| Back to Multiple platform build/check report for BioC 3.19: simplified long |
|
This page was generated on 2024-06-11 14:43 -0400 (Tue, 11 Jun 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4757 |
| palomino3 | Windows Server 2022 Datacenter | x64 | 4.4.0 (2024-04-24 ucrt) -- "Puppy Cup" | 4491 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4522 |
| kjohnson3 | macOS 13.6.5 Ventura | arm64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4468 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 987/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.10.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.6.5 Ventura / arm64 | OK | OK | OK | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.10.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz |
| StartedAt: 2024-06-10 18:45:08 -0400 (Mon, 10 Jun 2024) |
| EndedAt: 2024-06-10 18:53:04 -0400 (Mon, 10 Jun 2024) |
| EllapsedTime: 475.8 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.10.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck’
* using R version 4.4.0 (2024-04-24)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 14.0.0 (clang-1400.0.29.202)
GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.6.5
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.10.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 41.905 1.825 64.093
corr_plot 39.491 1.760 60.890
FSmethod 39.330 1.647 61.633
pred_ensembel 13.616 0.382 17.826
enrichfindP 0.535 0.115 15.866
getFASTA 0.076 0.020 5.175
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
‘/Users/biocbuild/bbs-3.19-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.0 (2024-04-24) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 101.892845
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 98.129033
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.688912
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 96.976505
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.336568
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 115.408499
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 106.060102
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 96.950535
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 97.182853
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 102.787371
final value 94.443243
converged
Fitting Repeat 1
# weights: 507
initial value 98.743760
final value 94.484210
converged
Fitting Repeat 2
# weights: 507
initial value 100.756441
iter 10 value 93.624515
iter 20 value 91.988225
iter 30 value 91.937748
final value 91.937593
converged
Fitting Repeat 3
# weights: 507
initial value 99.250648
iter 10 value 93.922222
iter 10 value 93.922222
iter 10 value 93.922222
final value 93.922222
converged
Fitting Repeat 4
# weights: 507
initial value 109.470992
final value 94.443243
converged
Fitting Repeat 5
# weights: 507
initial value 107.436871
final value 94.443243
converged
Fitting Repeat 1
# weights: 103
initial value 103.702050
iter 10 value 94.434607
iter 20 value 87.632980
iter 30 value 86.556315
iter 40 value 84.806419
iter 50 value 84.710967
final value 84.710850
converged
Fitting Repeat 2
# weights: 103
initial value 98.845082
iter 10 value 94.486521
iter 20 value 88.920890
iter 30 value 85.627718
iter 40 value 85.146923
iter 50 value 85.125260
final value 85.121580
converged
Fitting Repeat 3
# weights: 103
initial value 108.709807
iter 10 value 94.486659
iter 20 value 94.486443
iter 30 value 93.873960
iter 40 value 93.679027
iter 50 value 93.639440
iter 60 value 93.531603
iter 70 value 88.103192
iter 80 value 87.293656
iter 90 value 85.350368
iter 100 value 82.668403
final value 82.668403
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 103.718060
iter 10 value 94.340560
iter 20 value 93.397276
iter 30 value 84.990022
iter 40 value 84.819516
iter 50 value 84.719663
final value 84.710850
converged
Fitting Repeat 5
# weights: 103
initial value 102.191699
iter 10 value 94.488524
iter 10 value 94.488524
iter 20 value 85.256008
iter 30 value 84.767267
iter 40 value 84.710886
final value 84.710850
converged
Fitting Repeat 1
# weights: 305
initial value 108.122253
iter 10 value 94.433204
iter 20 value 87.765081
iter 30 value 86.033590
iter 40 value 83.441845
iter 50 value 82.546941
iter 60 value 82.199804
iter 70 value 81.929724
iter 80 value 81.899530
iter 90 value 81.173114
iter 100 value 80.752754
final value 80.752754
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.978214
iter 10 value 92.535698
iter 20 value 89.421602
iter 30 value 86.912893
iter 40 value 83.751242
iter 50 value 82.550518
iter 60 value 81.737779
iter 70 value 81.240869
iter 80 value 81.024015
iter 90 value 80.981349
iter 100 value 80.935487
final value 80.935487
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 113.287133
iter 10 value 94.399361
iter 20 value 88.670384
iter 30 value 84.860961
iter 40 value 83.796460
iter 50 value 82.236387
iter 60 value 82.170473
iter 70 value 81.928189
iter 80 value 81.760736
iter 90 value 81.483636
iter 100 value 81.291370
final value 81.291370
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.159204
iter 10 value 91.837633
iter 20 value 85.084655
iter 30 value 84.759017
iter 40 value 84.511886
iter 50 value 83.567529
iter 60 value 83.241648
iter 70 value 83.132718
iter 80 value 83.074957
iter 90 value 82.658863
iter 100 value 82.520215
final value 82.520215
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 113.415882
iter 10 value 93.354357
iter 20 value 88.725806
iter 30 value 88.388855
iter 40 value 87.025137
iter 50 value 85.678341
iter 60 value 81.796746
iter 70 value 81.061438
iter 80 value 80.743163
iter 90 value 80.630747
iter 100 value 80.616602
final value 80.616602
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.948165
iter 10 value 94.195542
iter 20 value 87.142600
iter 30 value 86.865950
iter 40 value 85.220041
iter 50 value 84.025362
iter 60 value 82.644498
iter 70 value 82.183280
iter 80 value 82.068645
iter 90 value 81.777416
iter 100 value 81.476502
final value 81.476502
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.499430
iter 10 value 94.411335
iter 20 value 89.345010
iter 30 value 85.483078
iter 40 value 83.022235
iter 50 value 82.196078
iter 60 value 81.737873
iter 70 value 81.196410
