| Back to Multiple platform build/check report for BioC 3.15 |
|
This page was generated on 2022-10-19 13:20:23 -0400 (Wed, 19 Oct 2022).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.1 (2022-06-23) -- "Funny-Looking Kid" | 4386 |
| palomino3 | Windows Server 2022 Datacenter | x64 | 4.2.1 (2022-06-23 ucrt) -- "Funny-Looking Kid" | 4138 |
| merida1 | macOS 10.14.6 Mojave | x86_64 | 4.2.1 (2022-06-23) -- "Funny-Looking Kid" | 4205 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 911/2140 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.2.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
| Package: HPiP |
| Version: 1.2.0 |
| Command: /home/biocbuild/bbs-3.15-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.15-bioc/R/library --no-vignettes --timings HPiP_1.2.0.tar.gz |
| StartedAt: 2022-10-18 20:08:45 -0400 (Tue, 18 Oct 2022) |
| EndedAt: 2022-10-18 20:13:20 -0400 (Tue, 18 Oct 2022) |
| EllapsedTime: 274.6 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.15-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.15-bioc/R/library --no-vignettes --timings HPiP_1.2.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck’
* using R version 4.2.1 (2022-06-23)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.2.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
corr_plot 35.591 0.484 36.078
FSmethod 34.413 0.984 35.398
var_imp 33.724 0.884 34.610
pred_ensembel 13.984 0.646 10.559
enrichfindP 0.431 0.033 11.590
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/home/biocbuild/bbs-3.15-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.15-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.15-bioc/R/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.2.1 (2022-06-23) -- "Funny-Looking Kid"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 95.067599
final value 94.473118
converged
Fitting Repeat 2
# weights: 103
initial value 95.822231
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 107.788814
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.446903
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.165612
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 108.704652
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 99.781818
iter 10 value 88.014067
iter 20 value 85.684835
final value 85.683709
converged
Fitting Repeat 3
# weights: 305
initial value 96.739410
final value 94.402440
converged
Fitting Repeat 4
# weights: 305
initial value 105.886146
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 95.665927
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 97.224090
iter 10 value 94.061206
iter 20 value 92.697509
iter 30 value 92.478276
final value 92.478198
converged
Fitting Repeat 2
# weights: 507
initial value 102.974296
final value 94.322897
converged
Fitting Repeat 3
# weights: 507
initial value 97.394634
iter 10 value 93.820496
final value 93.818593
converged
Fitting Repeat 4
# weights: 507
initial value 99.294861
iter 10 value 93.730209
iter 20 value 92.882184
iter 30 value 92.796983
final value 92.796400
converged
Fitting Repeat 5
# weights: 507
initial value 107.169097
final value 94.473118
converged
Fitting Repeat 1
# weights: 103
initial value 101.999713
iter 10 value 94.486706
iter 20 value 93.843534
iter 30 value 90.679492
iter 40 value 85.771454
iter 50 value 84.388849
iter 60 value 84.004209
iter 70 value 83.903313
iter 80 value 83.491931
iter 90 value 83.386721
iter 100 value 83.327566
final value 83.327566
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 98.125877
iter 10 value 94.488737
iter 20 value 92.373925
iter 30 value 89.726621
iter 40 value 87.352127
iter 50 value 85.843929
iter 60 value 85.399669
iter 70 value 85.346948
iter 80 value 85.318455
iter 90 value 85.292743
iter 100 value 85.189206
final value 85.189206
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.483595
iter 10 value 94.478461
iter 20 value 94.029116
iter 30 value 91.918413
iter 40 value 87.862436
iter 50 value 86.215404
iter 60 value 85.640696
iter 70 value 85.603818
iter 80 value 85.421084
final value 85.378136
converged
Fitting Repeat 4
# weights: 103
initial value 104.781774
iter 10 value 94.455119
iter 20 value 93.936931
iter 30 value 93.056496
iter 40 value 92.946093
iter 50 value 86.999299
iter 60 value 86.367658
iter 70 value 85.313844
iter 80 value 84.763153
iter 90 value 84.680051
final value 84.667974
converged
Fitting Repeat 5
# weights: 103
initial value 102.583485
iter 10 value 93.902508
iter 20 value 87.141991
iter 30 value 86.832782
iter 40 value 86.129914
iter 50 value 85.734320
iter 60 value 85.208140
iter 70 value 85.069996
iter 80 value 84.924714
iter 90 value 84.853138
final value 84.852400
converged
Fitting Repeat 1
# weights: 305
initial value 114.138299
iter 10 value 94.459749
iter 20 value 93.289381
iter 30 value 90.272159
iter 40 value 86.169760
iter 50 value 85.401710
iter 60 value 84.061201
iter 70 value 82.021887
iter 80 value 81.893265
iter 90 value 81.723579
iter 100 value 81.636408
final value 81.636408
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.309250
iter 10 value 94.525469
iter 20 value 93.602504
iter 30 value 88.753210
iter 40 value 87.208940
iter 50 value 86.431962
iter 60 value 83.761623
iter 70 value 82.890230
iter 80 value 82.333565
iter 90 value 81.893883
iter 100 value 81.615014
final value 81.615014
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.762464
iter 10 value 94.747509
iter 20 value 94.350344
iter 30 value 90.324508
iter 40 value 89.358169
iter 50 value 87.208724
iter 60 value 83.134550
iter 70 value 82.305779
iter 80 value 82.220385
iter 90 value 82.122921
iter 100 value 81.920687
final value 81.920687
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 103.586976
iter 10 value 94.468461
iter 20 value 93.533476
iter 30 value 88.359873
iter 40 value 85.396823
iter 50 value 84.344336
iter 60 value 83.484789
iter 70 value 82.748762
iter 80 value 82.137075
iter 90 value 81.586617
iter 100 value 81.557401
final value 81.557401
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.379218
iter 10 value 90.132712
iter 20 value 86.919402
iter 30 value 86.718406
iter 40 value 86.239654
iter 50 value 85.790829
iter 60 value 85.113715
iter 70 value 83.396603
iter 80 value 82.562308
iter 90 value 81.450610
iter 100 value 81.217765
final value 81.217765
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.135083
iter 10 value 94.290329
iter 20 value 89.097877
iter 30 value 85.288082
iter 40 value 83.300315
iter 50 value 82.916577
iter 60 value 82.057294
