| Back to Multiple platform build/check report for BioC 3.18: simplified long |
|
This page was generated on 2024-03-04 11:37:26 -0500 (Mon, 04 Mar 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.3.2 Patched (2023-11-13 r85521) -- "Eye Holes" | 4692 |
| palomino4 | Windows Server 2022 Datacenter | x64 | 4.3.2 (2023-10-31 ucrt) -- "Eye Holes" | 4445 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.3.2 Patched (2023-11-01 r85457) -- "Eye Holes" | 4466 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 974/2266 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.8.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.1 Ventura / arm64 | see weekly results here | ||||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.8.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.8.0.tar.gz |
| StartedAt: 2024-03-03 21:11:38 -0500 (Sun, 03 Mar 2024) |
| EndedAt: 2024-03-03 21:16:45 -0500 (Sun, 03 Mar 2024) |
| EllapsedTime: 306.7 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.8.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck’
* using R version 4.3.2 Patched (2023-11-01 r85457)
* using platform: x86_64-apple-darwin20 (64-bit)
* R was compiled by
Apple clang version 14.0.3 (clang-1403.0.22.14.1)
GNU Fortran (GCC) 12.2.0
* running under: macOS Monterey 12.7.1
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.8.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 35.914 1.963 38.427
FSmethod 35.134 1.970 37.786
corr_plot 35.034 1.939 37.406
pred_ensembel 14.158 0.616 10.794
enrichfindP 0.498 0.069 8.557
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/Users/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.3-x86_64/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.2 Patched (2023-11-01 r85457) -- "Eye Holes"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 101.953225
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 103.168879
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 113.369756
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.829594
iter 10 value 94.275371
final value 94.275362
converged
Fitting Repeat 5
# weights: 103
initial value 99.203484
final value 94.275362
converged
Fitting Repeat 1
# weights: 305
initial value 98.310289
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 116.451812
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 105.376902
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 104.761578
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 95.488279
final value 94.275362
converged
Fitting Repeat 1
# weights: 507
initial value 97.891767
iter 10 value 94.275367
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 99.896957
iter 10 value 94.483888
iter 20 value 94.300238
iter 30 value 94.249355
final value 94.247835
converged
Fitting Repeat 3
# weights: 507
initial value 97.432448
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 99.888434
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 99.128788
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 98.905082
iter 10 value 94.489425
iter 20 value 94.387029
iter 30 value 93.838350
iter 40 value 91.808451
iter 50 value 91.041276
iter 60 value 91.028790
final value 91.028436
converged
Fitting Repeat 2
# weights: 103
initial value 96.405332
iter 10 value 94.014822
iter 20 value 87.155751
iter 30 value 86.059131
iter 40 value 84.999091
iter 50 value 81.125022
iter 60 value 80.632701
iter 70 value 80.454261
iter 80 value 80.423634
iter 80 value 80.423634
final value 80.423634
converged
Fitting Repeat 3
# weights: 103
initial value 99.369663
iter 10 value 94.266901
iter 20 value 86.356027
iter 30 value 85.901876
iter 40 value 84.780803
iter 50 value 83.098026
iter 60 value 82.940298
iter 70 value 82.826999
final value 82.823642
converged
Fitting Repeat 4
# weights: 103
initial value 99.145738
iter 10 value 94.452355
iter 20 value 93.892777
iter 30 value 84.759929
iter 40 value 82.622382
iter 50 value 82.603726
iter 60 value 82.585652
iter 70 value 82.314748
iter 80 value 82.284124
final value 82.283126
converged
Fitting Repeat 5
# weights: 103
initial value 101.161228
iter 10 value 94.476993
iter 20 value 87.572606
iter 30 value 86.468337
iter 40 value 86.179352
iter 50 value 84.049186
iter 60 value 82.970550
iter 70 value 82.824360
final value 82.823642
converged
Fitting Repeat 1
# weights: 305
initial value 110.217545
iter 10 value 94.353876
iter 20 value 90.080006
iter 30 value 88.209349
iter 40 value 87.518924
iter 50 value 83.908460
iter 60 value 82.559407
iter 70 value 82.316447
iter 80 value 81.823745
iter 90 value 81.291426
iter 100 value 80.568174
final value 80.568174
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.598645
iter 10 value 94.913180
iter 20 value 94.694291
iter 30 value 89.859171
iter 40 value 86.907461
iter 50 value 83.457096
iter 60 value 83.202017
iter 70 value 82.690878
iter 80 value 82.272859
iter 90 value 80.274694
iter 100 value 79.634447
final value 79.634447
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 112.314303
iter 10 value 94.279140
iter 20 value 88.572462
iter 30 value 83.505589
iter 40 value 83.089681
iter 50 value 82.749285
iter 60 value 82.644851
iter 70 value 82.478356
iter 80 value 81.856817
iter 90 value 80.643598
iter 100 value 79.785705
final value 79.785705
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.224487
iter 10 value 94.660561
iter 20 value 87.172212
iter 30 value 86.368806
iter 40 value 86.124945
iter 50 value 85.742885
iter 60 value 84.651656
iter 70 value 82.745273
iter 80 value 81.822576
iter 90 value 80.439150
iter 100 value 79.821674
final value 79.821674
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.572840
iter 10 value 94.384301
iter 20 value 86.585071
iter 30 value 82.121913
iter 40 value 81.479301
iter 50 value 80.929335
iter 60 value 80.670195
iter 70 value 80.223824
iter 80 value 79.608188
iter 90 value 78.850095
iter 100 value 78.664579
final value 78.664579
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.642160
iter 10 value 94.087043
iter 20 value 86.585321
iter 30 value 83.091241
iter 40 value 82.376721
iter 50 value 81.380111
iter 60 value 81.036683
iter 70 value 79.818905
iter 80 value 79.223950
iter 90 value 78.986722
iter 100 value 78.954170
final value 78.954170
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 115.525046
iter 10 value 94.504801
iter 20 value 94.204277
iter 30 value 87.336585
iter 40 value 85.907201
iter 50 value 84.614665
iter 60 value 82.853468