iter 80 value 81.112629
iter 90 value 81.079563
iter 100 value 80.997767
final value 80.997767
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.224371
iter 10 value 94.669884
iter 20 value 94.427874
iter 30 value 87.636642
iter 40 value 86.154032
iter 50 value 85.519824
iter 60 value 84.617312
iter 70 value 83.334967
iter 80 value 83.026622
iter 90 value 82.653470
iter 100 value 82.476272
final value 82.476272
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.363794
iter 10 value 93.465571
iter 20 value 87.613945
iter 30 value 84.722848
iter 40 value 84.283105
iter 50 value 82.600655
iter 60 value 81.733097
iter 70 value 81.020996
iter 80 value 80.545996
iter 90 value 80.242041
iter 100 value 80.137617
final value 80.137617
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 121.033481
iter 10 value 94.397821
iter 20 value 88.907300
iter 30 value 86.682761
iter 40 value 86.441604
iter 50 value 84.812362
iter 60 value 82.206796
iter 70 value 81.382909
iter 80 value 80.784236
iter 90 value 80.562305
iter 100 value 80.488282
final value 80.488282
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.706358
iter 10 value 94.485756
iter 20 value 92.004873
iter 30 value 84.036040
iter 30 value 84.036040
iter 30 value 84.036040
final value 84.036040
converged
Fitting Repeat 2
# weights: 103
initial value 96.681536
final value 94.485699
converged
Fitting Repeat 3
# weights: 103
initial value 97.289331
final value 94.485495
converged
Fitting Repeat 4
# weights: 103
initial value 103.280914
final value 94.485644
converged
Fitting Repeat 5
# weights: 103
initial value 104.210271
final value 94.486306
converged
Fitting Repeat 1
# weights: 305
initial value 94.217307
iter 10 value 92.316097
iter 20 value 92.298660
iter 30 value 92.296688
iter 40 value 91.483579
iter 50 value 91.476563
iter 60 value 91.474176
final value 91.474097
converged
Fitting Repeat 2
# weights: 305
initial value 100.648938
iter 10 value 94.488714
iter 20 value 94.356507
iter 30 value 92.587697
iter 40 value 92.532329
iter 50 value 92.532084
iter 60 value 92.531338
iter 70 value 91.611519
iter 80 value 91.611383
iter 90 value 91.609987
iter 90 value 91.609987
final value 91.609987
converged
Fitting Repeat 3
# weights: 305
initial value 123.394534
iter 10 value 94.448919
iter 20 value 94.447845
iter 30 value 94.443897
final value 94.443493
converged
Fitting Repeat 4
# weights: 305
initial value 94.586739
iter 10 value 88.783477
iter 20 value 88.648474
iter 30 value 88.647164
iter 40 value 87.815975
iter 50 value 87.813281
iter 60 value 84.959922
iter 70 value 84.042237
iter 80 value 84.036571
iter 90 value 84.035837
iter 100 value 83.926013
final value 83.926013
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 124.251421
iter 10 value 94.489188
iter 20 value 94.297190
iter 30 value 90.511372
iter 40 value 88.974763
iter 50 value 85.511077
final value 85.492460
converged
Fitting Repeat 1
# weights: 507
initial value 113.541970
iter 10 value 94.491771
iter 20 value 93.910278
iter 30 value 93.742201
iter 40 value 90.800305
iter 50 value 83.787892
iter 60 value 82.496791
iter 70 value 82.459806
iter 80 value 82.457212
iter 90 value 82.456717
iter 100 value 82.410631
final value 82.410631
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.809771
iter 10 value 94.492926
iter 20 value 94.298877
iter 30 value 93.791185
iter 40 value 93.789330
iter 50 value 93.788702
iter 60 value 93.779793
iter 70 value 92.342241
iter 80 value 90.920408
iter 90 value 90.859404
iter 100 value 90.834778
final value 90.834778
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 95.534991
iter 10 value 94.490440
iter 20 value 92.506546
iter 30 value 86.708889
iter 40 value 86.708632
final value 86.708629
converged
Fitting Repeat 4
# weights: 507
initial value 121.418055
iter 10 value 94.451442
iter 20 value 94.192583
iter 30 value 89.757375
iter 40 value 81.967826
iter 50 value 81.457548
iter 60 value 81.284531
iter 70 value 81.263894
iter 80 value 81.262508
iter 90 value 80.635644
iter 100 value 80.453879
final value 80.453879
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 97.936211
iter 10 value 94.271129
iter 20 value 93.901259
iter 30 value 91.499737
iter 40 value 91.499181
iter 50 value 91.449119
iter 60 value 82.546113
iter 70 value 82.214969
iter 80 value 81.219187
iter 90 value 81.209818
iter 100 value 81.207972
final value 81.207972
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.050615
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 100.468677
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 95.158030
final value 93.765896
converged
Fitting Repeat 4
# weights: 103
initial value 110.673090
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 101.581286
iter 10 value 91.362122
iter 20 value 88.068256
iter 30 value 88.057354
final value 88.057344
converged
Fitting Repeat 1
# weights: 305
initial value 97.566404
final value 94.052911
converged
Fitting Repeat 2
# weights: 305
initial value 95.462418
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 100.969798
iter 10 value 93.582418
iter 10 value 93.582418
iter 10 value 93.582418
final value 93.582418
converged
Fitting Repeat 4
# weights: 305
initial value 101.896162
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 107.226203
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 122.683019
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 108.962280
final value 93.582418
converged
Fitting Repeat 3
# weights: 507
initial value 98.853995
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 100.560727
iter 10 value 93.599645
final value 93.582418
converged
Fitting Repeat 5
# weights: 507
initial value 101.135503
iter 10 value 93.106566
final value 93.063302
converged
Fitting Repeat 1
# weights: 103
initial value 103.791539
iter 10 value 94.057771
iter 20 value 93.728530
iter 30 value 86.140567
iter 40 value 84.795920
iter 50 value 84.504073
iter 60 value 83.937713
iter 70 value 83.192902
iter 80 value 82.530462
iter 90 value 82.503172
final value 82.503170
converged
Fitting Repeat 2
# weights: 103
initial value 98.467408
iter 10 value 94.045829
iter 20 value 93.698697
iter 30 value 93.683537
iter 40 value 93.628237
iter 50 value 87.807858
iter 60 value 84.345158
iter 70 value 83.965084
