| Back to Multiple platform build/check report for BioC 3.15 |
|
This page was generated on 2022-03-18 11:07:46 -0400 (Fri, 18 Mar 2022).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | R Under development (unstable) (2022-02-17 r81757) -- "Unsuffered Consequences" | 4334 |
| riesling1 | Windows Server 2019 Standard | x64 | R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences" | 4097 |
| palomino3 | Windows Server 2022 Datacenter | x64 | R Under development (unstable) (2022-02-17 r81757 ucrt) -- "Unsuffered Consequences" | 4083 |
| merida1 | macOS 10.14.6 Mojave | x86_64 | R Under development (unstable) (2022-03-02 r81842) -- "Unsuffered Consequences" | 4134 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? here for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 889/2090 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.1.2 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
| riesling1 | Windows Server 2019 Standard / x64 | OK | OK | OK | OK | |||||||||
| palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
| Package: HPiP |
| Version: 1.1.2 |
| Command: D:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=D:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings HPiP_1.1.2.tar.gz |
| StartedAt: 2022-03-17 19:20:05 -0400 (Thu, 17 Mar 2022) |
| EndedAt: 2022-03-17 19:24:34 -0400 (Thu, 17 Mar 2022) |
| EllapsedTime: 268.4 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### D:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:HPiP.install-out.txt --library=D:\biocbuild\bbs-3.15-bioc\R\library --no-vignettes --timings HPiP_1.1.2.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'D:/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck'
* using R Under development (unstable) (2021-11-21 r81221)
* using platform: x86_64-w64-mingw32 (64-bit)
* using session charset: ISO8859-1
* using option '--no-vignettes'
* checking for file 'HPiP/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'HPiP' version '1.1.2'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'HPiP' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: 'ftrCOOL'
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
corr_plot 28.08 3.28 31.94
var_imp 27.36 3.83 33.21
FSmethod 26.36 4.49 30.84
pred_ensembel 18.12 0.35 9.40
enrichfindP 0.27 0.02 8.69
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
Running 'runTests.R'
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in 'inst/doc' ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
'D:/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck/00check.log'
for details.
HPiP.Rcheck/00install.out
##############################################################################
##############################################################################
###
### Running command:
###
### D:\biocbuild\bbs-3.15-bioc\R\bin\R.exe CMD INSTALL HPiP
###
##############################################################################
##############################################################################
* installing to library 'D:/biocbuild/bbs-3.15-bioc/R/library'
* installing *source* package 'HPiP' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
converting help for package 'HPiP'
finding HTML links ... done
FSmethod html
FreqInteractors html
Gold_ReferenceSet html
UP000464024_df html
calculateAAC html
calculateAutocor html
calculateBE html
calculateCTDC html
calculateCTDD html
calculateCTDT html
calculateCTriad html
calculateDC html
calculateF html
calculateKSAAP html
calculateQD_Sm html
calculateTC html
calculateTC_Sm html
corr_plot html
enrich.df html
enrichfindP html
enrichfind_cpx html
enrichfind_hp html
enrichplot html
example_data html
filter_missing_values html
getFASTA html
getHPI html
get_negativePPI html
get_positivePPI html
host_se html
impute_missing_data html
plotPPI html
pred_ensembel html
predicted_PPIs html
run_clustering html
unlabel_data html
var_imp html
viral_se html
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)
Making 'packages.html' ...Warning in packageDescription(i, lib.loc = lib, fields = "Title", encoding = "UTF-8") :
DESCRIPTION file of package 'GBScleanR' is missing or broken
Warning in packageDescription(i, lib.loc = lib, fields = "Title", encoding = "UTF-8") :
DESCRIPTION file of package 'mistyR' is missing or broken
done
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2021-11-21 r81221) -- "Unsuffered Consequences"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 101.005805
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 102.071920
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.925909
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.527274
final value 94.484137
converged
Fitting Repeat 5
# weights: 103
initial value 96.159307
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 102.491678
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 100.863438
iter 10 value 94.484211
iter 10 value 94.484211
iter 10 value 94.484211
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 109.467290
final value 94.466823
converged
Fitting Repeat 4
# weights: 305
initial value 99.651726
final value 94.466823
converged
Fitting Repeat 5
# weights: 305
initial value 101.146539
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 97.056748
iter 10 value 93.260452
final value 93.221034
converged
Fitting Repeat 2
# weights: 507
initial value 98.321342
final value 94.466823
converged
Fitting Repeat 3
# weights: 507
initial value 128.843219
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 94.409381
iter 10 value 92.609595
iter 20 value 92.605178
final value 92.605128
converged
Fitting Repeat 5
# weights: 507
initial value 106.801684
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 107.247387
iter 10 value 94.487518
iter 20 value 94.402544
iter 30 value 89.899915
iter 40 value 88.948538
iter 50 value 88.810281
iter 60 value 88.380186
iter 70 value 86.942840
iter 80 value 85.121919
iter 90 value 84.121055
iter 100 value 83.488606
final value 83.488606
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.299795
iter 10 value 94.523308
iter 20 value 91.050228
iter 30 value 87.241210
iter 40 value 86.978880
iter 50 value 85.830022
iter 60 value 85.361549
iter 70 value 85.295459
iter 80 value 84.958781
iter 90 value 84.792829
iter 90 value 84.792828
iter 90 value 84.792828
final value 84.792828
converged
Fitting Repeat 3
# weights: 103
initial value 106.824124
iter 10 value 94.495468
iter 20 value 94.489159
iter 30 value 94.297387
iter 40 value 84.646871
iter 50 value 84.533176
iter 60 value 84.159696
iter 70 value 83.923119
iter 80 value 83.916722
final value 83.916715
converged
Fitting Repeat 4
# weights: 103
initial value 97.797105
iter 10 value 94.455695
iter 20 value 92.319820
iter 30 value 92.018591
iter 40 value 91.852082
iter 50 value 90.955797
iter 60 value 90.787549
iter 70 value 90.767129
final value 90.766961
converged
Fitting Repeat 5
# weights: 103
initial value 114.113021
