 value 84.864529
iter 70 value 83.566262
iter 80 value 81.385881
iter 90 value 81.120189
iter 100 value 80.898307
final value 80.898307
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 98.243154
iter 10 value 94.057409
iter 20 value 94.018353
iter 30 value 92.110052
iter 40 value 85.248807
iter 50 value 83.158110
iter 60 value 82.997956
iter 70 value 82.997596
iter 80 value 82.995277
iter 90 value 82.779088
iter 100 value 82.320639
final value 82.320639
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.380368
iter 10 value 94.060309
iter 20 value 90.726329
iter 30 value 86.490813
iter 40 value 86.350440
iter 50 value 86.066158
iter 60 value 86.041947
iter 70 value 86.041796
final value 86.041775
converged
Fitting Repeat 5
# weights: 507
initial value 100.383800
iter 10 value 89.821726
iter 20 value 86.188631
iter 30 value 86.082921
iter 40 value 85.921258
iter 50 value 85.879312
iter 60 value 85.870815
iter 70 value 85.737724
iter 80 value 84.359916
iter 90 value 83.381429
iter 100 value 82.246821
final value 82.246821
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.764013
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.350153
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.988594
iter 10 value 88.887471
iter 20 value 88.058534
iter 30 value 87.296322
iter 40 value 87.110556
iter 50 value 87.100337
iter 60 value 87.100206
final value 87.100187
converged
Fitting Repeat 4
# weights: 103
initial value 104.585475
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 99.510356
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 97.073314
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 108.548738
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 105.469917
iter 10 value 93.640394
final value 93.640336
converged
Fitting Repeat 4
# weights: 305
initial value 101.574956
iter 10 value 93.915746
iter 10 value 93.915746
iter 10 value 93.915746
final value 93.915746
converged
Fitting Repeat 5
# weights: 305
initial value 99.561429
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 98.949395
final value 93.915746
converged
Fitting Repeat 2
# weights: 507
initial value 97.324575
final value 93.371808
converged
Fitting Repeat 3
# weights: 507
initial value 97.133705
iter 10 value 93.901059
iter 20 value 93.900545
final value 93.900539
converged
Fitting Repeat 4
# weights: 507
initial value 111.174261
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 102.880974
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 104.506947
iter 10 value 94.063256
iter 20 value 93.866102
iter 30 value 93.589151
iter 40 value 93.579432
iter 50 value 86.071891
iter 60 value 85.854742
iter 70 value 85.503166
iter 80 value 84.439238
iter 90 value 84.091461
iter 100 value 84.032452
final value 84.032452
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.572894
iter 10 value 89.225299
iter 20 value 86.675303
iter 30 value 85.947312
iter 40 value 85.362595
iter 50 value 85.232550
final value 85.232075
converged
Fitting Repeat 3
# weights: 103
initial value 99.629054
iter 10 value 94.056637
iter 20 value 93.938120
iter 30 value 93.586871
iter 40 value 93.580516
iter 50 value 87.059362
iter 60 value 85.599478
iter 70 value 84.885846
iter 80 value 83.823580
iter 90 value 83.776871
iter 100 value 83.732032
final value 83.732032
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 103.652885
iter 10 value 90.640680
iter 20 value 88.270439
iter 30 value 87.036435
iter 40 value 86.177775
iter 50 value 85.975914
iter 60 value 85.761226
iter 70 value 85.363706
iter 80 value 85.331193
final value 85.331190
converged
Fitting Repeat 5
# weights: 103
initial value 105.039035
iter 10 value 94.044211
iter 20 value 93.581352
iter 30 value 93.579608
iter 40 value 93.579495