iter 80 value 83.529880
iter 90 value 82.688949
iter 100 value 82.521700
final value 82.521700
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 101.603367
iter 10 value 94.601532
iter 20 value 94.021939
iter 30 value 93.420844
iter 40 value 87.129629
iter 50 value 83.807452
iter 60 value 83.503569
iter 70 value 83.467818
iter 80 value 83.267467
iter 90 value 83.215023
final value 83.214640
converged
Fitting Repeat 4
# weights: 103
initial value 103.658137
iter 10 value 93.982351
iter 20 value 93.322601
iter 30 value 93.145886
iter 40 value 91.267490
iter 50 value 82.487219
iter 60 value 81.139660
iter 70 value 80.592349
iter 80 value 80.490066
final value 80.489084
converged
Fitting Repeat 5
# weights: 103
initial value 98.008905
iter 10 value 93.987808
iter 20 value 90.715260
iter 30 value 87.756650
iter 40 value 85.927563
iter 50 value 85.577608
iter 60 value 81.382286
iter 70 value 80.798720
iter 80 value 80.500682
iter 90 value 79.997131
iter 100 value 79.922608
final value 79.922608
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.875582
iter 10 value 94.095082
iter 20 value 92.459976
iter 30 value 84.678904
iter 40 value 84.332310
iter 50 value 84.219475
iter 60 value 83.123247
iter 70 value 83.048223
iter 80 value 82.834875
iter 90 value 82.712089
iter 100 value 82.627878
final value 82.627878
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.370897
iter 10 value 94.185724
iter 20 value 90.418725
iter 30 value 85.415253
iter 40 value 83.883225
iter 50 value 82.857193
iter 60 value 80.919364
iter 70 value 80.417067
iter 80 value 79.935243
iter 90 value 79.670238
iter 100 value 79.432560
final value 79.432560
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.310041
iter 10 value 93.956640
iter 20 value 93.466274
iter 30 value 90.148118
iter 40 value 85.703916
iter 50 value 84.204054
iter 60 value 79.858724
iter 70 value 79.418510
iter 80 value 79.233377
iter 90 value 79.134880
iter 100 value 78.930616
final value 78.930616
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.216937
iter 10 value 93.286676
iter 20 value 85.967051
iter 30 value 85.192970
iter 40 value 84.900661
iter 50 value 84.386374
iter 60 value 83.739105
iter 70 value 81.971299
iter 80 value 80.310976
iter 90 value 79.442186
iter 100 value 79.331673
final value 79.331673
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 98.793137
iter 10 value 94.116434
iter 20 value 93.971706
iter 30 value 85.257987
iter 40 value 84.754592
iter 50 value 83.097259
iter 60 value 82.567085
iter 70 value 81.917835
iter 80 value 80.451336
iter 90 value 79.356336
iter 100 value 79.090231
final value 79.090231
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.389738
iter 10 value 94.020078
iter 20 value 93.504209
iter 30 value 92.292432
iter 40 value 88.915380
iter 50 value 83.429010
iter 60 value 81.292428
iter 70 value 80.756608
iter 80 value 79.770997
iter 90 value 79.563824
iter 100 value 79.523326
final value 79.523326
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.271116
iter 10 value 94.401034
iter 20 value 86.810188
iter 30 value 83.039400
iter 40 value 80.793560
iter 50 value 79.777537
iter 60 value 79.177438
iter 70 value 78.785276
iter 80 value 78.500350
iter 90 value 78.163800
iter 100 value 78.054050
final value 78.054050
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.713353
iter 10 value 94.094664
iter 20 value 88.974720
iter 30 value 81.952161
iter 40 value 80.986160
iter 50 value 80.896577
iter 60 value 80.551821
iter 70 value 80.447496
iter 80 value 80.001618
iter 90 value 79.435793
iter 100 value 78.877383
final value 78.877383
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.441143
iter 10 value 94.101689
iter 20 value 85.217586
iter 30 value 84.806434
iter 40 value 83.120111
iter 50 value 81.915735
iter 60 value 80.170992
iter 70 value 79.771866
iter 80 value 79.539041
iter 90 value 79.511952
iter 100 value 79.503927
final value 79.503927
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 128.451750
iter 10 value 94.293452
iter 20 value 92.781517
iter 30 value 89.875381
iter 40 value 87.285944
iter 50 value 86.439353
iter 60 value 83.064860
iter 70 value 82.135878
iter 80 value 81.487966
iter 90 value 80.538403
iter 100 value 79.734301
final value 79.734301
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.013055
iter 10 value 94.054394
final value 94.053286
converged
Fitting Repeat 2
# weights: 103
initial value 103.833313
final value 93.811518
converged
Fitting Repeat 3
# weights: 103
initial value 109.105881
final value 94.054675
converged
Fitting Repeat 4
# weights: 103
initial value 101.140217
final value 94.054549
converged
Fitting Repeat 5
# weights: 103
initial value 96.123870
final value 94.054763
converged
Fitting Repeat 1
# weights: 305
initial value 101.159082
iter 10 value 94.057629
iter 20 value 94.052952
iter 30 value 93.585774
final value 93.582558
converged
Fitting Repeat 2
# weights: 305
initial value 102.252416
iter 10 value 93.587637
iter 20 value 93.583011
iter 30 value 84.015168
iter 40 value 83.914695
iter 50 value 81.961210
iter 60 value 81.059707
iter 70 value 79.417086
iter 80 value 79.346323
iter 90 value 79.329314
iter 100 value 79.280780
final value 79.280780
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.765867
iter 10 value 90.304245
iter 20 value 84.814186
iter 30 value 84.168846
iter 40 value 84.101782
iter 50 value 83.598877
iter 60 value 83.579049
iter 70 value 83.578163
iter 80 value 82.595432
iter 90 value 82.171299
iter 100 value 82.170662
final value 82.170662
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.869078
iter 10 value 93.557806
iter 20 value 93.534196
iter 30 value 86.462591
iter 40 value 86.441038
iter 50 value 85.227932
iter 60 value 84.633579
iter 70 value 84.011674
iter 80 value 83.718322
iter 90 value 83.466643
iter 100 value 83.422126
final value 83.422126
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.424054
iter 10 value 94.057655
iter 20 value 94.041696
iter 30 value 84.618587
iter 40 value 84.004455
iter 50 value 83.183610
iter 60 value 79.982080
iter 70 value 79.927102
iter 80 value 79.865474
final value 79.864862
converged
Fitting Repeat 1
# weights: 507
initial value 102.235643
iter 10 value 94.060993