iter 10 value 94.489048
iter 20 value 89.443767
iter 30 value 86.124125
iter 40 value 84.939626
iter 50 value 84.459315
iter 60 value 84.357571
iter 70 value 84.322775
iter 80 value 84.312022
iter 80 value 84.312021
final value 84.312021
converged
Fitting Repeat 1
# weights: 305
initial value 100.791653
iter 10 value 92.385493
iter 20 value 91.675542
iter 30 value 91.607948
iter 40 value 89.005621
iter 50 value 87.968398
iter 60 value 87.329718
iter 70 value 84.740689
iter 80 value 84.262230
iter 90 value 84.150889
iter 100 value 84.108321
final value 84.108321
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.679126
iter 10 value 94.522650
iter 20 value 93.774353
iter 30 value 87.877536
iter 40 value 85.902096
iter 50 value 84.114731
iter 60 value 83.474534
iter 70 value 81.904364
iter 80 value 81.416729
iter 90 value 81.130462
iter 100 value 80.863274
final value 80.863274
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.795396
iter 10 value 94.385522
iter 20 value 87.631992
iter 30 value 86.533556
iter 40 value 85.956535
iter 50 value 83.863125
iter 60 value 82.720600
iter 70 value 82.316779
iter 80 value 81.985140
iter 90 value 81.528976
iter 100 value 81.048287
final value 81.048287
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.710933
iter 10 value 92.888778
iter 20 value 85.506801
iter 30 value 83.632376
iter 40 value 82.523567
iter 50 value 81.634145
iter 60 value 81.387757
iter 70 value 81.227840
iter 80 value 81.149301
iter 90 value 81.124319
iter 100 value 81.087739
final value 81.087739
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.086452
iter 10 value 94.484295
iter 20 value 94.229010
iter 30 value 91.401758
iter 40 value 89.205833
iter 50 value 87.076718
iter 60 value 85.314725
iter 70 value 84.404722
iter 80 value 84.118761
iter 90 value 83.804529
iter 100 value 83.730653
final value 83.730653
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 132.932084
iter 10 value 94.481597
iter 20 value 91.100277
iter 30 value 87.849122
iter 40 value 84.389139
iter 50 value 84.218789
iter 60 value 84.130101
iter 70 value 83.561768
iter 80 value 82.548299
iter 90 value 82.243864
iter 100 value 82.027760
final value 82.027760
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.568135
iter 10 value 94.204100
iter 20 value 87.013533
iter 30 value 84.128691
iter 40 value 82.905638
iter 50 value 81.767152
iter 60 value 81.359331
iter 70 value 80.870557
iter 80 value 80.505337
iter 90 value 80.299699
iter 100 value 80.258636
final value 80.258636
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.811849
iter 10 value 94.773217
iter 20 value 94.173852
iter 30 value 92.051593
iter 40 value 91.871068
iter 50 value 91.822166
iter 60 value 91.806151
iter 70 value 91.646939
iter 80 value 88.345218
iter 90 value 86.501737
iter 100 value 83.956604
final value 83.956604
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 120.940524
iter 10 value 94.498145
iter 20 value 94.428649
iter 30 value 92.121492
iter 40 value 88.897041
iter 50 value 86.717416
iter 60 value 83.768607
iter 70 value 83.295668
iter 80 value 82.926313
iter 90 value 82.325005
iter 100 value 82.185529
final value 82.185529
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 129.231652
iter 10 value 92.689434
iter 20 value 84.514512
iter 30 value 83.883080
iter 40 value 83.257022
iter 50 value 82.927640
iter 60 value 82.713622
iter 70 value 82.528570
iter 80 value 82.395681
iter 90 value 82.309778
iter 100 value 82.225157
final value 82.225157
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.537993
final value 94.485893
converged
Fitting Repeat 2
# weights: 103
initial value 94.684619
final value 94.485941
converged
Fitting Repeat 3
# weights: 103
initial value 101.687747
final value 94.485544
converged
Fitting Repeat 4
# weights: 103
initial value 105.009199
iter 10 value 90.803460
iter 20 value 90.416446
iter 30 value 88.068090
iter 40 value 86.348003
iter 50 value 86.300343
iter 60 value 86.283414
iter 70 value 86.282879
iter 80 value 86.282391
iter 90 value 86.280603
iter 100 value 86.274835
final value 86.274835
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 95.078457
final value 94.485783
converged
Fitting Repeat 1
# weights: 305
initial value 94.936673
iter 10 value 94.488206
iter 20 value 94.408113
iter 30 value 87.023667
iter 40 value 86.958716
iter 50 value 86.958443
final value 86.958438
converged
Fitting Repeat 2
# weights: 305
initial value 111.493752
iter 10 value 94.488826
iter 20 value 94.448150
iter 30 value 84.591242
iter 40 value 83.573982
iter 50 value 83.553457
iter 60 value 83.549116
final value 83.540098
converged
Fitting Repeat 3
# weights: 305
initial value 97.334192
iter 10 value 94.488942
iter 20 value 94.413910
iter 30 value 91.327147
iter 40 value 91.323651
iter 50 value 91.323363
iter 60 value 91.322571
iter 70 value 91.322332
iter 70 value 91.322332
iter 70 value 91.322332
final value 91.322332
converged
Fitting Repeat 4
# weights: 305
initial value 97.622781
iter 10 value 94.489493
iter 20 value 94.479558
iter 30 value 94.466829
iter 40 value 94.426985
iter 50 value 94.423682
final value 94.423632
converged
Fitting Repeat 5
# weights: 305
initial value 100.703919
iter 10 value 94.489058
iter 20 value 94.444942
iter 30 value 88.491633
iter 40 value 86.858501
iter 50 value 83.692573
iter 60 value 83.102838
iter 70 value 82.890320
iter 80 value 82.887531
iter 90 value 81.938635
iter 100 value 81.262652
final value 81.262652
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.644116
iter 10 value 87.098676
iter 20 value 86.217134
iter 30 value 86.156432
iter 40 value 86.153742
iter 50 value 86.151563
iter 60 value 86.149586
iter 70 value 86.148652
iter 80 value 86.148148
iter 90 value 86.148023
iter 90 value 86.148023
iter 90 value 86.148023
final value 86.148023
converged
Fitting Repeat 2
# weights: 507
initial value 105.041374
iter 10 value 94.489753
iter 20 value 93.726219
iter 30 value 88.051815
iter 40 value 86.044644
iter 50 value 86.029536
final value 86.027412
converged
Fitting Repeat 3
# weights: 507
initial value 96.730166
iter 10 value 94.492325
iter 20 value 89.703458
iter 30 value 86.016799
iter 40 value 85.983021
final value 85.982056
converged
Fitting Repeat 4
# weights: 507
initial value 138.652972
iter 10 value 94.657021
iter 20 value 94.574924
iter 30 value 86.608673
iter 40 value 84.955692
iter 50 value 84.634047
iter 60 value 84.303558
iter 70 value 84.277322
iter 80 value 84.271220
iter 90 value 84.268572
iter 100 value 83.245624
final value 83.245624
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 125.583113
iter 10 value 94.511703
iter 20 value 94.494915
iter 30 value 93.862785
iter 40 value 89.853712
iter 50 value 85.650310
iter 60 value 81.874353
iter 70 value 81.470927
iter 80 value 81.462303
iter 90 value 81.361026
iter 100 value 81.268599
final value 81.268599
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.951005
iter 10 value 92.945356
