| Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-10-18 20:42 -0400 (Fri, 18 Oct 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4763 |
| palomino7 | Windows Server 2022 Datacenter | x64 | 4.4.1 (2024-06-14 ucrt) -- "Race for Your Life" | 4500 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4530 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.1 (2024-06-14) -- "Race for Your Life" | 4480 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.10.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz |
| StartedAt: 2024-10-18 00:45:24 -0400 (Fri, 18 Oct 2024) |
| EndedAt: 2024-10-18 00:51:15 -0400 (Fri, 18 Oct 2024) |
| EllapsedTime: 351.0 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck’
* using R version 4.4.1 (2024-06-14)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.6.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.10.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
corr_plot 52.090 2.866 55.804
FSmethod 52.245 2.667 55.544
var_imp 51.562 2.542 54.752
pred_ensembel 15.221 0.324 13.178
enrichfindP 0.539 0.084 7.941
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.1 (2024-06-14) -- "Race for Your Life"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 105.454741
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 94.660312
final value 94.354396
converged
Fitting Repeat 3
# weights: 103
initial value 97.748822
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 101.864796
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.342427
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 102.099113
iter 10 value 94.381465
final value 94.381462
converged
Fitting Repeat 2
# weights: 305
initial value 96.552697
iter 10 value 94.405716
final value 94.405650
converged
Fitting Repeat 3
# weights: 305
initial value 98.057934
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 96.316041
final value 94.381462
converged
Fitting Repeat 5
# weights: 305
initial value 94.731269
iter 10 value 93.366879
iter 20 value 92.877566
iter 30 value 92.839029
final value 92.838096
converged
Fitting Repeat 1
# weights: 507
initial value 102.771778
iter 10 value 94.382671
final value 94.381462
converged
Fitting Repeat 2
# weights: 507
initial value 118.210101
final value 94.381462
converged
Fitting Repeat 3
# weights: 507
initial value 113.750574
final value 94.322897
converged
Fitting Repeat 4
# weights: 507
initial value 99.940980
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 98.217860
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 108.996860
iter 10 value 94.446619
iter 20 value 92.303930
iter 30 value 89.859077
iter 40 value 89.014346
iter 50 value 87.595492
iter 60 value 85.137973
iter 70 value 84.991412
iter 80 value 84.984028
iter 80 value 84.984027
iter 80 value 84.984027
final value 84.984027
converged
Fitting Repeat 2
# weights: 103
initial value 99.000384
iter 10 value 94.492323
iter 20 value 94.410593
iter 30 value 90.918092
iter 40 value 87.019743
iter 50 value 86.659683
iter 60 value 83.974090
iter 70 value 83.970639
iter 80 value 83.965247
iter 90 value 83.956742
final value 83.948098
converged
Fitting Repeat 3
# weights: 103
initial value 105.775502
iter 10 value 94.489302
iter 20 value 91.498114
iter 30 value 87.264497
iter 40 value 85.180003
iter 50 value 84.772490
iter 60 value 84.584756
iter 70 value 84.478108
iter 80 value 83.976376
iter 90 value 83.951681
final value 83.948098
converged
Fitting Repeat 4
# weights: 103
initial value 97.029705
iter 10 value 94.460405
iter 20 value 86.894425
iter 30 value 86.105718
iter 40 value 85.014788
iter 50 value 84.988753
iter 60 value 84.968961
iter 70 value 84.965393
final value 84.965272
converged
Fitting Repeat 5
# weights: 103
initial value 97.326374
iter 10 value 94.440187
iter 20 value 87.076825
iter 30 value 85.494676
iter 40 value 85.300338
iter 50 value 84.987027
final value 84.984027
converged
Fitting Repeat 1
# weights: 305
initial value 103.860258
iter 10 value 94.171895
iter 20 value 93.347400
iter 30 value 92.875771
iter 40 value 92.629180
iter 50 value 85.275140
iter 60 value 85.007108
iter 70 value 82.834895
iter 80 value 81.421846
iter 90 value 80.086571
iter 100 value 79.724272
final value 79.724272
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 121.704929
iter 10 value 94.701683
iter 20 value 94.410645
iter 30 value 87.021072
iter 40 value 85.669731
iter 50 value 85.103765
iter 60 value 84.153499
iter 70 value 82.303812
iter 80 value 80.001945
iter 90 value 79.887462
iter 100 value 79.580463
final value 79.580463
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.974871
iter 10 value 94.444285
iter 20 value 92.760610
iter 30 value 87.872261
iter 40 value 86.641117
iter 50 value 83.159756
iter 60 value 82.823522
iter 70 value 82.527502
iter 80 value 82.469302
iter 90 value 82.383703
iter 100 value 82.043853
final value 82.043853
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.113116
iter 10 value 93.830441
iter 20 value 87.894464
iter 30 value 84.756574
iter 40 value 83.756454
iter 50 value 83.336926
iter 60 value 83.228268
iter 70 value 83.182947
iter 80 value 83.033219
iter 90 value 81.079427
iter 100 value 80.315741
final value 80.315741
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 113.565789
iter 10 value 94.292983
iter 20 value 89.736504
iter 30 value 85.950954
iter 40 value 81.776138
iter 50 value 79.868467
iter 60 value 79.717489
iter 70 value 79.605258
iter 80 value 79.367225
iter 90 value 79.302515
iter 100 value 79.220682
final value 79.220682
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.868083
iter 10 value 94.592365
iter 20 value 94.491667
iter 30 value 93.941537
iter 40 value 88.099744
iter 50 value 84.014071
iter 60 value 80.930117
iter 70 value 79.704424
iter 80 value 79.219400
iter 90 value 79.148629
iter 100 value 78.932570
final value 78.932570
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 116.574577
iter 10 value 94.322653
iter 20 value 92.585828
iter 30 value 90.360889
iter 40 value 87.194081
iter 50 value 85.420309
iter 60 value 82.461784
iter 70 value 80.567211
iter 80 value 80.200343
iter 90 value 79.610711
iter 100 value 79.393058
final value 79.393058
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 137.196841
iter 10 value 94.453051
iter 20 value 87.438174
iter 30 value 86.085904
iter 40 value 83.280617
iter 50 value 81.601781