iter 20 value 94.052496
iter 30 value 91.633280
iter 40 value 84.999289
iter 50 value 80.964204
iter 60 value 80.683261
iter 70 value 79.719881
final value 79.717924
converged
Fitting Repeat 2
# weights: 507
initial value 100.241164
iter 10 value 93.590735
iter 20 value 93.585648
iter 30 value 93.394253
iter 40 value 85.453978
iter 50 value 82.049035
iter 60 value 81.895879
iter 70 value 80.358228
iter 80 value 78.034474
iter 90 value 77.315399
iter 100 value 77.277892
final value 77.277892
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.435260
iter 10 value 94.060640
iter 20 value 92.337215
final value 92.238719
converged
Fitting Repeat 4
# weights: 507
initial value 108.450028
iter 10 value 94.060920
iter 20 value 87.604113
iter 30 value 82.555751
iter 40 value 82.294457
iter 50 value 82.293742
iter 60 value 82.284721
final value 82.284109
converged
Fitting Repeat 5
# weights: 507
initial value 121.940872
iter 10 value 93.589693
iter 20 value 93.582118
final value 93.524477
converged
Fitting Repeat 1
# weights: 103
initial value 101.606358
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 94.954519
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 98.397961
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 103.193848
iter 10 value 93.279366
iter 20 value 93.271931
final value 93.271928
converged
Fitting Repeat 5
# weights: 103
initial value 123.551519
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 107.203993
iter 10 value 94.038252
iter 10 value 94.038251
iter 10 value 94.038251
final value 94.038251
converged
Fitting Repeat 2
# weights: 305
initial value 115.052443
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 99.226297
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 96.318314
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 112.199504
final value 94.038251
converged
Fitting Repeat 1
# weights: 507
initial value 103.169548
final value 94.038251
converged
Fitting Repeat 2
# weights: 507
initial value 119.000746
iter 10 value 94.038250
iter 10 value 94.038250
iter 10 value 94.038250
final value 94.038250
converged
Fitting Repeat 3
# weights: 507
initial value 99.149509
iter 10 value 93.649711
iter 10 value 93.649711
iter 10 value 93.649711
final value 93.649711
converged
Fitting Repeat 4
# weights: 507
initial value 98.685456
iter 10 value 91.596438
iter 20 value 91.098485
iter 30 value 91.092707
final value 91.092705
converged
Fitting Repeat 5
# weights: 507
initial value 119.721448
iter 10 value 94.052910
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 97.061124
iter 10 value 94.049277
iter 20 value 91.791622
iter 30 value 88.097436
iter 40 value 86.482629
iter 50 value 84.500713
iter 60 value 83.098317
iter 70 value 81.892445
iter 80 value 80.480881
iter 90 value 80.365451
iter 100 value 79.812048
final value 79.812048
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.701393
iter 10 value 93.378975
iter 20 value 83.662072
iter 30 value 83.280384
iter 40 value 82.756041
iter 50 value 82.086343
iter 60 value 82.043223
iter 70 value 81.887719
iter 80 value 81.852758
iter 90 value 80.810203
iter 100 value 79.705511
final value 79.705511
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.308143
iter 10 value 94.056666
iter 20 value 87.502025
iter 30 value 83.998327
iter 40 value 82.976929
iter 50 value 81.566629
iter 60 value 80.876871
iter 70 value 79.710771
iter 80 value 79.400675
final value 79.362614
converged
Fitting Repeat 4
# weights: 103
initial value 99.616565
iter 10 value 94.150535
iter 20 value 94.056867
iter 30 value 87.981017
iter 40 value 85.828548
iter 50 value 85.570838
iter 60 value 85.475281
iter 70 value 85.110256
iter 80 value 82.873253
iter 90 value 82.752816
iter 100 value 82.751671
final value 82.751671
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.218303
iter 10 value 94.093703
iter 20 value 94.052357
iter 30 value 84.281543
iter 40 value 83.390489
iter 50 value 83.350597
iter 60 value 82.969230
iter 70 value 82.309724
iter 80 value 81.893385
iter 90 value 81.864975
iter 100 value 81.849650
final value 81.849650
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 114.721660
iter 10 value 94.096173
iter 20 value 90.058516
iter 30 value 86.727817
iter 40 value 83.658923
iter 50 value 83.051447
iter 60 value 82.621655
iter 70 value 81.944813
iter 80 value 80.305110
iter 90 value 78.961445
iter 100 value 78.616061
final value 78.616061
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.987104
iter 10 value 93.871535
iter 20 value 89.744385
iter 30 value 86.494232
iter 40 value 84.958517
iter 50 value 84.120673
iter 60 value 83.501349
iter 70 value 83.133246
iter 80 value 82.754829
iter 90 value 80.363636
iter 100 value 79.101245
final value 79.101245
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.729153
iter 10 value 94.096531
iter 20 value 84.810011
iter 30 value 83.951816
iter 40 value 83.208378
iter 50 value 83.090541
iter 60 value 82.914061
iter 70 value 82.102682
iter 80 value 80.705146
iter 90 value 79.518895
iter 100 value 78.826645
final value 78.826645
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 111.663859
iter 10 value 94.062378
iter 20 value 84.097442
iter 30 value 82.784777
iter 40 value 82.144058
iter 50 value 81.640811
iter 60 value 80.468082
iter 70 value 79.864583
iter 80 value 79.391666
iter 90 value 78.636893
iter 100 value 77.949300
final value 77.949300
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.561207
iter 10 value 93.584213
iter 20 value 87.581893
iter 30 value 86.203194
iter 40 value 83.869691
iter 50 value 83.360375
iter 60 value 82.260190
iter 70 value 82.191633
iter 80 value 81.774479
iter 90 value 80.024300
iter 100 value 78.546236
final value 78.546236
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 115.884455
iter 10 value 94.175680
iter 20 value 91.789476
iter 30 value 85.322130
iter 40 value 84.499491
iter 50 value 83.082727
iter 60 value 81.696499
iter 70 value 79.921458
iter 80 value 79.353551
iter 90 value 79.036772
iter 100 value 78.860445
final value 78.860445
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.143143
iter 10 value 94.155826
iter 20 value 87.350690
iter 30 value 85.282692
iter 40 value 83.430398
iter 50 value 81.399339
iter 60 value 79.013956