iter 10 value 92.945355
iter 10 value 92.945355
final value 92.945355
converged
Fitting Repeat 2
# weights: 103
initial value 107.443404
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.353042
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 101.810352
final value 94.052914
converged
Fitting Repeat 5
# weights: 103
initial value 99.746033
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 117.865209
iter 10 value 92.894873
final value 92.894611
converged
Fitting Repeat 2
# weights: 305
initial value 97.379775
iter 10 value 92.945357
iter 10 value 92.945357
iter 10 value 92.945357
final value 92.945357
converged
Fitting Repeat 3
# weights: 305
initial value 94.044761
iter 10 value 92.890020
final value 92.886891
converged
Fitting Repeat 4
# weights: 305
initial value 94.294260
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 96.399794
iter 10 value 93.318808
iter 20 value 93.090941
final value 93.090910
converged
Fitting Repeat 1
# weights: 507
initial value 99.950124
iter 10 value 92.945360
final value 92.945355
converged
Fitting Repeat 2
# weights: 507
initial value 104.777087
iter 10 value 92.946503
final value 92.945355
converged
Fitting Repeat 3
# weights: 507
initial value 109.050606
iter 10 value 92.948727
final value 92.945355
converged
Fitting Repeat 4
# weights: 507
initial value 127.114831
iter 10 value 92.945355
iter 10 value 92.945355
iter 10 value 92.945355
final value 92.945355
converged
Fitting Repeat 5
# weights: 507
initial value 98.271210
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 119.147716
iter 10 value 93.680077
iter 20 value 93.068097
iter 30 value 92.951668
iter 40 value 92.949218
iter 50 value 92.449061
iter 60 value 90.421901
iter 70 value 89.249741
iter 80 value 89.187798
iter 90 value 89.079041
iter 100 value 84.334022
final value 84.334022
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.027636
iter 10 value 94.055111
iter 20 value 93.614484
iter 30 value 93.079750
iter 40 value 92.950755
iter 50 value 92.949754
iter 60 value 92.946325
iter 70 value 92.942247
iter 80 value 91.157199
iter 90 value 85.929023
iter 100 value 84.304429
final value 84.304429
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 102.095844
iter 10 value 93.399002
iter 20 value 92.457740
iter 30 value 88.404037
iter 40 value 88.363238
iter 50 value 88.258936
iter 60 value 86.812894
iter 70 value 86.282263
iter 80 value 85.864131
iter 90 value 85.816734
iter 100 value 85.797360
final value 85.797360
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 105.186839
iter 10 value 94.059053
iter 20 value 93.844819
iter 30 value 93.165337
iter 40 value 93.045282
iter 50 value 92.165911
iter 60 value 89.912382
iter 70 value 84.664266
iter 80 value 84.355879
iter 90 value 84.298319
iter 100 value 84.246986
final value 84.246986
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 100.438281
iter 10 value 94.021576
iter 20 value 88.568953
iter 30 value 87.089895
iter 40 value 86.675786
iter 50 value 85.918184
iter 60 value 85.816948
iter 70 value 85.798564
final value 85.797309
converged
Fitting Repeat 1
# weights: 305
initial value 110.649567
iter 10 value 94.347502
iter 20 value 90.689770
iter 30 value 88.603542
iter 40 value 87.796582
iter 50 value 86.504450
iter 60 value 84.670067
iter 70 value 84.160721
iter 80 value 83.771329
iter 90 value 83.591645
iter 100 value 83.242357
final value 83.242357
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.450009
iter 10 value 94.066024
iter 20 value 93.619199
iter 30 value 93.317057
iter 40 value 86.279196
iter 50 value 85.859402
iter 60 value 85.381046
iter 70 value 84.347421
iter 80 value 83.189265
iter 90 value 82.762589
iter 100 value 82.635463
final value 82.635463
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 116.260530
iter 10 value 94.012274
iter 20 value 89.002297
iter 30 value 87.011099
iter 40 value 86.683198
iter 50 value 86.208802
iter 60 value 85.806760
iter 70 value 85.567705
iter 80 value 85.472897
iter 90 value 85.415179
iter 100 value 85.379372
final value 85.379372
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.477553
iter 10 value 94.841412
iter 20 value 93.018172
iter 30 value 90.373170
iter 40 value 89.408779
iter 50 value 87.953246
iter 60 value 87.372405
iter 70 value 86.592503
iter 80 value 85.233834
iter 90 value 84.859592
iter 100 value 84.720537
final value 84.720537
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.898921
iter 10 value 93.920034
iter 20 value 93.591157
iter 30 value 92.156791
iter 40 value 89.941166
iter 50 value 88.835260
iter 60 value 85.419171
iter 70 value 84.973022
iter 80 value 84.345881
iter 90 value 83.089530
iter 100 value 82.277010
final value 82.277010
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 102.388766
iter 10 value 89.129508
iter 20 value 85.683221
iter 30 value 83.788580
iter 40 value 83.338580
iter 50 value 83.173330
iter 60 value 82.819539
iter 70 value 82.212721
iter 80 value 82.081448
iter 90 value 81.933845
iter 100 value 81.617466
final value 81.617466
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.961085
iter 10 value 93.347459
iter 20 value 92.979809
iter 30 value 91.790936
iter 40 value 87.645745
iter 50 value 86.850838
iter 60 value 85.903671
iter 70 value 83.187484
iter 80 value 82.358732
iter 90 value 81.759623
iter 100 value 81.002078
final value 81.002078
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 122.091066
iter 10 value 93.241821
iter 20 value 91.286234
iter 30 value 89.835953
iter 40 value 86.179014
iter 50 value 85.002558
iter 60 value 84.219805
iter 70 value 83.775150
iter 80 value 82.893134
iter 90 value 82.362626
iter 100 value 81.575262
final value 81.575262
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.443272
iter 10 value 93.647175
iter 20 value 91.984914
iter 30 value 89.311569
iter 40 value 86.181668
iter 50 value 85.405564
iter 60 value 83.330483
iter 70 value 81.935071
iter 80 value 81.297509
iter 90 value 81.172798
iter 100 value 81.063317
final value 81.063317
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 111.563636
iter 10 value 94.609340
iter 20 value 93.935580
iter 30 value 93.406691
iter 40 value 92.996982
iter 50 value 92.832599
iter 60 value 86.692891
iter 70 value 82.600083
iter 80 value 82.079421
iter 90 value 81.954958
iter 100 value 81.918892
final value 81.918892
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.622958
iter 10 value 93.362540
iter 20 value 92.947533
iter 30 value 92.945471
iter 40 value 92.887544
iter 40 value 92.887543
iter 40 value 92.887543
final value 92.887543
converged
Fitting Repeat 2
# weights: 103
initial value 94.348175
final value 94.054508
converged
Fitting Repeat 3
# weights: 103
initial value 97.627008
iter 10 value 94.056807
final value 94.055120
converged
Fitting Repeat 4
# weights: 103
initial value 109.311012
iter 10 value 92.947915
iter 20 value 92.947558
iter 30 value 92.946424
iter 40 value 92.742521
iter 50 value 92.231996