iter 60 value 81.500093
iter 70 value 80.838946
iter 80 value 80.755583
iter 90 value 80.524548
iter 100 value 80.399217
final value 80.399217
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.907371
iter 10 value 94.521241
iter 20 value 87.573487
iter 30 value 86.729529
iter 40 value 84.272523
iter 50 value 81.990978
iter 60 value 81.703168
iter 70 value 81.549010
iter 80 value 81.299459
iter 90 value 80.142233
iter 100 value 79.895570
final value 79.895570
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 117.306019
iter 10 value 94.549494
iter 20 value 90.610060
iter 30 value 88.063841
iter 40 value 86.964695
iter 50 value 84.854999
iter 60 value 83.307358
iter 70 value 81.996710
iter 80 value 80.195659
iter 90 value 79.496329
iter 100 value 79.360501
final value 79.360501
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.249517
final value 94.485740
converged
Fitting Repeat 2
# weights: 103
initial value 96.222582
final value 94.485801
converged
Fitting Repeat 3
# weights: 103
initial value 97.672244
final value 94.485936
converged
Fitting Repeat 4
# weights: 103
initial value 108.026690
iter 10 value 94.485901
iter 20 value 94.484237
final value 94.484216
converged
Fitting Repeat 5
# weights: 103
initial value 104.442334
final value 94.485730
converged
Fitting Repeat 1
# weights: 305
initial value 100.728544
iter 10 value 94.411368
iter 20 value 94.401352
iter 30 value 89.112739
iter 40 value 86.966710
iter 50 value 83.045565
iter 60 value 81.395914
iter 70 value 81.211649
iter 80 value 81.208287
iter 90 value 81.182133
iter 100 value 81.165798
final value 81.165798
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.994150
iter 10 value 94.488880
iter 20 value 94.481410
iter 30 value 87.182409
iter 40 value 84.699085
iter 50 value 83.532580
iter 60 value 83.087156
iter 70 value 80.055378
iter 80 value 77.911667
iter 90 value 77.563264
iter 100 value 77.170562
final value 77.170562
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 98.776383
iter 10 value 94.488743
iter 20 value 94.422766
iter 30 value 87.996060
iter 40 value 87.369571
iter 50 value 86.200842
iter 60 value 82.265476
iter 70 value 80.656743
iter 80 value 80.492879
iter 90 value 79.915143
iter 100 value 78.505846
final value 78.505846
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.235176
iter 10 value 94.488914
iter 20 value 94.484235
iter 30 value 88.015342
iter 40 value 86.153046
iter 50 value 86.062618
iter 60 value 85.909974
iter 70 value 85.904745
final value 85.904422
converged
Fitting Repeat 5
# weights: 305
initial value 96.026836
iter 10 value 94.386878
iter 20 value 94.383065
iter 30 value 93.719824
iter 40 value 84.649968
iter 50 value 82.596990
iter 60 value 82.207448
iter 70 value 82.166932
final value 82.166733
converged
Fitting Repeat 1
# weights: 507
initial value 105.379257
iter 10 value 94.392902
iter 20 value 92.972133
iter 30 value 86.095618
iter 40 value 86.022182
iter 50 value 85.873378
iter 60 value 85.872783
final value 85.872495
converged
Fitting Repeat 2
# weights: 507
initial value 109.157617
iter 10 value 94.492302
iter 20 value 94.484004
iter 30 value 94.354929
iter 40 value 90.683765
iter 50 value 84.429261
iter 60 value 84.419354
final value 84.419027
converged
Fitting Repeat 3
# weights: 507
initial value 111.099923
iter 10 value 94.491610
iter 20 value 94.409082
iter 30 value 86.771029
iter 40 value 83.730082
iter 50 value 83.559264
final value 83.557352
converged
Fitting Repeat 4
# weights: 507
initial value 119.338333
iter 10 value 94.442638
iter 20 value 94.394649
iter 30 value 89.739553
iter 40 value 86.884510
iter 50 value 86.821563
iter 60 value 86.094747
iter 70 value 83.144021
iter 80 value 79.883801
iter 90 value 79.168941
iter 100 value 79.163423
final value 79.163423
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 96.049953
iter 10 value 94.491618
iter 20 value 93.583614
iter 30 value 91.650971
iter 30 value 91.650970
iter 40 value 85.151704
iter 50 value 84.751236
iter 60 value 84.748164
iter 70 value 84.746803
iter 80 value 84.730762
iter 90 value 84.247423
iter 100 value 82.072450
final value 82.072450
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 105.239920
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.009049
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 94.775781
final value 93.637380
converged
Fitting Repeat 4
# weights: 103
initial value 94.723339
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.567223
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 96.335518
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 104.254992
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 97.719969
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 111.058359
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 118.944750
iter 10 value 94.484211
iter 10 value 94.484211
iter 10 value 94.484211
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 95.492980
iter 10 value 89.678543
iter 20 value 84.741986
iter 30 value 84.134428
iter 40 value 83.824010
iter 50 value 83.546509
iter 60 value 82.599032
iter 70 value 81.773328
iter 80 value 81.692320
iter 90 value 81.633929
iter 100 value 81.631545
final value 81.631545
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 97.775793
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 95.928511
iter 10 value 93.401047
iter 20 value 86.643690
iter 30 value 84.227035
iter 40 value 84.225557
final value 84.225554
converged
Fitting Repeat 4
# weights: 507
initial value 116.556740
iter 10 value 94.012634
iter 20 value 93.704171
final value 93.703974
converged
Fitting Repeat 5
# weights: 507
initial value 100.752032
iter 10 value 93.924678
iter 20 value 93.662855
iter 30 value 92.834313
iter 40 value 92.829467
final value 92.829462
converged
Fitting Repeat 1
# weights: 103
initial value 114.419779
iter 10 value 94.162426
iter 20 value 86.468169
iter 30 value 85.030037
iter 40 value 84.339583
iter 50 value 83.491908
iter 60 value 83.272215
iter 70 value 82.911671
iter 80 value 82.480646
iter 90 value 82.339134
final value 82.339011
converged
Fitting Repeat 2
# weights: 103
initial value 104.138609
iter 10 value 93.971810
iter 20 value 92.808682
iter 30 value 89.466938
iter 40 value 88.897354
iter 50 value 83.618059
iter 60 value 82.420303
iter 70 value 82.346095
iter 80 value 82.224764
final value 82.222728
converged
