| Back to Multiple platform build/check report for BioC 3.15 |
|
This page was generated on 2022-10-19 13:23:05 -0400 (Wed, 19 Oct 2022).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.1 (2022-06-23) -- "Funny-Looking Kid" | 4386 |
| palomino3 | Windows Server 2022 Datacenter | x64 | 4.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid" | 4138 |
| merida1 | macOS 10.14.6 Mojave | x86_64 | 4.2.1 (2022-06-23) -- "Funny-Looking Kid" | 4205 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 911/2140 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.2.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
| Package: HPiP |
| Version: 1.2.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.2.0.tar.gz |
| StartedAt: 2022-10-19 03:31:26 -0400 (Wed, 19 Oct 2022) |
| EndedAt: 2022-10-19 03:38:38 -0400 (Wed, 19 Oct 2022) |
| EllapsedTime: 431.8 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.2.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck’
* using R version 4.2.1 (2022-06-23)
* using platform: x86_64-apple-darwin17.0 (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.2.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 51.677 0.937 52.804
corr_plot 49.880 0.931 50.965
FSmethod 49.185 1.027 50.310
pred_ensembel 22.232 0.373 17.514
enrichfindP 0.710 0.037 11.454
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/Users/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.2/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 96.329364
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 94.546918
iter 10 value 89.881583
iter 20 value 88.896936
iter 30 value 88.893590
iter 40 value 88.893442
final value 88.893434
converged
Fitting Repeat 3
# weights: 103
initial value 96.750559
final value 94.484208
converged
Fitting Repeat 4
# weights: 103
initial value 101.690059
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 99.922404
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 106.613340
iter 10 value 94.252933
final value 94.252920
converged
Fitting Repeat 2
# weights: 305
initial value 111.033557
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 109.680756
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 98.893356
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 94.497184
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 99.862802
final value 94.354396
converged
Fitting Repeat 2
# weights: 507
initial value 96.553363
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 128.396119
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 103.793428
iter 10 value 93.684898
iter 20 value 93.332482
final value 93.332475
converged
Fitting Repeat 5
# weights: 507
initial value 125.051046
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 106.254748
iter 10 value 94.488410
iter 20 value 93.688300
iter 30 value 93.634191
iter 40 value 93.619512
iter 50 value 90.960046
iter 60 value 85.279659
iter 70 value 85.104541
iter 80 value 84.562172
iter 90 value 84.390087
iter 100 value 84.388159
final value 84.388159
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.806550
iter 10 value 93.913022
iter 20 value 85.614214
iter 30 value 84.969050
iter 40 value 84.580709
iter 50 value 84.385873
iter 60 value 84.378601
final value 84.378594
converged
Fitting Repeat 3
# weights: 103
initial value 105.579666
iter 10 value 94.522853
iter 20 value 93.110669
iter 30 value 89.030891
iter 40 value 87.584012
iter 50 value 87.373993
iter 60 value 85.224821
iter 70 value 85.095360
iter 80 value 84.606163
iter 90 value 84.384358
iter 100 value 84.378598
final value 84.378598
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.535370
iter 10 value 94.484855
iter 20 value 93.726878
iter 30 value 92.714490
iter 40 value 85.768861
iter 50 value 83.812710
iter 60 value 83.431295
iter 70 value 83.162152
iter 80 value 82.831719
iter 90 value 82.594173
iter 100 value 82.390819
final value 82.390819
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 105.367284
iter 10 value 94.486495
iter 20 value 93.655040
iter 30 value 93.620416
iter 40 value 92.216019
iter 50 value 86.413037
iter 60 value 85.723208
iter 70 value 85.509466
iter 80 value 85.164822
iter 90 value 83.029281
iter 100 value 82.095062
final value 82.095062
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 114.731288
iter 10 value 94.490593
iter 20 value 93.926898
iter 30 value 86.654121
iter 40 value 85.533097
iter 50 value 85.010682
iter 60 value 84.710888
iter 70 value 83.980736
iter 80 value 82.113917
iter 90 value 81.672867
iter 100 value 81.548069
final value 81.548069
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.437300
iter 10 value 94.534313
iter 20 value 93.536969
iter 30 value 91.526568
iter 40 value 88.717485
iter 50 value 85.362109
iter 60 value 83.259016
iter 70 value 82.124924
iter 80 value 80.936509
iter 90 value 80.886242
iter 100 value 80.548405
final value 80.548405
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.247259
iter 10 value 94.022366
iter 20 value 85.302143
iter 30 value 84.658336
iter 40 value 84.293962
iter 50 value 84.153992
iter 60 value 84.107812
iter 70 value 83.199798
iter 80 value 81.343664
iter 90 value 81.109684
iter 100 value 81.077225
final value 81.077225
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.011112
iter 10 value 94.493242
iter 20 value 93.661862
iter 30 value 90.415164
iter 40 value 85.266866
iter 50 value 83.924252
iter 60 value 83.170183
iter 70 value 82.428690
iter 80 value 80.940519
iter 90 value 80.525283
iter 100 value 80.327908
final value 80.327908
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.774692
iter 10 value 96.651382
iter 20 value 93.462021
iter 30 value 85.264895
iter 40 value 84.943260
iter 50 value 84.708892
iter 60 value 83.569943
iter 70 value 82.879538
iter 80 value 82.366548
iter 90 value 81.876450
iter 100 value 81.296402
final value 81.296402
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 154.518920
iter 10 value 95.152664
iter 20 value 89.429683
iter 30 value 87.302372
iter 40 value 86.337995
iter 50 value 84.588109
iter 60 value 83.525647
iter 70 value 82.177941
iter 80 value 81.543368
iter 90 value 81.134944
iter 100 value 80.903699
final value 80.903699
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.344101
iter 10 value 93.300012
iter 20 value 88.154324
iter 30 value 86.050450
iter 40 value 83.103947
iter 50 value 82.083501
iter 60 value 81.765230
iter 70 value 81.501034
iter 80 value 81.074910
