| Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2023-10-25 11:41:34 -0400 (Wed, 25 Oct 2023).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4727 |
| palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4465 |
| lconway | macOS 12.6.5 Monterey | x86_64 | 4.3.1 Patched (2023-06-17 r84564) -- "Beagle Scouts" | 4476 |
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) | aarch64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4464 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 974/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.8.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.6.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.3.1 Ventura / arm64 | see weekly results here | ||||||||||||
| kunpeng2 | Linux (openEuler 22.03 LTS-SP1) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
| Package: HPiP |
| Version: 1.8.0 |
| Command: /home/biocbuild/R/R-4.3.1/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R-4.3.1/site-library --timings HPiP_1.8.0.tar.gz |
| StartedAt: 2023-10-25 12:07:32 -0000 (Wed, 25 Oct 2023) |
| EndedAt: 2023-10-25 12:25:18 -0000 (Wed, 25 Oct 2023) |
| EllapsedTime: 1066.7 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/R/R-4.3.1/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R-4.3.1/site-library --timings HPiP_1.8.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck’
* using R version 4.3.1 (2023-06-16)
* using platform: aarch64-unknown-linux-gnu (64-bit)
* R was compiled by
gcc (GCC) 10.3.1
GNU Fortran (GCC) 10.3.1
* running under: openEuler 22.03 (LTS-SP1)
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.8.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 39.021 0.794 39.900
FSmethod 38.488 0.794 39.358
corr_plot 38.452 0.551 39.080
pred_ensembel 18.403 0.716 16.769
enrichfindP 0.530 0.071 32.462
getFASTA 0.096 0.032 16.044
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
‘HPiP_tutorial.Rmd’ using ‘UTF-8’... OK
NONE
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/home/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R-4.3.1/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.3.1/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 97.716191
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 97.424071
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 100.387350
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 95.439783
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 99.203871
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 94.501206
final value 94.043243
converged
Fitting Repeat 2
# weights: 305
initial value 108.245925
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 101.767966
iter 10 value 91.739769
iter 20 value 91.608244
final value 91.607805
converged
Fitting Repeat 4
# weights: 305
initial value 96.571068
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 109.087968
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 100.548916
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 121.378526
iter 10 value 93.838019
iter 20 value 91.018650
iter 30 value 83.917498
iter 40 value 83.424378
iter 50 value 83.416938
iter 60 value 83.415581
final value 83.415553
converged
Fitting Repeat 3
# weights: 507
initial value 106.169150
iter 10 value 91.656570
iter 20 value 91.595054
iter 30 value 91.165708
iter 40 value 91.094417
iter 50 value 91.078470
iter 60 value 91.048279
iter 60 value 91.048279
iter 60 value 91.048279
final value 91.048279
converged
Fitting Repeat 4
# weights: 507
initial value 99.698575
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 105.024975
final value 93.882439
converged
Fitting Repeat 1
# weights: 103
initial value 97.483517
iter 10 value 94.054096
iter 20 value 93.418550
iter 30 value 87.999440
iter 40 value 83.723295
iter 50 value 83.561840
iter 60 value 83.441341
iter 70 value 83.433773
final value 83.432890
converged
Fitting Repeat 2
# weights: 103
initial value 104.684901
iter 10 value 92.308887
iter 20 value 83.554975
iter 30 value 83.449213
iter 40 value 83.409920
iter 50 value 83.292556
iter 60 value 83.285982
iter 60 value 83.285982
iter 60 value 83.285982
final value 83.285982
converged
Fitting Repeat 3
# weights: 103
initial value 106.385523
iter 10 value 94.058392
iter 20 value 94.054583
iter 30 value 85.962339
iter 40 value 83.228092
iter 50 value 83.040773
iter 60 value 83.013348
iter 70 value 82.901602
iter 80 value 82.894250
final value 82.894249
converged
Fitting Repeat 4
# weights: 103
initial value 109.945054
iter 10 value 94.135669
iter 20 value 91.960021
iter 30 value 86.047001
iter 40 value 84.716154
iter 50 value 83.438934
iter 60 value 83.324670
iter 70 value 83.286077
final value 83.285982
converged
Fitting Repeat 5
# weights: 103
initial value 105.605243
iter 10 value 94.030060
iter 20 value 86.833886
iter 30 value 83.541825
iter 40 value 83.340642
iter 50 value 83.288239
iter 60 value 83.285986
final value 83.285982
converged
Fitting Repeat 1
# weights: 305
initial value 110.849175
iter 10 value 94.068291
iter 20 value 88.718043
iter 30 value 84.760002
iter 40 value 83.611960
iter 50 value 81.239123
iter 60 value 80.312717
iter 70 value 80.141650
iter 80 value 79.905343
iter 90 value 79.580521
iter 100 value 79.538771
final value 79.538771
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.726417
iter 10 value 94.064561
iter 20 value 91.763113
iter 30 value 85.861591
iter 40 value 83.304670
iter 50 value 83.139669
iter 60 value 83.117065
iter 70 value 83.069165
iter 80 value 83.031617
iter 90 value 83.010761
iter 100 value 82.754376
final value 82.754376
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.889639
iter 10 value 94.359907
iter 20 value 90.338680
iter 30 value 83.514446
iter 40 value 83.326657
iter 50 value 82.788257
iter 60 value 81.785808
iter 70 value 80.717997
iter 80 value 80.480680
iter 90 value 80.381714
iter 100 value 80.337962
final value 80.337962
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.357057
iter 10 value 93.722692
iter 20 value 87.736023
iter 30 value 87.220857
iter 40 value 86.006535
iter 50 value 85.627688
iter 60 value 83.754956
iter 70 value 83.433111
iter 80 value 83.203850
iter 90 value 83.107497
iter 100 value 82.022012
final value 82.022012
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 117.358545
iter 10 value 93.919030
iter 20 value 85.908048