iter 70 value 81.506711
iter 80 value 81.337101
iter 90 value 81.309261
iter 100 value 81.285664
final value 81.285664
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 102.782462
iter 10 value 94.882775
iter 20 value 89.153253
iter 30 value 87.416628
iter 40 value 85.861667
iter 50 value 84.757454
iter 60 value 83.264531
iter 70 value 82.508494
iter 80 value 81.671311
iter 90 value 81.223014
iter 100 value 81.048073
final value 81.048073
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 128.555935
iter 10 value 95.981621
iter 20 value 93.367528
iter 30 value 88.397602
iter 40 value 88.196035
iter 50 value 86.033551
iter 60 value 85.924970
iter 70 value 85.648156
iter 80 value 84.927416
iter 90 value 83.596877
iter 100 value 82.831035
final value 82.831035
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 126.446562
iter 10 value 95.221559
iter 20 value 94.303720
iter 30 value 87.110303
iter 40 value 85.757105
iter 50 value 84.984139
iter 60 value 84.506779
iter 70 value 83.447668
iter 80 value 82.213420
iter 90 value 81.910488
iter 100 value 81.760524
final value 81.760524
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 126.071856
iter 10 value 94.409331
iter 20 value 89.299964
iter 30 value 86.362285
iter 40 value 85.345808
iter 50 value 85.221071
iter 60 value 85.121422
iter 70 value 85.022287
iter 80 value 84.675815
iter 90 value 83.928265
iter 100 value 81.778731
final value 81.778731
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 111.420894
iter 10 value 94.474778
iter 20 value 94.473269
iter 30 value 94.473136
final value 94.473132
converged
Fitting Repeat 2
# weights: 103
initial value 106.797498
final value 94.485839
converged
Fitting Repeat 3
# weights: 103
initial value 100.188660
iter 10 value 94.485768
final value 94.484350
converged
Fitting Repeat 4
# weights: 103
initial value 94.935538
final value 94.483893
converged
Fitting Repeat 5
# weights: 103
initial value 98.787758
final value 94.486077
converged
Fitting Repeat 1
# weights: 305
initial value 104.633595
iter 10 value 94.489076
iter 20 value 94.471802
iter 30 value 91.738949
iter 40 value 91.138085
iter 50 value 91.128591
iter 60 value 88.544929
iter 70 value 86.502729
iter 80 value 86.491336
final value 86.491227
converged
Fitting Repeat 2
# weights: 305
initial value 95.536904
iter 10 value 94.489089
iter 20 value 93.697858
iter 30 value 85.552728
iter 40 value 85.451766
iter 50 value 85.448813
iter 60 value 84.404390
iter 70 value 84.404026
iter 80 value 84.243260
iter 90 value 83.320581
iter 100 value 83.305055
final value 83.305055
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.387279
iter 10 value 94.477964
iter 20 value 94.470527
iter 30 value 87.726158
iter 40 value 86.542848
final value 86.540350
converged
Fitting Repeat 4
# weights: 305
initial value 101.074740
iter 10 value 94.328300
iter 20 value 94.327922
iter 30 value 94.327108
iter 40 value 94.325594
iter 50 value 89.586301
iter 60 value 88.328906
iter 70 value 87.994168
iter 80 value 86.054702
iter 90 value 86.034847
final value 86.034841
converged
Fitting Repeat 5
# weights: 305
initial value 104.385330
iter 10 value 94.489163
iter 20 value 94.484350
iter 30 value 88.051154
iter 40 value 87.602038
iter 50 value 85.790250
iter 60 value 85.788048
iter 70 value 85.784754
iter 80 value 84.636821
iter 90 value 83.535879
iter 100 value 83.531793
final value 83.531793
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.876180
iter 10 value 94.048458
iter 20 value 93.394613
iter 30 value 92.856706
iter 40 value 92.845520
iter 50 value 92.837765
iter 60 value 92.587362
iter 70 value 90.648775
iter 80 value 86.541315
iter 90 value 86.269511
iter 100 value 85.724304
final value 85.724304
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.034105
iter 10 value 94.450713
iter 20 value 93.681387
iter 30 value 86.498670
iter 40 value 85.363496
iter 50 value 85.130087
iter 60 value 85.122666
iter 70 value 85.117586
iter 80 value 85.116753
iter 90 value 82.694704
iter 100 value 80.557185
final value 80.557185
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 94.601376
iter 10 value 94.481589
iter 20 value 94.175135
iter 30 value 87.248799
iter 40 value 84.676021
iter 50 value 82.679999
iter 60 value 82.391771
iter 70 value 82.304916
iter 80 value 82.240574
iter 90 value 82.237920
final value 82.237872
converged
Fitting Repeat 4
# weights: 507
initial value 106.679700
iter 10 value 94.493037
iter 20 value 94.218504
iter 30 value 85.439360
iter 40 value 85.160884
final value 85.159859
converged
Fitting Repeat 5
# weights: 507
initial value 100.436739
iter 10 value 94.492170
iter 20 value 94.437318
iter 30 value 85.591702
final value 85.525279
converged
Fitting Repeat 1
# weights: 103
initial value 104.015663
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 95.593853
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.795225
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 102.055811
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.504967
final value 94.275362
converged
Fitting Repeat 1
# weights: 305
initial value 106.175907
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 97.821203
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 95.957385
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 109.783916
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 107.531110
final value 94.275362
converged
Fitting Repeat 1
# weights: 507
initial value 117.468876
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 97.563958
final value 94.275362
converged
Fitting Repeat 3
# weights: 507
initial value 94.866424
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 113.714624
iter 10 value 94.484462
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 107.315525
final value 94.274404
converged
Fitting Repeat 1
# weights: 103
initial value 109.097387
iter 10 value 94.462678
iter 20 value 92.535525
iter 30 value 90.333639
iter 40 value 88.195052
iter 50 value 84.949756
iter 60 value 84.159245
iter 70 value 84.026441
iter 80 value 83.985057
iter 90 value 83.846644
iter 100 value 83.816243
final value 83.816243
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 100.879176
iter 10 value 94.539783
iter 20 value 94.464965
iter 30 value 91.923159
iter 40 value 83.099434
iter 50 value 82.454101
iter 60 value 82.182197
iter 70 value 81.551007
iter 80 value 80.110991
iter 90 value 79.956040
iter 100 value 79.850038
final value 79.850038
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.423416
iter 10 value 94.358994