iter 90 value 80.947138
iter 100 value 80.918526
final value 80.918526
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 127.393138
iter 10 value 94.720386
iter 20 value 94.384272
iter 30 value 87.286988
iter 40 value 86.532591
iter 50 value 85.628268
iter 60 value 83.210572
iter 70 value 82.181389
iter 80 value 81.882753
iter 90 value 81.743998
iter 100 value 81.713610
final value 81.713610
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.703712
iter 10 value 94.560223
iter 20 value 88.422356
iter 30 value 86.215727
iter 40 value 85.104736
iter 50 value 84.291349
iter 60 value 83.179853
iter 70 value 80.924177
iter 80 value 80.418543
iter 90 value 80.346880
iter 100 value 80.310836
final value 80.310836
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.140125
iter 10 value 94.433372
iter 20 value 92.333908
iter 30 value 86.426511
iter 40 value 85.167937
iter 50 value 84.415844
iter 60 value 83.351798
iter 70 value 83.009350
iter 80 value 82.843312
iter 90 value 82.546109
iter 100 value 82.284620
final value 82.284620
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.809211
final value 94.485535
converged
Fitting Repeat 2
# weights: 103
initial value 110.035817
final value 94.485652
converged
Fitting Repeat 3
# weights: 103
initial value 96.192790
iter 10 value 94.485605
iter 20 value 94.482513
final value 94.354435
converged
Fitting Repeat 4
# weights: 103
initial value 96.356725
iter 10 value 94.486019
iter 20 value 94.386783
iter 30 value 93.517391
final value 93.517172
converged
Fitting Repeat 5
# weights: 103
initial value 94.635489
final value 94.485700
converged
Fitting Repeat 1
# weights: 305
initial value 105.952129
iter 10 value 94.257212
iter 20 value 93.593072
iter 30 value 93.558692
iter 40 value 93.489413
final value 93.489394
converged
Fitting Repeat 2
# weights: 305
initial value 95.931859
iter 10 value 94.488898
iter 20 value 94.157874
iter 30 value 93.574413
iter 40 value 93.559015
final value 93.558651
converged
Fitting Repeat 3
# weights: 305
initial value 99.183227
iter 10 value 94.257843
iter 20 value 94.108808
iter 30 value 94.105593
iter 40 value 87.938997
iter 50 value 85.234388
iter 60 value 82.206476
iter 70 value 81.575234
iter 80 value 81.458918
iter 90 value 80.883497
iter 100 value 80.220276
final value 80.220276
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 95.408854
iter 10 value 93.563340
iter 20 value 93.536956
final value 93.522275
converged
Fitting Repeat 5
# weights: 305
initial value 107.576236
iter 10 value 94.488593
iter 20 value 94.484273
iter 30 value 93.676602
iter 40 value 90.475507
iter 50 value 88.218904
iter 60 value 88.217392
iter 70 value 88.088933
iter 80 value 86.603438
iter 90 value 86.598175
iter 100 value 86.596048
final value 86.596048
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.405899
iter 10 value 94.362683
iter 20 value 90.678704
iter 30 value 86.396420
iter 40 value 83.954183
iter 50 value 83.217153
iter 60 value 82.959992
iter 70 value 82.932765
iter 80 value 82.900583
iter 90 value 82.897484
iter 100 value 82.895018
final value 82.895018
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 96.014489
iter 10 value 94.485845
iter 20 value 93.735114
final value 93.558574
converged
Fitting Repeat 3
# weights: 507
initial value 108.602538
iter 10 value 94.491797
iter 20 value 94.425001
iter 30 value 93.558451
iter 40 value 93.450758
iter 50 value 93.333144
iter 50 value 93.333143
iter 50 value 93.333143
final value 93.333143
converged
Fitting Repeat 4
# weights: 507
initial value 98.791377
iter 10 value 93.269113
iter 20 value 87.573942
iter 30 value 84.537944
iter 40 value 83.771968
iter 50 value 82.252739
iter 60 value 82.019657
iter 70 value 81.593276
iter 80 value 81.592171
iter 90 value 81.583226
final value 81.583205
converged
Fitting Repeat 5
# weights: 507
initial value 101.665153
iter 10 value 93.787751
iter 20 value 93.728037
iter 30 value 93.721163
iter 40 value 93.570751
iter 50 value 84.451852
iter 60 value 83.006871
iter 70 value 82.954929
iter 80 value 82.954712
iter 90 value 82.954379
iter 90 value 82.954379
final value 82.954379
converged
Fitting Repeat 1
# weights: 103
initial value 94.620070
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 103.585344
iter 10 value 93.672993
final value 93.672973
converged
Fitting Repeat 3
# weights: 103
initial value 97.651316
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 95.507414
iter 10 value 93.369483
final value 93.276243
converged
Fitting Repeat 5
# weights: 103
initial value 102.252233
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 100.587803
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 103.501994
iter 10 value 93.296874
iter 20 value 93.276257
final value 93.276243
converged
Fitting Repeat 3
# weights: 305
initial value 100.019535
iter 10 value 93.385167
final value 93.346723
converged
Fitting Repeat 4
# weights: 305
initial value 101.812780
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 101.540944
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 97.695993
iter 10 value 93.672705
final value 93.672553
converged
Fitting Repeat 2
# weights: 507
initial value 99.748192
iter 10 value 93.299022
iter 20 value 93.276390
final value 93.276243
converged
Fitting Repeat 3
# weights: 507
initial value 110.958269
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 97.942655
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 103.523612
final value 92.211112
converged
Fitting Repeat 1
# weights: 103
initial value 97.894884
iter 10 value 94.052639
iter 20 value 88.469919
iter 30 value 81.614643
iter 40 value 81.351848
iter 50 value 81.081782
iter 60 value 80.726948
iter 70 value 80.664926
iter 80 value 80.650935
final value 80.650931
converged
Fitting Repeat 2
# weights: 103
initial value 96.153065
iter 10 value 94.055078
iter 20 value 90.505020
iter 30 value 82.667697
iter 40 value 82.265989
iter 50 value 81.006005
iter 60 value 80.715832
iter 70 value 80.674521
iter 80 value 80.650932
final value 80.650931
converged
Fitting Repeat 3
# weights: 103
initial value 101.510685
iter 10 value 94.056526
iter 20 value 93.632880
iter 30 value 86.847403
iter 40 value 84.033675
iter 50 value 83.663851
iter 60 value 82.707772
iter 70 value 81.045314
iter 80 value 80.724183
iter 90 value 80.651054
final value 80.650931
converged
Fitting Repeat 4
# weights: 103
initial value 100.880236
iter 10 value 93.455544
iter 20 value 89.324530