iter 30 value 85.401379
iter 40 value 85.070354
iter 50 value 83.862137
iter 60 value 83.306316
iter 70 value 80.655047
iter 80 value 80.069649
iter 90 value 79.973918
iter 100 value 79.890159
final value 79.890159
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 114.514584
iter 10 value 93.871005
iter 20 value 85.652119
iter 30 value 83.423737
iter 40 value 83.131418
iter 50 value 82.855007
iter 60 value 82.659501
iter 70 value 82.586107
iter 80 value 82.565337
iter 90 value 82.172232
iter 100 value 81.516214
final value 81.516214
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.098147
iter 10 value 94.848746
iter 20 value 86.204361
iter 30 value 84.664892
iter 40 value 84.557296
iter 50 value 84.164725
iter 60 value 83.902291
iter 70 value 83.674666
iter 80 value 83.263470
iter 90 value 81.288413
iter 100 value 80.799302
final value 80.799302
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.612871
iter 10 value 94.072097
iter 20 value 91.350629
iter 30 value 86.186307
iter 40 value 83.482355
iter 50 value 83.020432
iter 60 value 81.951084
iter 70 value 81.487827
iter 80 value 81.011872
iter 90 value 79.967126
iter 100 value 79.731696
final value 79.731696
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 119.060986
iter 10 value 93.759522
iter 20 value 88.076779
iter 30 value 86.336735
iter 40 value 83.682617
iter 50 value 83.139946
iter 60 value 82.304403
iter 70 value 81.927718
iter 80 value 81.393065
iter 90 value 80.914169
iter 100 value 80.539665
final value 80.539665
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.133443
iter 10 value 94.333289
iter 20 value 93.451727
iter 30 value 93.081698
iter 40 value 89.371271
iter 50 value 83.706972
iter 60 value 82.726278
iter 70 value 82.109313
iter 80 value 81.805162
iter 90 value 81.602101
iter 100 value 81.284256
final value 81.284256
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.315159
final value 94.054441
converged
Fitting Repeat 2
# weights: 103
initial value 99.708604
final value 94.054473
converged
Fitting Repeat 3
# weights: 103
initial value 111.126993
iter 10 value 94.054548
final value 94.052931
converged
Fitting Repeat 4
# weights: 103
initial value 98.378737
final value 94.054750
converged
Fitting Repeat 5
# weights: 103
initial value 100.376075
final value 94.054397
converged
Fitting Repeat 1
# weights: 305
initial value 97.500490
iter 10 value 94.057785
final value 94.054880
converged
Fitting Repeat 2
# weights: 305
initial value 104.422706
iter 10 value 94.057860
iter 20 value 93.041891
iter 30 value 85.254079
iter 40 value 85.218304
final value 85.218085
converged
Fitting Repeat 3
# weights: 305
initial value 94.681283
iter 10 value 94.048070
iter 20 value 94.035413
iter 30 value 93.774645
iter 40 value 91.272943
iter 50 value 82.844175
iter 60 value 81.601472
iter 70 value 80.598743
iter 80 value 79.949833
iter 90 value 79.791881
final value 79.791721
converged
Fitting Repeat 4
# weights: 305
initial value 97.387633
iter 10 value 94.047963
iter 20 value 93.060489
iter 30 value 85.231158
iter 40 value 84.094924
iter 50 value 84.084133
iter 60 value 83.967533
iter 70 value 83.963669
iter 80 value 82.374437
iter 90 value 82.178185
iter 100 value 82.175400
final value 82.175400
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.271661
iter 10 value 94.030194
iter 20 value 94.025936
iter 30 value 93.938915
iter 40 value 91.189245
iter 50 value 83.270013
iter 60 value 83.244634
iter 70 value 83.244410
iter 80 value 82.497290
iter 90 value 79.775421
iter 100 value 79.119841
final value 79.119841
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 120.065193
iter 10 value 94.051965
iter 20 value 94.051558
iter 30 value 94.019428
iter 40 value 90.615016
iter 50 value 85.462038
iter 60 value 85.461233
iter 70 value 85.461181
iter 80 value 84.790244
iter 90 value 82.179623
iter 100 value 82.148232
final value 82.148232
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.690019
iter 10 value 94.060056
iter 20 value 93.824402
iter 30 value 88.032494
iter 40 value 85.551582
iter 50 value 85.510534
iter 60 value 85.508604
iter 70 value 85.507922
iter 80 value 85.460582
final value 85.460544
converged
Fitting Repeat 3
# weights: 507
initial value 105.050468
iter 10 value 86.718173
iter 20 value 84.684163
iter 30 value 84.664307
iter 40 value 82.107974
iter 50 value 82.102918
iter 60 value 82.080723
iter 70 value 82.026304
final value 82.023387
converged
Fitting Repeat 4
# weights: 507
initial value 105.448307
iter 10 value 94.063228
iter 20 value 94.060495
iter 30 value 94.051155
iter 40 value 94.050531
iter 50 value 94.043584
iter 60 value 83.239077
iter 70 value 82.266871
iter 80 value 82.266163
iter 90 value 82.100202
iter 100 value 81.010287
final value 81.010287
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.183609
iter 10 value 94.060693
iter 20 value 94.046463
iter 30 value 84.812337
iter 40 value 82.970361
iter 50 value 80.214183
iter 60 value 80.113783
final value 80.113771
converged
Fitting Repeat 1
# weights: 103
initial value 103.209417
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.277791
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 94.548834
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 100.637710
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 110.941350
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 101.030664
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 105.112277
iter 10 value 91.728958
iter 20 value 91.577732
final value 91.576614
converged
Fitting Repeat 3
# weights: 305
initial value 98.731091
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 101.598589
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 98.029917
final value 94.354396
converged
Fitting Repeat 1
# weights: 507
initial value 103.259696
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 121.229082
final value 94.354396
converged
Fitting Repeat 3
# weights: 507
initial value 100.278792
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 116.320885
iter 10 value 94.427726
iter 10 value 94.427726
iter 10 value 94.427726
final value 94.427726
converged
Fitting Repeat 5
# weights: 507
initial value 128.642663
final value 94.354396
converged
Fitting Repeat 1
# weights: 103
initial value 102.089684
iter 10 value 94.259227
iter 20 value 92.087778