iter 20 value 91.756726
iter 30 value 90.719028
iter 40 value 88.639139
iter 50 value 83.900211
iter 60 value 83.022206
iter 70 value 82.429592
iter 80 value 82.109217
iter 90 value 81.947697
final value 81.947626
converged
Fitting Repeat 4
# weights: 103
initial value 110.269260
iter 10 value 95.215565
iter 20 value 94.314831
iter 30 value 90.534512
iter 40 value 89.871820
iter 50 value 85.320196
iter 60 value 83.948464
iter 70 value 83.870523
iter 80 value 83.847233
iter 90 value 83.817038
final value 83.813826
converged
Fitting Repeat 5
# weights: 103
initial value 98.585392
iter 10 value 94.369258
iter 20 value 93.878964
iter 30 value 93.537662
iter 40 value 91.919157
iter 50 value 83.789662
iter 60 value 82.812813
iter 70 value 82.194584
iter 80 value 82.123458
iter 90 value 81.957774
final value 81.947626
converged
Fitting Repeat 1
# weights: 305
initial value 111.003945
iter 10 value 94.491302
iter 20 value 94.214354
iter 30 value 93.568059
iter 40 value 93.489008
iter 50 value 93.078883
iter 60 value 91.234906
iter 70 value 87.991789
iter 80 value 84.623981
iter 90 value 81.449400
iter 100 value 80.385478
final value 80.385478
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.081148
iter 10 value 93.896966
iter 20 value 85.430644
iter 30 value 84.677494
iter 40 value 83.936354
iter 50 value 82.179552
iter 60 value 81.598247
iter 70 value 81.056577
iter 80 value 80.997860
iter 90 value 80.975859
iter 100 value 80.954319
final value 80.954319
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.456590
iter 10 value 94.959565
iter 20 value 84.946252
iter 30 value 81.432653
iter 40 value 78.804166
iter 50 value 78.604176
iter 60 value 78.569414
iter 70 value 78.441693
iter 80 value 78.301691
iter 90 value 78.216267
iter 100 value 78.089918
final value 78.089918
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.736627
iter 10 value 93.271485
iter 20 value 86.140314
iter 30 value 84.525107
iter 40 value 82.155484
iter 50 value 80.011109
iter 60 value 79.625342
iter 70 value 79.457891
iter 80 value 79.391769
iter 90 value 79.338736
iter 100 value 78.894093
final value 78.894093
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.904501
iter 10 value 94.562254
iter 20 value 94.512352
iter 30 value 84.156924
iter 40 value 83.570088
iter 50 value 81.955496
iter 60 value 81.073426
iter 70 value 80.764505
iter 80 value 79.966854
iter 90 value 79.606378
iter 100 value 79.411565
final value 79.411565
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 119.368950
iter 10 value 94.405380
iter 20 value 93.224469
iter 30 value 93.150247
iter 40 value 91.166596
iter 50 value 82.615073
iter 60 value 80.346694
iter 70 value 79.075640
iter 80 value 78.753917
iter 90 value 78.693233
iter 100 value 78.285114
final value 78.285114
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 120.405518
iter 10 value 97.981825
iter 20 value 93.400784
iter 30 value 88.685772
iter 40 value 84.881224
iter 50 value 84.585025
iter 60 value 84.281991
iter 70 value 81.731284
iter 80 value 80.458540
iter 90 value 79.958102
iter 100 value 79.797577
final value 79.797577
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 118.790094
iter 10 value 94.517745
iter 20 value 94.286092
iter 30 value 83.838286
iter 40 value 82.276672
iter 50 value 80.255302
iter 60 value 79.435773
iter 70 value 78.836423
iter 80 value 78.534031
iter 90 value 78.089958
iter 100 value 78.025961
final value 78.025961
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.831278
iter 10 value 89.634595
iter 20 value 86.398847
iter 30 value 85.588944
iter 40 value 83.316170
iter 50 value 79.817606
iter 60 value 79.095189
iter 70 value 78.552567
iter 80 value 78.361137
iter 90 value 78.106259
iter 100 value 77.763552
final value 77.763552
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 122.545446
iter 10 value 96.189322
iter 20 value 94.384108
iter 30 value 87.287796
iter 40 value 83.105782
iter 50 value 81.651506
iter 60 value 79.753133
iter 70 value 79.269166
iter 80 value 78.999660
iter 90 value 78.726411
iter 100 value 78.477124
final value 78.477124
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.205383
final value 94.485740
converged
Fitting Repeat 2
# weights: 103
initial value 95.606632
iter 10 value 94.277331
iter 20 value 94.275489
iter 30 value 85.847277
iter 40 value 85.755561
iter 50 value 83.454165
iter 60 value 83.267158
iter 70 value 83.237322
iter 80 value 83.191440
iter 90 value 83.164976
iter 100 value 83.164838
final value 83.164838
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 95.754207
final value 94.485817
converged
Fitting Repeat 4
# weights: 103
initial value 97.477874
final value 94.485687
converged
Fitting Repeat 5
# weights: 103
initial value 95.531270
iter 10 value 94.485936
iter 20 value 94.396313
iter 30 value 92.521801
iter 40 value 92.495025
iter 50 value 92.494883
final value 92.493940
converged
Fitting Repeat 1
# weights: 305
initial value 108.393114
iter 10 value 94.491129
iter 20 value 94.486084
final value 94.486082
converged
Fitting Repeat 2
# weights: 305
initial value 112.903855
iter 10 value 94.280754
iter 20 value 94.275869
final value 94.275544
converged
Fitting Repeat 3
# weights: 305
initial value 108.557298
iter 10 value 94.489413
iter 20 value 93.134381
iter 30 value 89.460837
iter 40 value 86.294827
iter 50 value 85.955241
iter 60 value 85.940882
iter 70 value 85.927926
iter 80 value 83.842647
iter 90 value 83.562097
final value 83.485118
converged
Fitting Repeat 4
# weights: 305
initial value 101.518768
iter 10 value 94.489908
iter 20 value 94.289822
iter 30 value 81.591253
iter 40 value 79.730536
iter 50 value 79.667821
iter 60 value 79.667227
final value 79.667213
converged
Fitting Repeat 5
# weights: 305
initial value 96.735448
iter 10 value 94.094155
iter 20 value 91.685115
iter 30 value 83.785516
iter 40 value 83.722272
iter 50 value 83.496082
iter 60 value 80.747367
iter 70 value 79.430372
iter 80 value 79.218618
iter 90 value 79.217135
iter 100 value 79.216293
final value 79.216293
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 95.628179
iter 10 value 93.988880
iter 20 value 93.953340
iter 30 value 93.694650
iter 40 value 93.693946
iter 40 value 93.693945
iter 40 value 93.693945
final value 93.693945
converged
Fitting Repeat 2
# weights: 507
initial value 98.981383
iter 10 value 92.815899
iter 20 value 92.411750
iter 30 value 92.283503
iter 40 value 92.265718
iter 50 value 92.264932
iter 60 value 91.479370
iter 70 value 82.177383
iter 80 value 81.780057
