Back to Multiple platform build/check report for BioC 3.21:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-09-25 11:39 -0400 (Thu, 25 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4827
merida1macOS 12.7.5 Montereyx86_644.5.1 RC (2025-06-05 r88288) -- "Great Square Root" 4608
kjohnson1macOS 13.6.6 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4549
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4581
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 252/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.72.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-09-22 13:40 -0400 (Mon, 22 Sep 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_21
git_last_commit: aa9e634
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on merida1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.72.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.72.0.tar.gz
StartedAt: 2025-09-23 00:52:34 -0400 (Tue, 23 Sep 2025)
EndedAt: 2025-09-23 00:53:49 -0400 (Tue, 23 Sep 2025)
EllapsedTime: 74.6 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.72.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 RC (2025-06-05 r88288)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.72.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.72.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.572   0.201   0.752 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480849 25.7    1056621 56.5         NA   634465 33.9
Vcells 891080  6.8    8388608 64.0      65536  2108740 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Sep 23 00:53:07 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Sep 23 00:53:08 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x6000012480c0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Sep 23 00:53:14 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Sep 23 00:53:17 2025"
> 
> ColMode(tmp2)
<pointer: 0x6000012480c0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]        [,2]       [,3]        [,4]
[1,] 99.1000701 -2.03269380 -1.2292769 -0.01913776
[2,]  0.7726599  0.08989433  1.5382828 -0.56799189
[3,]  0.8034903  1.09761069  0.2130690  0.04858485
[4,]  0.8881456 -0.81522677 -0.4011098  1.07648902
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]       [,2]      [,3]       [,4]
[1,] 99.1000701 2.03269380 1.2292769 0.01913776
[2,]  0.7726599 0.08989433 1.5382828 0.56799189
[3,]  0.8034903 1.09761069 0.2130690 0.04858485
[4,]  0.8881456 0.81522677 0.4011098 1.07648902
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9549018 1.4257257 1.1087276 0.1383393
[2,] 0.8790107 0.2998238 1.2402753 0.7536524
[3,] 0.8963762 1.0476692 0.4615940 0.2204197
[4,] 0.9424148 0.9028991 0.6333323 1.0375399
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.64909 41.28995 37.31655 26.40253
[2,]  34.56277 28.08813 38.94104 33.10452
[3,]  34.76725 36.57430 29.82901 27.25278
[4,]  35.31229 34.84422 31.73443 36.45189
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600001258000>
> exp(tmp5)
<pointer: 0x600001258000>
> log(tmp5,2)
<pointer: 0x600001258000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 465.4963
> Min(tmp5)
[1] 54.95341
> mean(tmp5)
[1] 73.90025
> Sum(tmp5)
[1] 14780.05
> Var(tmp5)
[1] 848.7408
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 94.54250 69.12040 73.26993 71.22242 69.61656 70.13488 77.33502 70.83931
 [9] 72.31276 70.60875
> rowSums(tmp5)
 [1] 1890.850 1382.408 1465.399 1424.448 1392.331 1402.698 1546.700 1416.786
 [9] 1446.255 1412.175
> rowVars(tmp5)
 [1] 7690.62807   61.54943   84.79685   43.62230   79.42864   87.48675
 [7]   67.80100   87.09717   84.80685   51.10292
> rowSd(tmp5)
 [1] 87.696226  7.845345  9.208520  6.604718  8.912275  9.353435  8.234136
 [8]  9.332586  9.209064  7.148631
> rowMax(tmp5)
 [1] 465.49627  85.30524  87.46848  91.86122  85.74322  91.01770  94.24804
 [8]  92.74434  87.44444  83.69263
> rowMin(tmp5)
 [1] 54.95341 57.50200 56.72309 62.25213 55.05644 55.52589 61.10431 57.19012
 [9] 57.76746 55.21769
> 
> colMeans(tmp5)
 [1] 111.88449  69.93521  73.64946  70.77855  68.35211  75.68823  67.57137
 [8]  73.13332  68.08495  68.51044  71.14749  73.38268  71.53689  74.12361
[15]  73.67316  73.32508  74.24119  75.97484  69.32699  73.68498
> colSums(tmp5)
 [1] 1118.8449  699.3521  736.4946  707.7855  683.5211  756.8823  675.7137
 [8]  731.3332  680.8495  685.1044  711.4749  733.8268  715.3689  741.2361
[15]  736.7316  733.2508  742.4119  759.7484  693.2699  736.8498
> colVars(tmp5)
 [1] 15492.01203    71.41624    56.98398   122.91648    30.86530    49.71776
 [7]    65.55971    82.79834   104.17542    63.22630    38.58783    95.27078
[13]    83.56488    88.07990    81.57059    69.84920    71.46387   106.39520
[19]    54.86866   109.42777
> colSd(tmp5)
 [1] 124.466911   8.450813   7.548774  11.086771   5.555655   7.051082
 [7]   8.096895   9.099360  10.206636   7.951497   6.211910   9.760675
[13]   9.141383   9.385089   9.031644   8.357583   8.453631  10.314805
[19]   7.407338  10.460773
> colMax(tmp5)
 [1] 465.49627  85.93962  84.83202  92.74434  77.08265  83.69263  77.81164
 [8]  85.30524  86.12745  78.14877  80.05334  87.44444  85.34435  91.86122
[15]  87.94410  83.55966  87.46848  94.24804  81.60980  91.01770
> colMin(tmp5)
 [1] 61.74767 58.46177 62.08517 54.95341 59.38439 63.39873 57.19012 55.21769
 [9] 55.05644 56.25325 60.15941 57.24482 55.52589 64.04062 62.65408 60.51805
[17] 60.25688 59.27814 57.90891 61.30956
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 94.54250 69.12040 73.26993       NA 69.61656 70.13488 77.33502 70.83931
 [9] 72.31276 70.60875
> rowSums(tmp5)
 [1] 1890.850 1382.408 1465.399       NA 1392.331 1402.698 1546.700 1416.786
 [9] 1446.255 1412.175
> rowVars(tmp5)