Fitting Repeat 3
# weights: 103
initial value 109.215090
iter 10 value 94.114301
iter 20 value 89.783817
iter 30 value 85.995544
iter 40 value 83.932768
iter 50 value 83.136264
iter 60 value 82.964306
iter 70 value 82.901584
iter 80 value 82.792914
iter 90 value 82.339065
final value 82.339011
converged
Fitting Repeat 4
# weights: 103
initial value 109.708068
iter 10 value 94.610538
iter 20 value 94.504587
iter 30 value 88.561995
iter 40 value 86.192221
iter 50 value 85.503581
iter 60 value 84.961171
iter 70 value 84.790432
final value 84.790239
converged
Fitting Repeat 5
# weights: 103
initial value 98.212795
iter 10 value 87.185362
iter 20 value 85.166994
iter 30 value 84.693608
iter 40 value 83.680621
iter 50 value 83.119062
iter 60 value 82.673074
iter 70 value 82.339215
final value 82.339011
converged
Fitting Repeat 1
# weights: 305
initial value 113.309838
iter 10 value 93.869275
iter 20 value 86.054069
iter 30 value 83.515575
iter 40 value 82.905369
iter 50 value 82.748515
iter 60 value 82.546152
iter 70 value 82.229431
iter 80 value 82.197601
iter 90 value 81.867784
iter 100 value 81.208156
final value 81.208156
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 114.346246
iter 10 value 94.265562
iter 20 value 89.502141
iter 30 value 88.913423
iter 40 value 86.034494
iter 50 value 83.695863
iter 60 value 82.312730
iter 70 value 81.281059
iter 80 value 80.944174
iter 90 value 80.787132
iter 100 value 80.755992
final value 80.755992
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 118.138266
iter 10 value 94.600934
iter 20 value 87.421885
iter 30 value 85.189624
iter 40 value 84.082523
iter 50 value 82.734941
iter 60 value 82.113333
iter 70 value 81.879662
iter 80 value 81.582436
iter 90 value 81.432562
iter 100 value 81.295852
final value 81.295852
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.187878
iter 10 value 94.520700
iter 20 value 91.750698
iter 30 value 88.281606
iter 40 value 83.591744
iter 50 value 82.315532
iter 60 value 82.254700
iter 70 value 82.050074
iter 80 value 81.578047
iter 90 value 81.364477
iter 100 value 81.338600
final value 81.338600
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.576574
iter 10 value 94.591803
iter 20 value 94.508672
iter 30 value 93.784525
iter 40 value 91.304250
iter 50 value 85.953945
iter 60 value 85.243688
iter 70 value 85.071871
iter 80 value 84.660181
iter 90 value 83.800567
iter 100 value 83.112042
final value 83.112042
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 120.067729
iter 10 value 94.434038
iter 20 value 87.515742
iter 30 value 87.129722
iter 40 value 85.995674
iter 50 value 82.721832
iter 60 value 82.387759
iter 70 value 82.122176
iter 80 value 81.328906
iter 90 value 81.151727
iter 100 value 81.029747
final value 81.029747
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.069981
iter 10 value 94.611456
iter 20 value 87.108177
iter 30 value 86.789132
iter 40 value 86.318035
iter 50 value 83.776843
iter 60 value 82.089288
iter 70 value 81.468587
iter 80 value 81.388171
iter 90 value 81.331172
iter 100 value 81.189039
final value 81.189039
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.541171
iter 10 value 93.437730
iter 20 value 87.399460
iter 30 value 83.243330
iter 40 value 83.005371
iter 50 value 82.820091
iter 60 value 82.630554
iter 70 value 82.090783
iter 80 value 81.905602
iter 90 value 81.758881
iter 100 value 81.586753
final value 81.586753
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.616725
iter 10 value 95.318427
iter 20 value 93.995558
iter 30 value 91.038977
iter 40 value 88.425544
iter 50 value 85.335764
iter 60 value 83.874108
iter 70 value 83.484043
iter 80 value 82.703052
iter 90 value 82.353274
iter 100 value 81.985920
final value 81.985920
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.187113
iter 10 value 94.462694
iter 20 value 90.287755
iter 30 value 85.257010
iter 40 value 84.845451
iter 50 value 84.053175
iter 60 value 83.626147
iter 70 value 82.563660
iter 80 value 81.815442
iter 90 value 81.492764
iter 100 value 81.459184
final value 81.459184
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.739073
final value 94.485724
converged
Fitting Repeat 2
# weights: 103
initial value 97.194979
final value 94.486019
converged
Fitting Repeat 3
# weights: 103
initial value 95.672664
iter 10 value 94.486091
iter 20 value 94.409328
iter 30 value 90.710338
iter 40 value 87.811986
iter 50 value 87.164660
iter 60 value 86.638297
iter 70 value 85.475833
final value 85.390397
converged
Fitting Repeat 4
# weights: 103
initial value 100.558496
final value 94.485814
converged
Fitting Repeat 5
# weights: 103
initial value 100.427395
final value 94.486012
converged
Fitting Repeat 1
# weights: 305
initial value 100.440312
iter 10 value 94.489599
iter 20 value 94.425318
iter 30 value 93.258801
iter 40 value 93.212051
iter 50 value 92.664748
iter 60 value 92.605844
iter 70 value 92.598088
iter 80 value 87.732350
iter 90 value 87.261130
iter 100 value 87.259441
final value 87.259441
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 123.460119
iter 10 value 94.489461
iter 20 value 94.484745
iter 30 value 94.282428
iter 40 value 91.693926
iter 50 value 91.573531
iter 60 value 91.573250
iter 70 value 91.572576
final value 91.572558
converged
Fitting Repeat 3
# weights: 305
initial value 103.710995
iter 10 value 93.646370
iter 20 value 93.640557
iter 30 value 88.791322
iter 40 value 86.741110
iter 50 value 86.233607
iter 60 value 86.182652
final value 86.182296
converged
Fitting Repeat 4
# weights: 305
initial value 102.518571
iter 10 value 94.489706
iter 20 value 93.783507
iter 30 value 86.834408
iter 40 value 86.546294
iter 50 value 86.545858
iter 60 value 86.545248
iter 70 value 86.544777
iter 80 value 86.544583
final value 86.544580
converged
Fitting Repeat 5
# weights: 305
initial value 114.134972
iter 10 value 94.484523
iter 20 value 89.339930
iter 30 value 89.076268
iter 40 value 88.186736
final value 87.952614
converged
Fitting Repeat 1
# weights: 507
initial value 118.332864
iter 10 value 94.283428
iter 20 value 93.697557
final value 93.637993
converged
Fitting Repeat 2
# weights: 507
initial value 100.623969
iter 10 value 92.769973
iter 20 value 92.029557
iter 30 value 91.958297
iter 40 value 91.932931
iter 50 value 91.291304
iter 60 value 91.238696
iter 70 value 91.236127