iter 60 value 90.120709
iter 70 value 86.115882
iter 80 value 85.471136
iter 90 value 85.439958
iter 90 value 85.439957
iter 90 value 85.439957
final value 85.439957
converged
Fitting Repeat 5
# weights: 103
initial value 94.576716
final value 94.054754
converged
Fitting Repeat 1
# weights: 305
initial value 105.770977
iter 10 value 94.058168
iter 20 value 93.845966
iter 30 value 93.163848
iter 40 value 92.945938
iter 40 value 92.945938
iter 40 value 92.945938
final value 92.945938
converged
Fitting Repeat 2
# weights: 305
initial value 96.399810
iter 10 value 94.057344
iter 20 value 94.044329
iter 30 value 89.918981
iter 40 value 87.608232
iter 50 value 87.424023
iter 60 value 87.336634
final value 87.335898
converged
Fitting Repeat 3
# weights: 305
initial value 106.994322
iter 10 value 93.091471
iter 20 value 92.720813
iter 30 value 92.717768
iter 40 value 92.651794
iter 50 value 92.646082
iter 50 value 92.646081
iter 50 value 92.646081
final value 92.646081
converged
Fitting Repeat 4
# weights: 305
initial value 99.187098
iter 10 value 94.058020
iter 20 value 94.042966
iter 30 value 90.956389
iter 40 value 90.802918
iter 50 value 90.364615
iter 50 value 90.364615
iter 50 value 90.364614
final value 90.364614
converged
Fitting Repeat 5
# weights: 305
initial value 98.254347
iter 10 value 92.850593
iter 20 value 89.892741
iter 30 value 89.406751
iter 40 value 89.402378
iter 50 value 89.393140
iter 60 value 89.348813
iter 70 value 89.307262
iter 80 value 89.196807
iter 90 value 88.459777
iter 100 value 87.856734
final value 87.856734
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.488540
iter 10 value 94.269366
iter 20 value 94.039554
iter 30 value 88.874749
iter 40 value 88.845068
iter 50 value 88.838293
iter 60 value 88.584331
iter 70 value 87.245838
iter 80 value 87.198403
iter 90 value 85.197073
final value 85.185764
converged
Fitting Repeat 2
# weights: 507
initial value 103.613977
iter 10 value 92.953818
iter 20 value 92.895495
iter 30 value 92.894250
iter 40 value 89.843563
iter 50 value 85.846482
iter 60 value 84.700175
iter 70 value 82.643674
iter 80 value 80.591679
iter 90 value 80.492413
iter 100 value 80.357371
final value 80.357371
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.009301
iter 10 value 93.824870
iter 20 value 93.823351
iter 30 value 92.978380
final value 92.888056
converged
Fitting Repeat 4
# weights: 507
initial value 94.274153
iter 10 value 88.432702
iter 20 value 85.884861
iter 30 value 85.884182
final value 85.884086
converged
Fitting Repeat 5
# weights: 507
initial value 102.751749
iter 10 value 93.211478
iter 20 value 92.091991
iter 30 value 91.958674
iter 40 value 91.500788
iter 50 value 91.426061
iter 60 value 90.714385
iter 70 value 90.655275
iter 80 value 90.653120
iter 90 value 90.054506
iter 100 value 85.733210
final value 85.733210
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.313659
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.762688
iter 10 value 94.443916
iter 20 value 94.443247
final value 94.443244
converged
Fitting Repeat 3
# weights: 103
initial value 105.793903
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.598661
iter 10 value 93.701667
final value 93.701657
converged
Fitting Repeat 5
# weights: 103
initial value 109.126189
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.507640
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.467731
final value 94.482150
converged
Fitting Repeat 3
# weights: 305
initial value 122.157009
iter 10 value 94.444287
final value 94.443243
converged
Fitting Repeat 4
# weights: 305
initial value 99.112575
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 102.607083
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 140.404551
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 100.249647
final value 94.449438
converged
Fitting Repeat 3
# weights: 507
initial value 134.526592
final value 94.443243
converged
Fitting Repeat 4
# weights: 507
initial value 109.332405
iter 10 value 85.278026
final value 84.806308
converged
Fitting Repeat 5
# weights: 507
initial value 98.829573
iter 10 value 94.443861
iter 20 value 94.443245
iter 20 value 94.443244
iter 20 value 94.443244
final value 94.443244
converged
Fitting Repeat 1
# weights: 103
initial value 97.199707
iter 10 value 93.629224
iter 20 value 83.244259
iter 30 value 82.726921
iter 40 value 82.245358
iter 50 value 82.084575
iter 60 value 82.044921
final value 82.044754
converged
Fitting Repeat 2
# weights: 103
initial value 104.081053
iter 10 value 94.408052
iter 20 value 93.294283
iter 30 value 93.210370
iter 40 value 93.196378
iter 50 value 89.574688
iter 60 value 83.338744
iter 70 value 82.871958
iter 80 value 82.199236
iter 90 value 81.893351
iter 100 value 80.902537
final value 80.902537
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 105.393299
iter 10 value 94.488729
iter 20 value 93.635892
iter 30 value 93.221018
iter 40 value 83.991727
iter 50 value 82.968205
iter 60 value 82.098393
iter 70 value 81.770762
iter 80 value 81.736795
iter 90 value 80.433902
iter 100 value 80.256397
final value 80.256397
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.427944
iter 10 value 94.342914
iter 20 value 87.867162
iter 30 value 86.002742
iter 40 value 85.777858
iter 50 value 82.767909
iter 60 value 82.328919
iter 70 value 81.898722
iter 80 value 81.720187
iter 90 value 81.533681
iter 100 value 80.464066
final value 80.464066
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.790044
iter 10 value 88.619976
iter 20 value 82.760896
iter 30 value 82.526680
iter 40 value 82.076482
iter 50 value 81.783387
iter 60 value 81.757639
iter 70 value 81.745561
final value 81.745559
converged
Fitting Repeat 1
# weights: 305
initial value 120.303939
iter 10 value 94.466734
iter 20 value 83.551684
iter 30 value 81.825451
iter 40 value 80.993721
iter 50 value 79.778270
iter 60 value 79.155977
iter 70 value 78.739655
iter 80 value 78.625252
iter 90 value 78.551659
iter 100 value 78.532191
final value 78.532191
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 114.569585
iter 10 value 94.349689
iter 20 value 93.517664
iter 30 value 93.343661
iter 40 value 87.029621
iter 50 value 84.522208
iter 60 value 83.027979
iter 70 value 81.204985
iter 80 value 80.130292
iter 90 value 79.642287
iter 100 value 79.528694
final value 79.528694
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 113.709066
iter 10 value 94.430806
iter 20 value 93.506968
iter 30 value 85.546737
iter 40 value 84.113619
iter 50 value 83.889022
iter 60 value 83.203439
iter 70 value 81.641825
iter 80 value 81.502953
iter 90 value 81.204217
iter 100 value 80.719504
final value 80.719504
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.262750
iter 10 value 94.539390
iter 20 value 90.649252
iter 30 value 83.786728
iter 40 value 83.213753
iter 50 value 81.617480
iter 60 value 80.380459
iter 70 value 79.561564
iter 80 value 78.664436
iter 90 value 78.432733