iter 50 value 88.553732
iter 60 value 88.100587
iter 70 value 87.865598
iter 80 value 85.414396
iter 90 value 85.332303
iter 100 value 85.331248
final value 85.331248
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 100.639516
iter 10 value 93.807727
iter 20 value 87.941746
iter 30 value 84.548316
iter 40 value 84.245732
iter 50 value 84.171218
iter 60 value 84.099982
iter 70 value 83.959995
iter 80 value 83.878176
iter 90 value 83.685267
iter 100 value 83.486223
final value 83.486223
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.166248
iter 10 value 94.034275
iter 20 value 93.854796
iter 30 value 93.605798
iter 40 value 93.580521
iter 50 value 93.080664
iter 60 value 89.097235
iter 70 value 87.480166
iter 80 value 85.506332
iter 90 value 85.008253
iter 100 value 84.616110
final value 84.616110
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 119.175815
iter 10 value 93.988025
iter 20 value 87.097278
iter 30 value 86.137903
iter 40 value 85.619834
iter 50 value 85.507530
iter 60 value 85.094547
iter 70 value 84.220294
iter 80 value 83.526996
iter 90 value 82.600392
iter 100 value 82.177454
final value 82.177454
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 118.205256
iter 10 value 94.067235
iter 20 value 93.619601
iter 30 value 87.989528
iter 40 value 86.233574
iter 50 value 85.679731
iter 60 value 85.324768
iter 70 value 84.859615
iter 80 value 84.301215
iter 90 value 83.169701
iter 100 value 82.699617
final value 82.699617
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.208901
iter 10 value 94.086498
iter 20 value 94.048825
iter 30 value 86.650846
iter 40 value 85.751462
iter 50 value 85.568158
iter 60 value 84.680195
iter 70 value 83.040698
iter 80 value 82.460352
iter 90 value 82.264845
iter 100 value 82.184271
final value 82.184271
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.322475
iter 10 value 93.679706
iter 20 value 87.211301
iter 30 value 86.272849
iter 40 value 85.527207
iter 50 value 85.404749
iter 60 value 85.304519
iter 70 value 85.026066
iter 80 value 84.446335
iter 90 value 84.267218
iter 100 value 83.643013
final value 83.643013
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.412782
iter 10 value 94.409562
iter 20 value 93.550323
iter 30 value 90.689235
iter 40 value 85.658608
iter 50 value 84.976752
iter 60 value 83.648139
iter 70 value 83.248366
iter 80 value 82.588614
iter 90 value 82.368074
iter 100 value 82.315159
final value 82.315159
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.043163
iter 10 value 96.583352
iter 20 value 87.757845
iter 30 value 85.113942
iter 40 value 83.572210
iter 50 value 83.372627
iter 60 value 82.991175
iter 70 value 82.444351
iter 80 value 82.122728
iter 90 value 81.941772
iter 100 value 81.747157
final value 81.747157
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.911064
iter 10 value 93.343008
iter 20 value 92.223507
iter 30 value 86.657249
iter 40 value 85.203632
iter 50 value 85.149117
iter 60 value 84.687282
iter 70 value 84.389965
iter 80 value 84.366519
iter 90 value 84.340827
iter 100 value 84.305472
final value 84.305472
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 132.030515
iter 10 value 94.067607
iter 20 value 87.623802
iter 30 value 85.852670
iter 40 value 85.148428
iter 50 value 83.926341
iter 60 value 82.726243
iter 70 value 82.250960
iter 80 value 81.924551
iter 90 value 81.865201
iter 100 value 81.854728
final value 81.854728
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.186906
final value 94.054431
converged
Fitting Repeat 2
# weights: 103
initial value 94.956657
final value 94.054371
converged
Fitting Repeat 3
# weights: 103
initial value 98.630508
iter 10 value 91.178095
iter 20 value 86.036717
iter 30 value 86.036351
iter 40 value 85.932742