iter 80 value 91.233533
iter 90 value 91.157074
iter 100 value 83.812090
final value 83.812090
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 98.694357
iter 10 value 94.491995
iter 20 value 94.464764
iter 30 value 92.655620
final value 92.613027
converged
Fitting Repeat 4
# weights: 507
initial value 107.173169
iter 10 value 94.283242
iter 20 value 94.276790
iter 30 value 93.652994
iter 40 value 93.638100
final value 93.637899
converged
Fitting Repeat 5
# weights: 507
initial value 97.679408
iter 10 value 94.492581
iter 20 value 93.628973
iter 30 value 86.328571
iter 40 value 81.903733
iter 50 value 80.845615
iter 60 value 80.259502
iter 70 value 79.741051
iter 80 value 79.675124
iter 90 value 79.538613
iter 100 value 79.488637
final value 79.488637
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.467348
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.510565
iter 10 value 94.484213
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.299330
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 99.182242
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 104.591786
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 96.750591
final value 93.860350
converged
Fitting Repeat 2
# weights: 305
initial value 101.717130
final value 94.484210
converged
Fitting Repeat 3
# weights: 305
initial value 98.496346
final value 94.354396
converged
Fitting Repeat 4
# weights: 305
initial value 104.234102
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 94.700365
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 97.335465
final value 94.354396
converged
Fitting Repeat 2
# weights: 507
initial value 132.666500
iter 10 value 89.662809
iter 20 value 81.298014
final value 81.298004
converged
Fitting Repeat 3
# weights: 507
initial value 110.832724
final value 94.354396
converged
Fitting Repeat 4
# weights: 507
initial value 102.448229
iter 10 value 94.484653
iter 20 value 94.484212
iter 20 value 94.484211
iter 20 value 94.484211
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 104.298194
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 98.629265
iter 10 value 94.659332
iter 20 value 94.205234
iter 30 value 94.195287
iter 40 value 90.966632
iter 50 value 89.331202
iter 60 value 87.101237
iter 70 value 86.494917
iter 80 value 86.334891
iter 90 value 82.573196
iter 100 value 82.549834
final value 82.549834
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.715062
iter 10 value 94.488479
iter 20 value 92.524027
iter 30 value 84.856251
iter 40 value 82.792186
iter 50 value 82.693506
iter 60 value 82.643488
iter 70 value 82.572834
iter 80 value 82.544102
final value 82.544030
converged
Fitting Repeat 3
# weights: 103
initial value 96.214525
iter 10 value 94.482471
iter 20 value 92.861385
iter 30 value 92.405282
iter 40 value 85.275969
iter 50 value 85.018918
iter 60 value 84.931439
iter 70 value 83.048369
iter 80 value 82.751089
iter 90 value 82.675518
iter 100 value 82.670987
final value 82.670987
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.526050
iter 10 value 94.479570
iter 20 value 92.641498
iter 30 value 92.491127
iter 40 value 85.408974
iter 50 value 82.978581
iter 60 value 82.772335
iter 70 value 82.710167
iter 80 value 82.680660
iter 90 value 82.563931
iter 100 value 82.544205
final value 82.544205
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 102.159657
iter 10 value 94.459712
iter 20 value 86.519760
iter 30 value 85.113820
iter 40 value 84.866284
iter 50 value 82.780600
iter 60 value 82.260740
iter 70 value 82.213959
iter 80 value 82.114863
iter 90 value 82.089260
final value 82.088782
converged
Fitting Repeat 1
# weights: 305
initial value 100.036947
iter 10 value 94.302369
iter 20 value 87.221570
iter 30 value 86.650638
iter 40 value 86.535593
iter 50 value 83.692998
iter 60 value 82.208787
iter 70 value 81.573572
iter 80 value 80.796483
iter 90 value 80.524915
iter 100 value 80.184607
final value 80.184607
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.338236
iter 10 value 95.124644
iter 20 value 85.431927
iter 30 value 84.708467
iter 40 value 83.038029
iter 50 value 81.252871
iter 60 value 80.669062
iter 70 value 80.289916
iter 80 value 80.245469
iter 90 value 80.235239
iter 100 value 80.208408
final value 80.208408
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.033380
iter 10 value 94.456576
iter 20 value 89.197057
iter 30 value 86.207050
iter 40 value 85.330609
iter 50 value 85.074978
iter 60 value 84.902537
iter 70 value 84.701632
iter 80 value 82.722601
iter 90 value 82.434141
iter 100 value 82.348106
final value 82.348106
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 116.604069
iter 10 value 92.030870
iter 20 value 86.346274
iter 30 value 81.862595
iter 40 value 81.313688
iter 50 value 80.722904
iter 60 value 80.470845
iter 70 value 79.998055
iter 80 value 79.952658
iter 90 value 79.781222
iter 100 value 79.677194
final value 79.677194
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.464940
iter 10 value 86.675312
iter 20 value 84.754239
iter 30 value 82.750106
iter 40 value 82.236315
iter 50 value 81.372489
iter 60 value 80.944854
iter 70 value 80.637981
iter 80 value 80.589261
iter 90 value 80.549307
iter 100 value 80.480602
final value 80.480602
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.771764
iter 10 value 94.378627
iter 20 value 92.634711
iter 30 value 92.424061
iter 40 value 86.017271
iter 50 value 85.411888
iter 60 value 85.181087
iter 70 value 82.979533
iter 80 value 80.943684
iter 90 value 80.381978
iter 100 value 79.623433
final value 79.623433
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.137541
iter 10 value 95.520778
iter 20 value 94.914626
iter 30 value 92.503963
iter 40 value 85.131282
iter 50 value 83.148640
iter 60 value 80.896742
iter 70 value 80.251707
iter 80 value 80.150694
iter 90 value 79.649491
iter 100 value 79.452037
final value 79.452037
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.309553
iter 10 value 95.829069
iter 20 value 87.949828
iter 30 value 85.128295
iter 40 value 83.963967
iter 50 value 81.469361
iter 60 value 81.211243
iter 70 value 80.904446
iter 80 value 80.684625
iter 90 value 80.161807
iter 100 value 79.629314
final value 79.629314
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 132.215750
iter 10 value 94.684679
iter 20 value 94.083682
iter 30 value 87.096707
iter 40 value 84.107772