iter 90 value 81.772840
iter 100 value 81.772481
final value 81.772481
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 95.986412
iter 10 value 94.482690
iter 20 value 90.452070
iter 30 value 89.134562
iter 40 value 88.399263
iter 50 value 87.766578
iter 60 value 87.746647
iter 70 value 87.597297
iter 80 value 87.556234
iter 90 value 87.553122
iter 100 value 84.052652
final value 84.052652
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.487802
iter 10 value 94.283859
iter 20 value 94.278815
iter 30 value 91.969895
iter 40 value 84.227525
iter 50 value 83.201399
iter 60 value 81.433221
iter 70 value 80.648380
iter 80 value 80.638577
iter 90 value 79.548824
final value 79.548609
converged
Fitting Repeat 5
# weights: 507
initial value 102.950623
iter 10 value 94.284521
iter 20 value 94.174599
iter 30 value 92.304462
iter 40 value 89.865413
iter 50 value 86.508824
iter 60 value 83.159936
iter 70 value 82.008886
iter 80 value 81.125933
iter 90 value 81.022439
iter 100 value 80.687568
final value 80.687568
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.479162
final value 94.049020
converged
Fitting Repeat 2
# weights: 103
initial value 94.329086
final value 94.008694
converged
Fitting Repeat 3
# weights: 103
initial value 101.781067
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 101.697148
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 99.942443
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.719466
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 131.389618
iter 10 value 94.052910
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 104.645386
iter 10 value 92.924953
iter 20 value 92.811925
final value 92.811793
converged
Fitting Repeat 4
# weights: 305
initial value 104.475911
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 117.526747
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 108.416284
final value 93.869755
converged
Fitting Repeat 2
# weights: 507
initial value 96.569415
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 104.866407
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 118.622417
iter 10 value 91.363995
iter 20 value 87.383150
iter 30 value 86.641502
iter 40 value 86.619003
iter 50 value 86.618785
iter 50 value 86.618784
iter 50 value 86.618784
final value 86.618784
converged
Fitting Repeat 5
# weights: 507
initial value 120.498160
final value 93.915746
converged
Fitting Repeat 1
# weights: 103
initial value 106.689655
iter 10 value 94.058530
iter 20 value 93.530389
iter 30 value 88.801865
iter 40 value 85.473189
iter 50 value 83.544703
iter 60 value 83.400268
iter 70 value 83.364769
iter 80 value 83.350546
iter 90 value 83.344514
final value 83.344502
converged
Fitting Repeat 2
# weights: 103
initial value 102.353042
iter 10 value 94.012844
iter 20 value 93.737414
iter 30 value 93.675098
iter 40 value 87.107053
iter 50 value 86.330970
iter 60 value 86.240477
iter 70 value 84.386907
iter 80 value 83.447211
iter 90 value 83.399796
iter 100 value 83.390054
final value 83.390054
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 100.720279
iter 10 value 94.057207
iter 20 value 92.369715
iter 30 value 86.246136
iter 40 value 86.099862
iter 50 value 85.953522
iter 60 value 85.364721
iter 70 value 84.159806
iter 80 value 83.543661
iter 90 value 83.409975
iter 100 value 83.385198
final value 83.385198
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 103.321517
iter 10 value 94.056147
iter 20 value 93.834716
iter 30 value 93.688443
iter 40 value 93.530867
iter 50 value 83.717263
iter 60 value 83.281084
iter 70 value 83.182236
iter 80 value 82.592874
iter 90 value 82.148306
iter 100 value 82.022813
final value 82.022813
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.448798
iter 10 value 94.056040
iter 20 value 93.777107
iter 30 value 93.739012
iter 40 value 93.731110
iter 50 value 93.730644
iter 60 value 92.526945
iter 70 value 85.069456
iter 80 value 83.493589
iter 90 value 83.406915
iter 100 value 83.346454
final value 83.346454
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 101.356208
iter 10 value 87.827873
iter 20 value 86.308525
iter 30 value 85.224794
iter 40 value 84.349313
iter 50 value 84.265595
iter 60 value 83.396474
iter 70 value 82.391914
iter 80 value 81.740509
iter 90 value 81.349766
iter 100 value 81.175117
final value 81.175117
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.166664
iter 10 value 94.182672
iter 20 value 85.536182
iter 30 value 84.354948
iter 40 value 84.237409
iter 50 value 83.963652
iter 60 value 82.854354
iter 70 value 81.710786
iter 80 value 81.296725
iter 90 value 81.038723
iter 100 value 80.871379
final value 80.871379
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.529038
iter 10 value 93.923405
iter 20 value 93.496904
iter 30 value 88.937036
iter 40 value 85.306677
iter 50 value 81.401619
iter 60 value 80.944143
iter 70 value 80.645390
iter 80 value 80.452475
iter 90 value 80.276791
iter 100 value 80.224559
final value 80.224559
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 118.095701
iter 10 value 94.241832
iter 20 value 86.339034
iter 30 value 84.707349
iter 40 value 84.516137
iter 50 value 81.656630
iter 60 value 81.109214
iter 70 value 80.700404
iter 80 value 80.526538
iter 90 value 80.502063
iter 100 value 80.499341
final value 80.499341
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 116.812027
iter 10 value 94.035633
iter 20 value 90.086950
iter 30 value 85.792431
iter 40 value 84.756574
iter 50 value 83.485317
iter 60 value 82.847721
iter 70 value 82.727675
iter 80 value 82.670695
iter 90 value 82.649624
iter 100 value 82.529937
final value 82.529937
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 115.035653
iter 10 value 94.012737
iter 20 value 86.241042
iter 30 value 84.179541
iter 40 value 83.074438
iter 50 value 81.951194
iter 60 value 80.615946
iter 70 value 80.216486
iter 80 value 80.090800
iter 90 value 80.029887
iter 100 value 79.960566
final value 79.960566
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 131.892361
iter 10 value 98.359685
iter 20 value 95.246706
iter 30 value 93.884402
iter 40 value 88.596217
iter 50 value 86.274684
iter 60 value 85.593800
iter 70 value 83.073898
iter 80 value 82.457977
iter 90 value 81.904695
iter 100 value 81.427942
final value 81.427942
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.050892
iter 10 value 93.963019
iter 20 value 86.117089
iter 30 value 83.986328
iter 40 value 82.952581
iter 50 value 82.793893
iter 60 value 82.756694
iter 70 value 82.709352