iter 30 value 87.481189
iter 40 value 86.677490
iter 50 value 85.788402
iter 60 value 85.328264
iter 70 value 83.387481
iter 80 value 82.002930
final value 82.002364
converged
Fitting Repeat 2
# weights: 103
initial value 97.690193
iter 10 value 94.403195
iter 20 value 94.067997
iter 30 value 93.902519
iter 40 value 93.409940
iter 50 value 86.731243
iter 60 value 86.302985
iter 70 value 84.497928
iter 80 value 83.316199
iter 90 value 82.896843
iter 100 value 82.357692
final value 82.357692
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.440270
iter 10 value 94.519729
iter 20 value 94.441060
iter 30 value 91.046597
iter 40 value 86.567286
iter 50 value 86.225057
iter 60 value 85.922285
iter 70 value 85.331100
iter 80 value 84.484482
iter 90 value 82.734089
iter 100 value 82.007796
final value 82.007796
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.559144
iter 10 value 94.443209
iter 20 value 86.954657
iter 30 value 86.263703
iter 40 value 84.737393
iter 50 value 83.369941
iter 60 value 82.578267
iter 70 value 82.151721
iter 80 value 82.004337
final value 82.002364
converged
Fitting Repeat 5
# weights: 103
initial value 102.531046
iter 10 value 94.476622
iter 20 value 87.537593
iter 30 value 86.846743
iter 40 value 86.214557
iter 50 value 85.536629
iter 60 value 84.011120
iter 70 value 83.328159
iter 80 value 83.316230
iter 80 value 83.316229
final value 83.316229
converged
Fitting Repeat 1
# weights: 305
initial value 99.266312
iter 10 value 93.719719
iter 20 value 89.985365
iter 30 value 87.627390
iter 40 value 84.995946
iter 50 value 83.555624
iter 60 value 82.606498
iter 70 value 81.289486
iter 80 value 80.799751
iter 90 value 80.729465
iter 100 value 80.675998
final value 80.675998
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.209872
iter 10 value 94.346843
iter 20 value 93.232564
iter 30 value 89.936243
iter 40 value 89.375612
iter 50 value 85.165343
iter 60 value 82.979166
iter 70 value 82.038336
iter 80 value 81.938671
iter 90 value 81.370407
iter 100 value 81.227663
final value 81.227663
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.906092
iter 10 value 94.499883
iter 20 value 87.923012
iter 30 value 85.955167
iter 40 value 83.378440
iter 50 value 83.260617
iter 60 value 83.229612
iter 70 value 82.733778
iter 80 value 81.369831
iter 90 value 80.778965
iter 100 value 80.655748
final value 80.655748
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.690522
iter 10 value 94.435340
iter 20 value 94.008690
iter 30 value 93.888067
iter 40 value 92.514903
iter 50 value 86.271741
iter 60 value 85.746401
iter 70 value 85.187020
iter 80 value 84.073925
iter 90 value 83.308711
iter 100 value 81.712105
final value 81.712105
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.616393
iter 10 value 94.499189
iter 20 value 93.701278
iter 30 value 86.424650
iter 40 value 84.641570
iter 50 value 83.302937
iter 60 value 82.617560
iter 70 value 81.478337
iter 80 value 80.844475
iter 90 value 80.648514
iter 100 value 80.521565
final value 80.521565
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.851049
iter 10 value 94.536978
iter 20 value 91.107365
iter 30 value 90.655690
iter 40 value 88.159124
iter 50 value 84.780935
iter 60 value 82.856324
iter 70 value 81.158561
iter 80 value 80.626240
iter 90 value 80.541520
iter 100 value 80.386227
final value 80.386227
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 118.918757
iter 10 value 94.545145
iter 20 value 91.909643
iter 30 value 88.323998
iter 40 value 87.393692
iter 50 value 84.338745
iter 60 value 82.598224
iter 70 value 82.016402
iter 80 value 80.988340
iter 90 value 80.606407
iter 100 value 80.431408
final value 80.431408
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.240533
iter 10 value 93.951273
iter 20 value 88.310154
iter 30 value 87.209962
iter 40 value 86.523903
iter 50 value 85.800057
iter 60 value 85.684393
iter 70 value 83.849360
iter 80 value 82.775960
iter 90 value 81.314559
iter 100 value 81.213201
final value 81.213201
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.812223
iter 10 value 94.464491
iter 20 value 94.043260
iter 30 value 90.284232
iter 40 value 88.891603
iter 50 value 88.260833
iter 60 value 87.068322
iter 70 value 82.415292
iter 80 value 81.192977
iter 90 value 80.868025
iter 100 value 80.396692
final value 80.396692
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 120.797855
iter 10 value 94.788431
iter 20 value 90.390243
iter 30 value 85.683453
iter 40 value 83.160828
iter 50 value 81.276681
iter 60 value 80.751450
iter 70 value 80.652712
iter 80 value 80.597199
iter 90 value 80.543762
iter 100 value 80.424222
final value 80.424222
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.686354
final value 94.356076
converged
Fitting Repeat 2
# weights: 103
initial value 97.442200
final value 94.485655
converged
Fitting Repeat 3
# weights: 103
initial value 96.974980
final value 94.489020
converged
Fitting Repeat 4
# weights: 103
initial value 99.382919
final value 94.485780
converged
Fitting Repeat 5
# weights: 103
initial value 112.156003
final value 94.485977
converged
Fitting Repeat 1
# weights: 305
initial value 110.099547
iter 10 value 94.359359
iter 20 value 94.355359
iter 30 value 88.575801
iter 40 value 85.396103
iter 50 value 84.995490
iter 60 value 82.807121
iter 70 value 82.793062
final value 82.792923
converged
Fitting Repeat 2
# weights: 305
initial value 98.426463
iter 10 value 94.432633
iter 20 value 94.347798
iter 30 value 94.112762
iter 40 value 88.895753
iter 50 value 85.251265
iter 60 value 85.016454
iter 70 value 84.942151
iter 80 value 83.692212
iter 90 value 79.610526
iter 100 value 79.372611
final value 79.372611
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.604974
iter 10 value 94.489142
iter 20 value 94.403597
iter 30 value 91.432953
iter 40 value 91.251794
iter 50 value 91.251631
iter 60 value 91.250544
iter 70 value 91.207956
iter 80 value 87.472045
iter 90 value 86.016975
iter 100 value 85.983538
final value 85.983538
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 95.476790
iter 10 value 94.487901
iter 20 value 86.334640
iter 30 value 86.028256
iter 40 value 85.670680
iter 50 value 85.647961
iter 60 value 85.647615
final value 85.647505
converged
Fitting Repeat 5
# weights: 305
initial value 99.710496
iter 10 value 94.487270