iter 50 value 83.227366
iter 60 value 82.581200
iter 70 value 82.427393
iter 80 value 82.315278
iter 90 value 82.257420
iter 100 value 82.198717
final value 82.198717
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 111.463797
iter 10 value 94.760708
iter 20 value 90.933738
iter 30 value 83.358653
iter 40 value 82.238236
iter 50 value 81.729207
iter 60 value 81.664860
iter 70 value 81.150664
iter 80 value 81.019990
iter 90 value 80.796052
iter 100 value 80.692072
final value 80.692072
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.255266
final value 94.486042
converged
Fitting Repeat 2
# weights: 103
initial value 101.113125
final value 94.355945
converged
Fitting Repeat 3
# weights: 103
initial value 95.395904
final value 94.485875
converged
Fitting Repeat 4
# weights: 103
initial value 99.054362
final value 94.486088
converged
Fitting Repeat 5
# weights: 103
initial value 98.321657
iter 10 value 94.485853
iter 20 value 93.747148
iter 30 value 92.226276
iter 30 value 92.226276
iter 30 value 92.226276
final value 92.226276
converged
Fitting Repeat 1
# weights: 305
initial value 95.707828
iter 10 value 94.489539
iter 20 value 94.471953
iter 30 value 91.653932
iter 40 value 91.653160
iter 40 value 91.653159
final value 91.653155
converged
Fitting Repeat 2
# weights: 305
initial value 96.049187
iter 10 value 94.486424
iter 20 value 94.477912
iter 30 value 90.391288
iter 40 value 90.151981
iter 50 value 83.194493
iter 60 value 83.190926
iter 70 value 83.188953
final value 83.188926
converged
Fitting Repeat 3
# weights: 305
initial value 99.512893
iter 10 value 94.359150
iter 20 value 93.847585
iter 30 value 92.170070
final value 92.156658
converged
Fitting Repeat 4
# weights: 305
initial value 96.633152
iter 10 value 94.488879
iter 20 value 94.484309
iter 30 value 85.392861
iter 40 value 84.146755
iter 50 value 84.014544
iter 60 value 82.288472
iter 70 value 81.190399
iter 80 value 81.005572
iter 90 value 80.310266
iter 100 value 80.270851
final value 80.270851
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.004443
iter 10 value 94.489282
iter 20 value 94.371476
iter 30 value 88.963993
iter 40 value 88.825797
iter 50 value 86.808339
iter 60 value 83.788130
iter 70 value 83.106736
iter 80 value 83.103455
iter 90 value 83.078407
iter 100 value 80.956244
final value 80.956244
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 115.503352
iter 10 value 94.492343
iter 20 value 94.483698
iter 30 value 94.363158
final value 94.354617
converged
Fitting Repeat 2
# weights: 507
initial value 103.189926
iter 10 value 94.488172
iter 20 value 88.994416
iter 30 value 87.704891
iter 40 value 87.701462
iter 50 value 87.652474
iter 60 value 87.612371
iter 70 value 86.165717
iter 80 value 86.155402
iter 90 value 86.031727
iter 100 value 85.440560
final value 85.440560
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 132.120141
iter 10 value 94.492741
iter 20 value 94.461627
iter 30 value 86.353934
iter 40 value 85.711137
iter 50 value 83.164013
iter 60 value 83.100972
iter 70 value 83.099096
iter 80 value 83.061817
iter 90 value 82.621535
iter 100 value 82.010419
final value 82.010419
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.894626
iter 10 value 94.492247
iter 20 value 94.455744
iter 30 value 82.541687
iter 40 value 81.787177
iter 50 value 81.463877
iter 60 value 81.110127
iter 70 value 81.105120
final value 81.100240
converged
Fitting Repeat 5
# weights: 507
initial value 130.699882
iter 10 value 94.493600
iter 20 value 94.485652
iter 30 value 85.627649
iter 40 value 84.188060
final value 84.187932
converged
Fitting Repeat 1
# weights: 103
initial value 95.394859
iter 10 value 94.010903
iter 20 value 93.869755
iter 20 value 93.869755
iter 20 value 93.869755
final value 93.869755
converged
Fitting Repeat 2
# weights: 103
initial value 103.322978
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 103.353526
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 94.577208
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 98.306655
iter 10 value 93.977641
iter 20 value 88.528563
iter 30 value 88.513778
final value 88.513753
converged
Fitting Repeat 1
# weights: 305
initial value 97.946134
final value 93.244970
converged
Fitting Repeat 2
# weights: 305
initial value 102.690655
final value 93.869755
converged
Fitting Repeat 3
# weights: 305
initial value 94.433329
final value 93.915746
converged
Fitting Repeat 4
# weights: 305
initial value 100.412124
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 103.806341
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 94.245355
iter 10 value 93.349101
iter 20 value 92.438981
iter 30 value 92.397830
final value 92.397465
converged
Fitting Repeat 2
# weights: 507
initial value 120.755257
final value 93.714286
converged
Fitting Repeat 3
# weights: 507
initial value 101.122465
final value 93.915746
converged
Fitting Repeat 4
# weights: 507
initial value 95.512244
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 101.434728
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 96.245023
iter 10 value 94.300010
iter 20 value 94.036073
iter 30 value 93.982196
iter 40 value 93.946406
iter 50 value 92.825293
iter 60 value 87.362767
iter 70 value 86.801880
iter 80 value 86.498508
iter 90 value 85.628914
iter 100 value 84.914727
final value 84.914727
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 108.894932
iter 10 value 94.060949
iter 20 value 93.670500
iter 30 value 93.454354
iter 40 value 93.445292
iter 50 value 91.841871
iter 60 value 85.199830
iter 70 value 84.682937
iter 80 value 83.731917
iter 90 value 81.941183
iter 100 value 81.788872
final value 81.788872
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.057227
iter 10 value 93.490254
iter 20 value 93.266661
iter 30 value 91.019530
iter 40 value 89.618555
iter 50 value 86.340399
iter 60 value 85.022964
iter 70 value 82.832801
iter 80 value 82.288210
iter 90 value 81.960473
iter 100 value 81.828424
final value 81.828424
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 102.075923
iter 10 value 94.064593
iter 20 value 94.053227
iter 30 value 93.493521
iter 40 value 93.466963
iter 50 value 93.446901
iter 60 value 93.446377
iter 60 value 93.446376
iter 70 value 89.972869
iter 80 value 88.400600
iter 90 value 86.485450
iter 100 value 83.763267
final value 83.763267