 [1] 7690.62807   61.54943   84.79685   44.72788   79.42864   87.48675
 [7]   67.80100   87.09717   84.80685   51.10292
> rowSd(tmp5)
 [1] 87.696226  7.845345  9.208520  6.687891  8.912275  9.353435  8.234136
 [8]  9.332586  9.209064  7.148631
> rowMax(tmp5)
 [1] 465.49627  85.30524  87.46848        NA  85.74322  91.01770  94.24804
 [8]  92.74434  87.44444  83.69263
> rowMin(tmp5)
 [1] 54.95341 57.50200 56.72309       NA 55.05644 55.52589 61.10431 57.19012
 [9] 57.76746 55.21769
> 
> colMeans(tmp5)
 [1] 111.88449  69.93521  73.64946  70.77855  68.35211  75.68823  67.57137
 [8]  73.13332  68.08495  68.51044  71.14749  73.38268  71.53689  74.12361
[15]  73.67316  73.32508  74.24119  75.97484        NA  73.68498
> colSums(tmp5)
 [1] 1118.8449  699.3521  736.4946  707.7855  683.5211  756.8823  675.7137
 [8]  731.3332  680.8495  685.1044  711.4749  733.8268  715.3689  741.2361
[15]  736.7316  733.2508  742.4119  759.7484        NA  736.8498
> colVars(tmp5)
 [1] 15492.01203    71.41624    56.98398   122.91648    30.86530    49.71776
 [7]    65.55971    82.79834   104.17542    63.22630    38.58783    95.27078
[13]    83.56488    88.07990    81.57059    69.84920    71.46387   106.39520
[19]          NA   109.42777
> colSd(tmp5)
 [1] 124.466911   8.450813   7.548774  11.086771   5.555655   7.051082
 [7]   8.096895   9.099360  10.206636   7.951497   6.211910   9.760675
[13]   9.141383   9.385089   9.031644   8.357583   8.453631  10.314805
[19]         NA  10.460773
> colMax(tmp5)
 [1] 465.49627  85.93962  84.83202  92.74434  77.08265  83.69263  77.81164
 [8]  85.30524  86.12745  78.14877  80.05334  87.44444  85.34435  91.86122
[15]  87.94410  83.55966  87.46848  94.24804        NA  91.01770
> colMin(tmp5)
 [1] 61.74767 58.46177 62.08517 54.95341 59.38439 63.39873 57.19012 55.21769
 [9] 55.05644 56.25325 60.15941 57.24482 55.52589 64.04062 62.65408 60.51805
[17] 60.25688 59.27814       NA 61.30956
> 
> Max(tmp5,na.rm=TRUE)
[1] 465.4963
> Min(tmp5,na.rm=TRUE)
[1] 54.95341
> mean(tmp5,na.rm=TRUE)
[1] 73.93756
> Sum(tmp5,na.rm=TRUE)
[1] 14713.58
> Var(tmp5,na.rm=TRUE)
[1] 852.7475
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 94.54250 69.12040 73.26993 71.47227 69.61656 70.13488 77.33502 70.83931
 [9] 72.31276 70.60875
> rowSums(tmp5,na.rm=TRUE)
 [1] 1890.850 1382.408 1465.399 1357.973 1392.331 1402.698 1546.700 1416.786
 [9] 1446.255 1412.175
> rowVars(tmp5,na.rm=TRUE)
 [1] 7690.62807   61.54943   84.79685   44.72788   79.42864   87.48675
 [7]   67.80100   87.09717   84.80685   51.10292
> rowSd(tmp5,na.rm=TRUE)
 [1] 87.696226  7.845345  9.208520  6.687891  8.912275  9.353435  8.234136
 [8]  9.332586  9.209064  7.148631
> rowMax(tmp5,na.rm=TRUE)
 [1] 465.49627  85.30524  87.46848  91.86122  85.74322  91.01770  94.24804
 [8]  92.74434  87.44444  83.69263
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.95341 57.50200 56.72309 62.25213 55.05644 55.52589 61.10431 57.19012
 [9] 57.76746 55.21769
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 111.88449  69.93521  73.64946  70.77855  68.35211  75.68823  67.57137
 [8]  73.13332  68.08495  68.51044  71.14749  73.38268  71.53689  74.12361
[15]  73.67316  73.32508  74.24119  75.97484  69.64385  73.68498
> colSums(tmp5,na.rm=TRUE)
 [1] 1118.8449  699.3521  736.4946  707.7855  683.5211  756.8823  675.7137
 [8]  731.3332  680.8495  685.1044  711.4749  733.8268  715.3689  741.2361
[15]  736.7316  733.2508  742.4119  759.7484  626.7947  736.8498
> colVars(tmp5,na.rm=TRUE)
 [1] 15492.01203    71.41624    56.98398   122.91648    30.86530    49.71776
 [7]    65.55971    82.79834   104.17542    63.22630    38.58783    95.27078
[13]    83.56488    88.07990    81.57059    69.84920    71.46387   106.39520
[19]    60.59773   109.42777
> colSd(tmp5,na.rm=TRUE)
 [1] 124.466911   8.450813   7.548774  11.086771   5.555655   7.051082
 [7]   8.096895   9.099360  10.206636   7.951497   6.211910   9.760675
[13]   9.141383   9.385089   9.031644   8.357583   8.453631  10.314805
[19]   7.784454  10.460773
> colMax(tmp5,na.rm=TRUE)
 [1] 465.49627  85.93962  84.83202  92.74434  77.08265  83.69263  77.81164
 [8]  85.30524  86.12745  78.14877  80.05334  87.44444  85.34435  91.86122
[15]  87.94410  83.55966  87.46848  94.24804  81.60980  91.01770
> colMin(tmp5,na.rm=TRUE)
 [1] 61.74767 58.46177 62.08517 54.95341 59.38439 63.39873 57.19012 55.21769
 [9] 55.05644 56.25325 60.15941 57.24482 55.52589 64.04062 62.65408 60.51805
[17] 60.25688 59.27814 57.90891 61.30956
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 94.54250 69.12040 73.26993      NaN 69.61656 70.13488 77.33502 70.83931
 [9] 72.31276 70.60875
> rowSums(tmp5,na.rm=TRUE)
 [1] 1890.850 1382.408 1465.399    0.000 1392.331 1402.698 1546.700 1416.786
 [9] 1446.255 1412.175
> rowVars(tmp5,na.rm=TRUE)
 [1] 7690.62807   61.54943   84.79685         NA   79.42864   87.48675
 [7]   67.80100   87.09717   84.80685   51.10292
> rowSd(tmp5,na.rm=TRUE)
 [1] 87.696226  7.845345  9.208520        NA  8.912275  9.353435  8.234136
 [8]  9.332586  9.209064  7.148631
> rowMax(tmp5,na.rm=TRUE)
 [1] 465.49627  85.30524  87.46848        NA  85.74322  91.01770  94.24804
 [8]  92.74434  87.44444  83.69263
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.95341 57.50200 56.72309       NA 55.05644 55.52589 61.10431 57.19012
 [9] 57.76746 55.21769
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 116.14967  69.64761  74.49372  70.21285  67.78142  76.38705  66.99745
 [8]  72.97106  68.73304  68.91423  70.20025  73.50942  71.98334  72.15277
[15]  73.86759  73.63567  74.74910  77.04438       NaN  74.88132
> colSums(tmp5,na.rm=TRUE)
 [1] 1045.3470  626.8285  670.4435  631.9157  610.0328  687.4835  602.9771
