Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-12-29 11:58 -0500 (Mon, 29 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4883
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4671
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 257/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.74.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-12-25 13:45 -0500 (Thu, 25 Dec 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_22
git_last_commit: d2ce144
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on nebbiolo2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.74.0
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.74.0.tar.gz
StartedAt: 2025-12-25 21:46:45 -0500 (Thu, 25 Dec 2025)
EndedAt: 2025-12-25 21:47:10 -0500 (Thu, 25 Dec 2025)
EllapsedTime: 25.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.74.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.2 (2025-10-31)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.74.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.74.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.22-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.22-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.22-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.251   0.039   0.277 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478284 25.6    1046725   56   639600 34.2
Vcells 884773  6.8    8388608   64  2081613 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Dec 25 21:47:01 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Dec 25 21:47:01 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x57c689e13370>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Thu Dec 25 21:47:01 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Thu Dec 25 21:47:01 2025"
> 
> ColMode(tmp2)
<pointer: 0x57c689e13370>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]      [,2]        [,3]        [,4]
[1,] 99.1862366 0.3254327 -0.42604428  0.06382361
[2,]  0.9401486 1.1183451 -0.09244526 -0.49101534
[3,] -1.1601700 0.4697726 -2.01894741 -0.40265474
[4,]  0.1294737 0.2825417  1.02562250 -0.30156146
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]       [,3]       [,4]
[1,] 99.1862366 0.3254327 0.42604428 0.06382361
[2,]  0.9401486 1.1183451 0.09244526 0.49101534
[3,]  1.1601700 0.4697726 2.01894741 0.40265474
[4,]  0.1294737 0.2825417 1.02562250 0.30156146
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9592287 0.5704671 0.6527207 0.2526334
[2,] 0.9696126 1.0575184 0.3040481 0.7007249
[3,] 1.0771119 0.6853996 1.4208967 0.6345508
[4,] 0.3598245 0.5315465 1.0127302 0.5491461
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 223.77852 31.03010 31.95325 27.59016
[2,]  35.63627 36.69353 28.13293 32.49826
[3,]  36.93129 32.32377 41.22791 31.74816
[4,]  28.72772 30.59801 36.15292 30.79302
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x57c68ae0f9b0>
> exp(tmp5)
<pointer: 0x57c68ae0f9b0>
> log(tmp5,2)
<pointer: 0x57c68ae0f9b0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 465.7657
> Min(tmp5)
[1] 54.3253
> mean(tmp5)
[1] 73.05196
> Sum(tmp5)
[1] 14610.39
> Var(tmp5)
[1] 857.6465
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.23512 73.10133 71.94004 69.59342 70.45671 71.88619 70.21090 70.61291
 [9] 73.36689 69.11604
> rowSums(tmp5)
 [1] 1804.702 1462.027 1438.801 1391.868 1409.134 1437.724 1404.218 1412.258
 [9] 1467.338 1382.321
> rowVars(tmp5)
 [1] 7938.35136   54.38875  112.57519   77.77570   47.99821   96.78519
 [7]   77.67595   71.82691   66.96730   73.98781
> rowSd(tmp5)
 [1] 89.097426  7.374873 10.610146  8.819053  6.928074  9.837947  8.813396
 [8]  8.475076  8.183355  8.601617
> rowMax(tmp5)
 [1] 465.76568  85.57135  99.21706  94.41129  84.02914  89.99541  87.65272
 [8]  84.67081  90.85119  86.12700
> rowMin(tmp5)
 [1] 54.32530 58.55500 55.20630 55.52327 60.85021 56.68506 55.57281 57.28070
 [9] 58.63517 56.59218
> 
> colMeans(tmp5)
 [1] 109.06943  71.35692  69.00394  68.94915  74.26246  73.05060  65.74536
 [8]  77.02163  69.67749  72.71226  69.44184  71.98775  70.43834  71.41118
[15]  68.91485  70.70487  68.97924  75.25717  72.75406  70.30055
> colSums(tmp5)
 [1] 1090.6943  713.5692  690.0394  689.4915  742.6246  730.5060  657.4536
 [8]  770.2163  696.7749  727.1226  694.4184  719.8775  704.3834  714.1118
[15]  689.1485  707.0487  689.7924  752.5717  727.5406  703.0055
> colVars(tmp5)
 [1] 15747.80473    91.79259    90.74232    77.86989    24.87784   120.04696
 [7]    54.80371   161.50978   118.35727    62.67625    47.82736    64.13445