iter 20 value 94.354530
final value 94.354458
converged
Fitting Repeat 1
# weights: 507
initial value 113.677558
iter 10 value 94.492425
iter 20 value 94.484330
iter 30 value 93.155470
iter 40 value 87.256458
iter 50 value 81.906869
iter 60 value 79.616133
iter 70 value 79.349215
iter 80 value 79.275442
iter 90 value 79.274238
iter 100 value 79.268816
final value 79.268816
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 114.550906
iter 10 value 86.890275
iter 20 value 86.170415
iter 30 value 85.394544
iter 40 value 85.389654
iter 50 value 85.303339
iter 60 value 85.169445
iter 70 value 83.922740
iter 80 value 83.224196
iter 90 value 83.017785
iter 100 value 82.660555
final value 82.660555
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.661976
iter 10 value 94.463318
iter 20 value 93.817942
final value 93.816068
converged
Fitting Repeat 4
# weights: 507
initial value 107.445455
iter 10 value 94.361509
iter 20 value 94.358906
iter 20 value 94.358906
iter 20 value 94.358906
final value 94.358906
converged
Fitting Repeat 5
# weights: 507
initial value 105.399701
iter 10 value 94.344734
iter 20 value 94.340415
iter 30 value 94.336811
iter 40 value 93.687554
iter 50 value 84.313034
iter 60 value 83.189312
iter 70 value 82.971257
iter 80 value 80.138723
iter 90 value 79.986395
iter 100 value 79.962591
final value 79.962591
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.991612
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 100.886574
final value 94.354396
converged
Fitting Repeat 3
# weights: 103
initial value 97.438329
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.961487
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.826129
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 109.750795
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 103.440791
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 117.749631
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 95.191256
iter 10 value 89.583653
iter 20 value 87.034078
iter 30 value 87.016052
iter 40 value 86.273167
iter 50 value 85.887476
iter 60 value 84.369286
iter 70 value 84.305965
final value 84.305871
converged
Fitting Repeat 5
# weights: 305
initial value 99.196265
final value 94.354396
converged
Fitting Repeat 1
# weights: 507
initial value 94.625396
iter 10 value 87.090818
iter 20 value 86.736450
final value 86.602485
converged
Fitting Repeat 2
# weights: 507
initial value 102.894485
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 104.636820
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 106.984536
final value 94.354396
converged
Fitting Repeat 5
# weights: 507
initial value 101.978819
iter 10 value 94.291841
iter 20 value 94.288575
final value 94.288571
converged
Fitting Repeat 1
# weights: 103
initial value 104.698457
iter 10 value 94.486769
iter 20 value 94.212198
iter 30 value 88.961942
iter 40 value 87.909298
iter 50 value 86.337841
iter 60 value 85.103704
iter 70 value 84.015232
iter 80 value 83.893342
iter 90 value 83.878846
final value 83.878706
converged
Fitting Repeat 2
# weights: 103
initial value 97.111676
iter 10 value 94.657351
iter 20 value 94.426218
iter 30 value 94.097108
iter 40 value 89.046546
iter 50 value 86.238941
iter 60 value 84.717712
iter 70 value 84.490422
iter 80 value 84.151675
iter 90 value 83.967720
iter 100 value 83.883126
final value 83.883126
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.703265
iter 10 value 94.426405
iter 20 value 89.103884
iter 30 value 87.304631
iter 40 value 86.201098
iter 50 value 86.060976
iter 60 value 84.781636
iter 70 value 84.423893
iter 80 value 84.084961
iter 90 value 83.879378
final value 83.878706
converged
Fitting Repeat 4
# weights: 103
initial value 100.667857
iter 10 value 94.517688
iter 20 value 94.467068
iter 30 value 93.495109
iter 40 value 88.624276
iter 50 value 88.237253
iter 60 value 87.781953
iter 70 value 85.467833
iter 80 value 84.211848
iter 90 value 83.973388
iter 100 value 83.884009
final value 83.884009
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 102.220758
iter 10 value 94.477238
iter 20 value 88.679791
iter 30 value 86.618083
iter 40 value 86.180082
iter 50 value 85.855726
iter 60 value 85.718107
iter 70 value 85.698057
final value 85.698055
converged
Fitting Repeat 1
# weights: 305
initial value 108.888847
iter 10 value 94.462131
iter 20 value 89.148711
iter 30 value 86.722159
iter 40 value 86.141881
iter 50 value 83.917748
iter 60 value 83.739118
iter 70 value 83.429383
iter 80 value 83.144808
iter 90 value 82.874369
iter 100 value 82.854292
final value 82.854292
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.834855
iter 10 value 94.700814
iter 20 value 93.461872
iter 30 value 86.767838
iter 40 value 86.386227
iter 50 value 85.785130
iter 60 value 84.591177
iter 70 value 83.816768
iter 80 value 83.562003
iter 90 value 83.491624
iter 100 value 83.305753
final value 83.305753
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.048534
iter 10 value 95.172695
iter 20 value 88.024661
iter 30 value 87.795843
iter 40 value 84.385328
iter 50 value 83.768661
iter 60 value 83.542781
iter 70 value 83.157186
iter 80 value 82.828179
iter 90 value 82.750564
iter 100 value 82.666264
final value 82.666264
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 111.067243
iter 10 value 94.590184
iter 20 value 92.683484
iter 30 value 91.820252
iter 40 value 88.021186
iter 50 value 86.215278
iter 60 value 85.045491
iter 70 value 83.710242
iter 80 value 83.529850
iter 90 value 83.414463
iter 100 value 83.280421
final value 83.280421
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.170500
iter 10 value 94.615901
iter 20 value 92.286302
iter 30 value 86.491923
iter 40 value 85.925311
iter 50 value 84.435886
iter 60 value 83.660967
iter 70 value 83.499483
iter 80 value 83.288187
iter 90 value 83.141483
iter 100 value 82.998787
final value 82.998787
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.683221
iter 10 value 98.702310
iter 20 value 97.120034
iter 30 value 94.383770
iter 40 value 91.785832
iter 50 value 90.142251
iter 60 value 85.876085
iter 70 value 85.063475
iter 80 value 82.983810
iter 90 value 82.654130
iter 100 value 82.597937
final value 82.597937
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.806253
iter 10 value 95.085018
iter 20 value 88.763493
iter 30 value 86.897422