iter 80 value 82.566101
iter 90 value 82.042446
iter 100 value 81.184513
final value 81.184513
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.503376
iter 10 value 94.173080
iter 20 value 92.138527
iter 30 value 84.423570
iter 40 value 84.238942
iter 50 value 83.982728
iter 60 value 83.020125
iter 70 value 82.216262
iter 80 value 81.741937
iter 90 value 81.414200
iter 100 value 80.640360
final value 80.640360
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 109.318061
iter 10 value 92.686305
iter 20 value 85.715783
iter 30 value 85.565744
iter 40 value 84.206356
iter 50 value 82.480024
iter 60 value 82.205139
iter 70 value 82.042104
iter 80 value 81.648705
iter 90 value 80.823924
iter 100 value 80.365578
final value 80.365578
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.109895
final value 94.054643
converged
Fitting Repeat 2
# weights: 103
initial value 97.705343
final value 94.054548
converged
Fitting Repeat 3
# weights: 103
initial value 94.158104
final value 94.054531
converged
Fitting Repeat 4
# weights: 103
initial value 102.189895
final value 94.054668
converged
Fitting Repeat 5
# weights: 103
initial value 110.317488
final value 94.054383
converged
Fitting Repeat 1
# weights: 305
initial value 96.093246
iter 10 value 94.033226
iter 20 value 94.028550
iter 30 value 93.625255
iter 40 value 92.592353
iter 50 value 91.389922
iter 60 value 90.870232
iter 70 value 90.818965
final value 90.818912
converged
Fitting Repeat 2
# weights: 305
initial value 105.101779
iter 10 value 94.058181
iter 20 value 94.053280
iter 30 value 91.901871
iter 40 value 86.383872
iter 50 value 82.422961
iter 60 value 80.744002
iter 70 value 80.200728
iter 80 value 80.093650
iter 90 value 79.244234
iter 100 value 79.107640
final value 79.107640
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 95.431523
iter 10 value 94.058283
iter 20 value 94.052941
iter 30 value 93.932934
iter 40 value 93.711614
iter 50 value 93.702003
final value 93.697880
converged
Fitting Repeat 4
# weights: 305
initial value 102.734622
iter 10 value 94.057744
iter 20 value 94.052938
iter 30 value 93.852710
iter 40 value 90.580233
iter 50 value 83.354923
iter 60 value 81.767783
iter 70 value 81.764529
iter 80 value 81.764325
final value 81.763975
converged
Fitting Repeat 5
# weights: 305
initial value 97.231958
iter 10 value 94.057538
iter 20 value 93.703542
iter 30 value 85.362216
iter 40 value 84.350314
iter 50 value 84.342992
iter 60 value 84.342643
iter 70 value 82.132828
iter 80 value 81.682979
iter 90 value 81.669576
iter 100 value 81.669395
final value 81.669395
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 98.763132
iter 10 value 93.128881
iter 20 value 88.438367
iter 30 value 84.579772
iter 40 value 84.420581
iter 50 value 84.418253
iter 60 value 83.658815
iter 70 value 83.521762
iter 80 value 83.520188
iter 90 value 83.520001
iter 100 value 83.510306
final value 83.510306
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.447927
iter 10 value 94.061901
iter 20 value 94.042094
iter 30 value 93.643614
iter 30 value 93.643613
iter 30 value 93.643613
final value 93.643613
converged
Fitting Repeat 3
# weights: 507
initial value 123.104572
iter 10 value 94.060697
iter 20 value 94.053214
iter 30 value 93.915843
iter 40 value 93.766018
iter 50 value 93.697982
final value 93.697981
converged
Fitting Repeat 4
# weights: 507
initial value 99.727699
iter 10 value 94.061493
iter 20 value 93.706264
iter 30 value 83.623558
iter 40 value 83.362820
iter 50 value 83.355452
final value 83.324408
converged
Fitting Repeat 5
# weights: 507
initial value 116.305404
iter 10 value 93.923586
iter 20 value 93.917179
iter 30 value 90.752875
iter 40 value 85.784878
iter 50 value 85.733103
iter 60 value 85.725199
iter 70 value 83.376215
iter 80 value 83.351103
iter 90 value 83.312024
iter 100 value 82.875056
final value 82.875056
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.829325
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 106.044857
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 105.354237
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 94.428283
iter 10 value 94.212650
final value 94.212644
converged
Fitting Repeat 5
# weights: 103
initial value 110.144297
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 96.741716
final value 94.275362
converged
Fitting Repeat 2
# weights: 305
initial value 103.426153
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 110.742080
iter 10 value 86.809509
iter 20 value 85.973837
iter 30 value 85.969019
iter 40 value 85.926751
final value 85.926160
converged
Fitting Repeat 4
# weights: 305
initial value 97.038420
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 111.677090
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 109.921704
iter 10 value 94.444762
iter 20 value 94.275362
iter 20 value 94.275362
iter 20 value 94.275362
final value 94.275362
converged
Fitting Repeat 2
# weights: 507
initial value 96.831298
final value 94.275362
converged
Fitting Repeat 3
# weights: 507
initial value 120.577860
iter 10 value 94.484219
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 103.199845
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 95.645569
final value 94.275363
converged
Fitting Repeat 1
# weights: 103
initial value 102.196274
iter 10 value 94.489471
iter 20 value 93.061274
iter 30 value 91.664677
iter 40 value 91.144409
iter 50 value 91.110351
iter 60 value 91.107651
iter 70 value 91.104459
iter 80 value 91.103930
final value 91.103912
converged
Fitting Repeat 2
# weights: 103
initial value 119.632656
iter 10 value 94.491974
iter 20 value 91.566006
iter 30 value 90.857368
iter 40 value 90.814458
iter 50 value 87.450965
iter 60 value 87.185412
iter 70 value 84.015730
iter 80 value 83.952274
iter 90 value 83.737225
iter 100 value 83.707539
final value 83.707539
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.400296
iter 10 value 93.988355
iter 20 value 89.512988
iter 30 value 84.300315
iter 40 value 83.823545
iter 50 value 83.710702
iter 60 value 83.707520
final value 83.707518
converged
Fitting Repeat 4
# weights: 103
initial value 98.168737
iter 10 value 94.093688
iter 20 value 86.313934
iter 30 value 83.745727
iter 40 value 83.468818
iter 50 value 82.378307
iter 60 value 81.871995
iter 70 value 81.457519
iter 80 value 81.412953
iter 90 value 81.375812
final value 81.374763
converged
Fitting Repeat 5
# weights: 103
initial value 108.306344
iter 10 value 97.544147
iter 20 value 94.475493
iter 30 value 91.606002