iter 70 value 82.609114
iter 80 value 82.496723
iter 90 value 82.354207
iter 100 value 82.070661
final value 82.070661
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 118.756261
iter 10 value 94.787697
iter 20 value 94.343963
iter 30 value 93.227686
iter 40 value 86.301638
iter 50 value 82.240747
iter 60 value 81.151223
iter 70 value 80.811221
iter 80 value 80.101777
iter 90 value 79.358539
iter 100 value 78.856534
final value 78.856534
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 115.959755
iter 10 value 94.937932
iter 20 value 94.450500
iter 30 value 90.456047
iter 40 value 87.097223
iter 50 value 84.246943
iter 60 value 82.806291
iter 70 value 81.722458
iter 80 value 80.243990
iter 90 value 79.717654
iter 100 value 79.458081
final value 79.458081
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.644729
iter 10 value 100.000749
iter 20 value 91.520308
iter 30 value 86.592994
iter 40 value 82.530538
iter 50 value 80.554380
iter 60 value 79.896070
iter 70 value 79.775936
iter 80 value 79.213823
iter 90 value 78.830245
iter 100 value 78.718732
final value 78.718732
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.896573
iter 10 value 93.425281
iter 20 value 93.424938
iter 30 value 93.424507
iter 40 value 87.929138
iter 50 value 86.529434
iter 60 value 86.525595
final value 86.525591
converged
Fitting Repeat 2
# weights: 103
initial value 95.235694
final value 94.485904
converged
Fitting Repeat 3
# weights: 103
initial value 111.574667
iter 10 value 94.486082
iter 20 value 94.484232
final value 94.484213
converged
Fitting Repeat 4
# weights: 103
initial value 98.041982
final value 94.485580
converged
Fitting Repeat 5
# weights: 103
initial value 101.679702
final value 94.485797
converged
Fitting Repeat 1
# weights: 305
initial value 105.356335
iter 10 value 94.280524
iter 20 value 94.276718
iter 30 value 94.255323
iter 40 value 94.224080
iter 50 value 94.223880
final value 94.223834
converged
Fitting Repeat 2
# weights: 305
initial value 106.544617
iter 10 value 94.280542
iter 20 value 94.275737
final value 94.275523
converged
Fitting Repeat 3
# weights: 305
initial value 98.229181
iter 10 value 94.280534
iter 20 value 94.256568
iter 30 value 88.746396
iter 40 value 86.862447
iter 50 value 86.253172
iter 60 value 86.159889
iter 70 value 85.345610
final value 85.316572
converged
Fitting Repeat 4
# weights: 305
initial value 98.837881
iter 10 value 94.280405
iter 20 value 94.276094
iter 30 value 93.883714
iter 40 value 85.258936
final value 85.258589
converged
Fitting Repeat 5
# weights: 305
initial value 101.978929
iter 10 value 94.488661
iter 20 value 94.241268
iter 30 value 89.425678
iter 40 value 87.998065
iter 50 value 87.241791
iter 60 value 85.265704
iter 70 value 83.797889
iter 80 value 83.548201
iter 90 value 83.452338
iter 100 value 83.087010
final value 83.087010
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 96.243035
iter 10 value 94.283195
iter 20 value 94.277449
iter 30 value 90.102596
iter 40 value 79.400844
iter 50 value 79.028711
iter 60 value 79.023495
iter 70 value 79.010619
iter 80 value 78.991328
final value 78.990828
converged
Fitting Repeat 2
# weights: 507
initial value 116.046325
iter 10 value 94.491986
iter 20 value 94.484579
iter 30 value 94.454680
iter 40 value 94.259115
iter 50 value 94.249690
iter 60 value 94.248375
final value 94.247930
converged
Fitting Repeat 3
# weights: 507
initial value 114.099294
iter 10 value 94.492968
iter 20 value 94.487593
iter 30 value 94.442247
iter 40 value 93.445593
iter 50 value 88.007501
iter 60 value 86.258241
iter 70 value 82.739384
iter 80 value 80.858303
iter 90 value 79.914465
iter 100 value 79.377568
final value 79.377568
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.676444
iter 10 value 94.492086
iter 20 value 94.355556
iter 30 value 94.232947
final value 94.230000
converged
Fitting Repeat 5
# weights: 507
initial value 105.001243
iter 10 value 89.363306
iter 20 value 85.849938
iter 30 value 85.648351
iter 40 value 85.499110
iter 50 value 85.484954
iter 60 value 85.470125
iter 70 value 85.467185
iter 80 value 82.653572
iter 90 value 82.169675
iter 100 value 81.142391
final value 81.142391
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.801380
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.684501
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.999337
iter 10 value 92.032213
iter 20 value 81.357293
iter 30 value 80.110657
iter 30 value 80.110656
iter 30 value 80.110656
final value 80.110656
converged
Fitting Repeat 4
# weights: 103
initial value 94.561807
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 101.554120
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 97.551871
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 95.087120
iter 10 value 93.633932
final value 93.259020
converged
Fitting Repeat 3
# weights: 305
initial value 95.871882
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 94.078203
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 112.257355
iter 10 value 92.867292
iter 20 value 86.425560
iter 30 value 84.368089
iter 40 value 84.182843
iter 50 value 84.159337
final value 84.159312
converged
Fitting Repeat 1
# weights: 507
initial value 104.959777
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 101.374544
iter 10 value 93.330578
final value 93.328261
converged
Fitting Repeat 3
# weights: 507
initial value 110.228280
iter 10 value 93.328262
iter 10 value 93.328261
iter 10 value 93.328261
final value 93.328261
converged
Fitting Repeat 4
# weights: 507
initial value 106.152512
iter 10 value 93.334982
final value 93.328261
converged
Fitting Repeat 5
# weights: 507
initial value 110.994191
iter 10 value 91.432776
final value 91.432749
converged
Fitting Repeat 1
# weights: 103
initial value 96.961651
iter 10 value 94.049632
iter 20 value 93.391363
iter 30 value 91.680622
iter 40 value 90.519587
iter 50 value 90.306531
iter 60 value 90.146787
iter 70 value 90.128248
iter 80 value 90.127970
iter 80 value 90.127969
iter 80 value 90.127969
final value 90.127969
converged
Fitting Repeat 2
# weights: 103
initial value 102.394535
iter 10 value 94.055335
iter 20 value 93.979260
iter 30 value 93.339933
iter 40 value 91.845830
iter 50 value 83.388241
iter 60 value 81.591558
iter 70 value 80.978236
iter 80 value 80.582919
iter 90 value 80.427499
iter 100 value 80.381168
final value 80.381168
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.873467
iter 10 value 93.598156