iter 70 value 78.240025
iter 80 value 78.143876
iter 90 value 78.018244
iter 100 value 77.808176
final value 77.808176
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.923710
iter 10 value 93.982772
iter 20 value 92.733855
iter 30 value 82.566490
iter 40 value 81.723342
iter 50 value 80.701480
iter 60 value 80.419659
iter 70 value 79.488596
iter 80 value 78.627055
iter 90 value 78.217585
iter 100 value 78.071329
final value 78.071329
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 126.188577
iter 10 value 95.400680
iter 20 value 89.349141
iter 30 value 83.844716
iter 40 value 82.164637
iter 50 value 80.236732
iter 60 value 79.314549
iter 70 value 78.888101
iter 80 value 78.784349
iter 90 value 78.693334
iter 100 value 78.428297
final value 78.428297
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 128.228177
iter 10 value 94.083310
iter 20 value 91.668713
iter 30 value 85.847181
iter 40 value 85.009882
iter 50 value 83.746848
iter 60 value 83.343139
iter 70 value 82.433133
iter 80 value 80.841044
iter 90 value 79.720078
iter 100 value 79.365994
final value 79.365994
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.932563
final value 94.054473
converged
Fitting Repeat 2
# weights: 103
initial value 99.679586
final value 94.054406
converged
Fitting Repeat 3
# weights: 103
initial value 116.954394
iter 10 value 94.054447
iter 20 value 93.782641
iter 30 value 89.826721
iter 40 value 88.158976
iter 50 value 83.699075
iter 60 value 83.241799
final value 83.233957
converged
Fitting Repeat 4
# weights: 103
initial value 96.848674
final value 94.054765
converged
Fitting Repeat 5
# weights: 103
initial value 95.190352
iter 10 value 94.054747
iter 20 value 94.050845
iter 30 value 90.775386
final value 90.726312
converged
Fitting Repeat 1
# weights: 305
initial value 94.760903
iter 10 value 93.966618
iter 20 value 93.846135
iter 30 value 93.674238
iter 40 value 93.673572
iter 50 value 85.134278
final value 84.573122
converged
Fitting Repeat 2
# weights: 305
initial value 97.897790
iter 10 value 94.043218
iter 20 value 94.038354
iter 30 value 91.912099
iter 40 value 83.139350
iter 50 value 79.313501
iter 60 value 79.028569
iter 70 value 78.923073
iter 80 value 78.903895
iter 90 value 78.903651
iter 100 value 78.895320
final value 78.895320
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 96.507609
iter 10 value 94.056092
iter 20 value 89.365308
iter 30 value 86.370896
iter 30 value 86.370895
final value 86.178815
converged
Fitting Repeat 4
# weights: 305
initial value 95.672853
iter 10 value 94.057663
iter 20 value 93.976200
iter 30 value 90.761405
iter 40 value 90.757235
iter 50 value 90.690554
iter 60 value 90.685832
iter 70 value 90.685118
iter 80 value 90.562997
iter 90 value 90.557099
iter 100 value 90.556724
final value 90.556724
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 94.804946
iter 10 value 94.057044
iter 20 value 93.813056
iter 30 value 91.890597
iter 40 value 91.260930
iter 50 value 91.259694
iter 60 value 91.257900
iter 70 value 91.154301
iter 80 value 91.152367
final value 91.152325
converged
Fitting Repeat 1
# weights: 507
initial value 95.121025
iter 10 value 93.109637
iter 20 value 93.108548
iter 30 value 93.108258
iter 40 value 93.078672
iter 50 value 93.050532
iter 60 value 92.662402
iter 70 value 90.816328
iter 80 value 90.755791
iter 90 value 90.749720
iter 100 value 90.717115
final value 90.717115
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 117.452454
iter 10 value 94.127176
iter 20 value 94.114361
iter 30 value 93.174838
iter 40 value 87.591008
iter 50 value 87.571846
iter 60 value 87.326149
iter 70 value 87.283631
iter 80 value 87.034043
iter 90 value 81.821216
iter 100 value 77.087206
final value 77.087206
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 94.762112
iter 10 value 94.046384
iter 20 value 93.999774
iter 30 value 89.606210
iter 40 value 84.571425
iter 50 value 84.415096
iter 60 value 84.413936
iter 70 value 84.413719
iter 80 value 84.413228
iter 90 value 84.412717
final value 84.412709
converged
Fitting Repeat 4
# weights: 507
initial value 97.281389
iter 10 value 86.979458
iter 20 value 82.710749
iter 30 value 82.563566
final value 82.557463
converged
Fitting Repeat 5
# weights: 507
initial value 95.189332
iter 10 value 94.046632
iter 20 value 94.045792
iter 30 value 94.044826
iter 40 value 94.042330
iter 50 value 94.041845
iter 60 value 94.017834
iter 70 value 85.582519
iter 80 value 84.344892
iter 90 value 83.241820
iter 100 value 81.899940
final value 81.899940
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.551936
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.260925
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.852732
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.060219
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.567432
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 95.964596
iter 10 value 94.275370
final value 94.275363
converged
Fitting Repeat 2
# weights: 305
initial value 107.428721
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 104.613245
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 113.292842
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 95.902778
final value 94.275362
converged
Fitting Repeat 1
# weights: 507
initial value 95.895838
iter 10 value 94.275363
iter 10 value 94.275362
iter 10 value 94.275362
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 113.133218
final value 94.275362
converged
Fitting Repeat 3
# weights: 507
initial value 103.970925
final value 94.312038
converged
Fitting Repeat 4
# weights: 507
initial value 115.605968
final value 94.275362
converged
Fitting Repeat 5
# weights: 507
initial value 106.676806
iter 10 value 94.349765
final value 94.313817
converged
Fitting Repeat 1
# weights: 103
initial value 116.547402
iter 10 value 94.429483
iter 20 value 93.535830
iter 30 value 93.497153
iter 40 value 92.568387
iter 50 value 84.554181
iter 60 value 83.861181
iter 70 value 83.050500
iter 80 value 82.277146
iter 90 value 81.781071
final value 81.774378
converged
Fitting Repeat 2
# weights: 103
initial value 95.584539
iter 10 value 93.513213
iter 20 value 92.321333
iter 30 value 92.061494
iter 40 value 91.966135
iter 50 value 91.715854
iter 60 value 91.709553