iter 100 value 78.289378
final value 78.289378
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.325851
iter 10 value 94.659480
iter 20 value 94.479580
iter 30 value 84.424874
iter 40 value 83.074660
iter 50 value 82.482520
iter 60 value 81.681504
iter 70 value 79.497494
iter 80 value 78.916390
iter 90 value 78.742830
iter 100 value 78.666604
final value 78.666604
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.777745
iter 10 value 94.136669
iter 20 value 89.940338
iter 30 value 87.343915
iter 40 value 85.563819
iter 50 value 83.044679
iter 60 value 80.422198
iter 70 value 79.356760
iter 80 value 79.098552
iter 90 value 78.804953
iter 100 value 78.413874
final value 78.413874
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 127.889319
iter 10 value 90.478969
iter 20 value 84.054378
iter 30 value 82.400136
iter 40 value 81.274998
iter 50 value 80.745456
iter 60 value 79.890418
iter 70 value 79.088944
iter 80 value 78.735332
iter 90 value 78.651957
iter 100 value 78.591246
final value 78.591246
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.182249
iter 10 value 89.365568
iter 20 value 85.609869
iter 30 value 84.868504
iter 40 value 84.739091
iter 50 value 82.652279
iter 60 value 81.642007
iter 70 value 81.187042
iter 80 value 80.280440
iter 90 value 79.045358
iter 100 value 78.735548
final value 78.735548
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.355166
iter 10 value 97.649329
iter 20 value 89.215892
iter 30 value 85.864964
iter 40 value 85.255726
iter 50 value 82.629588
iter 60 value 81.694238
iter 70 value 81.094404
iter 80 value 78.986917
iter 90 value 78.621725
iter 100 value 78.418546
final value 78.418546
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.965304
iter 10 value 94.535843
iter 20 value 87.160597
iter 30 value 83.677984
iter 40 value 82.142715
iter 50 value 81.616971
iter 60 value 80.911716
iter 70 value 80.234519
iter 80 value 79.557319
iter 90 value 79.221807
iter 100 value 79.133346
final value 79.133346
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.832001
iter 10 value 94.486101
iter 20 value 94.484236
final value 94.484213
converged
Fitting Repeat 2
# weights: 103
initial value 96.191818
final value 94.486003
converged
Fitting Repeat 3
# weights: 103
initial value 110.351664
final value 94.485669
converged
Fitting Repeat 4
# weights: 103
initial value 107.312021
final value 94.485663
converged
Fitting Repeat 5
# weights: 103
initial value 105.710832
final value 94.486155
converged
Fitting Repeat 1
# weights: 305
initial value 108.896880
iter 10 value 94.489095
iter 20 value 94.256231
iter 30 value 89.968960
iter 40 value 89.174388
iter 50 value 87.691230
iter 60 value 87.669896
final value 86.524710
converged
Fitting Repeat 2
# weights: 305
initial value 96.194613
iter 10 value 93.929060
iter 20 value 93.677694
iter 30 value 91.717447
iter 40 value 91.338918
iter 50 value 91.336647
iter 60 value 91.173567
final value 91.051536
converged
Fitting Repeat 3
# weights: 305
initial value 100.866595
iter 10 value 92.112908
iter 20 value 83.808981
iter 30 value 83.783148
iter 40 value 83.369172
iter 50 value 83.112864
iter 60 value 82.934208
iter 70 value 82.932727
iter 80 value 82.868317
iter 90 value 82.711166
iter 100 value 80.608866
final value 80.608866
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.804151
iter 10 value 94.488956
iter 20 value 94.416974
iter 30 value 93.386825
iter 40 value 83.771250
iter 50 value 81.871425
iter 60 value 81.506476
final value 81.504234
converged
Fitting Repeat 5
# weights: 305
initial value 100.013151
iter 10 value 94.448140
iter 20 value 94.444270
iter 30 value 89.822017
iter 40 value 83.176934
iter 50 value 82.446338
iter 60 value 81.427487
iter 70 value 81.394684
iter 80 value 81.243902
iter 90 value 81.213849
iter 100 value 81.213796
final value 81.213796
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.435159
iter 10 value 94.451414
iter 20 value 91.439398
iter 30 value 85.306477
iter 40 value 84.937258
iter 50 value 82.870601
iter 60 value 81.225691
final value 81.198962
converged
Fitting Repeat 2
# weights: 507
initial value 117.378648
iter 10 value 94.451382
iter 20 value 94.445133
iter 30 value 94.351546
iter 40 value 93.227435
iter 50 value 93.220605
final value 93.220591
converged
Fitting Repeat 3
# weights: 507
initial value 107.482983
iter 10 value 94.492612
iter 20 value 94.484242
iter 30 value 93.839289
iter 40 value 92.730956
iter 50 value 85.886822
iter 60 value 82.582534
iter 70 value 82.527336
iter 80 value 81.966452
iter 90 value 81.949393
iter 100 value 81.863143
final value 81.863143
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.557083
iter 10 value 84.871035
iter 20 value 84.547573
iter 30 value 81.812664
iter 40 value 81.367553
iter 50 value 81.363367
iter 60 value 81.359010
iter 70 value 81.358222
iter 80 value 81.261798
iter 90 value 81.217023
iter 100 value 81.216757
final value 81.216757
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 101.710344
iter 10 value 94.452368
iter 20 value 94.445036
iter 30 value 85.059031
iter 40 value 84.910131
iter 50 value 84.834800
iter 60 value 82.578494
iter 70 value 81.946848
iter 80 value 81.873395
iter 90 value 81.667545
iter 100 value 81.638408
final value 81.638408
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.660712
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 100.710579
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.440596
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 110.069898
final value 94.032967
converged
Fitting Repeat 5
# weights: 103
initial value 115.135290
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 112.409204
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 96.862884
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 97.073695
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 105.351845
iter 10 value 90.159962
iter 20 value 87.242745
iter 30 value 87.236617
final value 87.236597
converged
Fitting Repeat 5
# weights: 305
initial value 108.804608
final value 94.032967
converged
Fitting Repeat 1
# weights: 507
initial value 114.825134
final value 94.032967
converged
Fitting Repeat 2
# weights: 507
initial value 107.170617
final value 94.050000
converged
Fitting Repeat 3
# weights: 507
initial value 101.283945
final value 94.032967
converged
Fitting Repeat 4
# weights: 507
initial value 107.962120
final value 94.050051
converged
Fitting Repeat 5
# weights: 507
initial value 99.184434
iter 10 value 86.347288
iter 20 value 85.202844
iter 30 value 85.050655
iter 40 value 85.010386
iter 50 value 85.002977
iter 60 value 84.985052
iter 70 value 84.967993
iter 80 value 82.666420
iter 90 value 82.638558
final value 82.638405
converged
Fitting Repeat 1
# weights: 103
initial value 100.366540
iter 10 value 94.056185
iter 20 value 92.933327
iter 30 value 92.595610
iter 40 value 92.552620
iter 50 value 92.342297
iter 60 value 92.234171
iter 70 value 89.572867
iter 80 value 86.045622