iter 20 value 93.305584
iter 30 value 86.368701
iter 40 value 85.706780
iter 50 value 85.245474
iter 60 value 83.536686
iter 70 value 82.833320
iter 80 value 82.764853
iter 90 value 82.762963
final value 82.762335
converged
Fitting Repeat 4
# weights: 103
initial value 99.763940
iter 10 value 94.053423
iter 20 value 89.343370
iter 30 value 84.946718
iter 40 value 84.693918
iter 50 value 83.667442
iter 60 value 82.534233
iter 70 value 82.273354
iter 80 value 82.266984
final value 82.266204
converged
Fitting Repeat 5
# weights: 103
initial value 98.498893
iter 10 value 93.309306
iter 20 value 92.402419
iter 30 value 89.165725
iter 40 value 88.854261
iter 50 value 88.627124
iter 60 value 86.844613
iter 70 value 84.567709
iter 80 value 80.366326
iter 90 value 79.877646
iter 100 value 79.863140
final value 79.863140
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.289878
iter 10 value 94.281028
iter 20 value 86.233698
iter 30 value 83.199380
iter 40 value 82.725208
iter 50 value 80.654033
iter 60 value 79.649499
iter 70 value 79.495290
iter 80 value 79.339546
iter 90 value 79.087943
iter 100 value 78.644306
final value 78.644306
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.223833
iter 10 value 94.026586
iter 20 value 89.725880
iter 30 value 84.929228
iter 40 value 83.183720
iter 50 value 82.704258
iter 60 value 81.725283
iter 70 value 80.918402
iter 80 value 80.693147
iter 90 value 80.586262
iter 100 value 79.587053
final value 79.587053
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.164013
iter 10 value 94.112049
iter 20 value 90.900818
iter 30 value 82.545376
iter 40 value 82.029515
iter 50 value 79.921599
iter 60 value 79.659185
iter 70 value 79.335953
iter 80 value 79.215931
iter 90 value 79.066377
iter 100 value 78.876530
final value 78.876530
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.608593
iter 10 value 91.378709
iter 20 value 82.948972
iter 30 value 82.207559
iter 40 value 81.875803
iter 50 value 81.280372
iter 60 value 80.120777
iter 70 value 79.258010
iter 80 value 78.533221
iter 90 value 78.430538
iter 100 value 78.211433
final value 78.211433
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 111.734300
iter 10 value 89.555100
iter 20 value 85.463993
iter 30 value 84.863862
iter 40 value 84.458444
iter 50 value 83.646320
iter 60 value 81.618545
iter 70 value 81.176966
iter 80 value 79.436667
iter 90 value 79.105350
iter 100 value 78.890905
final value 78.890905
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.507062
iter 10 value 92.485511
iter 20 value 89.322071
iter 30 value 83.468155
iter 40 value 81.907520
iter 50 value 80.612456
iter 60 value 80.128016
iter 70 value 80.053377
iter 80 value 79.979468
iter 90 value 79.976753
iter 100 value 79.845798
final value 79.845798
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.589710
iter 10 value 94.006001
iter 20 value 89.942106
iter 30 value 86.313480
iter 40 value 83.845540
iter 50 value 80.852748
iter 60 value 80.549563
iter 70 value 79.972019
iter 80 value 79.382916
iter 90 value 78.657515
iter 100 value 78.209787
final value 78.209787
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.077038
iter 10 value 96.436025
iter 20 value 93.913164
iter 30 value 86.802999
iter 40 value 85.810866
iter 50 value 81.669848
iter 60 value 80.486082
iter 70 value 79.659253
iter 80 value 78.750968
iter 90 value 78.576877
iter 100 value 78.452870
final value 78.452870
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 132.333459
iter 10 value 96.426649
iter 20 value 86.904560
iter 30 value 80.599161
iter 40 value 78.821770
iter 50 value 78.173628
iter 60 value 77.925494
iter 70 value 77.909160
iter 80 value 77.861907
iter 90 value 77.799116
iter 100 value 77.736968
final value 77.736968
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.786660
iter 10 value 93.492785
iter 20 value 88.493960
iter 30 value 85.681027
iter 40 value 85.157579
iter 50 value 82.897667
iter 60 value 80.232082
iter 70 value 79.705191
iter 80 value 79.002809
iter 90 value 78.809782
iter 100 value 78.746859
final value 78.746859
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.814805
final value 94.054775
converged
Fitting Repeat 2
# weights: 103
initial value 97.755137
final value 94.054422
converged
Fitting Repeat 3
# weights: 103
initial value 105.290608
final value 94.054316
converged
Fitting Repeat 4
# weights: 103
initial value 102.304853
iter 10 value 94.054668
iter 20 value 93.957708
iter 30 value 81.829549
iter 40 value 81.327187
final value 81.323459
converged
Fitting Repeat 5
# weights: 103
initial value 111.185980
iter 10 value 94.054702
iter 20 value 93.910416
iter 30 value 85.347112
iter 40 value 84.434640
iter 50 value 84.252484
iter 60 value 84.177489
iter 70 value 84.177267
final value 84.177129
converged
Fitting Repeat 1
# weights: 305
initial value 108.056198
iter 10 value 93.188965
iter 20 value 93.127544
final value 93.126586
converged
Fitting Repeat 2
# weights: 305
initial value 95.397696
iter 10 value 93.350080
iter 20 value 93.333649
iter 30 value 93.319856
iter 40 value 91.935144
iter 50 value 87.855475
iter 60 value 87.852965
iter 70 value 87.852563
iter 80 value 87.806696
iter 90 value 87.698774
iter 100 value 79.973519
final value 79.973519
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 94.958393
iter 10 value 93.333456
iter 20 value 93.323586
iter 30 value 93.321688
iter 40 value 92.700816
iter 50 value 91.234948
iter 60 value 90.979336
iter 70 value 90.507406
iter 80 value 83.063540
iter 90 value 82.628168
iter 100 value 82.626459
final value 82.626459
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 98.767167
iter 10 value 94.057170
iter 20 value 93.982804
iter 30 value 91.626281
iter 40 value 90.852052
iter 50 value 90.836764
iter 60 value 90.836616
iter 70 value 90.826506
iter 80 value 90.408953
iter 90 value 80.440934
iter 100 value 80.204238
final value 80.204238
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 95.150125
iter 10 value 93.333715
iter 20 value 93.332631
iter 30 value 93.032815
iter 40 value 82.994993
iter 50 value 82.030959
iter 60 value 81.605388
final value 81.560546
converged
Fitting Repeat 1
# weights: 507
initial value 95.544498
iter 10 value 94.060330
iter 20 value 90.809580
iter 30 value 83.905743
iter 40 value 83.769413
final value 83.769042
converged
Fitting Repeat 2
# weights: 507
initial value 105.274692
iter 10 value 91.836564
iter 20 value 82.989580