iter 40 value 86.198483
iter 50 value 85.097669
iter 60 value 84.776929
iter 70 value 84.522484
iter 80 value 84.055638
iter 90 value 83.353442
iter 100 value 83.333061
final value 83.333061
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 101.263235
iter 10 value 94.495510
iter 20 value 89.926032
iter 30 value 87.158760
iter 40 value 86.113641
iter 50 value 85.030652
iter 60 value 82.590862
iter 70 value 80.992841
iter 80 value 80.540905
iter 90 value 80.210008
iter 100 value 79.997745
final value 79.997745
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.629315
iter 10 value 94.089098
iter 20 value 87.553802
iter 30 value 85.965337
iter 40 value 83.494111
iter 50 value 83.040682
iter 60 value 82.876252
iter 70 value 82.830125
iter 80 value 82.283024
iter 90 value 81.594711
iter 100 value 81.230984
final value 81.230984
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.828130
iter 10 value 94.382650
iter 20 value 90.376841
iter 30 value 88.562700
iter 40 value 87.591798
iter 50 value 86.725121
iter 60 value 83.858799
iter 70 value 81.417212
iter 80 value 80.384882
iter 90 value 80.258304
iter 100 value 80.204455
final value 80.204455
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 122.472371
iter 10 value 94.250414
iter 20 value 87.096386
iter 30 value 85.684242
iter 40 value 85.045791
iter 50 value 84.729640
iter 60 value 81.681426
iter 70 value 80.776580
iter 80 value 80.315910
iter 90 value 80.034724
iter 100 value 79.982310
final value 79.982310
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.746492
iter 10 value 94.155557
iter 20 value 85.802902
iter 30 value 84.190301
iter 40 value 83.741948
iter 50 value 82.701501
iter 60 value 81.573602
iter 70 value 81.422741
iter 80 value 80.692676
iter 90 value 80.357808
iter 100 value 80.247717
final value 80.247717
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.490094
iter 10 value 95.249036
iter 20 value 92.182939
iter 30 value 86.448511
iter 40 value 85.381150
iter 50 value 85.075754
iter 60 value 84.946137
iter 70 value 83.241293
iter 80 value 82.284789
iter 90 value 81.729419
iter 100 value 80.669255
final value 80.669255
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.886346
iter 10 value 94.336228
iter 20 value 84.522735
iter 30 value 83.187130
iter 40 value 82.379005
iter 50 value 82.031703
iter 60 value 81.342305
iter 70 value 80.790713
iter 80 value 80.665287
iter 90 value 80.622219
iter 100 value 80.608635
final value 80.608635
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 137.231725
iter 10 value 94.725988
iter 20 value 94.412133
iter 30 value 90.753809
iter 40 value 88.564649
iter 50 value 85.084089
iter 60 value 83.705301
iter 70 value 81.127574
iter 80 value 80.145282
iter 90 value 79.954882
iter 100 value 79.796236
final value 79.796236
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.565730
iter 10 value 94.071012
iter 20 value 88.446813
iter 30 value 85.873210
iter 40 value 85.071667
iter 50 value 83.165356
iter 60 value 81.260657
iter 70 value 80.387298
iter 80 value 79.738274
iter 90 value 79.498425
iter 100 value 79.384144
final value 79.384144
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.490717
iter 10 value 94.413253
iter 20 value 93.718877
iter 30 value 88.203518
iter 40 value 87.099459
iter 50 value 85.638132
iter 60 value 83.297224
iter 70 value 82.498538
iter 80 value 81.623750
iter 90 value 81.232474
iter 100 value 80.808167
final value 80.808167
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.667153
final value 94.485790
converged
Fitting Repeat 2
# weights: 103
initial value 101.310852
final value 94.486028
converged
Fitting Repeat 3
# weights: 103
initial value 97.930563
final value 94.486045
converged
Fitting Repeat 4
# weights: 103
initial value 102.474121
final value 94.485874
converged
Fitting Repeat 5
# weights: 103
initial value 102.549488
final value 94.485560
converged
Fitting Repeat 1
# weights: 305
initial value 95.068436
iter 10 value 94.376792
iter 20 value 94.372650
iter 30 value 94.336065
iter 40 value 92.684847
iter 50 value 92.365947
iter 60 value 92.363800
final value 92.363789
converged
Fitting Repeat 2
# weights: 305
initial value 100.362726
iter 10 value 93.706500
iter 20 value 87.453525
iter 30 value 87.370335
iter 40 value 86.050962
iter 50 value 85.831396
final value 85.800500
converged
Fitting Repeat 3
# weights: 305
initial value 111.457340
iter 10 value 94.676552
iter 20 value 94.544886
iter 30 value 94.489969
iter 40 value 91.931107
iter 50 value 87.327525
iter 60 value 87.128210
iter 70 value 86.434985
iter 80 value 85.710108
iter 90 value 85.641883
iter 100 value 85.636396
final value 85.636396
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 121.973362
iter 10 value 94.184720
iter 20 value 94.184036
iter 30 value 94.179687
iter 40 value 94.158206
iter 50 value 84.781138
iter 60 value 84.616300
iter 70 value 84.614930
final value 84.614754
converged
Fitting Repeat 5
# weights: 305
initial value 100.157557
iter 10 value 94.488074
iter 20 value 93.493646
iter 30 value 86.884954
iter 40 value 84.439646
iter 50 value 84.435287
iter 60 value 84.434837
final value 84.434685
converged
Fitting Repeat 1
# weights: 507
initial value 105.944781
iter 10 value 94.491545
iter 20 value 94.415594
iter 30 value 91.279056
iter 40 value 85.291247
iter 50 value 84.343461
iter 60 value 84.341961
iter 70 value 84.083649
iter 80 value 83.400971
iter 90 value 82.589743
iter 100 value 82.448093
final value 82.448093
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 95.169621
iter 10 value 94.283638
iter 20 value 93.509686
iter 30 value 85.900222
iter 40 value 84.635075
iter 50 value 84.342163
final value 84.341112
converged
Fitting Repeat 3
# weights: 507
initial value 103.110100
iter 10 value 91.573663
iter 20 value 91.192393
iter 30 value 91.156900
iter 40 value 91.155555
iter 50 value 91.127683
iter 60 value 91.104627
iter 70 value 91.103414
iter 80 value 91.103208
iter 90 value 91.098190
iter 100 value 91.097441
final value 91.097441
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 95.751235
iter 10 value 88.444475
iter 20 value 88.416006
iter 30 value 86.530877
iter 40 value 86.380081
iter 50 value 85.989350
iter 60 value 83.249661
iter 70 value 82.932556
iter 80 value 82.916731
iter 90 value 82.915581
iter 100 value 82.788738
final value 82.788738
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 98.589479
iter 10 value 92.223078
iter 20 value 91.330098
iter 30 value 91.233300
iter 40 value 91.227961