iter 90 value 85.899345
iter 100 value 85.212144
final value 85.212144
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.377953
iter 10 value 94.056185
iter 20 value 93.612814
iter 30 value 92.635465
iter 40 value 89.736627
iter 50 value 87.255333
iter 60 value 85.996058
iter 70 value 84.731644
iter 80 value 84.574055
iter 90 value 84.468537
iter 100 value 84.352793
final value 84.352793
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.864336
iter 10 value 94.042510
iter 20 value 91.394847
iter 30 value 90.544466
iter 40 value 86.277389
iter 50 value 84.856327
iter 60 value 84.696813
iter 70 value 84.448583
iter 80 value 84.406194
iter 90 value 84.293243
final value 84.282959
converged
Fitting Repeat 4
# weights: 103
initial value 109.768140
iter 10 value 94.054355
iter 20 value 93.589481
iter 30 value 90.772386
iter 40 value 88.684541
iter 50 value 88.584392
iter 60 value 87.945205
iter 70 value 85.043103
iter 80 value 84.221826
iter 90 value 82.435971
iter 100 value 81.932873
final value 81.932873
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 105.100157
iter 10 value 94.051888
iter 20 value 93.574275
iter 30 value 90.378304
iter 40 value 89.061563
iter 50 value 87.763080
iter 60 value 86.192943
iter 70 value 85.871305
iter 80 value 85.787036
iter 90 value 85.658881
iter 100 value 85.482700
final value 85.482700
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 104.505552
iter 10 value 90.748303
iter 20 value 88.613691
iter 30 value 88.124804
iter 40 value 85.070817
iter 50 value 83.121512
iter 60 value 81.699855
iter 70 value 81.363954
iter 80 value 80.926143
iter 90 value 80.257326
iter 100 value 80.158693
final value 80.158693
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.848633
iter 10 value 92.502523
iter 20 value 85.648599
iter 30 value 84.332051
iter 40 value 83.869658
iter 50 value 83.341889
iter 60 value 81.235888
iter 70 value 80.583091
iter 80 value 80.535520
iter 90 value 80.505580
iter 100 value 80.431931
final value 80.431931
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 111.757308
iter 10 value 93.933353
iter 20 value 89.100601
iter 30 value 87.032982
iter 40 value 83.579169
iter 50 value 81.497920
iter 60 value 81.240725
iter 70 value 80.633866
iter 80 value 80.536301
iter 90 value 80.401005
iter 100 value 80.036365
final value 80.036365
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.213170
iter 10 value 93.857947
iter 20 value 89.484609
iter 30 value 88.052976
iter 40 value 87.025595
iter 50 value 86.756418
iter 60 value 86.594301
iter 70 value 86.226485
iter 80 value 85.465441
iter 90 value 84.365259
iter 100 value 81.800453
final value 81.800453
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.168686
iter 10 value 94.042173
iter 20 value 89.391800
iter 30 value 86.168791
iter 40 value 84.909583
iter 50 value 84.511281
iter 60 value 82.657243
iter 70 value 81.869065
iter 80 value 81.285830
iter 90 value 80.920040
iter 100 value 80.802941
final value 80.802941
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.722855
iter 10 value 94.342607
iter 20 value 93.526061
iter 30 value 90.027838
iter 40 value 86.512404
iter 50 value 84.617351
iter 60 value 83.920599
iter 70 value 83.649415
iter 80 value 83.271882
iter 90 value 83.230934
iter 100 value 83.123638
final value 83.123638
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.370007
iter 10 value 95.189816
iter 20 value 94.541970
iter 30 value 87.823345
iter 40 value 86.346557
iter 50 value 85.854911
iter 60 value 84.740823
iter 70 value 84.281524
iter 80 value 84.092789
iter 90 value 83.086904
iter 100 value 82.600162
final value 82.600162
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.070495
iter 10 value 94.230321
iter 20 value 90.095014
iter 30 value 86.653635
iter 40 value 86.249094
iter 50 value 82.728353
iter 60 value 82.052209
iter 70 value 80.935160
iter 80 value 80.190422
iter 90 value 80.024599
iter 100 value 79.971919
final value 79.971919
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.321943
iter 10 value 93.715001
iter 20 value 87.896823
iter 30 value 84.383544
iter 40 value 81.185261
iter 50 value 80.583480
iter 60 value 80.503449
iter 70 value 80.205314
iter 80 value 79.954441
iter 90 value 79.871677
iter 100 value 79.772554
final value 79.772554
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.690522
iter 10 value 94.045979
iter 20 value 89.949500
iter 30 value 88.460673
iter 40 value 85.193480
iter 50 value 82.059446
iter 60 value 80.951379
iter 70 value 80.562323
iter 80 value 80.457811
iter 90 value 80.166921
iter 100 value 79.751371
final value 79.751371
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 106.456290
iter 10 value 94.054524
iter 20 value 94.052712
iter 30 value 93.918579
iter 40 value 89.687338
iter 50 value 88.591058
iter 60 value 87.283949
iter 70 value 87.281500
final value 87.281343
converged
Fitting Repeat 2
# weights: 103
initial value 98.607008
iter 10 value 92.498483
iter 20 value 92.497134
iter 30 value 92.496764
iter 40 value 92.495761
final value 92.495759
converged
Fitting Repeat 3
# weights: 103
initial value 104.044839
iter 10 value 94.034804
iter 20 value 93.688987
iter 30 value 92.668722
iter 40 value 92.667634
iter 50 value 92.412605
iter 60 value 92.411085
final value 92.411072
converged
Fitting Repeat 4
# weights: 103
initial value 100.411412
iter 10 value 94.043588
iter 20 value 94.034350
final value 94.033018
converged
Fitting Repeat 5
# weights: 103
initial value 95.486024
iter 10 value 94.054702
final value 94.052914
converged
Fitting Repeat 1
# weights: 305
initial value 99.574251
iter 10 value 89.288841
iter 20 value 89.014208
iter 30 value 87.525041
iter 40 value 86.937545
iter 50 value 86.841051
iter 60 value 86.840049
iter 70 value 86.839070
iter 80 value 86.593697
iter 90 value 84.626486
iter 100 value 83.721387
final value 83.721387
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 112.553085
iter 10 value 94.038299
iter 20 value 94.033132
final value 94.033033
converged
Fitting Repeat 3
# weights: 305
initial value 103.277630
iter 10 value 94.037778
iter 20 value 94.033748
iter 30 value 87.754177
iter 40 value 87.249966
iter 50 value 85.535453
iter 60 value 85.424733
iter 60 value 85.424733
iter 60 value 85.424733
final value 85.424733
converged
Fitting Repeat 4
# weights: 305
initial value 109.392007
iter 10 value 94.084234
iter 20 value 94.047019
iter 30 value 93.023432
iter 40 value 93.010254
iter 50 value 92.859412
iter 60 value 92.804468
iter 70 value 92.767042
iter 80 value 92.762338
final value 92.762336
converged
Fitting Repeat 5
# weights: 305
initial value 108.332044
iter 10 value 94.057331
iter 20 value 93.858699
iter 30 value 86.890019
iter 40 value 84.818165
iter 50 value 80.880938
iter 60 value 79.980231
iter 70 value 79.943028
iter 80 value 79.888080
iter 90 value 79.878828
iter 100 value 79.859997
final value 79.859997
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.335162