iter 30 value 80.432102
iter 40 value 79.563536
iter 50 value 79.555067
iter 60 value 79.534811
iter 70 value 79.527455
iter 80 value 79.489212
iter 90 value 79.348519
iter 100 value 79.302190
final value 79.302190
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.160577
iter 10 value 93.343184
iter 20 value 93.336239
iter 30 value 93.329192
iter 40 value 93.153977
iter 50 value 93.076481
iter 60 value 93.075883
iter 70 value 93.075698
iter 80 value 93.075463
iter 90 value 93.054783
iter 100 value 86.837595
final value 86.837595
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 96.433771
iter 10 value 93.337324
iter 20 value 93.329375
iter 30 value 91.157326
iter 40 value 84.632741
iter 50 value 83.307318
iter 60 value 82.066456
iter 70 value 80.736390
iter 80 value 80.725263
iter 90 value 80.723472
iter 100 value 80.723312
final value 80.723312
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.247971
iter 10 value 85.799964
iter 20 value 84.733012
iter 30 value 84.600051
iter 40 value 84.410687
iter 50 value 84.409140
iter 60 value 84.401881
iter 70 value 83.978498
iter 80 value 82.567795
iter 90 value 82.484493
iter 90 value 82.484492
iter 90 value 82.484492
final value 82.484492
converged
Fitting Repeat 1
# weights: 103
initial value 102.195301
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 104.289116
final value 94.484210
converged
Fitting Repeat 3
# weights: 103
initial value 99.954036
final value 93.783647
converged
Fitting Repeat 4
# weights: 103
initial value 98.334880
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 100.180654
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 106.752411
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 107.789655
iter 10 value 93.717421
iter 20 value 92.930556
iter 30 value 92.928261
iter 30 value 92.928261
final value 92.928257
converged
Fitting Repeat 3
# weights: 305
initial value 94.677903
final value 94.400000
converged
Fitting Repeat 4
# weights: 305
initial value 99.639146
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 96.552451
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 109.224682
iter 10 value 90.492606
iter 20 value 85.620630
iter 30 value 85.495057
iter 40 value 85.462373
iter 50 value 85.460136
final value 85.460084
converged
Fitting Repeat 2
# weights: 507
initial value 101.261153
iter 10 value 94.467391
iter 10 value 94.467391
iter 10 value 94.467391
final value 94.467391
converged
Fitting Repeat 3
# weights: 507
initial value 109.596140
final value 94.467391
converged
Fitting Repeat 4
# weights: 507
initial value 121.292421
iter 10 value 94.471113
final value 94.467391
converged
Fitting Repeat 5
# weights: 507
initial value 110.553005
iter 10 value 88.320456
iter 20 value 85.827130
iter 30 value 85.813873
final value 85.813734
converged
Fitting Repeat 1
# weights: 103
initial value 99.122865
iter 10 value 94.499624
iter 20 value 94.379250
iter 30 value 87.253684
iter 40 value 86.233658
iter 50 value 85.869826
iter 60 value 85.856991
iter 70 value 85.848402
final value 85.848362
converged
Fitting Repeat 2
# weights: 103
initial value 99.900644
iter 10 value 94.488583
iter 20 value 94.427584
iter 30 value 93.809625
iter 40 value 89.266293
iter 50 value 86.374311
iter 60 value 86.059116
iter 70 value 85.856432
iter 80 value 85.848363
iter 80 value 85.848362
iter 80 value 85.848362
final value 85.848362
converged
Fitting Repeat 3
# weights: 103
initial value 98.076855
iter 10 value 94.422059
iter 20 value 89.914361
iter 30 value 89.455551
iter 40 value 88.314318
iter 50 value 85.756150
iter 60 value 85.485550
iter 70 value 85.479787
iter 80 value 85.478030
final value 85.478019
converged
Fitting Repeat 4
# weights: 103
initial value 97.942778
iter 10 value 94.486671
iter 20 value 94.222625
iter 30 value 93.871298
iter 40 value 93.619884
iter 50 value 92.325926
iter 60 value 89.195778
iter 70 value 87.357315
iter 80 value 85.413838
iter 90 value 85.105103
iter 100 value 84.894347
final value 84.894347
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 96.328864
iter 10 value 94.496547
iter 20 value 94.467062
iter 30 value 94.198433
iter 40 value 94.120033
iter 50 value 89.655501
iter 60 value 89.483086
iter 70 value 86.628694
iter 80 value 86.497678
iter 90 value 85.760053
iter 100 value 85.672842
final value 85.672842
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 124.659487
iter 10 value 94.537227
iter 20 value 90.777904
iter 30 value 86.988857
iter 40 value 85.332214
iter 50 value 84.530568
iter 60 value 84.136183
iter 70 value 83.595520
iter 80 value 83.176830
iter 90 value 83.121899
iter 100 value 83.050524
final value 83.050524
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.544889
iter 10 value 94.313131
iter 20 value 90.023007
iter 30 value 89.051384
iter 40 value 85.745524
iter 50 value 84.857481
iter 60 value 84.064344
iter 70 value 83.855596
iter 80 value 83.560406
iter 90 value 83.412350
iter 100 value 83.371731
final value 83.371731
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.933534
iter 10 value 93.999859
iter 20 value 86.903696
iter 30 value 86.228956
iter 40 value 85.655955
iter 50 value 84.318469
iter 60 value 83.352683
iter 70 value 83.209419
iter 80 value 83.181475
iter 90 value 83.146693
iter 100 value 83.120669
final value 83.120669
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 120.728308
iter 10 value 93.123523
iter 20 value 86.729127
iter 30 value 86.046895
iter 40 value 85.573594
iter 50 value 85.337968
iter 60 value 85.008903
iter 70 value 83.987195
iter 80 value 83.243963
iter 90 value 83.214301
iter 100 value 83.203519
final value 83.203519
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 117.713443
iter 10 value 94.970105
iter 20 value 94.136216
iter 30 value 89.751965
iter 40 value 88.997961
iter 50 value 88.279636
iter 60 value 87.171578
iter 70 value 84.499975
iter 80 value 84.142024
iter 90 value 83.507939
iter 100 value 83.180769
final value 83.180769
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.925503
iter 10 value 94.514113
iter 20 value 88.808802
iter 30 value 88.019449
iter 40 value 87.259844
iter 50 value 85.939124
iter 60 value 85.370341
iter 70 value 84.732737
iter 80 value 83.573649
iter 90 value 82.909154
iter 100 value 82.689987
final value 82.689987
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.559392
iter 10 value 94.857927
iter 20 value 94.524230
iter 30 value 94.011848
iter 40 value 89.338821
iter 50 value 87.112899