iter 30 value 83.019730
iter 40 value 81.217098
iter 50 value 81.036615
iter 60 value 80.833872
iter 70 value 80.668469
iter 80 value 80.650934
final value 80.650932
converged
Fitting Repeat 5
# weights: 103
initial value 103.343853
iter 10 value 94.056925
iter 20 value 88.420014
iter 30 value 84.879968
iter 40 value 82.994404
iter 50 value 82.445976
iter 60 value 82.073903
iter 70 value 79.222717
iter 80 value 78.554918
iter 90 value 78.346947
iter 100 value 77.980350
final value 77.980350
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 104.606126
iter 10 value 94.528675
iter 20 value 82.820675
iter 30 value 82.015077
iter 40 value 81.079737
iter 50 value 80.356883
iter 60 value 80.331506
iter 70 value 80.225866
iter 80 value 80.088357
iter 90 value 79.184107
iter 100 value 78.802875
final value 78.802875
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.815731
iter 10 value 93.817261
iter 20 value 92.636496
iter 30 value 83.687605
iter 40 value 82.463327
iter 50 value 80.935076
iter 60 value 80.693609
iter 70 value 80.612573
iter 80 value 80.488466
iter 90 value 80.338828
iter 100 value 80.255687
final value 80.255687
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.331288
iter 10 value 94.231112
iter 20 value 92.636163
iter 30 value 83.067608
iter 40 value 81.245426
iter 50 value 80.754570
iter 60 value 80.656097
iter 70 value 79.032514
iter 80 value 77.298360
iter 90 value 76.861935
iter 100 value 76.759316
final value 76.759316
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.540730
iter 10 value 94.725820
iter 20 value 92.865624
iter 30 value 85.668265
iter 40 value 84.843385
iter 50 value 84.039649
iter 60 value 82.210151
iter 70 value 78.293971
iter 80 value 76.913276
iter 90 value 76.621972
iter 100 value 76.551056
final value 76.551056
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 109.188652
iter 10 value 94.047403
iter 20 value 92.702850
iter 30 value 92.056011
iter 40 value 89.535307
iter 50 value 78.569343
iter 60 value 77.719788
iter 70 value 77.476833
iter 80 value 77.405141
iter 90 value 77.334004
iter 100 value 77.034877
final value 77.034877
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 120.819788
iter 10 value 94.455644
iter 20 value 92.275944
iter 30 value 91.136162
iter 40 value 90.861447
iter 50 value 90.744949
iter 60 value 88.279536
iter 70 value 80.630023
iter 80 value 79.799257
iter 90 value 79.254422
iter 100 value 78.547001
final value 78.547001
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.188113
iter 10 value 95.576094
iter 20 value 85.366448
iter 30 value 79.249035
iter 40 value 77.942839
iter 50 value 77.198181
iter 60 value 76.682694
iter 70 value 76.546170
iter 80 value 76.261740
iter 90 value 76.195751
iter 100 value 76.037709
final value 76.037709
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.067465
iter 10 value 93.996294
iter 20 value 87.769542
iter 30 value 81.987638
iter 40 value 79.943566
iter 50 value 77.236344
iter 60 value 76.806879
iter 70 value 76.438545
iter 80 value 76.280999
iter 90 value 76.070623
iter 100 value 75.960272
final value 75.960272
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.238865
iter 10 value 94.170389
iter 20 value 91.710835
iter 30 value 90.130151
iter 40 value 85.025927
iter 50 value 81.175785
iter 60 value 80.475474
iter 70 value 79.989116
iter 80 value 78.964557
iter 90 value 77.257900
iter 100 value 76.618299
final value 76.618299
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.185143
iter 10 value 92.346102
iter 20 value 81.838508
iter 30 value 81.603324
iter 40 value 80.334147
iter 50 value 79.773102
iter 60 value 79.744286
iter 70 value 79.561839
iter 80 value 78.757543
iter 90 value 78.092878
iter 100 value 77.491632
final value 77.491632
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 112.534786
final value 94.054652
converged
Fitting Repeat 2
# weights: 103
initial value 100.050254
final value 94.054371
converged
Fitting Repeat 3
# weights: 103
initial value 94.645202
final value 94.054279
converged
Fitting Repeat 4
# weights: 103
initial value 96.669469
iter 10 value 93.674970
iter 20 value 93.673296
iter 30 value 93.650813
iter 40 value 92.393365
iter 50 value 86.170911
iter 60 value 84.021218
iter 70 value 83.998776
iter 80 value 83.995835
iter 90 value 83.995387
iter 100 value 83.994407
final value 83.994407
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 94.179917
final value 94.054360
converged
Fitting Repeat 1
# weights: 305
initial value 94.305395
iter 10 value 93.678015
iter 20 value 93.451947
iter 30 value 84.321331
iter 40 value 83.845417
iter 50 value 83.759105
iter 60 value 83.753393
iter 70 value 82.198914
iter 80 value 81.214345
iter 90 value 79.083830
iter 100 value 78.816485
final value 78.816485
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.818030
iter 10 value 94.057705
iter 20 value 94.052932
final value 94.052914
converged
Fitting Repeat 3
# weights: 305
initial value 102.040913
iter 10 value 94.043601
iter 20 value 84.414560
iter 30 value 83.967877
iter 40 value 82.612067
iter 50 value 82.159115
iter 60 value 79.837160
iter 70 value 79.541973
final value 79.536274
converged
Fitting Repeat 4
# weights: 305
initial value 106.088160
iter 10 value 94.057613
iter 20 value 93.877332
iter 30 value 84.428312
iter 40 value 84.391157
iter 50 value 81.151215
iter 60 value 81.149460
final value 81.149319
converged
Fitting Repeat 5
# weights: 305
initial value 108.311992
iter 10 value 93.678465
iter 20 value 93.677074
iter 30 value 82.965702
iter 40 value 79.512415
iter 50 value 77.157139
iter 60 value 76.561919
iter 70 value 76.521389
iter 80 value 76.457893
iter 90 value 76.456925
iter 100 value 75.469502
final value 75.469502
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 98.476974
iter 10 value 93.953194
iter 20 value 93.681196
iter 30 value 93.284635
iter 40 value 93.282729
iter 50 value 92.821774
iter 60 value 87.195106
iter 70 value 81.394630
iter 80 value 81.283491
iter 90 value 78.865278
iter 100 value 77.500537
final value 77.500537
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 98.884105
iter 10 value 93.681019
iter 20 value 93.674226
iter 30 value 93.275164
iter 40 value 93.245481
iter 50 value 79.775802
iter 60 value 79.327079
iter 70 value 79.283151
final value 79.283135
converged
Fitting Repeat 3
# weights: 507
initial value 98.185479
iter 10 value 93.680690
iter 20 value 93.674895
final value 93.674460
converged