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 108.308338
iter 10 value 94.054884
iter 20 value 93.591369
iter 30 value 93.456293
iter 40 value 93.284102
iter 50 value 87.343704
iter 60 value 86.761681
iter 70 value 85.405918
iter 80 value 84.622118
iter 90 value 84.508002
iter 100 value 83.601897
final value 83.601897
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 121.602031
iter 10 value 94.059829
iter 20 value 93.481979
iter 30 value 85.983994
iter 40 value 85.494657
iter 50 value 84.736196
iter 60 value 84.484188
iter 70 value 83.329335
iter 80 value 82.539601
iter 90 value 81.535168
iter 100 value 81.500129
final value 81.500129
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 113.482046
iter 10 value 93.797604
iter 20 value 92.913816
iter 30 value 89.965138
iter 40 value 89.151525
iter 50 value 88.216399
iter 60 value 87.517196
iter 70 value 83.121627
iter 80 value 81.840277
iter 90 value 81.552638
iter 100 value 81.112517
final value 81.112517
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.097755
iter 10 value 93.928826
iter 20 value 87.308419
iter 30 value 84.684252
iter 40 value 83.111673
iter 50 value 82.311716
iter 60 value 81.965699
iter 70 value 81.271923
iter 80 value 81.121547
iter 90 value 80.886977
iter 100 value 80.802048
final value 80.802048
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.907623
iter 10 value 94.029258
iter 20 value 93.744739
iter 30 value 93.635748
iter 40 value 93.548598
iter 50 value 93.505866
iter 60 value 92.659372
iter 70 value 88.184269
iter 80 value 83.858528
iter 90 value 82.940508
iter 100 value 82.697445
final value 82.697445
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.852562
iter 10 value 94.452117
iter 20 value 94.060905
iter 30 value 93.579472
iter 40 value 93.422649
iter 50 value 87.498803
iter 60 value 86.299561
iter 70 value 86.092556
iter 80 value 85.927899
iter 90 value 85.488826
iter 100 value 83.729552
final value 83.729552
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 128.587100
iter 10 value 96.695074
iter 20 value 91.874622
iter 30 value 90.165699
iter 40 value 84.966408
iter 50 value 82.421091
iter 60 value 81.787725
iter 70 value 81.540319
iter 80 value 81.177623
iter 90 value 80.777954
iter 100 value 80.607430
final value 80.607430
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 113.242426
iter 10 value 94.055639
iter 20 value 86.230886
iter 30 value 85.611697
iter 40 value 84.441284
iter 50 value 81.350970
iter 60 value 80.805351
iter 70 value 80.675323
iter 80 value 80.573141
iter 90 value 80.486753
iter 100 value 80.353760
final value 80.353760
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.068797
iter 10 value 93.788041
iter 20 value 89.625021
iter 30 value 87.122988
iter 40 value 82.623364
iter 50 value 81.266807
iter 60 value 80.840631
iter 70 value 80.442181
iter 80 value 80.191943
iter 90 value 80.091027
iter 100 value 80.024162
final value 80.024162
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 122.665674
iter 10 value 93.766491
iter 20 value 93.022705
iter 30 value 85.232192
iter 40 value 83.463669
iter 50 value 83.071770
iter 60 value 82.592395
iter 70 value 82.168795
iter 80 value 81.728101
iter 90 value 81.262996
iter 100 value 80.614691
final value 80.614691
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.813752
iter 10 value 93.988689
iter 20 value 90.537898
iter 30 value 88.414523
iter 40 value 88.213726
iter 50 value 86.737096
iter 60 value 84.854574
iter 70 value 84.350637
iter 80 value 83.992046
iter 90 value 82.785925
iter 100 value 82.416764
final value 82.416764
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 107.967654
final value 93.606027
converged
Fitting Repeat 2
# weights: 103
initial value 101.991504
iter 10 value 93.951110
iter 20 value 93.715792
iter 30 value 93.714784
iter 40 value 93.713842
iter 50 value 93.422994
iter 60 value 93.377718
final value 93.377618
converged
Fitting Repeat 3
# weights: 103
initial value 95.746974
final value 94.054700
converged
Fitting Repeat 4
# weights: 103
initial value 96.260259
final value 94.054480
converged
Fitting Repeat 5
# weights: 103
initial value 100.256115
iter 10 value 94.054449
iter 20 value 93.921431
iter 30 value 93.671981
iter 40 value 84.738586
final value 84.737204
converged
Fitting Repeat 1
# weights: 305
initial value 99.251255
iter 10 value 93.415749
iter 20 value 93.380833
final value 93.378660
converged
Fitting Repeat 2
# weights: 305
initial value 98.696199
iter 10 value 93.920661
iter 20 value 93.705108
iter 30 value 90.224302
iter 40 value 90.000481
iter 50 value 89.999502
iter 60 value 89.989281
iter 70 value 89.988906
iter 80 value 84.414870
iter 90 value 84.388546
final value 84.388254
converged
Fitting Repeat 3
# weights: 305
initial value 102.279710
iter 10 value 94.057267
iter 20 value 93.967887
iter 30 value 85.721224
final value 85.720020
converged
Fitting Repeat 4
# weights: 305
initial value 111.789841
iter 10 value 94.057658
iter 20 value 93.949797
iter 30 value 91.594916
iter 40 value 89.744629
iter 50 value 86.164046
iter 60 value 83.528477
iter 70 value 83.434266
iter 80 value 83.431294
iter 90 value 83.267493
iter 100 value 83.262478
final value 83.262478
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 97.303790
iter 10 value 93.920966
iter 20 value 93.917468
final value 93.917395
converged
Fitting Repeat 1
# weights: 507
initial value 117.059561
iter 10 value 93.923975
iter 20 value 93.916527
final value 93.916509
converged
Fitting Repeat 2
# weights: 507
initial value 97.031948
iter 10 value 94.060467
iter 20 value 94.041801
iter 30 value 86.554183
iter 40 value 84.016597
iter 50 value 83.692359
final value 83.692083
converged
Fitting Repeat 3
# weights: 507
initial value 104.585742
iter 10 value 93.417910
iter 20 value 93.414027
iter 30 value 93.403377
iter 40 value 93.378076
iter 50 value 88.017764
iter 60 value 83.046735
iter 70 value 82.138231
iter 80 value 81.927782
iter 90 value 80.906727
iter 100 value 80.838067
final value 80.838067
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.423163
iter 10 value 94.060943
iter 20 value 92.134765
iter 30 value 85.991420
iter 40 value 84.907086
iter 50 value 84.674758
iter 60 value 84.488401
iter 70 value 84.316725
final value 84.313667
converged
Fitting Repeat 5
# weights: 507
initial value 98.956351
iter 10 value 94.000267
iter 20 value 93.721911