iter 60 value 85.546259
iter 70 value 84.417918
iter 80 value 83.935646
iter 90 value 83.702190
iter 100 value 83.238157
final value 83.238157
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.137284
iter 10 value 94.494901
iter 20 value 87.879613
iter 30 value 87.276200
iter 40 value 86.544745
iter 50 value 84.788022
iter 60 value 83.461208
iter 70 value 83.149581
iter 80 value 83.086633
iter 90 value 82.915721
iter 100 value 82.820865
final value 82.820865
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.160680
iter 10 value 94.374572
iter 20 value 93.177686
iter 30 value 88.654581
iter 40 value 88.213916
iter 50 value 86.646749
iter 60 value 84.971607
iter 70 value 83.443885
iter 80 value 82.939658
iter 90 value 82.841855
iter 100 value 82.750966
final value 82.750966
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.985014
iter 10 value 92.590873
iter 20 value 88.814812
iter 30 value 86.789245
iter 40 value 84.312070
iter 50 value 83.972648
iter 60 value 83.675293
iter 70 value 83.425968
iter 80 value 83.193611
iter 90 value 83.007786
iter 100 value 82.859168
final value 82.859168
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.133312
final value 94.485763
converged
Fitting Repeat 2
# weights: 103
initial value 98.253566
final value 94.307733
converged
Fitting Repeat 3
# weights: 103
initial value 97.245431
final value 94.485682
converged
Fitting Repeat 4
# weights: 103
initial value 94.798875
final value 94.486254
converged
Fitting Repeat 5
# weights: 103
initial value 102.418235
final value 94.485843
converged
Fitting Repeat 1
# weights: 305
initial value 109.612436
iter 10 value 94.488528
iter 20 value 94.312318
iter 30 value 93.812512
iter 40 value 93.733666
final value 93.730682
converged
Fitting Repeat 2
# weights: 305
initial value 97.364631
iter 10 value 94.480626
iter 20 value 94.471553
iter 30 value 94.467436
iter 30 value 94.467436
final value 94.467436
converged
Fitting Repeat 3
# weights: 305
initial value 102.949157
iter 10 value 94.492163
iter 20 value 94.485674
iter 30 value 94.155533
iter 40 value 94.058601
iter 50 value 94.057419
final value 94.057389
converged
Fitting Repeat 4
# weights: 305
initial value 96.387645
iter 10 value 92.483102
iter 20 value 89.943445
iter 30 value 89.510252
iter 40 value 89.509324
iter 50 value 86.944617
iter 60 value 86.889855
iter 70 value 86.030719
iter 80 value 85.215176
iter 90 value 85.194807
iter 100 value 85.147234
final value 85.147234
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.865172
iter 10 value 94.489427
iter 20 value 94.476945
iter 30 value 87.817118
iter 40 value 86.063206
iter 50 value 85.415068
iter 60 value 85.411286
iter 70 value 85.345954
iter 80 value 85.071097
iter 90 value 84.869163
final value 84.869159
converged
Fitting Repeat 1
# weights: 507
initial value 94.867045
iter 10 value 94.475660
iter 20 value 94.467427
iter 30 value 93.252134
iter 40 value 91.976680
iter 50 value 91.975270
iter 50 value 91.975269
iter 50 value 91.975269
final value 91.975269
converged
Fitting Repeat 2
# weights: 507
initial value 100.701342
iter 10 value 94.065439
iter 20 value 93.983925
iter 30 value 88.752977
iter 40 value 88.728401
iter 50 value 88.728323
iter 60 value 87.097334
iter 70 value 86.124969
iter 80 value 82.922359
iter 90 value 82.317926
iter 100 value 82.219101
final value 82.219101
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 96.413489
iter 10 value 94.156057
iter 20 value 94.148735
iter 30 value 94.141424
iter 40 value 89.457354
iter 50 value 85.228367
iter 60 value 85.133567
iter 70 value 84.615970
iter 80 value 84.226336
iter 90 value 82.693914
iter 100 value 82.558890
final value 82.558890
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 128.271805
iter 10 value 94.495721
iter 20 value 94.487698
iter 30 value 88.045408
iter 40 value 87.102117
iter 50 value 87.088575
iter 60 value 86.795236
iter 70 value 86.730500
final value 86.730373
converged
Fitting Repeat 5
# weights: 507
initial value 105.723541
iter 10 value 94.492575
iter 20 value 94.484672
iter 30 value 94.111643
iter 40 value 94.057688
final value 94.057529
converged
Fitting Repeat 1
# weights: 103
initial value 99.638069
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 101.343627
iter 10 value 89.833956
iter 20 value 89.011454
iter 30 value 88.797124
iter 40 value 88.754415
iter 50 value 88.739572
final value 88.739561
converged
Fitting Repeat 3
# weights: 103
initial value 103.227409
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 95.657219
final value 93.551913
converged
Fitting Repeat 5
# weights: 103
initial value 102.874578
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 113.157630
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 107.070860
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 101.040131
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 104.620927
final value 93.551913
converged
Fitting Repeat 5
# weights: 305
initial value 106.515925
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 99.332411
iter 10 value 93.352955
iter 10 value 93.352954
iter 10 value 93.352954
final value 93.352954
converged
Fitting Repeat 2
# weights: 507
initial value 95.373784
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 99.267140
iter 10 value 93.175288
final value 93.164499
converged
Fitting Repeat 4
# weights: 507
initial value 107.762966
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 115.135414
final value 93.915746
converged
Fitting Repeat 1
# weights: 103
initial value 110.355169
iter 10 value 94.054697
iter 20 value 89.625104
iter 30 value 86.085562
iter 40 value 85.136160
iter 50 value 85.005584
iter 60 value 84.548665
iter 70 value 84.000045
iter 80 value 83.627564
final value 83.623846
converged
Fitting Repeat 2
# weights: 103
initial value 101.569123
iter 10 value 94.059800
iter 20 value 93.949030
iter 30 value 89.169174
iter 40 value 84.890421
iter 50 value 83.756001
iter 60 value 83.309926
iter 70 value 82.482641
iter 80 value 81.672805
iter 90 value 81.665248
final value 81.665240
converged
Fitting Repeat 3
# weights: 103
initial value 95.742729
iter 10 value 94.057751
iter 20 value 93.765065
iter 30 value 89.859189
iter 40 value 84.766545
iter 50 value 83.855189
iter 60 value 83.402694
iter 70 value 82.994679
iter 80 value 82.882229
iter 90 value 81.692834
iter 100 value 81.665251
final value 81.665251
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.166193
iter 10 value 94.046209