Fitting Repeat 4
# weights: 507
initial value 99.166998
iter 10 value 94.060619
iter 20 value 93.922846
iter 30 value 86.050325
iter 40 value 82.160081
iter 50 value 82.158977
iter 60 value 82.017078
iter 70 value 81.803921
iter 80 value 81.798095
iter 90 value 81.797452
iter 100 value 80.453247
final value 80.453247
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 100.915195
iter 10 value 84.296517
iter 20 value 84.088072
iter 30 value 84.084976
iter 40 value 84.083358
iter 50 value 82.105060
iter 60 value 81.432575
iter 70 value 81.355401
iter 80 value 80.737318
iter 90 value 79.017004
iter 100 value 76.124371
final value 76.124371
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.506993
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 97.039630
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 109.673650
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 107.287496
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.747606
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 101.908997
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 96.559274
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 102.382955
final value 94.482932
converged
Fitting Repeat 4
# weights: 305
initial value 105.541354
iter 10 value 94.325662
iter 20 value 94.252982
final value 94.252921
converged
Fitting Repeat 5
# weights: 305
initial value 102.149890
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 99.269336
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 96.120361
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 109.296435
iter 10 value 92.069355
final value 92.068571
converged
Fitting Repeat 4
# weights: 507
initial value 110.369048
final value 94.322897
converged
Fitting Repeat 5
# weights: 507
initial value 100.955356
final value 94.443243
converged
Fitting Repeat 1
# weights: 103
initial value 100.930882
iter 10 value 94.528212
iter 20 value 94.476785
iter 30 value 86.784464
iter 40 value 85.248622
iter 50 value 84.350304
iter 60 value 84.155440
iter 70 value 84.005571
iter 80 value 83.988084
final value 83.988065
converged
Fitting Repeat 2
# weights: 103
initial value 110.416154
iter 10 value 94.404362
iter 20 value 86.769360
iter 30 value 86.316653
iter 40 value 85.030646
iter 50 value 84.563315
iter 60 value 84.494731
iter 70 value 84.419298
iter 80 value 84.405216
final value 84.405135
converged
Fitting Repeat 3
# weights: 103
initial value 100.279621
iter 10 value 94.488045
iter 20 value 92.969718
iter 30 value 88.885184
iter 40 value 88.235209
iter 50 value 88.199704
iter 60 value 88.056421
iter 70 value 87.825265
iter 80 value 87.722475
iter 90 value 85.708176
iter 100 value 85.472177
final value 85.472177
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.009800
iter 10 value 94.439042
iter 20 value 94.087148
iter 30 value 92.746525
iter 40 value 85.668831
iter 50 value 84.835229
iter 60 value 84.438683
iter 70 value 84.407331
final value 84.405135
converged
Fitting Repeat 5
# weights: 103
initial value 104.121568
iter 10 value 95.466158
iter 20 value 94.471536
iter 30 value 93.087973
iter 40 value 92.680360
iter 50 value 90.976609
iter 60 value 90.937375
final value 90.937372
converged
Fitting Repeat 1
# weights: 305
initial value 118.833056
iter 10 value 94.409330
iter 20 value 90.870389
iter 30 value 85.283052
iter 40 value 83.186303
iter 50 value 81.509871
iter 60 value 81.166950
iter 70 value 80.311988
iter 80 value 79.894351
iter 90 value 79.790198
iter 100 value 79.758620
final value 79.758620
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.689691
iter 10 value 94.792244
iter 20 value 90.447718
iter 30 value 88.139884
iter 40 value 86.334212
iter 50 value 85.044189
iter 60 value 84.577898
iter 70 value 84.368431
iter 80 value 84.188535
iter 90 value 83.924548
iter 100 value 82.529106
final value 82.529106
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 113.089417
iter 10 value 94.413349
iter 20 value 93.149572
iter 30 value 84.578165
iter 40 value 83.767259
iter 50 value 82.576479
iter 60 value 81.704032
iter 70 value 81.627633
iter 80 value 81.208126
iter 90 value 80.924030
iter 100 value 80.521253
final value 80.521253
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.888973
iter 10 value 94.533240
iter 20 value 94.326016
iter 30 value 93.812443
iter 40 value 84.874338
iter 50 value 83.477306
iter 60 value 81.271530
iter 70 value 81.060764
iter 80 value 80.697789
iter 90 value 80.498334
iter 100 value 80.365904
final value 80.365904
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 122.767166
iter 10 value 94.511654
iter 20 value 93.190625
iter 30 value 86.064631
iter 40 value 84.026940
iter 50 value 82.091638
iter 60 value 81.663165
iter 70 value 81.523177
iter 80 value 81.401063
iter 90 value 80.912824
iter 100 value 80.520108
final value 80.520108
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.004709
iter 10 value 94.510213
iter 20 value 87.850815
iter 30 value 86.098526
iter 40 value 85.534099
iter 50 value 83.371482
iter 60 value 82.750392
iter 70 value 82.043099
iter 80 value 81.422586
iter 90 value 80.940943
iter 100 value 80.125888
final value 80.125888
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.321795
iter 10 value 94.536684
iter 20 value 88.813685
iter 30 value 87.807903
iter 40 value 87.487966
iter 50 value 84.041041
iter 60 value 82.917734
iter 70 value 82.619257
iter 80 value 81.504731
iter 90 value 80.543613
iter 100 value 79.929490
final value 79.929490
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 112.487062
iter 10 value 94.766479
iter 20 value 94.340025
iter 30 value 86.863505
iter 40 value 84.756013
iter 50 value 84.356754
iter 60 value 84.304791
iter 70 value 84.075738
iter 80 value 83.824511
iter 90 value 82.847898
iter 100 value 82.317937
final value 82.317937
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.316851
iter 10 value 94.602248
iter 20 value 94.192962
iter 30 value 93.816696
iter 40 value 85.483871
iter 50 value 84.542927
iter 60 value 84.097863
iter 70 value 83.922552
iter 80 value 83.685264
iter 90 value 82.155324
iter 100 value 81.255314
final value 81.255314
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.559829
iter 10 value 94.704958
iter 20 value 91.775936
iter 30 value 88.137645
iter 40 value 85.424155
iter 50 value 82.188997
iter 60 value 80.683674
iter 70 value 80.068282
iter 80 value 79.646625
iter 90 value 79.573351
iter 100 value 79.528964
final value 79.528964