 [8]  656.7395  618.5973  620.2281  631.8022  661.5848  647.8501  649.3749
[15]  664.8083  662.7211  672.7419  693.3994    0.0000  673.9319
> colVars(tmp5,na.rm=TRUE)
 [1] 17223.85664    79.41270    56.08815   134.68089    31.05949    50.43859
 [7]    70.04915    92.85193   112.47211    69.29533    33.31703   106.99893
[13]    91.76812    55.39230    91.34164    77.49509    77.49462   106.82558
[19]          NA   107.00497
> colSd(tmp5,na.rm=TRUE)
 [1] 131.239692   8.911380   7.489202  11.605209   5.573104   7.102013
 [7]   8.369537   9.635971  10.605287   8.324382   5.772091  10.344029
[13]   9.579568   7.442600   9.557282   8.803130   8.803103  10.335646
[19]         NA  10.344321
> colMax(tmp5,na.rm=TRUE)
 [1] 465.49627  85.93962  84.83202  92.74434  77.08265  83.69263  77.81164
 [8]  85.30524  86.12745  78.14877  80.05334  87.44444  85.34435  84.95862
[15]  87.94410  83.55966  87.46848  94.24804      -Inf  91.01770
> colMin(tmp5,na.rm=TRUE)
 [1] 61.74767 58.46177 62.08517 54.95341 59.38439 63.39873 57.19012 55.21769
 [9] 55.05644 56.25325 60.15941 57.24482 55.52589 64.04062 62.65408 60.51805
[17] 60.25688 59.27814      Inf 61.30956
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 204.3760 241.3059 194.1854 204.1915 184.8232 175.0674 281.2133 199.3153
 [9] 185.6795 144.8315
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 204.3760 241.3059 194.1854 204.1915 184.8232 175.0674 281.2133 199.3153
 [9] 185.6795 144.8315
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  0.000000e+00 -2.842171e-14 -2.842171e-14 -1.421085e-13 -5.684342e-14
 [6]  0.000000e+00  0.000000e+00  0.000000e+00  1.136868e-13 -5.684342e-14
[11] -5.684342e-14  1.705303e-13 -1.136868e-13 -2.273737e-13  2.842171e-13
[16]  1.421085e-13  5.684342e-14 -5.684342e-14 -2.557954e-13  1.136868e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   6 
9   3 
2   8 
3   5 
2   17 
5   2 
3   1 
7   9 
10   12 
9   9 
1   20 
5   19 
3   18 
3   13 
6   5 
2   12 
7   5 
8   1 
10   13 
2   6 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.012661
> Min(tmp)
[1] -2.2024
> mean(tmp)
[1] -0.1019663
> Sum(tmp)
[1] -10.19663
> Var(tmp)
[1] 0.808275
> 
> rowMeans(tmp)
[1] -0.1019663
> rowSums(tmp)
[1] -10.19663
> rowVars(tmp)
[1] 0.808275
> rowSd(tmp)
[1] 0.8990411
> rowMax(tmp)
[1] 2.012661
> rowMin(tmp)
[1] -2.2024
> 
> colMeans(tmp)
  [1]  1.32319770  1.03415936  0.02578761 -0.74243457  0.63255540 -0.22780238
  [7] -0.63526060 -0.76596048 -1.12269627 -1.01575607  0.32969916 -0.10981857
 [13]  0.28050477 -1.34716815  0.21611872  1.34554519 -0.66710747  0.06593966
 [19]  0.51488628 -0.85177953 -0.08882843  0.19684017  0.57336939 -0.27959063
 [25] -0.15356106  0.84501330 -0.60240985 -0.48003523  0.42944510 -0.83155615
 [31]  1.11491451 -1.21486897  1.55900958  1.15631349 -0.83404710 -0.87596929
 [37] -0.16186161  1.40196352  1.69744466  0.01477749 -0.06031520  0.88051437
 [43] -1.91304083 -1.34051809 -0.39269003  0.77333162  0.87925949 -0.16719214
 [49]  1.74522488 -0.59405322 -0.10964907 -0.03768073  1.17111716 -0.02084720
 [55] -2.20239969  0.83878019 -0.37330905 -0.31944261 -0.74959841 -1.36985010
 [61] -0.12779086 -1.50204254 -1.79997460 -0.43143424 -1.41626075  0.60511849
 [67] -0.35096252 -1.56605323  0.17819359  0.06238706  0.65196512 -0.66892479
 [73]  0.47110017 -0.12322847  0.18834975  0.85721535 -1.82461315  0.82881760
 [79] -0.19310664  0.18260068  0.77372118 -0.13908756  2.01266131 -1.19645584
 [85] -0.75276636  0.48462412 -0.54475740  0.48377605 -0.85471565  0.15535554
 [91] -0.24417892 -0.17716628 -0.45192145 -0.82685766 -0.34649456 -0.10738423
 [97]  1.57200479  0.13694723 -0.75188583 -1.83002295
> colSums(tmp)
  [1]  1.32319770  1.03415936  0.02578761 -0.74243457  0.63255540 -0.22780238
  [7] -0.63526060 -0.76596048 -1.12269627 -1.01575607  0.32969916 -0.10981857
 [13]  0.28050477 -1.34716815  0.21611872  1.34554519 -0.66710747  0.06593966
 [19]  0.51488628 -0.85177953 -0.08882843  0.19684017  0.57336939 -0.27959063
 [25] -0.15356106  0.84501330 -0.60240985 -0.48003523  0.42944510 -0.83155615
 [31]  1.11491451 -1.21486897  1.55900958  1.15631349 -0.83404710 -0.87596929
 [37] -0.16186161  1.40196352  1.69744466  0.01477749 -0.06031520  0.88051437
 [43] -1.91304083 -1.34051809 -0.39269003  0.77333162  0.87925949 -0.16719214
 [49]  1.74522488 -0.59405322 -0.10964907 -0.03768073  1.17111716 -0.02084720
 [55] -2.20239969  0.83878019 -0.37330905 -0.31944261 -0.74959841 -1.36985010
 [61] -0.12779086 -1.50204254 -1.79997460 -0.43143424 -1.41626075  0.60511849
 [67] -0.35096252 -1.56605323  0.17819359  0.06238706  0.65196512 -0.66892479
 [73]  0.47110017 -0.12322847  0.18834975  0.85721535 -1.82461315  0.82881760
 [79] -0.19310664  0.18260068  0.77372118 -0.13908756  2.01266131 -1.19645584
 [85] -0.75276636  0.48462412 -0.54475740  0.48377605 -0.85471565  0.15535554
 [91] -0.24417892 -0.17716628 -0.45192145 -0.82685766 -0.34649456 -0.10738423
 [97]  1.57200479  0.13694723 -0.75188583 -1.83002295
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  1.32319770  1.03415936  0.02578761 -0.74243457  0.63255540 -0.22780238
  [7] -0.63526060 -0.76596048 -1.12269627 -1.01575607  0.32969916 -0.10981857
 [13]  0.28050477 -1.34716815  0.21611872  1.34554519 -0.66710747  0.06593966
 [19]  0.51488628 -0.85177953 -0.08882843  0.19684017  0.57336939 -0.27959063
 [25] -0.15356106  0.84501330 -0.60240985 -0.48003523  0.42944510 -0.83155615
 [31]  1.11491451 -1.21486897  1.55900958  1.15631349 -0.83404710 -0.87596929
 [37] -0.16186161  1.40196352  1.69744466  0.01477749 -0.06031520  0.88051437
 [43] -1.91304083 -1.34051809 -0.39269003  0.77333162  0.87925949 -0.16719214
 [49]  1.74522488 -0.59405322 -0.10964907 -0.03768073  1.17111716 -0.02084720