iter 10 value 94.058382
iter 20 value 94.056272
iter 30 value 94.003889
iter 40 value 93.555996
iter 50 value 85.224108
iter 60 value 82.488550
iter 70 value 82.189504
iter 80 value 81.858123
iter 90 value 81.629426
iter 100 value 81.448090
final value 81.448090
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.911335
iter 10 value 94.063178
iter 20 value 88.433899
iter 30 value 86.337000
iter 40 value 85.127682
iter 50 value 84.847884
iter 60 value 84.512513
iter 70 value 84.510737
iter 80 value 84.510224
iter 80 value 84.510224
final value 84.510222
converged
Fitting Repeat 3
# weights: 507
initial value 99.419196
iter 10 value 94.041705
iter 20 value 94.034151
iter 30 value 94.032157
iter 40 value 93.095303
iter 50 value 92.670498
iter 60 value 92.465867
iter 70 value 92.425130
iter 80 value 92.389074
iter 90 value 92.388832
iter 100 value 92.387675
final value 92.387675
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.295234
iter 10 value 93.892891
iter 20 value 93.887903
iter 30 value 93.423060
iter 40 value 92.280750
final value 92.181123
converged
Fitting Repeat 5
# weights: 507
initial value 95.457974
iter 10 value 94.040406
iter 20 value 93.423677
iter 30 value 85.307568
iter 40 value 84.185359
iter 50 value 83.824724
iter 60 value 83.824616
final value 83.824473
converged
Fitting Repeat 1
# weights: 103
initial value 98.488670
iter 10 value 87.922197
iter 20 value 85.412582
iter 20 value 85.412581
iter 20 value 85.412581
final value 85.412581
converged
Fitting Repeat 2
# weights: 103
initial value 99.254457
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 94.955581
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.406685
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 109.512950
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 103.213067
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 97.308480
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 94.622337
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 97.979092
iter 10 value 87.431233
iter 20 value 83.574205
iter 30 value 83.414990
iter 40 value 82.559197
final value 82.279001
converged
Fitting Repeat 5
# weights: 305
initial value 100.262171
final value 94.484210
converged
Fitting Repeat 1
# weights: 507
initial value 107.299353
iter 10 value 94.467011
final value 94.466823
converged
Fitting Repeat 2
# weights: 507
initial value 102.329182
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 96.551674
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 94.601512
iter 10 value 86.344017
iter 20 value 84.072511
iter 30 value 84.043878
final value 84.042678
converged
Fitting Repeat 5
# weights: 507
initial value 100.023988
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 99.050836
iter 10 value 94.540308
iter 20 value 94.488566
iter 30 value 94.195349
iter 40 value 87.272542
iter 50 value 86.110127
iter 60 value 85.879162
iter 70 value 85.396234
iter 80 value 83.692211
final value 83.685163
converged
Fitting Repeat 2
# weights: 103
initial value 100.676514
iter 10 value 94.409279
iter 20 value 92.757144
iter 30 value 86.813390
iter 40 value 86.617978
iter 50 value 85.744846
iter 60 value 84.764869
final value 84.754153
converged
Fitting Repeat 3
# weights: 103
initial value 98.520514
iter 10 value 94.488316
iter 20 value 94.271225
iter 30 value 94.157128
iter 40 value 94.142419
iter 50 value 93.669876
iter 60 value 88.692324
iter 70 value 87.282426
iter 80 value 86.671858
iter 90 value 82.766518
iter 100 value 81.637934
final value 81.637934
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 104.737498
iter 10 value 94.302166
iter 20 value 87.792175
iter 30 value 83.863716
iter 40 value 83.702279
iter 50 value 83.653761
iter 60 value 83.643458
final value 83.643055
converged
Fitting Repeat 5
# weights: 103
initial value 108.338052
iter 10 value 93.981389
iter 20 value 87.289380
iter 30 value 85.557658
iter 40 value 85.283257
iter 50 value 84.351359
iter 60 value 83.879265
iter 70 value 83.648247
iter 80 value 83.646890
iter 80 value 83.646890
final value 83.646890
converged
Fitting Repeat 1
# weights: 305
initial value 100.492427
iter 10 value 95.384048
iter 20 value 93.418221
iter 30 value 93.285935
iter 40 value 91.606931
iter 50 value 85.922863
iter 60 value 85.415947
iter 70 value 85.058881
iter 80 value 84.986972
iter 90 value 84.935781
iter 100 value 84.858483
final value 84.858483
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 117.129454
iter 10 value 94.817607
iter 20 value 94.199843
iter 30 value 86.876227
iter 40 value 86.352795
iter 50 value 83.012980
iter 60 value 82.362309
iter 70 value 81.703509
iter 80 value 81.315415
iter 90 value 80.805027
iter 100 value 80.750309
final value 80.750309
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.876133
iter 10 value 94.521485
iter 20 value 86.339857
iter 30 value 85.673236
iter 40 value 84.937936
iter 50 value 83.707287
iter 60 value 83.408850
iter 70 value 83.341766
iter 80 value 82.921854
iter 90 value 81.994773
iter 100 value 80.293972
final value 80.293972
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.104993
iter 10 value 94.267523
iter 20 value 89.988061
iter 30 value 88.760486
iter 40 value 84.090904
iter 50 value 81.312481
iter 60 value 81.089479
iter 70 value 80.685890
iter 80 value 80.570163
iter 90 value 80.345061
iter 100 value 80.168014
final value 80.168014
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.423339
iter 10 value 94.485353
iter 20 value 94.174490
iter 30 value 94.129931
iter 40 value 93.469629
iter 50 value 86.969695
iter 60 value 83.131249
iter 70 value 82.513275
iter 80 value 82.353567
iter 90 value 82.182028
iter 100 value 81.330224
final value 81.330224
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.484729
iter 10 value 94.282040
iter 20 value 85.790820
iter 30 value 83.559583
iter 40 value 82.789083
iter 50 value 82.653814
iter 60 value 81.752176
iter 70 value 81.166171
iter 80 value 80.973814
iter 90 value 80.500537
iter 100 value 80.405894
final value 80.405894
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.681359
iter 10 value 100.700720
iter 20 value 87.194481
iter 30 value 82.253254
iter 40 value 81.494964
iter 50 value 80.307442
iter 60 value 80.182647
iter 70 value 80.042609
iter 80 value 79.725540
iter 90 value 79.521841
iter 100 value 79.390159
final value 79.390159
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.552096
iter 10 value 94.434079
iter 20 value 87.785631
iter 30 value 85.907199
iter 40 value 84.747382
iter 50 value 83.618834
iter 60 value 81.380185
iter 70 value 80.365040
iter 80 value 80.300337
iter 90 value 80.176973
iter 100 value 79.889707
final value 79.889707
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.927507
iter 10 value 94.794402
iter 20 value 94.603886
iter 30 value 86.442357
iter 40 value 85.581228
iter 50 value 84.880592
iter 60 value 82.795149
iter 70 value 80.618272
iter 80 value 80.194828
iter 90 value 79.731104