iter 40 value 85.932741
iter 40 value 85.932741
final value 85.932741
converged
Fitting Repeat 4
# weights: 103
initial value 95.136581
final value 94.054478
converged
Fitting Repeat 5
# weights: 103
initial value 98.037888
final value 93.917777
converged
Fitting Repeat 1
# weights: 305
initial value 107.188817
iter 10 value 94.058106
iter 20 value 93.530945
iter 30 value 87.618526
iter 40 value 87.618229
iter 50 value 87.443614
iter 60 value 85.445143
iter 70 value 83.733479
iter 80 value 83.370513
iter 90 value 83.342572
iter 100 value 83.330626
final value 83.330626
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 127.672079
iter 10 value 94.058162
iter 20 value 94.053218
iter 30 value 93.479339
iter 40 value 92.967200
final value 92.954565
converged
Fitting Repeat 3
# weights: 305
initial value 98.179751
iter 10 value 90.729335
iter 20 value 87.656653
iter 30 value 87.614306
iter 40 value 87.551485
final value 87.551414
converged
Fitting Repeat 4
# weights: 305
initial value 94.808377
iter 10 value 93.920477
iter 20 value 93.313307
iter 30 value 93.189073
iter 40 value 91.076255
iter 50 value 86.491966
iter 60 value 85.905992
iter 70 value 85.278310
iter 80 value 84.797852
iter 90 value 83.046441
iter 100 value 82.446249
final value 82.446249
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 122.255850
iter 10 value 93.928324
iter 20 value 93.923376
iter 30 value 93.922838
iter 40 value 93.921278
iter 50 value 93.539668
iter 60 value 93.537586
iter 70 value 93.534809
iter 80 value 93.532389
iter 90 value 93.531972
final value 93.531927
converged
Fitting Repeat 1
# weights: 507
initial value 101.522110
iter 10 value 94.061514
iter 20 value 94.052363
iter 30 value 86.993832
iter 40 value 84.158481
iter 50 value 83.886918
iter 60 value 83.860008
iter 70 value 83.834139
iter 80 value 83.818129
iter 90 value 82.048179
iter 100 value 81.415072
final value 81.415072
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 100.124147
iter 10 value 94.060405
iter 20 value 93.373497
iter 30 value 93.088917
iter 40 value 93.081137
iter 50 value 92.538486
iter 60 value 89.568907
iter 70 value 88.216829
iter 80 value 86.155956
iter 90 value 85.623768
final value 85.623710
converged
Fitting Repeat 3
# weights: 507
initial value 111.929722
iter 10 value 93.923956
iter 20 value 92.994638
iter 30 value 85.597104
iter 40 value 82.593276
iter 50 value 82.284565
iter 60 value 82.189106
iter 70 value 82.170160
iter 80 value 82.162213
iter 90 value 82.156421
iter 100 value 82.104049
final value 82.104049
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.477982
iter 10 value 94.060842
iter 20 value 93.792354
iter 30 value 93.654056
iter 40 value 92.082154
iter 50 value 86.513655
iter 60 value 86.473770
iter 70 value 85.342893
iter 80 value 83.917215
iter 90 value 83.906051
iter 100 value 83.904747
final value 83.904747
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.120083
iter 10 value 94.119118
iter 20 value 92.012183
iter 30 value 85.163938
iter 40 value 83.104951
iter 50 value 83.093217
iter 60 value 83.011563
iter 70 value 82.932326
iter 80 value 82.913140
iter 90 value 82.595320
iter 100 value 82.584388
final value 82.584388
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 93.766365
iter 10 value 92.316562
iter 20 value 92.237109
final value 92.237027
converged
Fitting Repeat 2
# weights: 103
initial value 109.354621
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.024994
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 96.674099
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 113.618624
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 97.015358
iter 10 value 94.443244
iter 10 value 94.443243
iter 10 value 94.443243
final value 94.443243