 [55] -2.20239969  0.83878019 -0.37330905 -0.31944261 -0.74959841 -1.36985010
 [61] -0.12779086 -1.50204254 -1.79997460 -0.43143424 -1.41626075  0.60511849
 [67] -0.35096252 -1.56605323  0.17819359  0.06238706  0.65196512 -0.66892479
 [73]  0.47110017 -0.12322847  0.18834975  0.85721535 -1.82461315  0.82881760
 [79] -0.19310664  0.18260068  0.77372118 -0.13908756  2.01266131 -1.19645584
 [85] -0.75276636  0.48462412 -0.54475740  0.48377605 -0.85471565  0.15535554
 [91] -0.24417892 -0.17716628 -0.45192145 -0.82685766 -0.34649456 -0.10738423
 [97]  1.57200479  0.13694723 -0.75188583 -1.83002295
> colMin(tmp)
  [1]  1.32319770  1.03415936  0.02578761 -0.74243457  0.63255540 -0.22780238
  [7] -0.63526060 -0.76596048 -1.12269627 -1.01575607  0.32969916 -0.10981857
 [13]  0.28050477 -1.34716815  0.21611872  1.34554519 -0.66710747  0.06593966
 [19]  0.51488628 -0.85177953 -0.08882843  0.19684017  0.57336939 -0.27959063
 [25] -0.15356106  0.84501330 -0.60240985 -0.48003523  0.42944510 -0.83155615
 [31]  1.11491451 -1.21486897  1.55900958  1.15631349 -0.83404710 -0.87596929
 [37] -0.16186161  1.40196352  1.69744466  0.01477749 -0.06031520  0.88051437
 [43] -1.91304083 -1.34051809 -0.39269003  0.77333162  0.87925949 -0.16719214
 [49]  1.74522488 -0.59405322 -0.10964907 -0.03768073  1.17111716 -0.02084720
 [55] -2.20239969  0.83878019 -0.37330905 -0.31944261 -0.74959841 -1.36985010
 [61] -0.12779086 -1.50204254 -1.79997460 -0.43143424 -1.41626075  0.60511849
 [67] -0.35096252 -1.56605323  0.17819359  0.06238706  0.65196512 -0.66892479
 [73]  0.47110017 -0.12322847  0.18834975  0.85721535 -1.82461315  0.82881760
 [79] -0.19310664  0.18260068  0.77372118 -0.13908756  2.01266131 -1.19645584
 [85] -0.75276636  0.48462412 -0.54475740  0.48377605 -0.85471565  0.15535554
 [91] -0.24417892 -0.17716628 -0.45192145 -0.82685766 -0.34649456 -0.10738423
 [97]  1.57200479  0.13694723 -0.75188583 -1.83002295
> colMedians(tmp)
  [1]  1.32319770  1.03415936  0.02578761 -0.74243457  0.63255540 -0.22780238
  [7] -0.63526060 -0.76596048 -1.12269627 -1.01575607  0.32969916 -0.10981857
 [13]  0.28050477 -1.34716815  0.21611872  1.34554519 -0.66710747  0.06593966
 [19]  0.51488628 -0.85177953 -0.08882843  0.19684017  0.57336939 -0.27959063
 [25] -0.15356106  0.84501330 -0.60240985 -0.48003523  0.42944510 -0.83155615
 [31]  1.11491451 -1.21486897  1.55900958  1.15631349 -0.83404710 -0.87596929
 [37] -0.16186161  1.40196352  1.69744466  0.01477749 -0.06031520  0.88051437
 [43] -1.91304083 -1.34051809 -0.39269003  0.77333162  0.87925949 -0.16719214
 [49]  1.74522488 -0.59405322 -0.10964907 -0.03768073  1.17111716 -0.02084720
 [55] -2.20239969  0.83878019 -0.37330905 -0.31944261 -0.74959841 -1.36985010
 [61] -0.12779086 -1.50204254 -1.79997460 -0.43143424 -1.41626075  0.60511849
 [67] -0.35096252 -1.56605323  0.17819359  0.06238706  0.65196512 -0.66892479
 [73]  0.47110017 -0.12322847  0.18834975  0.85721535 -1.82461315  0.82881760
 [79] -0.19310664  0.18260068  0.77372118 -0.13908756  2.01266131 -1.19645584
 [85] -0.75276636  0.48462412 -0.54475740  0.48377605 -0.85471565  0.15535554
 [91] -0.24417892 -0.17716628 -0.45192145 -0.82685766 -0.34649456 -0.10738423
 [97]  1.57200479  0.13694723 -0.75188583 -1.83002295
> colRanges(tmp)
         [,1]     [,2]       [,3]       [,4]      [,5]       [,6]       [,7]
[1,] 1.323198 1.034159 0.02578761 -0.7424346 0.6325554 -0.2278024 -0.6352606
[2,] 1.323198 1.034159 0.02578761 -0.7424346 0.6325554 -0.2278024 -0.6352606
           [,8]      [,9]     [,10]     [,11]      [,12]     [,13]     [,14]
[1,] -0.7659605 -1.122696 -1.015756 0.3296992 -0.1098186 0.2805048 -1.347168
[2,] -0.7659605 -1.122696 -1.015756 0.3296992 -0.1098186 0.2805048 -1.347168
         [,15]    [,16]      [,17]      [,18]     [,19]      [,20]       [,21]
[1,] 0.2161187 1.345545 -0.6671075 0.06593966 0.5148863 -0.8517795 -0.08882843
[2,] 0.2161187 1.345545 -0.6671075 0.06593966 0.5148863 -0.8517795 -0.08882843
         [,22]     [,23]      [,24]      [,25]     [,26]      [,27]      [,28]
[1,] 0.1968402 0.5733694 -0.2795906 -0.1535611 0.8450133 -0.6024099 -0.4800352
[2,] 0.1968402 0.5733694 -0.2795906 -0.1535611 0.8450133 -0.6024099 -0.4800352
         [,29]      [,30]    [,31]     [,32]   [,33]    [,34]      [,35]
[1,] 0.4294451 -0.8315561 1.114915 -1.214869 1.55901 1.156313 -0.8340471
[2,] 0.4294451 -0.8315561 1.114915 -1.214869 1.55901 1.156313 -0.8340471
          [,36]      [,37]    [,38]    [,39]      [,40]      [,41]     [,42]
[1,] -0.8759693 -0.1618616 1.401964 1.697445 0.01477749 -0.0603152 0.8805144
[2,] -0.8759693 -0.1618616 1.401964 1.697445 0.01477749 -0.0603152 0.8805144
         [,43]     [,44]    [,45]     [,46]     [,47]      [,48]    [,49]
[1,] -1.913041 -1.340518 -0.39269 0.7733316 0.8792595 -0.1671921 1.745225
[2,] -1.913041 -1.340518 -0.39269 0.7733316 0.8792595 -0.1671921 1.745225
          [,50]      [,51]       [,52]    [,53]      [,54]   [,55]     [,56]
[1,] -0.5940532 -0.1096491 -0.03768073 1.171117 -0.0208472 -2.2024 0.8387802
[2,] -0.5940532 -0.1096491 -0.03768073 1.171117 -0.0208472 -2.2024 0.8387802
          [,57]      [,58]      [,59]    [,60]      [,61]     [,62]     [,63]
[1,] -0.3733091 -0.3194426 -0.7495984 -1.36985 -0.1277909 -1.502043 -1.799975
[2,] -0.3733091 -0.3194426 -0.7495984 -1.36985 -0.1277909 -1.502043 -1.799975
          [,64]     [,65]     [,66]      [,67]     [,68]     [,69]      [,70]
[1,] -0.4314342 -1.416261 0.6051185 -0.3509625 -1.566053 0.1781936 0.06238706
[2,] -0.4314342 -1.416261 0.6051185 -0.3509625 -1.566053 0.1781936 0.06238706
         [,71]      [,72]     [,73]      [,74]     [,75]     [,76]     [,77]
[1,] 0.6519651 -0.6689248 0.4711002 -0.1232285 0.1883497 0.8572153 -1.824613