final value 91.709470
converged
Fitting Repeat 3
# weights: 103
initial value 98.988040
iter 10 value 94.368753
iter 20 value 92.914708
iter 30 value 90.120867
iter 40 value 83.823607
iter 50 value 83.539870
iter 60 value 82.670077
iter 70 value 82.600367
iter 80 value 82.555355
final value 82.553262
converged
Fitting Repeat 4
# weights: 103
initial value 96.437583
iter 10 value 94.491669
iter 20 value 94.486620
iter 30 value 94.102907
iter 40 value 90.008215
iter 50 value 85.083465
iter 60 value 82.667599
iter 70 value 82.149787
iter 80 value 81.904822
iter 90 value 81.774380
final value 81.774378
converged
Fitting Repeat 5
# weights: 103
initial value 96.342341
iter 10 value 94.409325
iter 20 value 94.081464
iter 30 value 91.910726
iter 40 value 85.421004
iter 50 value 84.001186
iter 60 value 83.958749
iter 70 value 83.597044
iter 80 value 83.289611
final value 83.287469
converged
Fitting Repeat 1
# weights: 305
initial value 100.216370
iter 10 value 94.526055
iter 20 value 94.007079
iter 30 value 89.539325
iter 40 value 86.490362
iter 50 value 85.901412
iter 60 value 85.269507
iter 70 value 83.723983
iter 80 value 82.203658
iter 90 value 80.950392
iter 100 value 80.642673
final value 80.642673
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.239480
iter 10 value 94.312206
iter 20 value 86.357038
iter 30 value 83.807038
iter 40 value 82.704061
iter 50 value 82.275828
iter 60 value 80.898153
iter 70 value 80.494743
iter 80 value 80.098265
iter 90 value 79.869587
iter 100 value 79.768572
final value 79.768572
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.103972
iter 10 value 94.549400
iter 20 value 86.971099
iter 30 value 83.640188
iter 40 value 82.061401
iter 50 value 80.847398
iter 60 value 80.467717
iter 70 value 80.219064
iter 80 value 79.647993
iter 90 value 79.616339
iter 100 value 79.539527
final value 79.539527
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.897178
iter 10 value 94.478000
iter 20 value 94.108107
iter 30 value 93.755404
iter 40 value 87.351413
iter 50 value 84.763934
iter 60 value 84.026847
iter 70 value 82.988043
iter 80 value 82.410973
iter 90 value 82.321532
iter 100 value 81.835911
final value 81.835911
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 128.882521
iter 10 value 94.579498
iter 20 value 94.202625
iter 30 value 88.583422
iter 40 value 86.627388
iter 50 value 82.431410
iter 60 value 82.259227
iter 70 value 82.165959
iter 80 value 81.292716
iter 90 value 80.667339
iter 100 value 80.519618
final value 80.519618
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.435520
iter 10 value 88.317318
iter 20 value 87.449608
iter 30 value 85.796775
iter 40 value 84.953254
iter 50 value 83.864112
iter 60 value 81.613877
iter 70 value 80.809400
iter 80 value 80.590405
iter 90 value 80.482166
iter 100 value 80.431750
final value 80.431750
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.898452
iter 10 value 94.191995
iter 20 value 88.818189
iter 30 value 86.657353
iter 40 value 86.398433
iter 50 value 83.126247
iter 60 value 81.314511
iter 70 value 80.439320
iter 80 value 80.148460
iter 90 value 80.018131
iter 100 value 79.974753
final value 79.974753
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.650382
iter 10 value 94.515610
iter 20 value 93.226317
iter 30 value 85.811800
iter 40 value 85.153482
iter 50 value 84.068298
iter 60 value 83.683801
iter 70 value 82.947008
iter 80 value 82.585626
iter 90 value 82.312988
iter 100 value 82.216512
final value 82.216512
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 118.869071
iter 10 value 94.621830
iter 20 value 90.005905
iter 30 value 87.936450
iter 40 value 87.126988
iter 50 value 86.343120
iter 60 value 85.157166
iter 70 value 83.310460
iter 80 value 82.460005
iter 90 value 81.453809
iter 100 value 80.564074
final value 80.564074
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.959598
iter 10 value 94.322437
iter 20 value 93.299768
iter 30 value 84.451916
iter 40 value 83.412600
iter 50 value 82.996395
iter 60 value 81.696480
iter 70 value 80.932182
iter 80 value 79.918765
iter 90 value 79.458418
iter 100 value 79.316545
final value 79.316545
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.302124
final value 94.485813
converged
Fitting Repeat 2
# weights: 103
initial value 105.468891
final value 94.485882
converged
Fitting Repeat 3
# weights: 103
initial value 101.190985
final value 94.486200
converged
Fitting Repeat 4
# weights: 103
initial value 100.227887
iter 10 value 94.485849
iter 20 value 94.484226
final value 94.484215
converged
Fitting Repeat 5
# weights: 103
initial value 102.760550
iter 10 value 94.276925
iter 20 value 93.266159
iter 30 value 86.960129
final value 86.960123
converged
Fitting Repeat 1
# weights: 305
initial value 97.892134
iter 10 value 89.996666
iter 20 value 83.342615
iter 30 value 82.878159
iter 40 value 82.737333
iter 50 value 82.718993
iter 60 value 82.708757
iter 70 value 82.704491
iter 80 value 82.700976
iter 90 value 81.977161
iter 100 value 81.903451
final value 81.903451
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.354301
iter 10 value 94.488684
iter 20 value 94.484223
final value 94.484214
converged
Fitting Repeat 3
# weights: 305
initial value 98.175066
iter 10 value 94.280400
iter 20 value 94.130592
iter 30 value 94.038211
iter 40 value 94.028121
final value 94.027966
converged
Fitting Repeat 4
# weights: 305
initial value 105.651906
iter 10 value 90.660556
iter 20 value 87.304849
iter 30 value 86.218367
iter 40 value 85.614419
iter 50 value 85.607112
iter 60 value 85.539258
iter 70 value 84.914947
iter 80 value 84.617591
iter 90 value 84.589168
iter 100 value 84.582064
final value 84.582064
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.263117
iter 10 value 94.269373
final value 94.267667
converged
Fitting Repeat 1
# weights: 507
initial value 101.751654
iter 10 value 94.284364
iter 20 value 94.281586
iter 30 value 94.275524
iter 40 value 92.228271
iter 50 value 88.503238
iter 60 value 86.510757
iter 70 value 86.028504
final value 86.027589
converged
Fitting Repeat 2
# weights: 507
initial value 102.543277
iter 10 value 94.092045
iter 20 value 94.088501
iter 30 value 94.057394
iter 40 value 92.621983
iter 50 value 87.514335