iter 50 value 91.226810
iter 60 value 91.225542
iter 70 value 91.224697
iter 80 value 91.224063
iter 90 value 91.223185
iter 100 value 85.097471
final value 85.097471
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.324158
final value 93.915746
converged
Fitting Repeat 2
# weights: 103
initial value 105.405235
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 97.863625
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 103.060391
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 106.285732
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 109.985204
final value 93.628453
converged
Fitting Repeat 2
# weights: 305
initial value 95.728354
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 99.995042
iter 10 value 93.309430
iter 20 value 93.159435
iter 30 value 93.105125
final value 93.104307
converged
Fitting Repeat 4
# weights: 305
initial value 97.909509
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 104.415110
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 112.153110
final value 93.915746
converged
Fitting Repeat 2
# weights: 507
initial value 102.118724
iter 10 value 89.729438
iter 20 value 88.874590
iter 30 value 88.868400
final value 88.868334
converged
Fitting Repeat 3
# weights: 507
initial value 96.771757
final value 93.988096
converged
Fitting Repeat 4
# weights: 507
initial value 117.872242
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 100.678408
final value 93.915746
converged
Fitting Repeat 1
# weights: 103
initial value 100.267685
iter 10 value 94.025271
iter 20 value 92.669514
iter 30 value 89.264204
iter 40 value 87.690927
iter 50 value 87.240086
iter 60 value 87.082430
iter 70 value 85.727380
iter 80 value 84.655854
iter 90 value 84.509589
iter 100 value 84.245818
final value 84.245818
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 100.859751
iter 10 value 94.056876
iter 20 value 94.039661
iter 30 value 93.338680
iter 40 value 89.584779
iter 50 value 89.309853
iter 60 value 85.356141
iter 70 value 84.681817
iter 80 value 84.314243
iter 90 value 84.084450
iter 100 value 84.058251
final value 84.058251
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 107.792397
iter 10 value 93.989560
iter 20 value 85.915369
iter 30 value 85.562447
iter 40 value 85.346190
iter 50 value 85.245952
iter 60 value 84.973307
iter 70 value 84.222724
iter 80 value 84.211711
iter 90 value 84.169879
iter 100 value 84.072839
final value 84.072839
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.591646
iter 10 value 94.056851
iter 20 value 93.655444
iter 30 value 90.319479
iter 40 value 86.727755
iter 50 value 84.687517
iter 60 value 84.399963
iter 70 value 84.171254
iter 80 value 84.094526
iter 90 value 82.868355
iter 100 value 82.565500
final value 82.565500
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 106.311323
iter 10 value 88.648078
iter 20 value 86.678947
iter 30 value 86.343355
iter 40 value 86.020892
iter 50 value 85.458600
iter 60 value 85.428712
final value 85.428686
converged
Fitting Repeat 1
# weights: 305
initial value 99.899461
iter 10 value 92.179623
iter 20 value 86.581765
iter 30 value 85.952147
iter 40 value 85.112831
iter 50 value 84.495744
iter 60 value 83.426482
iter 70 value 82.020006
iter 80 value 81.903073
iter 90 value 81.539223
iter 100 value 81.447631
final value 81.447631
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.707446
iter 10 value 93.929000
iter 20 value 86.705645
iter 30 value 85.875642
iter 40 value 85.434610
iter 50 value 85.335285
iter 60 value 84.320906
iter 70 value 84.161499
iter 80 value 83.870163
iter 90 value 82.082080
iter 100 value 81.336431
final value 81.336431
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.746666
iter 10 value 94.226049
iter 20 value 89.275896
iter 30 value 83.646400
iter 40 value 83.014128
iter 50 value 81.866527
iter 60 value 81.405273
iter 70 value 81.050188
iter 80 value 80.898605
iter 90 value 80.692714
iter 100 value 80.666011
final value 80.666011
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 112.175924
iter 10 value 95.324972
iter 20 value 91.316504
iter 30 value 87.709906
iter 40 value 84.467734
iter 50 value 82.742378
iter 60 value 82.549223
iter 70 value 82.363567
iter 80 value 82.350202
iter 90 value 82.072127
iter 100 value 81.262424
final value 81.262424
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.465130
iter 10 value 94.164480
iter 20 value 93.986535
iter 30 value 91.931002
iter 40 value 86.008986
iter 50 value 85.524649
iter 60 value 85.216833
iter 70 value 84.396694
iter 80 value 83.763221
iter 90 value 82.380315
iter 100 value 81.731792
final value 81.731792
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.602928
iter 10 value 93.084154
iter 20 value 91.972364
iter 30 value 84.091321
iter 40 value 83.368653
iter 50 value 82.853560
iter 60 value 82.274383
iter 70 value 81.816195
iter 80 value 81.660237
iter 90 value 81.410761
iter 100 value 81.191423
final value 81.191423
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.260517
iter 10 value 94.087592
iter 20 value 90.282620
iter 30 value 89.316992
iter 40 value 88.473564
iter 50 value 84.804033
iter 60 value 82.469416
iter 70 value 81.971651
iter 80 value 81.828616
iter 90 value 81.542612
iter 100 value 80.986531
final value 80.986531
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.179030
iter 10 value 94.207651
iter 20 value 93.652497
iter 30 value 90.697168
iter 40 value 85.270976
iter 50 value 82.982012
iter 60 value 82.065529
iter 70 value 81.834342
iter 80 value 81.717341
iter 90 value 81.490827
iter 100 value 81.292197
final value 81.292197
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 114.343647
iter 10 value 94.708651
iter 20 value 92.257309
iter 30 value 87.156595
iter 40 value 85.965328
iter 50 value 85.479587
iter 60 value 85.035498
iter 70 value 83.918709
iter 80 value 82.465380
iter 90 value 82.046285
iter 100 value 81.598746
final value 81.598746
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.446889
iter 10 value 94.112922
iter 20 value 88.288624
iter 30 value 85.913833
iter 40 value 83.068642
iter 50 value 82.245618
iter 60 value 81.712715
iter 70 value 81.399260
iter 80 value 80.996521
iter 90 value 80.610583
iter 100 value 80.476770
final value 80.476770
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 104.261886
final value 94.054350
converged
Fitting Repeat 2
# weights: 103
initial value 109.698646
final value 94.054501
converged
Fitting Repeat 3
# weights: 103
initial value 108.384433
iter 10 value 94.076895