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.554510
iter 10 value 92.781247
iter 20 value 92.605133
iter 30 value 92.604646
iter 30 value 92.604646
iter 30 value 92.604646
final value 92.604646
converged
Fitting Repeat 2
# weights: 103
initial value 97.624649
final value 94.485508
converged
Fitting Repeat 3
# weights: 103
initial value 95.865229
final value 94.485706
converged
Fitting Repeat 4
# weights: 103
initial value 95.347162
final value 94.485730
converged
Fitting Repeat 5
# weights: 103
initial value 97.609568
final value 94.486041
converged
Fitting Repeat 1
# weights: 305
initial value 106.176370
iter 10 value 94.103078
iter 20 value 94.101152
final value 94.100837
converged
Fitting Repeat 2
# weights: 305
initial value 99.555757
iter 10 value 94.489297
iter 20 value 94.484433
iter 30 value 94.127100
iter 40 value 94.113208
iter 50 value 94.112175
iter 60 value 91.569665
iter 70 value 90.322190
iter 80 value 90.318308
iter 90 value 90.245580
iter 100 value 90.241256
final value 90.241256
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.925370
iter 10 value 94.489120
iter 20 value 94.420381
iter 30 value 85.001669
iter 40 value 83.410682
iter 50 value 82.801117
iter 60 value 82.276583
iter 70 value 82.268559
iter 70 value 82.268558
final value 82.268558
converged
Fitting Repeat 4
# weights: 305
initial value 101.676524
iter 10 value 94.488630
iter 20 value 94.483733
iter 30 value 85.920144
final value 85.706908
converged
Fitting Repeat 5
# weights: 305
initial value 103.204036
iter 10 value 94.488641
iter 20 value 94.395112
iter 30 value 86.004407
iter 40 value 85.596697
final value 85.592634
converged
Fitting Repeat 1
# weights: 507
initial value 104.754582
iter 10 value 94.261034
iter 20 value 94.080580
iter 30 value 90.941781
iter 40 value 90.594924
final value 90.566664
converged
Fitting Repeat 2
# weights: 507
initial value 109.041346
iter 10 value 94.313924
iter 20 value 94.311473
iter 30 value 94.099736
iter 40 value 93.531214
iter 50 value 91.786788
iter 60 value 91.616638
iter 70 value 91.615496
final value 91.615483
converged
Fitting Repeat 3
# weights: 507
initial value 98.723870
iter 10 value 94.451307
iter 20 value 94.392268
iter 30 value 85.721910
iter 40 value 85.710140
iter 50 value 85.653506
iter 60 value 84.508035
final value 84.501656
converged
Fitting Repeat 4
# weights: 507
initial value 103.658170
iter 10 value 91.024492
iter 20 value 86.829057
iter 30 value 86.798491
iter 40 value 86.216353
iter 50 value 86.079990
iter 60 value 86.077649
iter 70 value 86.074888
iter 80 value 80.223178
iter 90 value 79.801379
iter 100 value 79.302486
final value 79.302486
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 97.686736
iter 10 value 94.362495
iter 20 value 94.354655
iter 30 value 87.963756
iter 40 value 85.813464
iter 50 value 85.622275
iter 60 value 85.619219
final value 85.619096
converged
Fitting Repeat 1
# weights: 103
initial value 97.474794
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 115.448556
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 99.759701
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.858835
iter 10 value 94.029287
iter 20 value 93.963572
final value 93.963388
converged
Fitting Repeat 5
# weights: 103
initial value 98.673187
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 97.023211
final value 94.305882
converged
Fitting Repeat 2
# weights: 305
initial value 98.938834
iter 10 value 94.442072
iter 10 value 94.442072
iter 10 value 94.442072
final value 94.442072
converged
Fitting Repeat 3
# weights: 305
initial value 98.798937
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 102.390321
iter 10 value 89.044531
iter 20 value 87.027178
iter 30 value 85.718076
iter 40 value 85.695389
final value 85.695387
converged
Fitting Repeat 5
# weights: 305
initial value 96.276410
final value 94.466823
converged
Fitting Repeat 1
# weights: 507
initial value 101.836193
iter 10 value 86.867644
iter 20 value 85.696608
iter 30 value 85.695366
final value 85.695035
converged
Fitting Repeat 2
# weights: 507
initial value 127.479372
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 94.984421
iter 10 value 92.275878
iter 20 value 83.989202
iter 30 value 83.669339
final value 83.669318
converged
Fitting Repeat 4
# weights: 507
initial value 97.854812
final value 94.461539
converged
Fitting Repeat 5
# weights: 507
initial value 108.360783
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 97.892527
iter 10 value 94.449857
iter 20 value 88.103323
iter 30 value 85.454375
iter 40 value 85.072391
iter 50 value 85.030276
iter 60 value 83.939294
iter 70 value 83.806133
iter 80 value 83.076124
iter 90 value 82.837430
iter 100 value 82.820333
final value 82.820333
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.098451
iter 10 value 94.357236
iter 20 value 89.382374
iter 30 value 88.193135
iter 40 value 86.550241
iter 50 value 86.322915
iter 60 value 86.314948
iter 70 value 86.314618
iter 70 value 86.314617
iter 70 value 86.314617
final value 86.314617
converged
Fitting Repeat 3
# weights: 103
initial value 105.155529
iter 10 value 94.503474
iter 20 value 92.887447
iter 30 value 91.513044
iter 40 value 91.329348
iter 50 value 87.145832
iter 60 value 86.770201
iter 70 value 85.593447
iter 80 value 85.499603
iter 90 value 85.450466
final value 85.450437
converged
Fitting Repeat 4
# weights: 103
initial value 98.680797
iter 10 value 94.476693
iter 20 value 89.928361
iter 30 value 88.272304
iter 40 value 86.629622
iter 50 value 85.755223
iter 60 value 85.065342
iter 70 value 84.530010
iter 80 value 84.340528
iter 90 value 84.329869
iter 100 value 84.231115
final value 84.231115
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 110.990546
iter 10 value 94.287150
iter 20 value 88.349116
iter 30 value 86.734974
iter 40 value 86.456368
iter 50 value 86.315445
final value 86.314617
converged
Fitting Repeat 1
# weights: 305
initial value 110.507631
iter 10 value 96.230011
iter 20 value 94.647458
iter 30 value 94.327747
iter 40 value 88.622304
iter 50 value 87.896782
iter 60 value 85.982322
iter 70 value 85.562767
iter 80 value 85.462943
iter 90 value 85.450326
iter 100 value 85.423823
final value 85.423823
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.117206
iter 10 value 98.906118
iter 20 value 91.329492
iter 30 value 87.787164
iter 40 value 84.600362
iter 50 value 83.197925
iter 60 value 82.799091
iter 70 value 82.661038