iter 40 value 86.030648
iter 50 value 85.555820
iter 60 value 84.943307
iter 70 value 83.622219
iter 80 value 83.361627
iter 90 value 83.189863
iter 100 value 82.996012
final value 82.996012
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 112.232355
iter 10 value 96.650662
iter 20 value 91.426931
iter 30 value 90.153546
iter 40 value 88.334831
iter 50 value 85.963486
iter 60 value 84.847288
iter 70 value 83.932790
iter 80 value 83.743017
iter 90 value 83.629397
iter 100 value 83.529091
final value 83.529091
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.247814
iter 10 value 96.031314
iter 20 value 91.674397
iter 30 value 87.811390
iter 40 value 85.564822
iter 50 value 85.209563
iter 60 value 83.779522
iter 70 value 83.327072
iter 80 value 83.172590
iter 90 value 83.124125
iter 100 value 83.048683
final value 83.048683
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 115.794041
iter 10 value 94.186854
iter 20 value 87.757862
iter 30 value 86.738903
iter 40 value 86.355135
iter 50 value 86.123574
iter 60 value 86.087533
iter 70 value 86.033525
iter 80 value 84.880302
iter 90 value 84.629539
iter 100 value 84.485747
final value 84.485747
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.585346
final value 94.486081
converged
Fitting Repeat 2
# weights: 103
initial value 98.543426
final value 94.485674
converged
Fitting Repeat 3
# weights: 103
initial value 97.707205
final value 94.486024
converged
Fitting Repeat 4
# weights: 103
initial value 95.409019
final value 94.485853
converged
Fitting Repeat 5
# weights: 103
initial value 95.490426
iter 10 value 94.356171
iter 20 value 94.354508
iter 30 value 86.983852
iter 40 value 86.287762
final value 86.265936
converged
Fitting Repeat 1
# weights: 305
initial value 102.075762
iter 10 value 94.359240
iter 20 value 93.486887
iter 30 value 86.747518
iter 40 value 86.213586
iter 50 value 86.077903
final value 86.077897
converged
Fitting Repeat 2
# weights: 305
initial value 101.889754
iter 10 value 93.652083
iter 20 value 92.868203
iter 30 value 92.863389
iter 40 value 87.625164
iter 50 value 87.443337
iter 60 value 87.376248
iter 70 value 86.263849
iter 80 value 85.513898
iter 90 value 85.443194
final value 85.442794
converged
Fitting Repeat 3
# weights: 305
initial value 95.823793
iter 10 value 94.358986
iter 20 value 93.825428
iter 30 value 86.132552
iter 40 value 85.585138
iter 50 value 85.322121
iter 60 value 85.000511
iter 70 value 84.998387
iter 80 value 84.967328
iter 90 value 83.636668
iter 100 value 83.252263
final value 83.252263
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 98.749647
iter 10 value 94.359793
iter 20 value 94.332715
iter 30 value 94.054233
iter 40 value 90.529965
iter 50 value 87.383008
iter 60 value 85.677821
final value 85.663868
converged
Fitting Repeat 5
# weights: 305
initial value 101.312948
iter 10 value 94.490073
iter 20 value 94.484925
iter 30 value 93.637845
iter 40 value 87.306719
iter 50 value 87.102977
iter 60 value 85.361139
iter 70 value 85.301847
iter 80 value 85.107682
iter 90 value 85.028360
iter 100 value 85.006335
final value 85.006335
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 99.532137
iter 10 value 94.362198
iter 20 value 94.354990
final value 94.354914
converged
Fitting Repeat 2
# weights: 507
initial value 107.063286
iter 10 value 92.853078
iter 20 value 92.842111
iter 30 value 84.571138
iter 40 value 83.760539
iter 50 value 83.753558
iter 60 value 83.747389
iter 70 value 83.740141
final value 83.739723
converged
Fitting Repeat 3
# weights: 507
initial value 112.535785
iter 10 value 94.362091
iter 20 value 94.048656
iter 30 value 86.194257
iter 40 value 85.747684
iter 50 value 85.601580
iter 60 value 85.411274
final value 85.411053
converged
Fitting Repeat 4
# weights: 507
initial value 113.040064
iter 10 value 94.492058
iter 20 value 94.180573
iter 30 value 86.560122
iter 40 value 85.689582
iter 50 value 85.454743
iter 60 value 85.355703
iter 70 value 85.309081
final value 85.307894
converged
Fitting Repeat 5
# weights: 507
initial value 96.655082
iter 10 value 94.362614
iter 20 value 92.472126
iter 30 value 86.226398
iter 40 value 85.695657
iter 50 value 85.644847
iter 60 value 85.631141
iter 70 value 85.383423
iter 80 value 84.048312
iter 90 value 83.965017
iter 100 value 83.963786
final value 83.963786
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.877456
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 104.346384
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.635444
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 106.396486
final value 94.484208
converged
Fitting Repeat 5
# weights: 103
initial value 103.634151
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 100.527139
iter 10 value 94.484212
final value 94.484210
converged
Fitting Repeat 2
# weights: 305
initial value 96.006902
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 98.444264
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 94.669186
final value 94.026542
converged
Fitting Repeat 5
# weights: 305
initial value 97.963598
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 102.184817
iter 10 value 93.822256
final value 93.809646
converged
Fitting Repeat 2
# weights: 507
initial value 106.822517
final value 94.026542
converged
Fitting Repeat 3
# weights: 507
initial value 105.005099
final value 94.026542
converged
Fitting Repeat 4
# weights: 507
initial value 118.966567
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 104.480256
iter 10 value 94.275982
final value 94.275362
converged
Fitting Repeat 1
# weights: 103
initial value 108.484701
iter 10 value 94.386756
iter 20 value 94.065340
iter 30 value 93.854288
iter 40 value 90.065728
iter 50 value 88.869337
iter 60 value 87.881079
iter 70 value 86.883743
iter 80 value 82.119059
iter 90 value 82.035561
iter 100 value 81.748144
final value 81.748144
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 106.367403
iter 10 value 93.331543
iter 20 value 85.929957
iter 30 value 85.022995
iter 40 value 84.899099
iter 50 value 84.858891
final value 84.858838
converged
Fitting Repeat 3
# weights: 103
initial value 104.434536
iter 10 value 94.396491
iter 20 value 88.114277
iter 30 value 86.538282
iter 40 value 85.512187
iter 50 value 83.921756
iter 60 value 83.586882
iter 70 value 83.446944
iter 80 value 83.382226