iter 20 value 93.525374
iter 30 value 93.455741
iter 40 value 93.448048
iter 50 value 93.385731
iter 60 value 86.865240
iter 70 value 84.257632
iter 80 value 84.053416
iter 90 value 83.499231
iter 100 value 83.420719
final value 83.420719
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.532527
iter 10 value 94.055338
iter 20 value 93.604754
iter 30 value 89.066053
iter 40 value 87.734785
iter 50 value 85.865444
iter 60 value 84.819567
iter 70 value 84.251892
iter 80 value 83.733089
iter 90 value 83.631673
final value 83.623846
converged
Fitting Repeat 1
# weights: 305
initial value 107.487748
iter 10 value 95.714236
iter 20 value 94.177900
iter 30 value 93.488733
iter 40 value 92.728779
iter 50 value 89.783743
iter 60 value 85.406001
iter 70 value 83.044976
iter 80 value 81.380495
iter 90 value 80.958324
iter 100 value 80.430102
final value 80.430102
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.002311
iter 10 value 93.348631
iter 20 value 85.857034
iter 30 value 83.126070
iter 40 value 82.332437
iter 50 value 81.977186
iter 60 value 81.297468
iter 70 value 81.027994
iter 80 value 80.917438
iter 90 value 80.849994
iter 100 value 80.700280
final value 80.700280
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.977505
iter 10 value 93.985128
iter 20 value 85.285945
iter 30 value 84.570899
iter 40 value 84.195090
iter 50 value 83.878785
iter 60 value 83.537118
iter 70 value 83.272674
iter 80 value 82.168744
iter 90 value 81.912573
iter 100 value 81.831114
final value 81.831114
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.184032
iter 10 value 94.076830
iter 20 value 90.119655
iter 30 value 88.063541
iter 40 value 84.391282
iter 50 value 83.493614
iter 60 value 83.343181
iter 70 value 82.587564
iter 80 value 82.503439
iter 90 value 82.440981
iter 100 value 81.932673
final value 81.932673
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 112.484705
iter 10 value 93.873277
iter 20 value 86.206921
iter 30 value 85.170420
iter 40 value 85.008609
iter 50 value 84.706855
iter 60 value 84.157288
iter 70 value 82.129319
iter 80 value 81.623983
iter 90 value 81.116194
iter 100 value 80.980476
final value 80.980476
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 113.034232
iter 10 value 95.947991
iter 20 value 87.878151
iter 30 value 85.840166
iter 40 value 82.548263
iter 50 value 82.185942
iter 60 value 81.675157
iter 70 value 81.289249
iter 80 value 80.587137
iter 90 value 80.273254
iter 100 value 80.130009
final value 80.130009
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 115.681592
iter 10 value 94.064571
iter 20 value 87.054417
iter 30 value 85.368838
iter 40 value 84.856120
iter 50 value 84.143188
iter 60 value 81.999818
iter 70 value 81.411828
iter 80 value 81.173504
iter 90 value 80.696938
iter 100 value 80.508406
final value 80.508406
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 124.694326
iter 10 value 98.364807
iter 20 value 97.549861
iter 30 value 86.987493
iter 40 value 85.857550
iter 50 value 85.363109
iter 60 value 83.115478
iter 70 value 82.384046
iter 80 value 81.074247
iter 90 value 80.521351
iter 100 value 80.288409
final value 80.288409
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.389014
iter 10 value 95.046116
iter 20 value 84.175871
iter 30 value 82.781390
iter 40 value 81.327207
iter 50 value 80.840025
iter 60 value 80.679669
iter 70 value 80.595350
iter 80 value 80.552399
iter 90 value 80.507853
iter 100 value 80.330085
final value 80.330085
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 115.525356
iter 10 value 95.174063
iter 20 value 88.686575
iter 30 value 86.920254
iter 40 value 85.417884
iter 50 value 83.624400
iter 60 value 81.762121
iter 70 value 80.894244
iter 80 value 80.660320
iter 90 value 80.482058
iter 100 value 80.270750
final value 80.270750
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.817297
final value 94.054508
converged
Fitting Repeat 2
# weights: 103
initial value 97.187422
final value 94.054459
converged
Fitting Repeat 3
# weights: 103
initial value 98.312286
final value 94.054588
converged
Fitting Repeat 4
# weights: 103
initial value 103.451742
final value 94.054530
converged
Fitting Repeat 5
# weights: 103
initial value 96.082239
final value 93.917637
converged
Fitting Repeat 1
# weights: 305
initial value 108.935842
iter 10 value 94.058206
iter 20 value 94.052969
iter 30 value 93.699231
iter 40 value 87.636172
iter 50 value 87.623453
final value 87.623357
converged
Fitting Repeat 2
# weights: 305
initial value 111.992330
iter 10 value 94.057962
iter 20 value 94.052961
final value 94.052909
converged
Fitting Repeat 3
# weights: 305
initial value 100.739477
iter 10 value 93.920491
iter 20 value 93.864689
final value 93.356934
converged
Fitting Repeat 4
# weights: 305
initial value 98.366818
iter 10 value 94.057534
iter 20 value 94.052872
iter 30 value 93.957609
iter 40 value 88.305270
iter 50 value 85.102751
iter 60 value 84.776906
iter 70 value 81.517741
iter 80 value 80.770106
iter 90 value 80.634906
final value 80.634213
converged
Fitting Repeat 5
# weights: 305
initial value 100.582483
iter 10 value 94.057880
iter 20 value 91.981298
iter 30 value 85.716209
iter 40 value 85.428385
iter 50 value 85.116710
iter 60 value 84.783450
iter 70 value 83.591725
iter 80 value 83.356423
iter 90 value 83.354858
final value 83.353638
converged
Fitting Repeat 1
# weights: 507
initial value 98.816160
iter 10 value 93.924233
iter 20 value 93.916268
iter 30 value 92.977808
iter 40 value 86.327063
iter 50 value 84.653481
iter 60 value 84.651638
iter 70 value 84.651286
iter 80 value 84.552595
iter 90 value 84.507688
iter 90 value 84.507688
final value 84.507688
converged
Fitting Repeat 2
# weights: 507
initial value 116.133126
iter 10 value 94.061048
iter 20 value 94.054214
iter 30 value 87.763677
iter 40 value 83.393218
iter 50 value 82.091199
iter 60 value 82.038279
iter 70 value 82.035929
iter 80 value 81.525701
iter 90 value 79.811656
final value 79.797999
converged
Fitting Repeat 3
# weights: 507
initial value 102.663714
iter 10 value 93.587584
iter 20 value 93.550798
iter 30 value 93.543722
final value 93.018205
converged
Fitting Repeat 4
# weights: 507
initial value 94.506399
iter 10 value 86.562397
iter 20 value 86.468859
iter 30 value 86.283708
iter 40 value 85.858706
iter 50 value 85.856971
iter 60 value 85.621544
iter 70 value 85.447963
iter 80 value 85.447911
final value 85.447890
converged
Fitting Repeat 5