iter 80 value 82.037937
iter 90 value 81.758006
iter 100 value 81.756273
final value 81.756273
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.581806
iter 10 value 94.613625
iter 20 value 89.670175
iter 30 value 86.849918
iter 40 value 85.647144
iter 50 value 84.410663
iter 60 value 83.961754
iter 70 value 83.211252
iter 80 value 82.636959
iter 90 value 82.521124
iter 100 value 82.449971
final value 82.449971
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 114.058607
iter 10 value 94.993586
iter 20 value 91.740561
iter 30 value 87.115174
iter 40 value 85.188449
iter 50 value 84.989748
iter 60 value 84.868912
iter 70 value 84.465220
iter 80 value 84.337199
iter 90 value 83.997142
iter 100 value 82.636330
final value 82.636330
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.409851
iter 10 value 94.501021
iter 20 value 94.093453
iter 30 value 90.961594
iter 40 value 89.175233
iter 50 value 87.475770
iter 60 value 86.099869
iter 70 value 85.516743
iter 80 value 85.276906
iter 90 value 85.097480
iter 100 value 85.012413
final value 85.012413
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.159231
iter 10 value 95.590817
iter 20 value 89.828902
iter 30 value 86.088018
iter 40 value 83.892404
iter 50 value 83.349537
iter 60 value 83.183108
iter 70 value 82.884500
iter 80 value 82.328339
iter 90 value 81.904443
iter 100 value 81.709214
final value 81.709214
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 126.286431
iter 10 value 98.489470
iter 20 value 88.950837
iter 30 value 87.403586
iter 40 value 84.643943
iter 50 value 84.347172
iter 60 value 83.724174
iter 70 value 82.777245
iter 80 value 81.974117
iter 90 value 81.720554
iter 100 value 81.654699
final value 81.654699
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.674391
iter 10 value 94.502412
iter 20 value 92.539696
iter 30 value 88.731146
iter 40 value 86.970151
iter 50 value 86.170327
iter 60 value 85.081323
iter 70 value 83.159225
iter 80 value 82.587033
iter 90 value 82.106686
iter 100 value 81.624478
final value 81.624478
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.636150
iter 10 value 93.619295
iter 20 value 88.616024
iter 30 value 85.478978
iter 40 value 85.000225
iter 50 value 83.616563
iter 60 value 83.318873
iter 70 value 83.011217
iter 80 value 82.776802
iter 90 value 82.231450
iter 100 value 82.011473
final value 82.011473
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.794529
iter 10 value 94.395749
iter 20 value 86.610071
iter 30 value 84.391799
iter 40 value 83.634685
iter 50 value 83.296030
iter 60 value 83.050107
iter 70 value 82.976217
iter 80 value 82.320456
iter 90 value 82.076413
iter 100 value 81.962779
final value 81.962779
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.479469
final value 94.485735
converged
Fitting Repeat 2
# weights: 103
initial value 100.214173
iter 10 value 94.468490
iter 20 value 94.466918
final value 94.466844
converged
Fitting Repeat 3
# weights: 103
initial value 96.521733
iter 10 value 94.486195
final value 94.484280
converged
Fitting Repeat 4
# weights: 103
initial value 95.670645
final value 94.485848
converged
Fitting Repeat 5
# weights: 103
initial value 110.232535
final value 94.486019
converged
Fitting Repeat 1
# weights: 305
initial value 101.716285
iter 10 value 94.471561
iter 20 value 93.973616
iter 30 value 90.839666
iter 40 value 89.836006
iter 50 value 87.830878
iter 60 value 87.754626
iter 70 value 87.742673
iter 80 value 87.466922
iter 90 value 87.137584
iter 100 value 85.217413
final value 85.217413
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 121.034967
iter 10 value 94.489232
iter 20 value 94.479206
iter 30 value 94.308661
iter 40 value 94.288525
iter 50 value 93.947617
iter 60 value 89.919400
iter 70 value 88.435429
iter 80 value 88.308874
iter 90 value 88.308795
iter 100 value 88.190097
final value 88.190097
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 117.655278
iter 10 value 94.499065
iter 20 value 94.470938
iter 30 value 94.466905
iter 40 value 91.832342
iter 50 value 89.437570
iter 60 value 89.221815
iter 70 value 85.208348
iter 80 value 84.828371
iter 90 value 84.828147
iter 100 value 84.823558
final value 84.823558
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.941561
iter 10 value 94.488925
iter 20 value 94.443676
iter 30 value 91.790321
iter 40 value 89.392004
iter 50 value 88.221126
iter 60 value 87.732100
iter 70 value 87.714693
iter 80 value 87.697346
iter 90 value 87.685754
iter 100 value 87.680229
final value 87.680229
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 135.575098
iter 10 value 94.473221
iter 20 value 94.342330
iter 30 value 94.307934
iter 40 value 94.302495
final value 94.288373
converged
Fitting Repeat 1
# weights: 507
initial value 99.153033
iter 10 value 94.492044
iter 20 value 94.413616
iter 30 value 87.684643
iter 40 value 87.611597
iter 50 value 85.046451
iter 60 value 83.920714
iter 70 value 83.302867
iter 80 value 83.300310
iter 90 value 83.162152
iter 100 value 82.667182
final value 82.667182
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.879710
iter 10 value 94.413805
iter 20 value 93.773492
iter 30 value 87.894314
iter 40 value 87.852570
iter 50 value 87.849973
iter 60 value 87.758193
iter 70 value 87.747027
iter 80 value 87.745448
iter 90 value 84.415873
iter 100 value 82.586844
final value 82.586844
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 117.290666
iter 10 value 94.225975
iter 20 value 94.221306
iter 30 value 94.218228
iter 40 value 94.059676
iter 50 value 94.054165
final value 94.054109
converged
Fitting Repeat 4
# weights: 507
initial value 116.181439
iter 10 value 94.474216
iter 20 value 94.198921
iter 30 value 89.467504
iter 40 value 89.142700
iter 50 value 87.821386
iter 60 value 83.222723
iter 70 value 82.583049
iter 80 value 82.404655
iter 90 value 81.831510
iter 100 value 80.516667
final value 80.516667
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 99.015020
iter 10 value 94.463301
iter 20 value 93.716419
iter 30 value 93.494195
iter 40 value 93.173877
iter 50 value 93.067793
iter 60 value 93.059546
final value 93.059499
converged
Fitting Repeat 1
# weights: 103
initial value 94.555331
final value 94.005848
converged
Fitting Repeat 2
# weights: 103
initial value 94.475921
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.473649
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 94.560174