[2,] 0.6519651 -0.6689248 0.4711002 -0.1232285 0.1883497 0.8572153 -1.824613
         [,78]      [,79]     [,80]     [,81]      [,82]    [,83]     [,84]
[1,] 0.8288176 -0.1931066 0.1826007 0.7737212 -0.1390876 2.012661 -1.196456
[2,] 0.8288176 -0.1931066 0.1826007 0.7737212 -0.1390876 2.012661 -1.196456
          [,85]     [,86]      [,87]     [,88]      [,89]     [,90]      [,91]
[1,] -0.7527664 0.4846241 -0.5447574 0.4837761 -0.8547157 0.1553555 -0.2441789
[2,] -0.7527664 0.4846241 -0.5447574 0.4837761 -0.8547157 0.1553555 -0.2441789
          [,92]      [,93]      [,94]      [,95]      [,96]    [,97]     [,98]
[1,] -0.1771663 -0.4519214 -0.8268577 -0.3464946 -0.1073842 1.572005 0.1369472
[2,] -0.1771663 -0.4519214 -0.8268577 -0.3464946 -0.1073842 1.572005 0.1369472
          [,99]    [,100]
[1,] -0.7518858 -1.830023
[2,] -0.7518858 -1.830023
> 
> 
> Max(tmp2)
[1] 2.723081
> Min(tmp2)
[1] -2.670146
> mean(tmp2)
[1] 0.02145673
> Sum(tmp2)
[1] 2.145673
> Var(tmp2)
[1] 0.9430549
> 
> rowMeans(tmp2)
  [1]  1.525310440 -0.627783930  1.314294964 -0.776095467 -0.424966541
  [6]  1.219972078  2.723080771 -0.611653266 -0.742058043  0.875364335
 [11]  0.748221081  1.033009498 -0.255227669 -1.477158265  1.028835931
 [16] -0.600060979  1.225670525  0.051465784  0.388699222 -0.288382219
 [21] -0.524183062 -0.178056358  0.281108385 -0.196309923 -0.934846157
 [26] -0.491961783  0.565170312  1.473585741  2.714920187 -2.112842946
 [31]  0.597009715 -1.450110365  0.820358472  0.914465493  1.180669463
 [36] -0.896651099  1.043126277 -0.361389439 -0.265427444 -1.277703401
 [41] -0.500374757  0.642387392 -1.234820807  0.237681737 -1.638840584
 [46]  0.503765826  0.307309067  0.890767834  0.036169791 -0.383346559
 [51]  1.287329275 -0.591031973 -0.229439274 -1.341817939  0.543088706
 [56]  1.005264202 -0.555967510 -0.074227685  0.932278032  0.084566866
 [61]  0.683702334 -0.289877508 -0.710731080  0.438592197 -0.316071783
 [66] -0.390271453 -0.054216292 -0.238862543  0.405893214 -0.171650025
 [71] -0.551082076  0.347365423 -2.176003524 -0.367811883 -0.193434951
 [76] -0.089924568 -0.234558465 -2.670146357  0.706048252  0.971074809
 [81]  0.473360190 -1.635207461 -0.374383527 -1.458323584 -0.575470547
 [86] -0.249111188  0.081803933 -1.737442233 -0.656793149  2.391507782
 [91]  0.701918641  0.000099282 -0.256477136  0.499678706  0.340920060
 [96]  0.652381982 -0.064591857  0.343849937  0.499188196  0.918519569
> rowSums(tmp2)
  [1]  1.525310440 -0.627783930  1.314294964 -0.776095467 -0.424966541
  [6]  1.219972078  2.723080771 -0.611653266 -0.742058043  0.875364335
 [11]  0.748221081  1.033009498 -0.255227669 -1.477158265  1.028835931
 [16] -0.600060979  1.225670525  0.051465784  0.388699222 -0.288382219
 [21] -0.524183062 -0.178056358  0.281108385 -0.196309923 -0.934846157
 [26] -0.491961783  0.565170312  1.473585741  2.714920187 -2.112842946
 [31]  0.597009715 -1.450110365  0.820358472  0.914465493  1.180669463
 [36] -0.896651099  1.043126277 -0.361389439 -0.265427444 -1.277703401
 [41] -0.500374757  0.642387392 -1.234820807  0.237681737 -1.638840584
 [46]  0.503765826  0.307309067  0.890767834  0.036169791 -0.383346559
 [51]  1.287329275 -0.591031973 -0.229439274 -1.341817939  0.543088706
 [56]  1.005264202 -0.555967510 -0.074227685  0.932278032  0.084566866
 [61]  0.683702334 -0.289877508 -0.710731080  0.438592197 -0.316071783
 [66] -0.390271453 -0.054216292 -0.238862543  0.405893214 -0.171650025
 [71] -0.551082076  0.347365423 -2.176003524 -0.367811883 -0.193434951
 [76] -0.089924568 -0.234558465 -2.670146357  0.706048252  0.971074809
 [81]  0.473360190 -1.635207461 -0.374383527 -1.458323584 -0.575470547
 [86] -0.249111188  0.081803933 -1.737442233 -0.656793149  2.391507782
 [91]  0.701918641  0.000099282 -0.256477136  0.499678706  0.340920060
 [96]  0.652381982 -0.064591857  0.343849937  0.499188196  0.918519569
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.525310440 -0.627783930  1.314294964 -0.776095467 -0.424966541
  [6]  1.219972078  2.723080771 -0.611653266 -0.742058043  0.875364335
 [11]  0.748221081  1.033009498 -0.255227669 -1.477158265  1.028835931
 [16] -0.600060979  1.225670525  0.051465784  0.388699222 -0.288382219
 [21] -0.524183062 -0.178056358  0.281108385 -0.196309923 -0.934846157
 [26] -0.491961783  0.565170312  1.473585741  2.714920187 -2.112842946
 [31]  0.597009715 -1.450110365  0.820358472  0.914465493  1.180669463
 [36] -0.896651099  1.043126277 -0.361389439 -0.265427444 -1.277703401
 [41] -0.500374757  0.642387392 -1.234820807  0.237681737 -1.638840584
 [46]  0.503765826  0.307309067  0.890767834  0.036169791 -0.383346559
 [51]  1.287329275 -0.591031973 -0.229439274 -1.341817939  0.543088706
 [56]  1.005264202 -0.555967510 -0.074227685  0.932278032  0.084566866
 [61]  0.683702334 -0.289877508 -0.710731080  0.438592197 -0.316071783
 [66] -0.390271453 -0.054216292 -0.238862543  0.405893214 -0.171650025
 [71] -0.551082076  0.347365423 -2.176003524 -0.367811883 -0.193434951
 [76] -0.089924568 -0.234558465 -2.670146357  0.706048252  0.971074809
 [81]  0.473360190 -1.635207461 -0.374383527 -1.458323584 -0.575470547
 [86] -0.249111188  0.081803933 -1.737442233 -0.656793149  2.391507782
 [91]  0.701918641  0.000099282 -0.256477136  0.499678706  0.340920060
 [96]  0.652381982 -0.064591857  0.343849937  0.499188196  0.918519569
> rowMin(tmp2)
  [1]  1.525310440 -0.627783930  1.314294964 -0.776095467 -0.424966541
  [6]  1.219972078  2.723080771 -0.611653266 -0.742058043  0.875364335
 [11]  0.748221081  1.033009498 -0.255227669 -1.477158265  1.028835931
 [16] -0.600060979  1.225670525  0.051465784  0.388699222 -0.288382219
 [21] -0.524183062 -0.178056358  0.281108385 -0.196309923 -0.934846157