iter 20 value 94.073025
iter 30 value 94.052940
final value 94.052914
converged
Fitting Repeat 4
# weights: 103
initial value 99.545292
iter 10 value 94.055185
iter 20 value 94.052906
iter 30 value 90.211264
iter 40 value 85.299525
iter 50 value 85.291830
iter 60 value 85.289683
iter 70 value 85.190622
iter 80 value 85.186927
final value 85.186895
converged
Fitting Repeat 5
# weights: 103
initial value 96.958335
final value 94.054419
converged
Fitting Repeat 1
# weights: 305
initial value 95.055466
iter 10 value 94.057888
iter 20 value 94.052997
iter 30 value 94.048865
iter 40 value 93.915901
iter 50 value 93.902917
iter 60 value 88.091099
iter 70 value 87.091450
iter 80 value 85.731134
iter 90 value 85.522059
iter 100 value 85.513552
final value 85.513552
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 95.621998
iter 10 value 93.995992
iter 20 value 93.925684
final value 93.915984
converged
Fitting Repeat 3
# weights: 305
initial value 101.647437
iter 10 value 93.933541
iter 20 value 93.918774
final value 93.918536
converged
Fitting Repeat 4
# weights: 305
initial value 95.120887
iter 10 value 93.993455
iter 20 value 93.962553
iter 30 value 93.914206
iter 40 value 86.013549
iter 50 value 85.950954
iter 60 value 85.915943
iter 70 value 84.199994
iter 80 value 83.854286
iter 90 value 83.819413
iter 100 value 83.818269
final value 83.818269
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.173834
iter 10 value 94.057725
iter 20 value 91.718352
iter 30 value 85.345620
iter 40 value 85.000584
iter 50 value 83.465745
iter 60 value 80.933132
iter 70 value 80.772150
iter 80 value 80.769877
iter 90 value 80.769770
iter 100 value 80.769703
final value 80.769703
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 96.190897
iter 10 value 93.541278
iter 20 value 93.369192
iter 30 value 93.000433
iter 40 value 86.857151
iter 50 value 85.278447
iter 60 value 84.873087
iter 70 value 84.590543
iter 80 value 84.584722
iter 90 value 83.305519
iter 100 value 83.149162
final value 83.149162
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.493412
iter 10 value 94.060916
iter 20 value 93.769449
iter 30 value 85.086704
iter 40 value 85.075814
final value 85.075772
converged
Fitting Repeat 3
# weights: 507
initial value 95.429877
iter 10 value 93.924239
iter 20 value 93.916785
iter 30 value 88.175125
iter 40 value 84.588251
iter 50 value 83.606191
iter 60 value 83.022802
iter 70 value 82.732458
iter 80 value 82.547359
iter 90 value 82.407506
iter 100 value 82.403934
final value 82.403934
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 92.155896
iter 10 value 84.947225
iter 20 value 84.359458
iter 30 value 84.322298
iter 40 value 84.218447
iter 50 value 83.844394
iter 60 value 83.709594
iter 70 value 83.692254
iter 80 value 83.691579
iter 90 value 83.690194
iter 100 value 83.686181
final value 83.686181
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 94.921012
final value 94.061211
converged
Fitting Repeat 1
# weights: 305
initial value 130.439579
iter 10 value 117.843708
iter 20 value 117.654593
iter 30 value 113.912704
iter 40 value 109.421808
iter 50 value 108.528690
iter 60 value 105.252506
iter 70 value 103.282175
iter 80 value 102.508396
iter 90 value 102.093182
iter 100 value 101.326388
final value 101.326388
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 158.510672
iter 10 value 117.887719
iter 20 value 116.478969
iter 30 value 108.659016
iter 40 value 105.000382
iter 50 value 102.819603
iter 60 value 102.285571
iter 70 value 101.495013
iter 80 value 101.429345
iter 90 value 101.354141
iter 100 value 101.222364
final value 101.222364
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 133.945991
iter 10 value 117.984596
iter 20 value 111.484521
iter 30 value 109.512023
iter 40 value 108.263717
iter 50 value 106.909059
iter 60 value 104.722771
iter 70 value 103.851303
iter 80 value 103.347076
iter 90 value 102.702517
iter 100 value 101.959373
final value 101.959373
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 142.667187
iter 10 value 118.363703
iter 20 value 110.191552
iter 30 value 107.467272
iter 40 value 105.495294
iter 50 value 104.999371
iter 60 value 104.349710
iter 70 value 101.776225
iter 80 value 101.254755
iter 90 value 101.159477
iter 100 value 101.134621
final value 101.134621
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 125.009629
iter 10 value 117.301722
iter 20 value 108.449032
iter 30 value 107.338089
iter 40 value 106.539169
iter 50 value 103.870018
iter 60 value 102.606104
iter 70 value 102.136111
iter 80 value 102.018122
iter 90 value 101.947567
iter 100 value 101.757092
final value 101.757092
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Oct 18 20:13:17 2022
***********************************************
Number of test functions: 8
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8
Number of errors: 0
Number of failures: 0
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble
3.0.0.
ℹ Use `.name_repair = "minimal"`.
ℹ The deprecated feature was likely used in the tibble package.
Please report the issue at <https://github.com/tidyverse/tibble/issues>.
2: `repeats` has no meaning for this resampling method.
3: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
41.438 3.412 47.709
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 34.413 | 0.984 | 35.398 | |
| FreqInteractors | 0.252 | 0.008 | 0.261 | |
| calculateAAC | 0.057 | 0.012 | 0.069 | |
| calculateAutocor | 0.306 | 0.027 | 0.334 | |
| calculateBE | 0.172 | 0.012 | 0.184 | |
| calculateCTDC | 0.099 | 0.004 | 0.102 | |
| calculateCTDD | 0.757 | 0.024 | 0.781 | |
| calculateCTDT | 0.256 | 0.004 | 0.260 | |
| calculateCTriad | 0.416 | 0.016 | 0.432 | |
| calculateDC | 0.105 | 0.004 | 0.109 | |
| calculateF | 0.335 | 0.000 | 0.335 | |
| calculateKSAAP | 0.090 | 0.008 | 0.098 | |
| calculateQD_Sm | 1.819 | 0.028 | 1.846 | |
| calculateTC | 1.807 | 0.192 | 2.000 | |
| calculateTC_Sm | 0.294 | 0.012 | 0.305 | |
| corr_plot | 35.591 | 0.484 | 36.078 | |
| enrichfindP | 0.431 | 0.033 | 11.590 | |
| enrichfind_hp | 0.060 | 0.023 | 0.964 | |
| enrichplot | 0.236 | 0.016 | 0.252 | |
| filter_missing_values | 0.002 | 0.000 | 0.002 | |
| getFASTA | 0.126 | 0.004 | 4.466 | |
| getHPI | 0.001 | 0.000 | 0.001 | |
| get_negativePPI | 0.001 | 0.001 | 0.002 | |
| get_positivePPI | 0.000 | 0.001 | 0.000 | |
| impute_missing_data | 0.001 | 0.002 | 0.002 | |
| plotPPI | 0.062 | 0.004 | 0.065 | |
| pred_ensembel | 13.984 | 0.646 | 10.559 | |
| var_imp | 33.724 | 0.884 | 34.610 | |