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 95.847496
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 127.129824
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 111.244438
final value 93.915746
converged
Fitting Repeat 3
# weights: 305
initial value 119.700286
iter 10 value 93.288778
iter 20 value 93.212951
iter 20 value 93.212951
iter 20 value 93.212951
final value 93.212951
converged
Fitting Repeat 4
# weights: 305
initial value 100.023514
final value 93.671508
converged
Fitting Repeat 5
# weights: 305
initial value 106.853196
final value 94.005848
converged
Fitting Repeat 1
# weights: 507
initial value 105.821747
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 117.080085
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 125.647809
final value 93.915746
converged
Fitting Repeat 4
# weights: 507
initial value 140.273138
iter 10 value 93.915748
final value 93.915746
converged
Fitting Repeat 5
# weights: 507
initial value 106.405147
iter 10 value 91.526283
iter 20 value 89.284036
final value 89.283951
converged
Fitting Repeat 1
# weights: 103
initial value 101.818077
iter 10 value 93.944072
iter 20 value 91.774759
iter 30 value 84.732287
iter 40 value 84.236560
iter 50 value 84.145060
iter 60 value 83.608633
iter 70 value 82.946530
iter 80 value 82.888150
final value 82.888032
converged
Fitting Repeat 2
# weights: 103
initial value 96.634882
iter 10 value 94.054515
iter 20 value 90.957276
iter 30 value 87.732136
iter 40 value 83.352006
iter 50 value 83.186641
iter 60 value 83.039345
iter 70 value 82.925166
iter 80 value 82.803417
iter 90 value 82.772600
final value 82.772598
converged
Fitting Repeat 3
# weights: 103
initial value 110.418455
iter 10 value 92.820952
iter 20 value 85.484088
iter 30 value 84.192746
iter 40 value 83.508639
iter 50 value 82.908879
iter 60 value 82.887518
iter 70 value 82.801046
final value 82.786318
converged
Fitting Repeat 4
# weights: 103
initial value 108.695119
iter 10 value 94.054945
iter 20 value 93.983850
iter 30 value 89.271779
iter 40 value 85.665223
iter 50 value 85.143489
iter 60 value 84.616153
iter 70 value 84.216492
iter 80 value 83.961801
final value 83.954178
converged
Fitting Repeat 5
# weights: 103
initial value 111.316912
iter 10 value 93.811042
iter 20 value 91.455622
iter 30 value 90.614952
iter 40 value 90.560097
iter 50 value 90.452504
final value 90.451400
converged
Fitting Repeat 1
# weights: 305
initial value 120.947476
iter 10 value 94.280949
iter 20 value 94.081842
iter 30 value 91.237867
iter 40 value 87.494671
iter 50 value 87.231639
iter 60 value 86.860390
iter 70 value 86.123338
iter 80 value 82.447355
iter 90 value 82.078896
iter 100 value 81.853844
final value 81.853844
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 117.117383
iter 10 value 93.638540
iter 20 value 84.995664
iter 30 value 82.315437
iter 40 value 81.961567
iter 50 value 81.762340
iter 60 value 81.591808
iter 70 value 81.362547
iter 80 value 81.358793
iter 90 value 81.331890
iter 100 value 81.275026
final value 81.275026
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.626400
iter 10 value 94.304828
iter 20 value 86.900305
iter 30 value 85.815004
iter 40 value 84.538483
iter 50 value 84.460562
iter 60 value 82.993898
iter 70 value 82.080459
iter 80 value 81.788662
iter 90 value 81.640523
iter 100 value 81.564767
final value 81.564767
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.095352
iter 10 value 91.403882
iter 20 value 86.369836
iter 30 value 85.208938
iter 40 value 84.593277
iter 50 value 84.020266
iter 60 value 83.615358
iter 70 value 83.465533
iter 80 value 82.712377
iter 90 value 82.418213
iter 100 value 82.206246
final value 82.206246
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 138.752032
iter 10 value 95.309393
iter 20 value 92.556481
iter 30 value 88.329364
iter 40 value 87.898073
iter 50 value 85.680844
iter 60 value 83.279519
iter 70 value 83.024475
iter 80 value 82.408332
iter 90 value 81.607163
iter 100 value 81.339776
final value 81.339776
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.275668
iter 10 value 95.155207
iter 20 value 92.567042
iter 30 value 91.969661
iter 40 value 86.432101
iter 50 value 86.007649
iter 60 value 85.135300
iter 70 value 84.935924
iter 80 value 84.859314
iter 90 value 84.667754
iter 100 value 83.337532
final value 83.337532
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 113.133350
iter 10 value 94.163084
iter 20 value 93.009285
iter 30 value 85.113635
iter 40 value 83.016202
iter 50 value 82.266616
iter 60 value 81.452225
iter 70 value 81.317537
iter 80 value 81.117752
iter 90 value 80.957418
iter 100 value 80.887931
final value 80.887931
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.321359
iter 10 value 94.443427
iter 20 value 91.481032
iter 30 value 85.947135
iter 40 value 85.096615
iter 50 value 82.896175
iter 60 value 82.584921
iter 70 value 82.438647
iter 80 value 82.344905
iter 90 value 81.731469
iter 100 value 81.376746
final value 81.376746
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.716200
iter 10 value 94.626953
iter 20 value 87.273058
iter 30 value 85.463766
iter 40 value 84.024614
iter 50 value 83.886962
iter 60 value 82.622598
iter 70 value 82.201071
iter 80 value 81.953901
iter 90 value 81.838529
iter 100 value 81.532234
final value 81.532234
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 121.570637
iter 10 value 94.352451
iter 20 value 93.413974
iter 30 value 89.673335
iter 40 value 84.303801
iter 50 value 82.835666
iter 60 value 82.012608
iter 70 value 81.784162
iter 80 value 81.597659
iter 90 value 81.333718
iter 100 value 81.149826
final value 81.149826
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.060376
final value 94.054621
converged
Fitting Repeat 2
# weights: 103
initial value 100.355002
final value 94.054561
converged
Fitting Repeat 3
# weights: 103
initial value 98.453947
iter 10 value 94.054530
iter 20 value 93.793269
iter 30 value 84.860502
iter 40 value 84.857989
iter 50 value 84.844428
iter 60 value 83.918586
iter 60 value 83.918585
iter 70 value 83.658434
iter 80 value 83.595642
final value 83.595624
converged
Fitting Repeat 4
# weights: 103
initial value 101.860506
iter 10 value 94.054622
iter 20 value 92.016577
iter 30 value 87.796722
iter 40 value 85.297856
iter 50 value 83.919733
iter 60 value 83.919101
iter 70 value 83.917755
iter 80 value 83.916515
final value 83.916488
converged
Fitting Repeat 5
# weights: 103
initial value 94.934628