converged
Fitting Repeat 2
# weights: 305
initial value 103.497368
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 107.418313
final value 94.443243
converged
Fitting Repeat 4
# weights: 305
initial value 108.512514
final value 94.455556
converged
Fitting Repeat 5
# weights: 305
initial value 98.295390
iter 10 value 86.686022
iter 20 value 85.833890
final value 85.833868
converged
Fitting Repeat 1
# weights: 507
initial value 109.273256
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 98.018137
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 103.241286
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 108.821686
iter 10 value 93.056659
iter 20 value 87.890112
iter 30 value 87.647672
final value 87.647667
converged
Fitting Repeat 5
# weights: 507
initial value 102.741015
final value 94.483810
converged
Fitting Repeat 1
# weights: 103
initial value 111.563272
iter 10 value 94.444992
iter 20 value 87.796422
iter 30 value 86.342525
iter 40 value 82.202950
iter 50 value 81.647698
iter 60 value 81.551485
iter 70 value 81.370036
iter 80 value 81.265848
iter 90 value 81.264713
final value 81.264601
converged
Fitting Repeat 2
# weights: 103
initial value 98.341477
iter 10 value 94.298152
iter 20 value 92.068241
iter 30 value 91.857667
iter 40 value 85.467320
iter 50 value 82.951060
iter 60 value 81.562968
iter 70 value 81.341735
iter 80 value 80.422733
iter 90 value 80.148485
final value 80.148244
converged
Fitting Repeat 3
# weights: 103
initial value 99.744613
iter 10 value 94.338787
iter 20 value 88.306769
iter 30 value 83.467567
iter 40 value 82.300809
iter 50 value 81.317072
iter 60 value 81.264509
iter 60 value 81.264509
iter 60 value 81.264509
final value 81.264509
converged
Fitting Repeat 4
# weights: 103
initial value 99.892015
iter 10 value 94.474722
iter 20 value 94.013047
iter 30 value 91.043121
iter 40 value 85.782626
iter 50 value 84.019841
iter 60 value 82.778633
iter 70 value 82.621594
iter 80 value 82.108802
iter 90 value 81.635486
final value 81.591117
converged
Fitting Repeat 5
# weights: 103
initial value 99.571568
iter 10 value 94.563194
iter 20 value 94.487222
iter 30 value 90.603208
iter 40 value 83.360981
iter 50 value 82.687974
iter 60 value 81.837028
iter 70 value 81.308557
final value 81.264509
converged
Fitting Repeat 1
# weights: 305
initial value 100.705994
iter 10 value 93.829711
iter 20 value 87.745592
iter 30 value 87.195391
iter 40 value 84.959375
iter 50 value 84.718135
iter 60 value 84.246313
iter 70 value 83.978822
iter 80 value 81.463773
iter 90 value 81.237369
iter 100 value 79.787118
final value 79.787118
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.506001
iter 10 value 90.704583
iter 20 value 84.670427
iter 30 value 81.965365
iter 40 value 80.735210
iter 50 value 80.503199
iter 60 value 80.213664
iter 70 value 79.866257
iter 80 value 78.953522
iter 90 value 78.658564
iter 100 value 78.526048
final value 78.526048
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.049535
iter 10 value 93.441888
iter 20 value 86.843157
iter 30 value 86.090200
iter 40 value 82.942086
iter 50 value 81.906422
iter 60 value 81.048282
iter 70 value 80.730696
iter 80 value 80.019540
iter 90 value 79.784723
iter 100 value 79.319301
final value 79.319301
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.424817
iter 10 value 94.432466
iter 20 value 92.494262
iter 30 value 83.718524
iter 40 value 81.973195
iter 50 value 81.533923
iter 60 value 81.458098
iter 70 value 81.411327
iter 80 value 81.236887
iter 90 value 80.238910
iter 100 value 79.740892
final value 79.740892
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.564003
iter 10 value 94.758003
iter 20 value 91.706845
iter 30 value 87.228793
iter 40 value 84.038043