iter 30 value 93.653139
iter 40 value 93.412776
iter 50 value 93.410683
iter 60 value 93.376411
iter 70 value 85.694807
iter 80 value 85.416654
iter 90 value 85.415214
iter 100 value 83.818173
final value 83.818173
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.088112
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 100.732302
final value 93.988095
converged
Fitting Repeat 3
# weights: 103
initial value 98.949985
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 102.011555
iter 10 value 94.052117
iter 20 value 94.049101
iter 30 value 94.041464
iter 40 value 94.039658
iter 50 value 94.039337
iter 60 value 94.039264
final value 94.039236
converged
Fitting Repeat 5
# weights: 103
initial value 114.641573
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 102.124837
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 99.706109
iter 10 value 93.817712
final value 93.813458
converged
Fitting Repeat 3
# weights: 305
initial value 109.928152
iter 10 value 89.503358
iter 20 value 87.563267
final value 87.548526
converged
Fitting Repeat 4
# weights: 305
initial value 100.217002
final value 94.032967
converged
Fitting Repeat 5
# weights: 305
initial value 96.101155
final value 94.032967
converged
Fitting Repeat 1
# weights: 507
initial value 103.839699
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 102.332012
iter 10 value 93.839508
final value 93.839506
converged
Fitting Repeat 3
# weights: 507
initial value 101.269051
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 111.684432
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 98.259188
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 98.209988
iter 10 value 94.066303
iter 20 value 94.023698
iter 30 value 87.477822
iter 40 value 84.740062
iter 50 value 83.969528
iter 60 value 83.198244
iter 70 value 81.973657
iter 80 value 81.569421
iter 90 value 81.520766
final value 81.520540
converged
Fitting Repeat 2
# weights: 103
initial value 95.915969
iter 10 value 94.067458
iter 20 value 92.452093
iter 30 value 91.049382
iter 40 value 84.198937
iter 50 value 81.761151
iter 60 value 81.303632
iter 70 value 81.228874
iter 80 value 81.175388
final value 81.175304
converged
Fitting Repeat 3
# weights: 103
initial value 97.614284
iter 10 value 94.055080
iter 20 value 88.981470
iter 30 value 84.403409
iter 40 value 84.166982
iter 50 value 83.864189
iter 60 value 82.428410
iter 70 value 81.799109
iter 80 value 81.716219
iter 90 value 81.665775
iter 100 value 81.551188
final value 81.551188
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 104.529822
iter 10 value 94.024150
iter 20 value 88.010257
iter 30 value 87.798778
iter 40 value 86.956153
iter 50 value 86.797792
iter 60 value 83.983825
iter 70 value 83.147836
iter 80 value 81.909692
iter 90 value 81.537840
iter 100 value 81.520556
final value 81.520556
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 115.401372
iter 10 value 93.919918
iter 20 value 87.051466
iter 30 value 84.166532
iter 40 value 83.993514
iter 50 value 83.854139
final value 83.854033
converged
Fitting Repeat 1
# weights: 305
initial value 100.540116
iter 10 value 94.074349
iter 20 value 93.622283
iter 30 value 88.884620
iter 40 value 83.754328
iter 50 value 82.872339
iter 60 value 82.263036
iter 70 value 82.089495
iter 80 value 81.504176
iter 90 value 81.334366
iter 100 value 81.266990
final value 81.266990
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.705613
iter 10 value 93.956077
iter 20 value 87.157801
iter 30 value 86.105660
iter 40 value 84.057607
iter 50 value 83.694204
iter 60 value 83.541945
iter 70 value 83.262195
iter 80 value 82.370040
iter 90 value 81.315537
iter 100 value 80.520040
final value 80.520040
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.882483
iter 10 value 93.809155
iter 20 value 86.935110
iter 30 value 86.288779
iter 40 value 85.963622
iter 50 value 85.349776
iter 60 value 84.558259
iter 70 value 82.549864
iter 80 value 81.704043
iter 90 value 81.649367
iter 100 value 81.491289
final value 81.491289
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.348240
iter 10 value 93.201823
iter 20 value 86.598045
iter 30 value 82.903231
iter 40 value 82.165082
iter 50 value 80.994965
iter 60 value 80.487347
iter 70 value 80.431497
iter 80 value 80.340283
iter 90 value 80.300332
iter 100 value 80.256671
final value 80.256671
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 132.305564
iter 10 value 93.988150
iter 20 value 88.970171
iter 30 value 88.752734
iter 40 value 87.718738
iter 50 value 84.255710
iter 60 value 82.152754
iter 70 value 81.810080
iter 80 value 81.510961
iter 90 value 81.097350
iter 100 value 80.798065
final value 80.798065
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.899165
iter 10 value 97.543385
iter 20 value 88.794763
iter 30 value 86.375507
iter 40 value 84.497821
iter 50 value 82.440155
iter 60 value 81.287511
iter 70 value 80.857112
iter 80 value 80.711731
iter 90 value 80.609704
iter 100 value 80.560923
final value 80.560923
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.025387
iter 10 value 97.166143
iter 20 value 91.116528
iter 30 value 87.100913
iter 40 value 85.689716
iter 50 value 84.039077
iter 60 value 82.651205
iter 70 value 82.413327
iter 80 value 81.997595
iter 90 value 81.227024
iter 100 value 80.783731
final value 80.783731
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.563139
iter 10 value 94.018303
iter 20 value 85.710749
iter 30 value 84.682242
iter 40 value 84.184018
iter 50 value 81.738332
iter 60 value 80.922666
iter 70 value 80.687177
iter 80 value 80.338081
iter 90 value 80.157440
iter 100 value 80.102062
final value 80.102062
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.843643
iter 10 value 94.074643
iter 20 value 89.358573
iter 30 value 86.663630
iter 40 value 84.025655
iter 50 value 82.206638
iter 60 value 81.384588
iter 70 value 81.047211
iter 80 value 80.846756
iter 90 value 80.759401
iter 100 value 80.484498
final value 80.484498
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.669506
iter 10 value 94.060704
iter 20 value 89.781050
iter 30 value 88.280500
iter 40 value 85.987893
iter 50 value 81.337774
iter 60 value 80.690107
iter 70 value 80.658992
iter 80 value 80.575908
iter 90 value 80.421651
iter 100 value 80.184436
final value 80.184436
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 104.023399