final value 83.381997
converged
Fitting Repeat 4
# weights: 103
initial value 96.284271
iter 10 value 94.487258
iter 20 value 90.824111
iter 30 value 90.363803
iter 40 value 90.321579
iter 50 value 90.311267
iter 50 value 90.311266
iter 50 value 90.311266
final value 90.311266
converged
Fitting Repeat 5
# weights: 103
initial value 108.522401
iter 10 value 94.471688
iter 20 value 91.552640
iter 30 value 90.384149
iter 40 value 90.343371
iter 50 value 90.313027
final value 90.311266
converged
Fitting Repeat 1
# weights: 305
initial value 108.748626
iter 10 value 94.453828
iter 20 value 91.870754
iter 30 value 87.279467
iter 40 value 86.999045
iter 50 value 85.567273
iter 60 value 84.499221
iter 70 value 82.016406
iter 80 value 80.956141
iter 90 value 80.806444
iter 100 value 80.583066
final value 80.583066
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.424465
iter 10 value 94.525186
iter 20 value 94.485765
iter 30 value 93.949691
iter 40 value 93.882621
iter 50 value 86.709147
iter 60 value 84.174813
iter 70 value 82.536866
iter 80 value 81.463281
iter 90 value 81.045027
iter 100 value 80.121086
final value 80.121086
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.532617
iter 10 value 91.867167
iter 20 value 87.392801
iter 30 value 86.579021
iter 40 value 84.913467
iter 50 value 82.326177
iter 60 value 81.241859
iter 70 value 80.408819
iter 80 value 80.333829
iter 90 value 80.268667
iter 100 value 80.187758
final value 80.187758
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 118.622480
iter 10 value 94.654098
iter 20 value 94.230612
iter 30 value 93.929475
iter 40 value 93.817083
iter 50 value 92.917489
iter 60 value 88.436512
iter 70 value 85.491368
iter 80 value 83.642759
iter 90 value 82.977434
iter 100 value 82.842179
final value 82.842179
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.194434
iter 10 value 94.666041
iter 20 value 94.508546
iter 30 value 93.720959
iter 40 value 86.752232
iter 50 value 85.986145
iter 60 value 85.416798
iter 70 value 83.232773
iter 80 value 81.409556
iter 90 value 80.908865
iter 100 value 80.777300
final value 80.777300
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 120.044479
iter 10 value 99.924502
iter 20 value 96.387545
iter 30 value 89.338775
iter 40 value 87.960136
iter 50 value 86.959840
iter 60 value 86.302973
iter 70 value 82.886395
iter 80 value 81.212868
iter 90 value 80.547886
iter 100 value 80.387890
final value 80.387890
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 118.610882
iter 10 value 97.219877
iter 20 value 90.811816
iter 30 value 88.843739
iter 40 value 86.905669
iter 50 value 86.216990
iter 60 value 85.505490
iter 70 value 84.172864
iter 80 value 82.488969
iter 90 value 82.235120
iter 100 value 81.821650
final value 81.821650
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.143085
iter 10 value 94.426251
iter 20 value 89.421143
iter 30 value 83.214444
iter 40 value 82.184458
iter 50 value 81.791586
iter 60 value 81.720837
iter 70 value 81.702218
iter 80 value 81.155720
iter 90 value 80.530797
iter 100 value 80.183441
final value 80.183441
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.764951
iter 10 value 94.578615
iter 20 value 90.386638
iter 30 value 90.060703
iter 40 value 88.785783
iter 50 value 87.708782
iter 60 value 84.151058
iter 70 value 83.275240
iter 80 value 82.948586
iter 90 value 82.831132
iter 100 value 82.389173
final value 82.389173
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 113.000416
iter 10 value 94.850252
iter 20 value 92.968156
iter 30 value 89.019817
iter 40 value 86.642775
iter 50 value 83.725881
iter 60 value 83.376276
iter 70 value 82.758629
iter 80 value 82.481666
iter 90 value 82.363467
iter 100 value 82.123319
final value 82.123319
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.719367
final value 94.486119
converged
Fitting Repeat 2
# weights: 103
initial value 96.728399
final value 94.485744
converged
Fitting Repeat 3
# weights: 103
initial value 101.645103
iter 10 value 94.485770
iter 20 value 94.484207
iter 20 value 94.484207
final value 94.484207
converged
Fitting Repeat 4
# weights: 103
initial value 96.295753
final value 94.485640
converged
Fitting Repeat 5
# weights: 103
initial value 99.521274
final value 94.485937
converged
Fitting Repeat 1
# weights: 305
initial value 104.469992
iter 10 value 94.488908
iter 20 value 94.484127
iter 20 value 94.484127
final value 94.026710
converged
Fitting Repeat 2
# weights: 305
initial value 105.505944
iter 10 value 93.815000
iter 20 value 93.741703
iter 30 value 93.619632
iter 40 value 88.360533
iter 50 value 80.890674
iter 60 value 80.664643
iter 70 value 80.359163
iter 80 value 79.977209
iter 90 value 79.780808
iter 100 value 79.780225
final value 79.780225
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 97.130020
iter 10 value 92.370316
iter 20 value 89.844062
iter 30 value 88.956774
iter 40 value 87.291055
iter 50 value 87.289602
iter 60 value 87.042792
iter 70 value 86.141050
iter 80 value 85.527846
iter 90 value 82.508630
iter 100 value 80.831072
final value 80.831072
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 97.065311
iter 10 value 94.488972
iter 20 value 94.484302
iter 30 value 94.405810
iter 40 value 86.776136
iter 50 value 86.543590
iter 60 value 85.591036
iter 70 value 80.638607
iter 80 value 80.229874
iter 90 value 79.935805
iter 100 value 79.897908
final value 79.897908
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 111.514274
iter 10 value 94.489150
iter 20 value 94.484440
iter 30 value 94.431547
iter 40 value 88.099047
iter 50 value 86.223350
iter 60 value 85.084129
iter 70 value 84.985386
iter 80 value 84.630787
iter 90 value 84.495538
final value 84.494976
converged
Fitting Repeat 1
# weights: 507
initial value 112.559574
iter 10 value 94.492387
iter 20 value 94.304536
iter 30 value 92.455265
iter 40 value 91.642321
iter 50 value 91.633901
iter 60 value 91.240073
iter 70 value 91.067913
iter 80 value 91.060576
final value 91.060506
converged
Fitting Repeat 2
# weights: 507
initial value 108.440267
iter 10 value 94.375469
iter 20 value 94.034281
iter 30 value 94.028773
iter 40 value 88.603209
iter 50 value 87.069228
iter 60 value 86.361885
iter 70 value 83.839813
iter 80 value 83.830231
iter 90 value 83.829016
iter 100 value 83.826531