iter 100 value 79.486275
final value 79.486275
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.483974
iter 10 value 95.068612
iter 20 value 88.559939
iter 30 value 86.052518
iter 40 value 84.122114
iter 50 value 83.224838
iter 60 value 82.828533
iter 70 value 81.431708
iter 80 value 81.158364
iter 90 value 81.063749
iter 100 value 80.996839
final value 80.996839
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.346894
final value 94.485839
converged
Fitting Repeat 2
# weights: 103
initial value 94.809866
final value 94.485948
converged
Fitting Repeat 3
# weights: 103
initial value 108.919840
iter 10 value 93.112090
iter 20 value 93.103665
iter 30 value 84.738574
iter 40 value 84.586966
iter 50 value 84.586857
iter 60 value 84.571554
iter 70 value 84.030819
iter 80 value 84.030752
final value 84.030750
converged
Fitting Repeat 4
# weights: 103
initial value 98.824441
final value 94.485896
converged
Fitting Repeat 5
# weights: 103
initial value 105.335994
final value 94.485619
converged
Fitting Repeat 1
# weights: 305
initial value 95.741455
iter 10 value 94.488195
iter 20 value 94.374049
iter 30 value 85.138042
iter 40 value 84.564716
iter 50 value 83.307547
final value 83.300616
converged
Fitting Repeat 2
# weights: 305
initial value 102.154751
iter 10 value 94.489510
iter 20 value 94.237007
iter 30 value 90.551150
iter 40 value 90.314803
iter 50 value 90.302988
iter 60 value 90.111187
iter 60 value 90.111186
iter 60 value 90.111186
final value 90.111186
converged
Fitting Repeat 3
# weights: 305
initial value 107.546107
iter 10 value 94.472180
iter 20 value 94.280680
final value 94.113151
converged
Fitting Repeat 4
# weights: 305
initial value 100.204511
iter 10 value 94.489229
iter 20 value 94.484701
iter 30 value 87.752175
iter 40 value 84.269800
iter 50 value 83.160492
iter 60 value 80.960314
iter 70 value 80.611580
iter 80 value 80.595037
iter 90 value 80.590989
iter 100 value 80.586049
final value 80.586049
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 94.949869
iter 10 value 94.489123
iter 20 value 94.342225
iter 30 value 88.927226
iter 40 value 87.046656
iter 50 value 85.900452
iter 60 value 85.741279
iter 70 value 85.737900
iter 80 value 85.737455
iter 80 value 85.737454
iter 80 value 85.737454
final value 85.737454
converged
Fitting Repeat 1
# weights: 507
initial value 113.433063
iter 10 value 93.118623
iter 20 value 88.858329
iter 30 value 83.870149
iter 40 value 83.832127
iter 50 value 83.831946
iter 60 value 82.909637
iter 70 value 82.249865
final value 82.231683
converged
Fitting Repeat 2
# weights: 507
initial value 104.447256
iter 10 value 94.474567
iter 20 value 94.242448
iter 30 value 89.144561
iter 40 value 82.784290
iter 50 value 82.619131
iter 60 value 82.616395
iter 70 value 82.615199
iter 80 value 82.605356
iter 90 value 82.388460
iter 100 value 82.042098
final value 82.042098
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.595636
iter 10 value 94.492124
iter 20 value 88.223639
iter 30 value 83.091348
iter 40 value 83.038238
final value 83.038051
converged
Fitting Repeat 4
# weights: 507
initial value 109.587704
iter 10 value 94.319461
iter 20 value 94.300601
iter 30 value 93.567125
iter 40 value 86.842974
iter 50 value 86.332771
iter 60 value 84.529281
iter 70 value 83.855051
iter 80 value 83.851748
iter 90 value 83.851209
iter 100 value 83.608126
final value 83.608126
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 101.676790
iter 10 value 94.488533
iter 20 value 94.471409
iter 30 value 85.140379
iter 40 value 84.053053
iter 50 value 84.034509
final value 84.033762
converged
Fitting Repeat 1
# weights: 507
initial value 149.602672
iter 10 value 118.106556
iter 20 value 117.526906
iter 30 value 114.051172
iter 40 value 106.702551
iter 50 value 102.626098
iter 60 value 101.125037
iter 70 value 100.845466
iter 80 value 100.718319
iter 90 value 100.398531
iter 100 value 100.350609
final value 100.350609
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 143.683342
iter 10 value 120.130155
iter 20 value 117.962516
iter 30 value 107.486789
iter 40 value 107.273492
iter 50 value 107.162413
iter 60 value 104.908022
iter 70 value 104.016293
iter 80 value 102.430125
iter 90 value 101.623504
iter 100 value 101.530706
final value 101.530706
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 141.258006
iter 10 value 118.013794
iter 20 value 117.737575
iter 30 value 108.899930
iter 40 value 107.850811
iter 50 value 104.874037
iter 60 value 103.777779
iter 70 value 103.056083
iter 80 value 102.725384
iter 90 value 102.548823
iter 100 value 101.599546
final value 101.599546
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 124.590304
iter 10 value 117.190938
iter 20 value 106.383775
iter 30 value 105.577581
iter 40 value 104.844812
iter 50 value 104.187986
iter 60 value 103.540653
iter 70 value 103.049226
iter 80 value 102.416892
iter 90 value 102.021231
iter 100 value 101.303336
final value 101.303336
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 129.574044
iter 10 value 117.835087
iter 20 value 108.024012
iter 30 value 107.785902
iter 40 value 107.276762
iter 50 value 104.973832
iter 60 value 103.417890
iter 70 value 103.092874
iter 80 value 102.491724
iter 90 value 102.192074
iter 100 value 101.943758
final value 101.943758
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Thu Mar 17 19:24:23 2022
***********************************************
Number of test functions: 8
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8
Number of errors: 0
Number of failures: 0
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0.
Use `.name_repair = "minimal"`.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
2: `repeats` has no meaning for this resampling method.
3: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
75.15 2.34 47.34
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 26.36 | 4.49 | 30.84 | |
| FreqInteractors | 0.19 | 0.00 | 0.19 | |
| calculateAAC | 0.04 | 0.01 | 0.06 | |
| calculateAutocor | 0.18 | 0.19 | 0.36 | |
| calculateBE | 0.04 | 0.02 | 0.06 | |
| calculateCTDC | 0.06 | 0.03 | 0.10 | |
| calculateCTDD | 0.60 | 0.12 | 0.72 | |
| calculateCTDT | 0.36 | 0.00 | 0.35 | |
| calculateCTriad | 0.29 | 0.03 | 0.33 | |
| calculateDC | 0.08 | 0.00 | 0.08 | |
| calculateF | 0.36 | 0.00 | 0.36 | |
| calculateKSAAP | 0.10 | 0.00 | 0.09 | |
| calculateQD_Sm | 1.37 | 0.10 | 1.47 | |
| calculateTC | 2.67 | 0.23 | 2.91 | |
| calculateTC_Sm | 0.17 | 0.00 | 0.17 | |
| corr_plot | 28.08 | 3.28 | 31.94 | |
| enrichfindP | 0.27 | 0.02 | 8.69 | |
| enrichfind_hp | 0.01 | 0.01 | 0.75 | |
| enrichplot | 0.19 | 0.00 | 0.19 | |
| filter_missing_values | 0 | 0 | 0 | |
| getFASTA | 0.01 | 0.00 | 1.92 | |
| getHPI | 0 | 0 | 0 | |
| get_negativePPI | 0 | 0 | 0 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0 | 0 | 0 | |
| plotPPI | 0.05 | 0.00 | 0.05 | |
| pred_ensembel | 18.12 | 0.35 | 9.40 | |
| var_imp | 27.36 | 3.83 | 33.21 | |