iter 10 value 93.816051
iter 20 value 93.815026
iter 30 value 93.813969
final value 93.813909
converged
Fitting Repeat 2
# weights: 103
initial value 102.697929
final value 94.054497
converged
Fitting Repeat 3
# weights: 103
initial value 99.575269
final value 94.054650
converged
Fitting Repeat 4
# weights: 103
initial value 104.152606
final value 94.054749
converged
Fitting Repeat 5
# weights: 103
initial value 97.688840
final value 94.054369
converged
Fitting Repeat 1
# weights: 305
initial value 115.817169
iter 10 value 94.098324
iter 20 value 94.089895
iter 30 value 91.483639
iter 40 value 86.477000
iter 50 value 86.466032
iter 60 value 86.413545
iter 70 value 85.932766
iter 80 value 85.929317
iter 90 value 85.628287
iter 100 value 85.533400
final value 85.533400
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 116.215135
iter 10 value 93.816410
iter 20 value 93.785317
iter 30 value 93.755927
iter 40 value 93.755551
iter 50 value 92.372540
iter 60 value 91.461849
iter 70 value 91.007070
iter 80 value 90.948838
final value 90.945848
converged
Fitting Repeat 3
# weights: 305
initial value 94.350929
iter 10 value 94.030396
iter 20 value 94.029733
iter 30 value 90.204508
iter 40 value 85.789240
iter 50 value 85.610211
iter 60 value 85.608731
iter 70 value 85.501796
iter 80 value 85.491381
iter 90 value 85.491311
final value 85.491305
converged
Fitting Repeat 4
# weights: 305
initial value 100.509864
iter 10 value 94.057971
iter 20 value 94.001141
iter 30 value 89.433587
iter 40 value 85.445789
iter 50 value 85.443056
iter 60 value 85.441084
iter 70 value 85.439909
iter 80 value 85.439444
iter 90 value 85.439128
iter 100 value 85.438921
final value 85.438921
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 108.417063
iter 10 value 94.056947
iter 20 value 89.708079
iter 30 value 85.639558
iter 40 value 85.639440
iter 50 value 85.392472
iter 60 value 83.516193
iter 70 value 83.499883
iter 80 value 83.486058
iter 90 value 83.435145
iter 100 value 83.433741
final value 83.433741
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.697384
iter 10 value 94.055253
iter 20 value 94.051780
iter 30 value 92.226789
iter 40 value 89.938368
iter 50 value 89.862568
iter 60 value 89.856821
iter 70 value 89.856171
iter 80 value 89.344909
iter 90 value 89.259709
iter 100 value 87.381243
final value 87.381243
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 136.603299
iter 10 value 94.056734
iter 20 value 93.959685
iter 30 value 93.895090
iter 40 value 91.681635
iter 50 value 85.002084
iter 60 value 83.483830
iter 70 value 82.013684
iter 80 value 81.569737
iter 90 value 81.562642
final value 81.562132
converged
Fitting Repeat 3
# weights: 507
initial value 102.049132
iter 10 value 86.701179
iter 20 value 86.491643
iter 30 value 86.490918
iter 40 value 86.487954
iter 50 value 84.965819
iter 60 value 83.189355
iter 70 value 82.923088
iter 80 value 82.918787
iter 90 value 82.916196
iter 100 value 81.992709
final value 81.992709
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.152830
iter 10 value 94.041013
iter 20 value 94.033389
final value 94.033332
converged
Fitting Repeat 5
# weights: 507
initial value 95.406098
iter 10 value 94.041386
iter 20 value 91.473992
iter 30 value 87.706323
iter 40 value 83.123686
iter 50 value 83.039088
iter 60 value 83.038266
iter 70 value 82.522244
iter 80 value 82.127069
iter 90 value 82.096282
iter 100 value 82.077158
final value 82.077158
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 145.051814
iter 10 value 117.763995
iter 20 value 117.714740
iter 30 value 117.503948
iter 40 value 112.396768
iter 50 value 107.733588
iter 60 value 104.288780
iter 70 value 102.230785
iter 80 value 102.215411
iter 90 value 102.160342
iter 100 value 101.802812
final value 101.802812
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 128.809324
iter 10 value 117.894401
iter 20 value 117.813019
iter 30 value 111.698465
iter 40 value 111.659943
iter 50 value 111.658015
iter 60 value 110.867033
iter 70 value 110.422614
iter 80 value 110.422284
iter 90 value 107.823226
iter 100 value 107.049541
final value 107.049541
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 120.204188
iter 10 value 117.894871
iter 20 value 117.890432
iter 30 value 109.809358
iter 40 value 106.904788
final value 106.903908
converged
Fitting Repeat 4
# weights: 305
initial value 140.722479
iter 10 value 112.723861
iter 20 value 112.653390
iter 30 value 111.034588
iter 40 value 109.197342
iter 50 value 108.244954
iter 60 value 108.174561
iter 70 value 108.174221
iter 70 value 108.174220
iter 70 value 108.174220
final value 108.174220
converged
Fitting Repeat 5
# weights: 305
initial value 121.146968
iter 10 value 117.715012
iter 20 value 116.969294
iter 30 value 116.912749
iter 40 value 116.911549
iter 50 value 116.831462
iter 60 value 116.823955
iter 70 value 116.821193
iter 80 value 116.820305
iter 80 value 116.820304
iter 80 value 116.820304
final value 116.820304
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Fri Oct 18 00:51:03 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
48.726 1.399 50.922
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 52.245 | 2.667 | 55.544 | |
| FreqInteractors | 0.258 | 0.015 | 0.282 | |
| calculateAAC | 0.047 | 0.008 | 0.060 | |
| calculateAutocor | 0.438 | 0.094 | 0.542 | |
| calculateCTDC | 0.094 | 0.007 | 0.102 | |
| calculateCTDD | 0.607 | 0.032 | 0.645 | |
| calculateCTDT | 0.256 | 0.008 | 0.264 | |
| calculateCTriad | 0.452 | 0.031 | 0.483 | |
| calculateDC | 0.101 | 0.013 | 0.117 | |
| calculateF | 0.353 | 0.014 | 0.369 | |
| calculateKSAAP | 0.101 | 0.009 | 0.111 | |
| calculateQD_Sm | 2.013 | 0.135 | 2.160 | |
| calculateTC | 1.766 | 0.169 | 1.951 | |
| calculateTC_Sm | 0.321 | 0.019 | 0.341 | |
| corr_plot | 52.090 | 2.866 | 55.804 | |
| enrichfindP | 0.539 | 0.084 | 7.941 | |
| enrichfind_hp | 0.072 | 0.015 | 0.992 | |
| enrichplot | 0.389 | 0.010 | 0.402 | |
| filter_missing_values | 0.002 | 0.001 | 0.002 | |
| getFASTA | 0.092 | 0.014 | 1.277 | |
| getHPI | 0.001 | 0.001 | 0.000 | |
| get_negativePPI | 0.002 | 0.000 | 0.001 | |
| get_positivePPI | 0.001 | 0.000 | 0.001 | |
| impute_missing_data | 0.001 | 0.000 | 0.002 | |
| plotPPI | 0.078 | 0.004 | 0.084 | |
| pred_ensembel | 15.221 | 0.324 | 13.178 | |
| var_imp | 51.562 | 2.542 | 54.752 | |