# weights: 507
initial value 95.369674
iter 10 value 93.560579
iter 20 value 90.256890
iter 30 value 86.207310
iter 40 value 83.038190
iter 50 value 81.856964
iter 60 value 81.854393
iter 70 value 81.853969
iter 80 value 81.853507
iter 90 value 81.850505
iter 100 value 81.833761
final value 81.833761
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.032092
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 107.626092
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.843453
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 103.370572
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 102.384166
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 113.316420
final value 94.461538
converged
Fitting Repeat 2
# weights: 305
initial value 105.341595
final value 94.466823
converged
Fitting Repeat 3
# weights: 305
initial value 102.360512
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 95.132407
iter 10 value 93.707667
iter 20 value 92.524602
iter 30 value 92.519298
iter 30 value 92.519298
iter 30 value 92.519298
final value 92.519298
converged
Fitting Repeat 5
# weights: 305
initial value 97.568837
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 102.513883
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 104.449694
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 135.624983
iter 10 value 94.446920
final value 94.445714
converged
Fitting Repeat 4
# weights: 507
initial value 107.079067
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 136.792997
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 97.010957
iter 10 value 89.427680
iter 20 value 85.399153
iter 30 value 82.396034
iter 40 value 82.110967
iter 50 value 82.028693
iter 60 value 81.782064
iter 70 value 81.623348
final value 81.623069
converged
Fitting Repeat 2
# weights: 103
initial value 99.164526
iter 10 value 94.412795
iter 20 value 88.181839
iter 30 value 86.974575
iter 40 value 86.092828
iter 50 value 85.897285
iter 60 value 85.618768
iter 70 value 84.866421
iter 80 value 84.055305
iter 90 value 83.878558
final value 83.878557
converged
Fitting Repeat 3
# weights: 103
initial value 106.026296
iter 10 value 94.478145
iter 20 value 88.101177
iter 30 value 85.972882
iter 40 value 85.447301
iter 50 value 85.409396
iter 60 value 85.293219
iter 70 value 85.233024
iter 80 value 84.951863
iter 90 value 84.010801
iter 100 value 83.878564
final value 83.878564
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.041203
iter 10 value 94.171065
iter 20 value 86.955286
iter 30 value 85.291499
iter 40 value 84.677127
iter 50 value 84.522702
iter 60 value 84.335040
iter 70 value 84.280335
iter 80 value 84.170781
final value 84.164926
converged
Fitting Repeat 5
# weights: 103
initial value 96.319431
iter 10 value 94.497956
iter 20 value 92.427309
iter 30 value 87.744618
iter 40 value 86.811288
iter 50 value 85.525812
iter 60 value 85.256285
iter 70 value 84.710144
iter 80 value 84.567852
iter 90 value 84.011012
final value 83.878557
converged
Fitting Repeat 1
# weights: 305
initial value 115.534611
iter 10 value 94.389957
iter 20 value 92.318017
iter 30 value 88.159420
iter 40 value 85.902390
iter 50 value 83.577828
iter 60 value 80.951072
iter 70 value 80.586958
iter 80 value 80.488092
iter 90 value 80.461047
iter 100 value 80.458020
final value 80.458020
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.415600
iter 10 value 94.455594
iter 20 value 91.988877
iter 30 value 85.033324
iter 40 value 83.232637
iter 50 value 82.834544
iter 60 value 82.744658
iter 70 value 82.255807
iter 80 value 80.932746
iter 90 value 80.809927
iter 100 value 80.783216
final value 80.783216
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 135.201592
iter 10 value 94.925663
iter 20 value 90.877801
iter 30 value 88.146361
iter 40 value 86.192260
iter 50 value 85.308223
iter 60 value 85.069097
iter 70 value 83.804614
iter 80 value 83.090311
iter 90 value 81.737675
iter 100 value 80.912191
final value 80.912191
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.322419
iter 10 value 94.466289
iter 20 value 91.438489
iter 30 value 87.700072
iter 40 value 86.345800
iter 50 value 86.066455
iter 60 value 85.331223
iter 70 value 84.824127
iter 80 value 84.787408
iter 90 value 84.351546
iter 100 value 84.143105
final value 84.143105
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.986124
iter 10 value 90.837249
iter 20 value 86.477585
iter 30 value 86.026765
iter 40 value 85.477486
iter 50 value 84.516440
iter 60 value 84.021301
iter 70 value 82.111910
iter 80 value 81.694354
iter 90 value 81.627148
iter 100 value 81.309318
final value 81.309318
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 113.323284
iter 10 value 95.236754
iter 20 value 92.029273
iter 30 value 88.835433
iter 40 value 86.080812
iter 50 value 84.419979
iter 60 value 83.357945
iter 70 value 82.146726
iter 80 value 81.860192
iter 90 value 81.703260
iter 100 value 81.494833
final value 81.494833
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.701981
iter 10 value 94.422582
iter 20 value 88.099453
iter 30 value 86.931664
iter 40 value 84.753418
iter 50 value 84.420310
iter 60 value 82.651859
iter 70 value 82.156025
iter 80 value 81.857095
iter 90 value 81.367507
iter 100 value 80.945323
final value 80.945323
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.500866
iter 10 value 92.860523
iter 20 value 86.874690
iter 30 value 85.834025
iter 40 value 83.620466
iter 50 value 83.141962
iter 60 value 82.601611
iter 70 value 82.436019
iter 80 value 81.896175
iter 90 value 80.999336
iter 100 value 80.352871
final value 80.352871
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.867444
iter 10 value 94.488046
iter 20 value 92.942037
iter 30 value 85.810924
iter 40 value 83.679226
iter 50 value 82.674440
iter 60 value 81.394780
iter 70 value 80.970526
iter 80 value 80.829874
iter 90 value 80.660166
iter 100 value 80.357969
final value 80.357969
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.661750
iter 10 value 92.154372
iter 20 value 86.549356
iter 30 value 85.686422
iter 40 value 83.587733
iter 50 value 81.818265
iter 60 value 81.136709
iter 70 value 80.849484
iter 80 value 80.721772
iter 90 value 80.500314
iter 100 value 80.378526
final value 80.378526
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.715542
iter 10 value 94.486042
iter 20 value 94.169580
iter 30 value 84.499795
iter 40 value 84.044617
iter 50 value 83.787511
iter 60 value 83.785574
iter 70 value 83.592163