final value 83.826531
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 95.330736
iter 10 value 87.039565
iter 20 value 87.022404
iter 30 value 87.015430
iter 40 value 86.568345
iter 50 value 85.909222
iter 60 value 82.434681
iter 70 value 80.970332
iter 80 value 80.399261
iter 90 value 79.990515
iter 100 value 79.614067
final value 79.614067
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 99.807606
iter 10 value 94.035008
iter 20 value 94.027857
iter 30 value 91.580098
iter 40 value 84.078725
iter 50 value 84.077942
iter 60 value 84.070774
final value 84.070676
converged
Fitting Repeat 5
# weights: 507
initial value 102.598938
iter 10 value 94.484955
iter 20 value 86.355147
iter 30 value 85.401140
iter 40 value 85.343512
iter 40 value 85.343511
iter 40 value 85.343511
final value 85.343511
converged
Fitting Repeat 1
# weights: 103
initial value 96.038734
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.217756
iter 10 value 89.307402
iter 20 value 88.914846
iter 30 value 88.869395
final value 88.869060
converged
Fitting Repeat 3
# weights: 103
initial value 96.222480
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 94.766391
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 97.635859
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 101.265336
final value 93.869755
converged
Fitting Repeat 2
# weights: 305
initial value 96.636794
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 103.724697
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 96.691225
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 100.715954
final value 94.008696
converged
Fitting Repeat 1
# weights: 507
initial value 97.262271
iter 10 value 93.729737
iter 20 value 93.714427
iter 30 value 93.628113
iter 40 value 93.591493
iter 50 value 93.591288
final value 93.591274
converged
Fitting Repeat 2
# weights: 507
initial value 117.631776
iter 10 value 94.008698
final value 94.008696
converged
Fitting Repeat 3
# weights: 507
initial value 101.374332
final value 94.052911
converged
Fitting Repeat 4
# weights: 507
initial value 96.343478
final value 93.817004
converged
Fitting Repeat 5
# weights: 507
initial value 127.833169
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 100.895966
iter 10 value 94.076028
iter 20 value 94.022540
iter 30 value 90.019995
iter 40 value 85.401669
iter 50 value 82.144935
iter 60 value 81.129492
iter 70 value 80.900941
iter 80 value 78.575369
iter 90 value 78.394597
iter 100 value 78.316659
final value 78.316659
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.070480
iter 10 value 94.133717
iter 20 value 93.977896
iter 30 value 93.874933
iter 40 value 85.301149
iter 50 value 82.505289
iter 60 value 82.382729
iter 70 value 82.298506
iter 80 value 81.625626
iter 90 value 80.374417
iter 100 value 79.512014
final value 79.512014
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 95.845547
iter 10 value 94.059062
iter 20 value 94.054816
iter 30 value 87.166821
iter 40 value 85.583938
iter 50 value 83.587601
iter 60 value 82.233903
iter 70 value 81.603401
iter 80 value 81.589669
final value 81.589075
converged
Fitting Repeat 4
# weights: 103
initial value 112.394877
iter 10 value 93.814846
iter 20 value 86.637342
iter 30 value 85.094938
iter 40 value 83.056519
iter 50 value 82.672409
iter 60 value 82.585186
iter 70 value 82.231507
iter 80 value 82.060476
iter 90 value 82.039476
final value 82.038412
converged
Fitting Repeat 5
# weights: 103
initial value 98.692852
iter 10 value 94.057001
iter 20 value 93.885801
iter 30 value 93.847696
iter 40 value 93.844197
iter 50 value 92.396560
iter 60 value 84.107362
iter 70 value 83.141015
iter 80 value 82.709905
iter 90 value 82.563423
iter 100 value 82.557717
final value 82.557717
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 110.765504
iter 10 value 94.055504
iter 20 value 85.163619
iter 30 value 82.797555
iter 40 value 81.957043
iter 50 value 81.874967
iter 60 value 81.697593
iter 70 value 81.197721
iter 80 value 80.935270
iter 90 value 80.920750
iter 100 value 80.690787
final value 80.690787
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.568219
iter 10 value 94.153209
iter 20 value 93.865355
iter 30 value 93.576960
iter 40 value 85.320388
iter 50 value 84.261435
iter 60 value 83.136548
iter 70 value 82.390543
iter 80 value 82.208257
iter 90 value 81.957474
iter 100 value 81.206739
final value 81.206739
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.798636
iter 10 value 94.080825
iter 20 value 91.598190
iter 30 value 86.407856
iter 40 value 82.702703
iter 50 value 81.556731
iter 60 value 79.813088
iter 70 value 77.999134
iter 80 value 76.852346
iter 90 value 76.750731
iter 100 value 76.651647
final value 76.651647
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.232043
iter 10 value 94.487406
iter 20 value 93.924321
iter 30 value 88.353670
iter 40 value 82.851425
iter 50 value 80.597950
iter 60 value 80.168320
iter 70 value 79.502641
iter 80 value 78.704344
iter 90 value 78.139501
iter 100 value 78.004205
final value 78.004205
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.996700
iter 10 value 93.956800
iter 20 value 91.608019
iter 30 value 90.623807
iter 40 value 85.195102
iter 50 value 84.612442
iter 60 value 81.704497
iter 70 value 79.390742
iter 80 value 78.537816
iter 90 value 77.812532
iter 100 value 77.497566
final value 77.497566
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 129.841849
iter 10 value 94.700166
iter 20 value 88.026121
iter 30 value 85.176847
iter 40 value 82.621292
iter 50 value 80.298339
iter 60 value 79.757679
iter 70 value 78.680641
iter 80 value 77.353550
iter 90 value 77.002679
iter 100 value 76.655162
final value 76.655162
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.831214
iter 10 value 94.077954
iter 20 value 93.555049
iter 30 value 87.237616
iter 40 value 86.085947
iter 50 value 81.793975
iter 60 value 78.907630
iter 70 value 77.743798
iter 80 value 77.263727
iter 90 value 76.948919
iter 100 value 76.752435
final value 76.752435
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.926406
iter 10 value 95.714817
iter 20 value 92.400619
iter 30 value 87.727968
iter 40 value 86.633174
iter 50 value 85.776621
iter 60 value 81.246511
iter 70 value 80.429789
iter 80 value 80.303616
iter 90 value 80.145335
iter 100 value 79.994846
final value 79.994846