iter 50 value 82.756458
iter 60 value 82.528376
iter 70 value 81.925058
iter 80 value 81.175115
iter 90 value 80.887570
iter 100 value 80.731428
final value 80.731428
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 100.802266
iter 10 value 94.435568
iter 20 value 82.688440
iter 30 value 80.684326
iter 40 value 79.395818
iter 50 value 79.073881
iter 60 value 78.997797
iter 70 value 78.513628
iter 80 value 78.440381
iter 90 value 78.429994
iter 100 value 78.379541
final value 78.379541
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.881041
iter 10 value 94.505629
iter 20 value 91.399804
iter 30 value 85.177462
iter 40 value 84.447350
iter 50 value 84.228145
iter 60 value 82.628171
iter 70 value 80.685149
iter 80 value 79.499803
iter 90 value 79.192489
iter 100 value 79.176120
final value 79.176120
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.765930
iter 10 value 93.043437
iter 20 value 84.038828
iter 30 value 82.775914
iter 40 value 82.496014
iter 50 value 81.987324
iter 60 value 79.982828
iter 70 value 79.057669
iter 80 value 78.425233
iter 90 value 78.225667
iter 100 value 78.147880
final value 78.147880
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.672314
iter 10 value 94.586165
iter 20 value 93.042280
iter 30 value 87.929048
iter 40 value 85.219045
iter 50 value 83.773769
iter 60 value 82.721045
iter 70 value 81.494018
iter 80 value 81.164342
iter 90 value 81.097264
iter 100 value 80.603941
final value 80.603941
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.201402
iter 10 value 94.882200
iter 20 value 93.056457
iter 30 value 87.393951
iter 40 value 85.632531
iter 50 value 84.177124
iter 60 value 84.010509
iter 70 value 83.974371
iter 80 value 83.705293
iter 90 value 82.361243
iter 100 value 81.093458
final value 81.093458
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.632652
final value 94.486057
converged
Fitting Repeat 2
# weights: 103
initial value 96.065903
iter 10 value 94.485874
iter 20 value 92.590662
iter 30 value 83.785171
iter 40 value 83.053319
final value 83.040068
converged
Fitting Repeat 3
# weights: 103
initial value 100.257707
final value 94.485880
converged
Fitting Repeat 4
# weights: 103
initial value 94.751484
final value 94.485709
converged
Fitting Repeat 5
# weights: 103
initial value 95.966502
final value 94.485747
converged
Fitting Repeat 1
# weights: 305
initial value 107.330840
iter 10 value 94.488960
iter 20 value 94.189548
iter 30 value 83.833366
iter 40 value 80.685594
iter 50 value 79.939665
iter 60 value 79.905210
iter 70 value 79.900966
iter 80 value 79.547995
iter 90 value 77.434499
iter 100 value 77.386940
final value 77.386940
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.193457
iter 10 value 94.447710
iter 20 value 94.443723
final value 94.443289
converged
Fitting Repeat 3
# weights: 305
initial value 130.437655
iter 10 value 94.489822
iter 20 value 94.452560
iter 30 value 82.565129
iter 40 value 82.563864
iter 50 value 82.561560
final value 82.561098
converged
Fitting Repeat 4
# weights: 305
initial value 97.485599
iter 10 value 94.448187
iter 20 value 94.444175
final value 94.443594
converged
Fitting Repeat 5
# weights: 305
initial value 101.892758
iter 10 value 94.447707
iter 20 value 94.443557
iter 30 value 94.228534
iter 40 value 84.096951
iter 50 value 80.428092
iter 60 value 80.361644
final value 80.361459
converged
Fitting Repeat 1
# weights: 507
initial value 129.294139
iter 10 value 94.449859
iter 20 value 92.425967
iter 30 value 81.171691
iter 40 value 81.145578
iter 50 value 81.117459
iter 60 value 81.095024
iter 70 value 79.781194
iter 80 value 79.678266
iter 90 value 79.674197
final value 79.674171
converged
Fitting Repeat 2
# weights: 507
initial value 125.603399
iter 10 value 94.491739