 [26] -0.491961783  0.565170312  1.473585741  2.714920187 -2.112842946
 [31]  0.597009715 -1.450110365  0.820358472  0.914465493  1.180669463
 [36] -0.896651099  1.043126277 -0.361389439 -0.265427444 -1.277703401
 [41] -0.500374757  0.642387392 -1.234820807  0.237681737 -1.638840584
 [46]  0.503765826  0.307309067  0.890767834  0.036169791 -0.383346559
 [51]  1.287329275 -0.591031973 -0.229439274 -1.341817939  0.543088706
 [56]  1.005264202 -0.555967510 -0.074227685  0.932278032  0.084566866
 [61]  0.683702334 -0.289877508 -0.710731080  0.438592197 -0.316071783
 [66] -0.390271453 -0.054216292 -0.238862543  0.405893214 -0.171650025
 [71] -0.551082076  0.347365423 -2.176003524 -0.367811883 -0.193434951
 [76] -0.089924568 -0.234558465 -2.670146357  0.706048252  0.971074809
 [81]  0.473360190 -1.635207461 -0.374383527 -1.458323584 -0.575470547
 [86] -0.249111188  0.081803933 -1.737442233 -0.656793149  2.391507782
 [91]  0.701918641  0.000099282 -0.256477136  0.499678706  0.340920060
 [96]  0.652381982 -0.064591857  0.343849937  0.499188196  0.918519569
> 
> colMeans(tmp2)
[1] 0.02145673
> colSums(tmp2)
[1] 2.145673
> colVars(tmp2)
[1] 0.9430549
> colSd(tmp2)
[1] 0.9711101
> colMax(tmp2)
[1] 2.723081
> colMin(tmp2)
[1] -2.670146
> colMedians(tmp2)
[1] -0.06940977
> colRanges(tmp2)
          [,1]
[1,] -2.670146
[2,]  2.723081
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -4.7214973  3.7574347  0.8977053  1.4825010 -0.5946969 -1.9037096
 [7] -3.7347286  6.0845212  0.5613415  1.2226673
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -2.9119009
[2,] -1.5495577
[3,] -1.0024190
[4,]  0.9114408
[5,]  2.0312158
> 
> rowApply(tmp,sum)
 [1] -3.171158  3.443423  2.445467  1.413214  2.925080 -1.310227 -2.034698
 [8] -4.734415  1.439892  2.634960
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    1    1   10   10    1    1    1    8     7
 [2,]    4    9    3    6    8    7    4    6    3    10
 [3,]   10    3    8    9    4    4    6    9    7     2
 [4,]    9    6    7    8    3    6    5    7    5     5
 [5,]    5    7    9    3    2    8   10    2    1     8
 [6,]    2    5    5    2    5    2    3    4    6     9
 [7,]    7    2    2    7    7    3    2    5    2     6
 [8,]    8   10    4    4    9    9    8    8    9     4
 [9,]    6    8    6    5    6    5    7    3    4     3
[10,]    3    4   10    1    1   10    9   10   10     1
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -2.81682976 -1.07176481  0.89267033  3.33636373 -0.01871787 -0.30418355
 [7]  3.64173380  1.24643677 -1.32325564 -0.04625585 -1.59753484  0.78393675
[13] -0.47658607 -0.13404353 -1.66525211  2.00562372 -0.83329606  0.80946071
[19]  0.52860837  1.34936600
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.9527197
[2,] -0.8815335
[3,] -0.4078734
[4,] -0.4038145
[5,] -0.1708887
> 
> rowApply(tmp,sum)
[1]  3.974050  1.964900 -6.391729 -1.153767  5.913026
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    2   11    8    6
[2,]    4   17   14   11    1
[3,]    9   19    7   10   17
[4,]   20    6   13    2   20
[5,]   12   13    9    3   12
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,] -0.9527197 -0.6268912 -0.1086067  2.7099684  0.1131140 -0.1137216
[2,] -0.8815335  0.6520001  0.7201041 -0.4409764  0.4224541  0.2485059
[3,] -0.1708887  0.3056499 -0.8560103  0.2333550 -0.3418958  0.5857563
[4,] -0.4038145 -0.1108849 -0.1361597 -1.1823498 -0.9321364 -0.8484155
[5,] -0.4078734 -1.2916387  1.2733428  2.0163665  0.7197463 -0.1763086
           [,7]       [,8]         [,9]      [,10]       [,11]      [,12]
[1,]  2.2855570  0.4464507  0.003526822 -0.5440610  0.76745599  1.0711335
[2,]  0.1757235  1.8788877  0.486322243 -0.4451172 -0.67095768  0.1286785
[3,]  0.6392409 -1.5944498 -1.547173896  0.2184012 -1.76064113  0.5962755
[4,]  0.7563621  1.2121626 -0.650837302 -0.1056093 -0.03575152 -2.1036089
[5,] -0.2151497 -0.6966144  0.384906490  0.8301305  0.10235951  1.0914581
          [,13]      [,14]      [,15]      [,16]      [,17]      [,18]
[1,]  0.0440898  0.4436513 -0.2612742  0.2271440 -0.4677311 -0.7050509
[2,] -1.5372333  0.6280305  0.5773565 -0.2288806 -0.6531056  0.3670285
[3,]  0.6045847 -1.1001640 -0.1880347  1.0238665 -0.5708240 -2.1126466
[4,]  0.9582681 -0.2992759 -0.6251719  0.2017380 -0.6726198  2.3172865
[5,] -0.5462954  0.1937145 -1.1681278  0.7817558  1.5309845  0.9428432
          [,19]      [,20]
[1,]  0.4733148 -0.8312999
[2,]  0.7097029 -0.1720903
[3,] -1.0551756  0.6990458
[4,]  1.1700616  0.3369891
[5,] -0.7692953  1.3167212
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  648  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  561  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
        col1       col2       col3       col4      col5     col6      col7
row1 1.45068 -0.2992411 -0.8820347 -0.0199312 0.6534376 2.387636 0.1453893
           col8       col9     col10      col11     col12     col13     col14
row1 -0.5079449 -0.9761897 0.9190747 -0.2888455 0.4479619 0.4629133 -1.809288
          col15     col16     col17    col18       col19      col20
row1 -0.7032015 0.4090796 -1.064243 0.151214 0.003101036 -0.8847874
> tmp[,"col10"]
          col10
row1  0.9190747
row2 -1.4170807
row3  0.5788077
row4 -1.2414600
row5  2.8908529
> tmp[c("row1","row5"),]
           col1        col2       col3       col4      col5      col6      col7
row1  1.4506795 -0.29924109 -0.8820347 -0.0199312 0.6534376 2.3876355 0.1453893
row5 -0.9879949 -0.08092135 -1.0823060 -1.4940707 1.1532293 0.1898408 0.7894079
           col8       col9     col10      col11     col12     col13     col14
row1 -0.5079449 -0.9761897 0.9190747 -0.2888455 0.4479619 0.4629133 -1.809288