iter 10 value 94.054603
iter 20 value 93.760574
iter 30 value 87.689720
iter 40 value 87.671181
iter 50 value 87.298171
iter 60 value 87.280370
iter 70 value 87.151221
iter 80 value 87.107437
iter 90 value 86.718241
iter 100 value 86.414909
final value 86.414909
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 106.206282
iter 10 value 94.057605
iter 20 value 93.986395
iter 30 value 86.367161
iter 40 value 84.595986
iter 50 value 84.581244
iter 60 value 84.577905
iter 70 value 84.275530
final value 84.271273
converged
Fitting Repeat 2
# weights: 305
initial value 114.214546
iter 10 value 94.057163
iter 20 value 94.052938
iter 30 value 86.231706
iter 40 value 86.035225
iter 50 value 85.601119
iter 60 value 84.663702
iter 70 value 84.536993
iter 80 value 84.536519
final value 84.536517
converged
Fitting Repeat 3
# weights: 305
initial value 101.664296
iter 10 value 90.003123
iter 20 value 85.867542
iter 30 value 85.857707
iter 40 value 85.771334
iter 50 value 85.116512
iter 60 value 85.087260
iter 70 value 85.085773
final value 85.085645
converged
Fitting Repeat 4
# weights: 305
initial value 98.251270
iter 10 value 86.964056
iter 20 value 85.007812
iter 30 value 83.792843
iter 40 value 83.737894
iter 50 value 83.383537
iter 60 value 83.320499
iter 70 value 83.294834
iter 80 value 83.290168
iter 90 value 83.289754
iter 100 value 83.284979
final value 83.284979
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.329256
iter 10 value 94.058243
iter 20 value 94.008733
iter 30 value 92.331078
iter 40 value 88.664698
iter 50 value 88.647158
iter 60 value 88.645136
iter 70 value 88.642345
iter 80 value 87.138459
iter 90 value 87.046261
final value 87.045543
converged
Fitting Repeat 1
# weights: 507
initial value 96.562406
iter 10 value 94.055273
iter 20 value 85.590570
iter 30 value 84.839056
iter 40 value 83.395995
iter 50 value 82.237371
iter 60 value 81.607646
iter 70 value 81.323883
iter 80 value 81.318168
iter 90 value 81.073895
iter 100 value 80.934461
final value 80.934461
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 103.856618
iter 10 value 93.954931
iter 20 value 93.929127
iter 30 value 93.724238
iter 40 value 93.690453
iter 50 value 93.685914
iter 60 value 92.901646
iter 70 value 89.510471
iter 80 value 83.658675
iter 90 value 82.346440
iter 100 value 81.660167
final value 81.660167
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.176323
iter 10 value 93.924167
iter 20 value 90.391505
iter 30 value 85.742025
iter 40 value 85.353193
iter 50 value 82.369921
iter 60 value 82.001458
iter 70 value 81.919412
iter 80 value 81.790746
iter 90 value 81.749942
iter 100 value 81.745646
final value 81.745646
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 95.566671
iter 10 value 94.059300
iter 20 value 94.052945
final value 94.052900
converged
Fitting Repeat 5
# weights: 507
initial value 100.292787
iter 10 value 93.924416
iter 20 value 93.801313
iter 30 value 91.207777
iter 40 value 88.967920
iter 50 value 85.626743
iter 60 value 85.071352
iter 70 value 85.066255
iter 80 value 83.632046
iter 90 value 83.443743
iter 100 value 83.443431
final value 83.443431
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 124.041984
iter 10 value 117.903945
iter 20 value 117.894374
iter 30 value 117.651352
iter 40 value 111.874925
iter 50 value 108.999593
iter 60 value 105.822411
iter 70 value 105.222626
iter 80 value 104.962268
iter 90 value 104.818009
iter 100 value 104.780952
final value 104.780952
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 121.386797
iter 10 value 116.308601
iter 20 value 106.647653
iter 30 value 104.794034
iter 40 value 103.619423
iter 50 value 103.495505
iter 60 value 102.602255
iter 70 value 102.344846
iter 80 value 102.325296
final value 102.325293
converged
Fitting Repeat 3
# weights: 103
initial value 121.727921
iter 10 value 117.896407
final value 117.892494
converged
Fitting Repeat 4
# weights: 103
initial value 122.032757
iter 10 value 117.922309
iter 20 value 117.892578
iter 30 value 113.962199
iter 40 value 106.244318
iter 50 value 105.149693
iter 60 value 103.687207
iter 70 value 103.546371
iter 80 value 103.269845
iter 90 value 102.554914
iter 100 value 102.326334
final value 102.326334
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 132.974028
iter 10 value 117.859025
iter 20 value 117.613649
iter 30 value 116.634733
iter 40 value 114.534206
iter 50 value 108.393549
iter 60 value 106.812475
iter 70 value 106.160760
iter 80 value 105.587410
iter 90 value 105.566341
iter 90 value 105.566340
iter 90 value 105.566340
final value 105.566340
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Wed Oct 19 03:38:28 2022
***********************************************
Number of test functions: 8
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8
Number of errors: 0
Number of failures: 0
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble
3.0.0.
ℹ Use `.name_repair = "minimal"`.
ℹ The deprecated feature was likely used in the tibble package.
Please report the issue at <https://github.com/tidyverse/tibble/issues>.
2: `repeats` has no meaning for this resampling method.
3: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
69.774 1.942 71.367
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 49.185 | 1.027 | 50.310 | |
| FreqInteractors | 0.387 | 0.012 | 0.401 | |
| calculateAAC | 0.115 | 0.016 | 0.130 | |
| calculateAutocor | 0.741 | 0.073 | 0.815 | |
| calculateBE | 0.370 | 0.013 | 0.383 | |
| calculateCTDC | 0.156 | 0.013 | 0.170 | |
| calculateCTDD | 1.367 | 0.043 | 1.412 | |
| calculateCTDT | 0.430 | 0.011 | 0.441 | |
| calculateCTriad | 0.738 | 0.033 | 0.771 | |
| calculateDC | 0.227 | 0.009 | 0.236 | |
| calculateF | 0.605 | 0.009 | 0.615 | |
| calculateKSAAP | 0.254 | 0.012 | 0.266 | |
| calculateQD_Sm | 3.110 | 0.109 | 3.222 | |
| calculateTC | 4.194 | 0.187 | 4.392 | |
| calculateTC_Sm | 0.439 | 0.013 | 0.452 | |
| corr_plot | 49.880 | 0.931 | 50.965 | |
| enrichfindP | 0.710 | 0.037 | 11.454 | |
| enrichfind_hp | 0.108 | 0.012 | 0.721 | |
| enrichplot | 0.445 | 0.009 | 0.455 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.143 | 0.009 | 3.557 | |
| getHPI | 0.001 | 0.000 | 0.001 | |
| get_negativePPI | 0.003 | 0.001 | 0.003 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.002 | 0.000 | 0.003 | |
| plotPPI | 0.112 | 0.002 | 0.114 | |
| pred_ensembel | 22.232 | 0.373 | 17.514 | |
| var_imp | 51.677 | 0.937 | 52.804 | |