iter 20 value 94.473564
iter 30 value 90.939198
iter 40 value 82.344442
iter 50 value 82.165210
iter 60 value 82.164839
final value 82.163912
converged
Fitting Repeat 3
# weights: 507
initial value 94.945803
iter 10 value 94.451730
iter 20 value 94.443468
iter 30 value 88.929220
iter 40 value 85.281832
iter 50 value 85.052403
iter 60 value 83.358643
iter 70 value 83.307852
iter 80 value 80.713652
iter 90 value 79.582701
iter 100 value 79.394309
final value 79.394309
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 95.994976
iter 10 value 94.490689
iter 20 value 94.104603
iter 30 value 92.304537
iter 40 value 92.302844
iter 50 value 92.200216
iter 60 value 92.186133
final value 92.185923
converged
Fitting Repeat 5
# weights: 507
initial value 107.363015
iter 10 value 94.492542
iter 20 value 94.484410
iter 30 value 93.520458
iter 40 value 86.876809
iter 50 value 81.753504
iter 60 value 77.838431
iter 70 value 77.033503
iter 80 value 76.872028
iter 90 value 76.871030
iter 100 value 76.833421
final value 76.833421
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 124.840547
iter 10 value 117.874184
iter 20 value 117.867603
iter 30 value 114.256373
final value 114.253728
converged
Fitting Repeat 2
# weights: 507
initial value 127.602748
iter 10 value 117.745177
iter 20 value 117.712187
iter 30 value 116.647777
iter 40 value 106.638097
iter 50 value 103.322288
iter 60 value 101.838506
iter 70 value 101.534253
iter 80 value 101.032239
iter 90 value 100.393599
iter 100 value 100.390492
final value 100.390492
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 131.346225
iter 10 value 117.898925
iter 20 value 117.845171
iter 30 value 108.535607
iter 40 value 108.007776
iter 50 value 106.784637
iter 60 value 106.779873
iter 70 value 106.774738
iter 80 value 105.726993
iter 90 value 102.244314
iter 100 value 100.353677
final value 100.353677
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 147.940788
iter 10 value 117.767581
iter 20 value 117.759908
iter 30 value 115.021581
iter 40 value 106.151680
iter 50 value 105.913429
iter 60 value 105.908325
iter 70 value 105.865380
iter 80 value 105.792389
iter 80 value 105.792389
final value 105.792389
converged
Fitting Repeat 5
# weights: 507
initial value 123.157253
iter 10 value 117.897943
iter 20 value 117.383313
iter 30 value 115.848599
iter 40 value 113.499381
iter 50 value 113.494782
final value 113.494770
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Thu Oct 17 01:31:51 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
43.971 1.915 44.359
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 34.335 | 0.808 | 35.145 | |
| FreqInteractors | 0.225 | 0.016 | 0.241 | |
| calculateAAC | 0.036 | 0.008 | 0.045 | |
| calculateAutocor | 0.298 | 0.016 | 0.315 | |
| calculateCTDC | 0.077 | 0.000 | 0.077 | |
| calculateCTDD | 0.542 | 0.007 | 0.550 | |
| calculateCTDT | 0.229 | 0.000 | 0.229 | |
| calculateCTriad | 0.353 | 0.004 | 0.357 | |
| calculateDC | 0.075 | 0.012 | 0.087 | |
| calculateF | 0.298 | 0.008 | 0.306 | |
| calculateKSAAP | 0.085 | 0.008 | 0.093 | |
| calculateQD_Sm | 1.586 | 0.040 | 1.626 | |
| calculateTC | 1.434 | 0.148 | 1.582 | |
| calculateTC_Sm | 0.277 | 0.004 | 0.281 | |
| corr_plot | 33.998 | 0.456 | 34.455 | |
| enrichfindP | 0.488 | 0.029 | 10.238 | |
| enrichfind_hp | 0.057 | 0.012 | 1.000 | |
| enrichplot | 0.344 | 0.032 | 0.375 | |
| filter_missing_values | 0.001 | 0.000 | 0.002 | |
| getFASTA | 0.475 | 0.016 | 4.697 | |
| getHPI | 0.001 | 0.000 | 0.001 | |
| get_negativePPI | 0.002 | 0.000 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.002 | 0.000 | 0.002 | |
| plotPPI | 0.069 | 0.008 | 0.077 | |
| pred_ensembel | 14.102 | 0.719 | 11.117 | |
| var_imp | 35.459 | 1.036 | 36.496 | |