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.474859
iter 10 value 93.410661
iter 20 value 88.016443
iter 30 value 83.679879
iter 40 value 83.324406
iter 50 value 81.787605
iter 60 value 78.995364
iter 70 value 78.184235
iter 80 value 77.980198
iter 90 value 77.582362
iter 100 value 77.388478
final value 77.388478
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 111.965039
iter 10 value 95.280210
iter 20 value 91.304077
iter 30 value 85.288253
iter 40 value 82.044388
iter 50 value 80.151717
iter 60 value 79.607729
iter 70 value 79.331188
iter 80 value 78.108040
iter 90 value 77.467689
iter 100 value 77.330789
final value 77.330789
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.184596
final value 94.054591
converged
Fitting Repeat 2
# weights: 103
initial value 101.076302
final value 94.054393
converged
Fitting Repeat 3
# weights: 103
initial value 96.580788
iter 10 value 91.579873
iter 20 value 84.654726
iter 30 value 82.826249
iter 40 value 81.694919
iter 50 value 81.660450
iter 60 value 81.659748
final value 81.659670
converged
Fitting Repeat 4
# weights: 103
initial value 98.666666
final value 94.054371
converged
Fitting Repeat 5
# weights: 103
initial value 96.908228
iter 10 value 88.554040
iter 20 value 85.272531
iter 30 value 85.271937
iter 40 value 84.570770
iter 50 value 84.454450
iter 60 value 84.164721
iter 70 value 83.943696
final value 83.943674
converged
Fitting Repeat 1
# weights: 305
initial value 99.283349
iter 10 value 94.057317
iter 20 value 94.023828
final value 93.725233
converged
Fitting Repeat 2
# weights: 305
initial value 103.976099
iter 10 value 94.057822
iter 20 value 93.921946
iter 30 value 84.218110
iter 40 value 83.853477
iter 50 value 83.851606
iter 60 value 83.850977
final value 83.850917
converged
Fitting Repeat 3
# weights: 305
initial value 98.048061
iter 10 value 94.057534
iter 20 value 94.052927
final value 94.052921
converged
Fitting Repeat 4
# weights: 305
initial value 98.008564
iter 10 value 92.861728
iter 20 value 90.491864
iter 30 value 82.658835
iter 40 value 79.325596
iter 50 value 76.206636
iter 60 value 75.470782
iter 70 value 75.427568
iter 80 value 75.301379
iter 90 value 75.289948
iter 100 value 75.289008
final value 75.289008
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.981207
iter 10 value 94.058057
iter 20 value 94.052450
iter 30 value 92.369004
iter 40 value 92.327140
iter 50 value 91.691405
iter 60 value 91.649603
iter 70 value 91.477250
iter 80 value 86.729346
iter 90 value 86.699921
iter 100 value 85.980994
final value 85.980994
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 101.080013
iter 10 value 93.997407
iter 20 value 93.985362
final value 93.984954
converged
Fitting Repeat 2
# weights: 507
initial value 95.052493
iter 10 value 94.024593
iter 20 value 94.013237
iter 30 value 93.962565
iter 40 value 88.314071
iter 50 value 81.856884
iter 60 value 81.780023
iter 70 value 81.702555
iter 80 value 81.183815
iter 90 value 80.767505
iter 100 value 80.663674
final value 80.663674
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 100.183093
iter 10 value 93.799113
iter 20 value 93.796428
iter 30 value 85.200093
iter 40 value 84.132445
iter 50 value 84.069910
iter 60 value 83.928449
iter 70 value 83.834046
iter 80 value 83.833015
final value 83.830711
converged
Fitting Repeat 4
# weights: 507
initial value 99.390454
iter 10 value 94.060806
iter 20 value 93.785668
iter 30 value 84.127298
iter 40 value 84.061573
iter 50 value 84.060576
iter 50 value 84.060575
final value 84.060575
converged
Fitting Repeat 5
# weights: 507
initial value 96.048435
iter 10 value 85.077940
iter 20 value 80.781513
iter 30 value 78.505665
iter 40 value 78.250677
iter 50 value 78.221176
iter 60 value 78.220734
iter 70 value 78.216222
iter 80 value 78.214602
iter 90 value 76.377029
iter 100 value 76.290249
final value 76.290249
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 138.771694
iter 10 value 117.895243
iter 20 value 115.444518
iter 30 value 107.619779
iter 40 value 107.518124
iter 50 value 107.514769
final value 107.514725
converged
Fitting Repeat 2
# weights: 305
initial value 116.202872
iter 10 value 108.940384
iter 20 value 108.534876
iter 30 value 108.522198
final value 108.520777
converged
Fitting Repeat 3
# weights: 305
initial value 118.239706
iter 10 value 117.735394
iter 20 value 117.732694
iter 30 value 117.489784
iter 40 value 116.899692
iter 50 value 115.144705
iter 60 value 112.254227
iter 70 value 106.673951
iter 80 value 106.665149
iter 90 value 106.656498
iter 100 value 105.489999
final value 105.489999
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 121.060562
iter 10 value 117.881631
iter 20 value 117.735689
iter 30 value 117.221394
iter 40 value 115.259235
iter 50 value 114.915702
final value 114.915608
converged
Fitting Repeat 5
# weights: 305
initial value 122.521004
iter 10 value 117.684518
iter 20 value 113.824166
iter 30 value 105.059555
final value 105.055037
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Wed Oct 25 12:14:15 2023
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
54.405 1.762 87.765
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 38.488 | 0.794 | 39.358 | |
| FreqInteractors | 0.292 | 0.016 | 0.310 | |
| calculateAAC | 0.046 | 0.004 | 0.050 | |
| calculateAutocor | 0.720 | 0.024 | 0.749 | |
| calculateCTDC | 0.103 | 0.000 | 0.103 | |
| calculateCTDD | 0.895 | 0.000 | 0.897 | |
| calculateCTDT | 0.284 | 0.008 | 0.293 | |
| calculateCTriad | 0.480 | 0.040 | 0.521 | |
| calculateDC | 0.127 | 0.008 | 0.135 | |
| calculateF | 0.417 | 0.008 | 0.426 | |
| calculateKSAAP | 0.142 | 0.000 | 0.142 | |
| calculateQD_Sm | 2.358 | 0.036 | 2.399 | |
| calculateTC | 2.467 | 0.088 | 2.560 | |
| calculateTC_Sm | 0.301 | 0.004 | 0.305 | |
| corr_plot | 38.452 | 0.551 | 39.080 | |
| enrichfindP | 0.530 | 0.071 | 32.462 | |
| enrichfind_hp | 0.087 | 0.020 | 2.057 | |
| enrichplot | 0.350 | 0.008 | 0.358 | |
| filter_missing_values | 0.002 | 0.000 | 0.002 | |
| getFASTA | 0.096 | 0.032 | 16.044 | |
| getHPI | 0.000 | 0.002 | 0.001 | |
| get_negativePPI | 0.002 | 0.002 | 0.003 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.003 | 0.000 | 0.002 | |
| plotPPI | 0.082 | 0.016 | 0.099 | |
| pred_ensembel | 18.403 | 0.716 | 16.769 | |
| var_imp | 39.021 | 0.794 | 39.900 | |