row5  0.3577625 -1.6303679 2.8908529  0.3054992 1.4605660 0.7100690 -2.893386
          col15     col16      col17     col18        col19      col20
row1 -0.7032015 0.4090796 -1.0642428 0.1512140  0.003101036 -0.8847874
row5 -0.2568721 1.5286381  0.8169821 0.1264644 -1.021137181  0.6264819
> tmp[,c("col6","col20")]
            col6       col20
row1  2.38763554 -0.88478743
row2 -1.02105120 -0.52804866
row3  0.30564156 -0.11582408
row4 -0.01623588 -0.03929052
row5  0.18984083  0.62648191
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 2.3876355 -0.8847874
row5 0.1898408  0.6264819
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.12783 48.29686 49.83853 50.37023 48.97043 105.0946 50.20408 49.97185
         col9   col10    col11    col12    col13    col14    col15    col16
row1 50.20606 50.0696 50.12699 49.88968 50.42938 50.71064 51.12838 50.03833
        col17    col18    col19    col20
row1 49.33261 51.08564 50.19156 104.1766
> tmp[,"col10"]
        col10
row1 50.06960
row2 31.12642
row3 29.40610
row4 29.18267
row5 50.09312
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.12783 48.29686 49.83853 50.37023 48.97043 105.0946 50.20408 49.97185
row5 51.50792 51.56195 49.22389 49.76008 49.60881 106.0118 49.10860 50.37857
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.20606 50.06960 50.12699 49.88968 50.42938 50.71064 51.12838 50.03833
row5 48.44502 50.09312 50.85599 50.71460 50.14965 52.31838 51.10744 51.16520
        col17    col18    col19    col20
row1 49.33261 51.08564 50.19156 104.1766
row5 49.35432 50.15214 50.30212 105.4362
> tmp[,c("col6","col20")]
          col6     col20
row1 105.09457 104.17655
row2  75.08780  74.96988
row3  75.35222  76.49856
row4  75.12147  74.26070
row5 106.01176 105.43621
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.0946 104.1766
row5 106.0118 105.4362
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.0946 104.1766
row5 106.0118 105.4362
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.1758718
[2,]  1.7209680
[3,]  0.3347401
[4,]  0.7229187
[5,] -1.1125003
> tmp[,c("col17","col7")]
          col17        col7
[1,]  0.1650324 -2.07286189
[2,]  0.5849055 -1.03166200
[3,] -0.4578236  0.18390749
[4,]  2.5016395  0.06610083
[5,]  0.3711392  1.73660325
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  0.9976955  1.4308620
[2,]  0.8459094  1.8284427
[3,]  0.2908498  0.9265979
[4,]  1.1378295 -1.2866717
[5,] -1.9759635  0.2413276
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.9976955
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] 0.9976955
[2,] 0.8459094
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]       [,4]       [,5]      [,6]
row3 -0.5616376  0.2094919 2.53140351 -0.8816640 -0.7465611 0.4314229
row1  0.4062037 -1.8466398 0.01972873 -0.2678946 -1.3821465 0.6428409
           [,7]      [,8]     [,9]      [,10]     [,11]     [,12]      [,13]
row3 -0.3524288 0.2837509 1.032576 -0.4845022 0.5118529 0.8965175  0.0122813
row1  0.3245874 0.9956254 1.140022  0.8172069 1.0964856 0.5207640 -0.1432309
           [,14]      [,15]      [,16]      [,17]     [,18]      [,19]
row3 -2.29182675 -0.5324052 -0.5070873 -0.5324697 1.8547654  0.3642265
row1 -0.03420072 -0.3723810  0.4193347 -0.2969810 0.9355508 -1.2325988
          [,20]
row3  0.6985633
row1 -2.5742993
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
         [,1]      [,2]         [,3]      [,4]      [,5]      [,6]      [,7]
row2 1.070134 -1.254995 -0.008278524 0.4713167 0.9228046 0.2631861 0.9517106
           [,8]      [,9]    [,10]
row2 0.04922493 0.3754271 1.932466
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]       [,2]      [,3]      [,4]      [,5]       [,6]       [,7]
row5 -0.3778455 -0.9035576 0.1519416 0.6769748 0.2131386 -0.7020528 -0.4032195
          [,8]      [,9]     [,10]      [,11]     [,12]       [,13]     [,14]
row5 0.5525097 0.3666085 0.7835786 -0.5330214 0.5032509 -0.08486945 -1.458457
         [,15]     [,16]     [,17]      [,18]      [,19]     [,20]
row5 -1.602987 0.1909898 -1.321912 -0.1060526 -0.6401648 0.6793228
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600001234000>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad2be9158c" 
 [2] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad27385a06f"
 [3] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad249e812a9"
 [4] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad223213b27"
 [5] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad25ab28f75"
 [6] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad2e878d8"  
 [7] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad21e55ad5f"
 [8] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad2ae94788" 
 [9] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad259573750"
[10] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad26cf09302"
[11] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad22643a02e"
[12] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad221c93fa2"
[13] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad22370b602"
[14] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad23cbd4f7b"
[15] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BM2ad230ad3364"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x60000125c0c0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x60000125c0c0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x60000125c0c0>
> rowMedians(tmp)
  [1]  0.0409107807  0.0630401190  0.0036298040  0.4560928237  0.0472489883
  [6]  0.0144449720 -0.6553726667 -0.0668734275  0.1447331034 -0.1370584663
 [11] -0.2492437350  0.4687283359 -0.1827771110  0.2250428296  0.2554590203
 [16] -0.1235965680  0.0896630345  0.1621419214 -0.1720153068  0.0535146401