iter 60 value 85.827897
iter 70 value 82.810641
iter 80 value 82.588446
iter 90 value 82.588140
iter 100 value 82.587949
final value 82.587949
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.747051
iter 10 value 94.236900
iter 20 value 94.233257
final value 94.230216
converged
Fitting Repeat 4
# weights: 507
initial value 101.509470
iter 10 value 94.491307
iter 20 value 94.243193
iter 30 value 91.125664
iter 40 value 91.030417
iter 50 value 91.027895
iter 60 value 91.027308
iter 70 value 87.896408
iter 80 value 86.476510
iter 90 value 83.784149
iter 100 value 81.654798
final value 81.654798
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.009970
iter 10 value 94.091643
iter 20 value 94.086142
iter 30 value 94.084752
iter 40 value 89.350792
iter 50 value 84.077268
iter 60 value 84.076360
iter 70 value 83.613591
iter 80 value 83.609749
iter 90 value 83.544678
iter 100 value 81.716808
final value 81.716808
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 110.085099
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 95.605095
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 103.123510
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 103.568605
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.797997
final value 94.354396
converged
Fitting Repeat 1
# weights: 305
initial value 100.298806
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 122.012720
iter 10 value 92.752039
iter 20 value 89.037975
final value 88.780974
converged
Fitting Repeat 3
# weights: 305
initial value 106.914481
iter 10 value 94.386587
final value 94.354396
converged
Fitting Repeat 4
# weights: 305
initial value 97.106506
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 110.180316
final value 94.479532
converged
Fitting Repeat 1
# weights: 507
initial value 96.288276
iter 10 value 92.478359
iter 20 value 92.068481
final value 92.068451
converged
Fitting Repeat 2
# weights: 507
initial value 97.601032
iter 10 value 94.132626
final value 94.132577
converged
Fitting Repeat 3
# weights: 507
initial value 94.498399
final value 94.484213
converged
Fitting Repeat 4
# weights: 507
initial value 95.425764
final value 94.354396
converged
Fitting Repeat 5
# weights: 507
initial value 100.587169
final value 94.479533
converged
Fitting Repeat 1
# weights: 103
initial value 101.194720
iter 10 value 91.766781
iter 20 value 88.002359
iter 30 value 86.904864
iter 40 value 86.278227
iter 50 value 85.743008
final value 85.737149
converged
Fitting Repeat 2
# weights: 103
initial value 103.110661
iter 10 value 94.546299
iter 20 value 94.436408
iter 30 value 94.343064
iter 40 value 94.157086
iter 50 value 89.818706
iter 60 value 88.522856
iter 70 value 87.649534
iter 80 value 87.385226
iter 90 value 86.198417
iter 100 value 85.739984
final value 85.739984
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 101.864791
iter 10 value 94.058717
iter 20 value 88.699283
iter 30 value 88.189608
iter 40 value 86.769027
iter 50 value 86.037242
iter 60 value 85.492606
iter 70 value 85.257181
iter 80 value 85.189688
iter 90 value 85.106467
final value 85.095471
converged
Fitting Repeat 4
# weights: 103
initial value 98.841339
iter 10 value 94.349829
iter 20 value 93.337416
iter 30 value 87.915718
iter 40 value 87.549239
iter 50 value 87.152700
iter 60 value 86.599739
iter 70 value 86.246157
iter 80 value 85.738788
final value 85.737149
converged
Fitting Repeat 5
# weights: 103
initial value 104.802817
iter 10 value 93.430271
iter 20 value 87.295846
iter 30 value 87.022541
iter 40 value 86.877026
iter 50 value 86.088656
iter 60 value 85.330558
iter 70 value 85.201125
iter 80 value 85.178653
iter 90 value 85.159657
iter 90 value 85.159657
iter 90 value 85.159657
final value 85.159657
converged
Fitting Repeat 1
# weights: 305
initial value 115.056388
iter 10 value 94.597262
iter 20 value 93.773786
iter 30 value 87.848568
iter 40 value 87.069065
iter 50 value 86.809234
iter 60 value 86.400445
iter 70 value 85.630210
iter 80 value 85.550231
iter 90 value 85.058576
iter 100 value 83.770977
final value 83.770977
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.792721
iter 10 value 94.666350
iter 20 value 91.125198
iter 30 value 86.548645
iter 40 value 85.590685
iter 50 value 85.223163
iter 60 value 84.343619
iter 70 value 83.579367
iter 80 value 83.411083
iter 90 value 83.343697
iter 100 value 83.304113
final value 83.304113
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.250164
iter 10 value 94.400914
iter 20 value 93.215354
iter 30 value 92.765388
iter 40 value 86.504248
iter 50 value 85.535581
iter 60 value 84.224827
iter 70 value 83.350483
iter 80 value 83.264640
iter 90 value 83.192868
iter 100 value 83.033164
final value 83.033164
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.444605
iter 10 value 95.614736
iter 20 value 93.611006
iter 30 value 87.778051
iter 40 value 84.948567
iter 50 value 83.832160
iter 60 value 83.483845
iter 70 value 83.115906
iter 80 value 83.002204
iter 90 value 82.989161
iter 100 value 82.988103
final value 82.988103
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 119.002852
iter 10 value 94.126540
iter 20 value 89.321014
iter 30 value 87.908681
iter 40 value 85.383337
iter 50 value 83.639313
iter 60 value 83.493261
iter 70 value 83.390187
iter 80 value 83.251100
iter 90 value 82.977411
iter 100 value 82.779798
final value 82.779798
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 114.058353
iter 10 value 94.487188
iter 20 value 94.194605
iter 30 value 90.176644
iter 40 value 87.081318
iter 50 value 85.072988
iter 60 value 84.304643
iter 70 value 84.105571
iter 80 value 83.889055
iter 90 value 83.686380
iter 100 value 83.399072
final value 83.399072
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 136.828653
iter 10 value 94.512396
iter 20 value 93.720843
iter 30 value 91.852255
iter 40 value 87.117238
iter 50 value 84.795707
iter 60 value 83.661944
iter 70 value 83.269198
iter 80 value 83.067474
iter 90 value 82.981991
iter 100 value 82.977774
final value 82.977774
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.827124
iter 10 value 94.374497
iter 20 value 90.009030
iter 30 value 88.518227
iter 40 value 88.088637
iter 50 value 86.692251
iter 60 value 85.560845
iter 70 value 84.554913