iter 80 value 83.303131
final value 83.302816
converged
Fitting Repeat 2
# weights: 103
initial value 102.453853
final value 94.485643
converged
Fitting Repeat 3
# weights: 103
initial value 102.332071
iter 10 value 94.485789
iter 20 value 94.468660
iter 30 value 87.930366
iter 40 value 86.529819
iter 50 value 86.527697
final value 86.527557
converged
Fitting Repeat 4
# weights: 103
initial value 100.081348
iter 10 value 94.485798
iter 20 value 94.484225
iter 30 value 94.444537
iter 40 value 85.228753
iter 50 value 85.201241
iter 60 value 85.200783
iter 70 value 83.031814
final value 83.029479
converged
Fitting Repeat 5
# weights: 103
initial value 98.466752
final value 94.485630
converged
Fitting Repeat 1
# weights: 305
initial value 102.985742
iter 10 value 94.489453
iter 20 value 86.914735
iter 30 value 86.877554
iter 40 value 86.494006
iter 50 value 86.419566
iter 60 value 86.419004
iter 70 value 84.866803
iter 80 value 84.865462
iter 90 value 84.862533
iter 100 value 84.856586
final value 84.856586
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.098668
iter 10 value 94.488588
iter 20 value 94.484246
iter 30 value 94.266078
iter 40 value 91.526721
iter 50 value 87.968736
iter 60 value 87.953347
iter 70 value 87.951478
iter 80 value 87.557567
final value 87.551964
converged
Fitting Repeat 3
# weights: 305
initial value 100.427283
iter 10 value 94.484323
iter 20 value 94.466049
iter 30 value 94.462264
iter 40 value 92.609037
iter 50 value 85.699343
iter 60 value 81.976488
iter 70 value 81.976343
iter 80 value 81.732416
iter 90 value 81.717136
iter 100 value 81.716940
final value 81.716940
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.197806
iter 10 value 94.471582
iter 20 value 94.469453
iter 30 value 94.467649
iter 40 value 86.763164
final value 86.145139
converged
Fitting Repeat 5
# weights: 305
initial value 95.170410
iter 10 value 94.137717
iter 20 value 94.134193
iter 30 value 94.105861
iter 40 value 94.024515
iter 50 value 94.023060
final value 94.023052
converged
Fitting Repeat 1
# weights: 507
initial value 117.342278
iter 10 value 93.952353
iter 20 value 93.146947
iter 30 value 86.919575
iter 40 value 84.262098
iter 50 value 84.259609
iter 60 value 83.376852
iter 70 value 81.822298
iter 80 value 81.408254
iter 90 value 81.013180
iter 100 value 80.836835
final value 80.836835
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.711141
iter 10 value 94.475638
iter 20 value 94.467093
iter 30 value 94.466825
iter 30 value 94.466825
final value 94.466825
converged
Fitting Repeat 3
# weights: 507
initial value 114.986417
iter 10 value 94.474605
iter 20 value 92.010918
iter 30 value 85.707713
iter 40 value 84.520343
iter 50 value 84.079081
iter 60 value 83.956665
iter 70 value 83.880624
iter 80 value 83.781238
iter 90 value 83.780122
final value 83.780108
converged
Fitting Repeat 4
# weights: 507
initial value 93.987803
iter 10 value 87.956399
iter 20 value 87.952540
iter 30 value 87.561800
iter 40 value 87.263982
iter 50 value 84.896801
final value 84.896476
converged
Fitting Repeat 5
# weights: 507
initial value 121.466259
iter 10 value 94.331371
iter 20 value 94.325785
iter 30 value 88.563704
iter 40 value 84.413523
iter 50 value 84.106041
iter 60 value 84.035773
iter 70 value 84.029988
iter 80 value 84.015826
iter 90 value 83.922979
iter 100 value 83.859314
final value 83.859314
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 141.028756
iter 10 value 118.041773
iter 20 value 117.290272
iter 30 value 106.711750
iter 40 value 105.126046
iter 50 value 103.925108
iter 60 value 103.126693
iter 70 value 103.002669
iter 80 value 101.867282
iter 90 value 101.214242
iter 100 value 101.118018
final value 101.118018
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 151.652416
iter 10 value 118.375940
iter 20 value 115.903097
iter 30 value 107.504290
iter 40 value 104.991215
iter 50 value 103.526658
iter 60 value 101.725455
iter 70 value 101.172274
iter 80 value 100.913414
iter 90 value 100.610824
iter 100 value 100.272765
final value 100.272765
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 127.946151
iter 10 value 121.225735
iter 20 value 109.674286
iter 30 value 109.089092
iter 40 value 105.424686
iter 50 value 103.386837
iter 60 value 102.968635
iter 70 value 102.604418
iter 80 value 102.384762
iter 90 value 101.087713
iter 100 value 100.916049
final value 100.916049
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 132.953616
iter 10 value 116.810669
iter 20 value 106.652142
iter 30 value 105.989861
iter 40 value 104.737469
iter 50 value 104.341005
iter 60 value 103.655705
iter 70 value 102.723867
iter 80 value 101.902730
iter 90 value 101.451519
iter 100 value 100.981662
final value 100.981662
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 165.394461
iter 10 value 118.212259
iter 20 value 117.835101
iter 30 value 108.816421
iter 40 value 106.981000
iter 50 value 103.421432
iter 60 value 102.606332
iter 70 value 102.158919
iter 80 value 101.870818
iter 90 value 101.379640
iter 100 value 101.005816
final value 101.005816
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Sun Mar 3 21:16:35 2024
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
43.479 2.133 44.551
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 35.134 | 1.970 | 37.786 | |
| FreqInteractors | 0.286 | 0.015 | 0.306 | |
| calculateAAC | 0.044 | 0.009 | 0.054 | |
| calculateAutocor | 0.424 | 0.104 | 0.561 | |
| calculateCTDC | 0.094 | 0.005 | 0.100 | |
| calculateCTDD | 0.661 | 0.033 | 0.701 | |
| calculateCTDT | 0.244 | 0.011 | 0.257 | |
| calculateCTriad | 0.417 | 0.032 | 0.453 | |
| calculateDC | 0.121 | 0.016 | 0.137 | |
| calculateF | 0.394 | 0.018 | 0.417 | |
| calculateKSAAP | 0.103 | 0.011 | 0.116 | |
| calculateQD_Sm | 2.086 | 0.106 | 2.212 | |
| calculateTC | 1.980 | 0.199 | 2.197 | |
| calculateTC_Sm | 0.288 | 0.020 | 0.313 | |
| corr_plot | 35.034 | 1.939 | 37.406 | |
| enrichfindP | 0.498 | 0.069 | 8.557 | |
| enrichfind_hp | 0.077 | 0.024 | 1.092 | |
| enrichplot | 0.436 | 0.014 | 0.456 | |
| filter_missing_values | 0.001 | 0.001 | 0.002 | |
| getFASTA | 0.070 | 0.015 | 4.121 | |
| getHPI | 0.001 | 0.001 | 0.001 | |
| get_negativePPI | 0.002 | 0.000 | 0.001 | |
| get_positivePPI | 0.000 | 0.000 | 0.001 | |
| impute_missing_data | 0.001 | 0.000 | 0.002 | |
| plotPPI | 0.089 | 0.006 | 0.098 | |
| pred_ensembel | 14.158 | 0.616 | 10.794 | |
| var_imp | 35.914 | 1.963 | 38.427 | |