 [21]  0.2982812111  0.3893681790 -0.2327985525 -0.0265535146 -0.0863531165
 [26] -0.5549118067 -0.2427185906 -0.4359342428 -0.3056450422 -0.3372897634
 [31] -0.5638185026  0.0131288165  0.1389795404 -0.4164094629  0.0068125742
 [36] -0.2575067060  0.0163594550  0.1302555398  0.0940795845 -0.0575024863
 [41]  0.3364159333  0.3939346679  0.3343995831 -0.0932244956  0.2386910721
 [46]  0.0913000890 -0.5044540293  0.1258189394  0.0511199129  0.2166864837
 [51] -0.3653292748 -0.4118612323  0.2011587934  0.3350965422 -0.1463789878
 [56]  0.1717239358  0.1681182060  0.0174196379 -0.0967733482  0.3926257146
 [61] -0.3269081140 -0.1321231944 -0.4885280799 -0.1845930362  0.1944227197
 [66] -0.4572265633 -0.0758667861  0.7741288214 -0.2180464095  0.0312271885
 [71]  0.4944505391  0.1341948604 -0.6394999530 -0.7622816118  0.0892025211
 [76]  0.0639753544  0.4050304265  0.1895904971 -0.0412206005 -0.2038156796
 [81]  0.1206727076 -0.2107333935 -0.0579041527 -0.3148243775  0.2059928063
 [86] -0.3670919147  0.4230867113 -0.4818917365 -0.7196421665 -0.0368719279
 [91]  0.0488337051  0.2361665266 -0.1095533329 -0.0100490139 -0.0540229576
 [96]  0.6203774507 -0.3560239723 -0.4525954221  0.3926668992  0.0886451116
[101]  0.4044663854  0.0515149280  0.0714561329  0.3587805665 -0.4947450919
[106] -0.3072306586 -0.1595602190  0.2665923340 -0.0452143984 -0.1487249093
[111] -0.5667004986 -0.0736286542  0.0222209757  0.5656698708 -0.1158643297
[116] -0.2132397252 -0.0676894414  0.3952551975 -0.1708558793  0.3791856989
[121]  0.0001063572 -0.1267782243 -0.3316554323  0.0666624817 -0.1687088124
[126] -0.4326107892 -0.0246954509 -0.0591691500  0.4669344259  0.0193453743
[131]  0.1428570512  0.0175639561 -0.4988480487  0.2293950766 -0.5705998809
[136] -0.3315578812 -0.1424631383 -0.0768419131 -0.0215501012  0.0250432098
[141]  0.1756282105 -0.2748724598  0.2256998344  0.3148886041  0.1865064410
[146] -0.0468450151  0.3259573540 -0.0498067495  0.1438129334  0.0755789811
[151]  0.2991852160 -0.3680967156  0.2031180216  0.3973568494 -0.6335227106
[156] -0.2291883421  0.3899127407 -0.5472041473 -0.1296628654  0.1243439969
[161] -0.0478763198  0.1385389324  0.2708237893 -0.1191127213  0.0122167751
[166]  0.0677127239  0.3244569324  0.2363446508 -0.0283962956 -0.1391866579
[171]  0.0039740350  0.2134201200 -0.4907385950 -0.0850055644  0.4865294461
[176]  0.2485588796  0.2659774664 -0.3068667962 -0.2636436599  0.0947258288
[181] -0.5181830380  0.2519878997 -0.4058221441 -0.1323286604 -0.5180136270
[186] -0.1856828953 -0.3824864938 -0.2924288778  0.1396389349  0.3979293089
[191]  0.5007685008  0.0861644482  0.2616998801  0.4594807770  0.1277993848
[196]  0.0665222263  0.5055811479  0.0713288129  0.1639348297 -0.0338907092
[201]  0.1200663593  0.0492667020 -0.0446401786  0.0277617733  0.5182195474
[206]  0.0489138694 -0.5536410318 -0.0614351525  0.3045672221 -0.1246050426
[211]  0.1221478877 -0.2161613381  0.1530479434 -0.1174308304  0.2316796419
[216] -0.1444419734  0.0042232542  0.2264732261  0.2893711276  0.0317357190
[221]  0.4149268554 -0.1552106123 -0.3742854030  0.2429784171  0.1337603322
[226] -0.2920247694 -0.0471126612  0.1388791909  0.5784098510 -0.3489101270
> 
> proc.time()
   user  system elapsed 
  5.047  19.024  27.403 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001c143c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001c143c0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001c143c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600001c143c0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600001c000c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c000c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600001c000c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c000c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001c000c0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c2c000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c2c000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001c2c000>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001c2c000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001c2c000>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600001c2c000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001c2c000>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600001c2c000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001c2c000>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c301e0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600001c301e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c301e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c301e0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2f0150b6286a" "BufferedMatrixFile2f016717708b"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2f0150b6286a" "BufferedMatrixFile2f016717708b"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c30420>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c30420>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001c30420>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600001c30420>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600001c30420>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600001c30420>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c54000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001c54000>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001c54000>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600001c54000>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001c180c0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001c180c0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.580   0.216   0.794 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.564   0.131   0.670 

Example timings