iter 80 value 83.637917
iter 90 value 83.099676
iter 100 value 83.019206
final value 83.019206
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 127.913513
iter 10 value 91.580867
iter 20 value 88.928271
iter 30 value 87.916149
iter 40 value 86.574255
iter 50 value 85.042275
iter 60 value 83.670106
iter 70 value 83.524808
iter 80 value 83.472014
iter 90 value 83.267174
iter 100 value 82.968022
final value 82.968022
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.732950
iter 10 value 94.520328
iter 20 value 94.444988
iter 30 value 93.989455
iter 40 value 89.161734
iter 50 value 87.664284
iter 60 value 85.518080
iter 70 value 84.207580
iter 80 value 83.501250
iter 90 value 83.274246
iter 100 value 83.160008
final value 83.160008
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.965172
final value 94.485839
converged
Fitting Repeat 2
# weights: 103
initial value 95.441723
final value 94.485926
converged
Fitting Repeat 3
# weights: 103
initial value 98.727276
final value 94.485810
converged
Fitting Repeat 4
# weights: 103
initial value 98.231830
iter 10 value 94.356207
iter 20 value 93.315809
iter 30 value 92.612590
final value 92.612308
converged
Fitting Repeat 5
# weights: 103
initial value 98.074884
final value 94.485893
converged
Fitting Repeat 1
# weights: 305
initial value 99.773490
iter 10 value 94.488738
iter 20 value 94.370762
iter 30 value 94.133024
final value 94.133006
converged
Fitting Repeat 2
# weights: 305
initial value 114.313685
iter 10 value 94.489239
iter 20 value 94.483839
iter 30 value 89.208854
iter 40 value 87.148221
iter 50 value 86.557838
iter 60 value 86.160577
iter 70 value 86.064642
iter 80 value 85.378375
iter 90 value 83.617482
iter 100 value 82.361783
final value 82.361783
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.655311
iter 10 value 92.792176
iter 20 value 92.789782
iter 30 value 92.610551
iter 40 value 85.984462
iter 50 value 85.887781
iter 60 value 85.525914
final value 85.486401
converged
Fitting Repeat 4
# weights: 305
initial value 114.200162
iter 10 value 94.359874
iter 20 value 94.354833
iter 30 value 92.289808
iter 40 value 89.426057
iter 50 value 89.360813
final value 89.359842
converged
Fitting Repeat 5
# weights: 305
initial value 115.232309
iter 10 value 94.488861
iter 20 value 94.356343
final value 94.354712
converged
Fitting Repeat 1
# weights: 507
initial value 102.543337
iter 10 value 94.331194
iter 20 value 94.275394
iter 30 value 92.150734
iter 40 value 88.964620
iter 50 value 88.883038
iter 60 value 88.380538
iter 70 value 88.293208
final value 88.293146
converged
Fitting Repeat 2
# weights: 507
initial value 136.729968
iter 10 value 94.492108
iter 20 value 94.483338
iter 30 value 94.282832
iter 40 value 91.789770
iter 50 value 90.151983
iter 60 value 86.449477
iter 70 value 84.512927
iter 80 value 84.332366
iter 90 value 84.159647
iter 100 value 84.100328
final value 84.100328
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.065055
iter 10 value 94.362025
iter 20 value 94.361382
iter 30 value 94.354503
iter 40 value 91.747815
iter 50 value 85.684965
iter 60 value 85.463754
iter 70 value 85.462805
final value 85.462700
converged
Fitting Repeat 4
# weights: 507
initial value 144.641602
iter 10 value 94.492410
iter 20 value 94.484326
iter 30 value 92.826358
iter 40 value 89.631614
final value 89.629160
converged
Fitting Repeat 5
# weights: 507
initial value 115.008126
iter 10 value 94.330780
iter 20 value 94.284779
iter 30 value 88.209045
iter 40 value 87.344581
iter 50 value 85.190736
iter 60 value 83.514432
iter 70 value 82.695104
iter 80 value 82.627850
iter 90 value 82.627582
iter 100 value 82.626765
final value 82.626765
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 117.989129
iter 10 value 117.891488
iter 20 value 117.852664
iter 30 value 110.377588
iter 40 value 108.166941
iter 50 value 108.001897
iter 60 value 107.979656
final value 107.979652
converged
Fitting Repeat 2
# weights: 305
initial value 134.701359
iter 10 value 117.763663
iter 20 value 117.645938
iter 30 value 105.358212
iter 40 value 105.342792
iter 50 value 105.341685
final value 105.341660
converged
Fitting Repeat 3
# weights: 305
initial value 126.037504
iter 10 value 117.763784
iter 20 value 117.733687
iter 30 value 117.731402
final value 117.729959
converged
Fitting Repeat 4
# weights: 305
initial value 119.365309
iter 10 value 117.894616
iter 20 value 117.850109
iter 30 value 115.358488
iter 40 value 109.326477
iter 50 value 107.715141
iter 60 value 107.692287
iter 70 value 106.695029
iter 80 value 106.678748
iter 90 value 104.305639
iter 100 value 104.270647
final value 104.270647
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 123.330763
iter 10 value 117.894729
iter 20 value 117.762071
iter 30 value 107.263788
iter 40 value 107.166250
iter 50 value 106.860185
iter 60 value 106.730781
iter 70 value 106.084579
iter 80 value 106.066537
final value 106.064389
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Mon Jun 10 18:52:46 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
40.066 1.470 67.700
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 39.330 | 1.647 | 61.633 | |
| FreqInteractors | 0.230 | 0.016 | 0.345 | |
| calculateAAC | 0.043 | 0.009 | 0.079 | |
| calculateAutocor | 0.392 | 0.056 | 0.663 | |
| calculateCTDC | 0.091 | 0.007 | 0.133 | |
| calculateCTDD | 0.685 | 0.021 | 1.018 | |
| calculateCTDT | 0.236 | 0.009 | 0.380 | |
| calculateCTriad | 0.411 | 0.018 | 0.594 | |
| calculateDC | 0.094 | 0.011 | 0.149 | |
| calculateF | 0.386 | 0.015 | 0.563 | |
| calculateKSAAP | 0.090 | 0.011 | 0.101 | |
| calculateQD_Sm | 2.078 | 0.101 | 3.238 | |
| calculateTC | 1.910 | 0.131 | 3.113 | |
| calculateTC_Sm | 0.333 | 0.010 | 0.512 | |
| corr_plot | 39.491 | 1.760 | 60.890 | |
| enrichfindP | 0.535 | 0.115 | 15.866 | |
| enrichfind_hp | 0.091 | 0.022 | 1.177 | |
| enrichplot | 0.359 | 0.009 | 0.369 | |
| filter_missing_values | 0.002 | 0.000 | 0.001 | |
| getFASTA | 0.076 | 0.020 | 5.175 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0.001 | 0.000 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.001 | 0.000 | 0.001 | |
| plotPPI | 0.062 | 0.005 | 0.101 | |
| pred_ensembel | 13.616 | 0.382 | 17.826 | |
| var_imp | 41.905 | 1.825 | 64.093 | |