[13]   139.17208    60.63461    39.92438    69.60845    53.84112    67.86696
[19]    94.18287   119.30385
> colSd(tmp5)
 [1] 125.490258   9.580845   9.525876   8.824392   4.987769  10.956594
 [7]   7.402953  12.708650  10.879213   7.916834   6.915733   8.008399
[13]  11.797122   7.786823   6.318574   8.343168   7.337651   8.238141
[19]   9.704786  10.922630
> colMax(tmp5)
 [1] 465.76568  86.16912  85.81050  87.65272  81.95261  90.85119  80.68661
 [8]  99.21706  86.64730  87.34853  82.80580  85.57135  89.71753  82.23641
[15]  80.63256  84.67081  77.61283  85.55715  84.06151  89.99541
> colMin(tmp5)
 [1] 58.63517 57.62621 56.68506 57.42530 66.97710 59.59152 57.80492 58.82736
 [9] 55.20630 63.08188 59.80456 61.21692 55.57281 60.08734 59.70463 57.21313
[17] 54.32530 60.54991 55.27794 55.52327
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.23512 73.10133 71.94004 69.59342 70.45671 71.88619 70.21090 70.61291
 [9] 73.36689       NA
> rowSums(tmp5)
 [1] 1804.702 1462.027 1438.801 1391.868 1409.134 1437.724 1404.218 1412.258
 [9] 1467.338       NA
> rowVars(tmp5)
 [1] 7938.35136   54.38875  112.57519   77.77570   47.99821   96.78519
 [7]   77.67595   71.82691   66.96730   78.02964
> rowSd(tmp5)
 [1] 89.097426  7.374873 10.610146  8.819053  6.928074  9.837947  8.813396
 [8]  8.475076  8.183355  8.833439
> rowMax(tmp5)
 [1] 465.76568  85.57135  99.21706  94.41129  84.02914  89.99541  87.65272
 [8]  84.67081  90.85119        NA
> rowMin(tmp5)
 [1] 54.32530 58.55500 55.20630 55.52327 60.85021 56.68506 55.57281 57.28070
 [9] 58.63517       NA
> 
> colMeans(tmp5)
 [1] 109.06943  71.35692  69.00394  68.94915        NA  73.05060  65.74536
 [8]  77.02163  69.67749  72.71226  69.44184  71.98775  70.43834  71.41118
[15]  68.91485  70.70487  68.97924  75.25717  72.75406  70.30055
> colSums(tmp5)
 [1] 1090.6943  713.5692  690.0394  689.4915        NA  730.5060  657.4536
 [8]  770.2163  696.7749  727.1226  694.4184  719.8775  704.3834  714.1118
[15]  689.1485  707.0487  689.7924  752.5717  727.5406  703.0055
> colVars(tmp5)
 [1] 15747.80473    91.79259    90.74232    77.86989          NA   120.04696
 [7]    54.80371   161.50978   118.35727    62.67625    47.82736    64.13445
[13]   139.17208    60.63461    39.92438    69.60845    53.84112    67.86696
[19]    94.18287   119.30385
> colSd(tmp5)
 [1] 125.490258   9.580845   9.525876   8.824392         NA  10.956594
 [7]   7.402953  12.708650  10.879213   7.916834   6.915733   8.008399
[13]  11.797122   7.786823   6.318574   8.343168   7.337651   8.238141
[19]   9.704786  10.922630
> colMax(tmp5)
 [1] 465.76568  86.16912  85.81050  87.65272        NA  90.85119  80.68661
 [8]  99.21706  86.64730  87.34853  82.80580  85.57135  89.71753  82.23641
[15]  80.63256  84.67081  77.61283  85.55715  84.06151  89.99541
> colMin(tmp5)
 [1] 58.63517 57.62621 56.68506 57.42530       NA 59.59152 57.80492 58.82736
 [9] 55.20630 63.08188 59.80456 61.21692 55.57281 60.08734 59.70463 57.21313
[17] 54.32530 60.54991 55.27794 55.52327
> 
> Max(tmp5,na.rm=TRUE)
[1] 465.7657
> Min(tmp5,na.rm=TRUE)
[1] 54.3253
> mean(tmp5,na.rm=TRUE)
[1] 73.06629
> Sum(tmp5,na.rm=TRUE)
[1] 14540.19
> Var(tmp5,na.rm=TRUE)
[1] 861.9367
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.23512 73.10133 71.94004 69.59342 70.45671 71.88619 70.21090 70.61291
 [9] 73.36689 69.05903
> rowSums(tmp5,na.rm=TRUE)
 [1] 1804.702 1462.027 1438.801 1391.868 1409.134 1437.724 1404.218 1412.258
 [9] 1467.338 1312.122
> rowVars(tmp5,na.rm=TRUE)
 [1] 7938.35136   54.38875  112.57519   77.77570   47.99821   96.78519
 [7]   77.67595   71.82691   66.96730   78.02964
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.097426  7.374873 10.610146  8.819053  6.928074  9.837947  8.813396
 [8]  8.475076  8.183355  8.833439
> rowMax(tmp5,na.rm=TRUE)
 [1] 465.76568  85.57135  99.21706  94.41129  84.02914  89.99541  87.65272
 [8]  84.67081  90.85119  86.12700
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.32530 58.55500 55.20630 55.52327 60.85021 56.68506 55.57281 57.28070
 [9] 58.63517 56.59218
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 109.06943  71.35692  69.00394  68.94915  74.71394  73.05060  65.74536
 [8]  77.02163  69.67749  72.71226  69.44184  71.98775  70.43834  71.41118
[15]  68.91485  70.70487  68.97924  75.25717  72.75406  70.30055
> colSums(tmp5,na.rm=TRUE)
 [1] 1090.6943  713.5692  690.0394  689.4915  672.4255  730.5060  657.4536
 [8]  770.2163  696.7749  727.1226  694.4184  719.8775  704.3834  714.1118
[15]  689.1485  707.0487  689.7924  752.5717  727.5406  703.0055
> colVars(tmp5,na.rm=TRUE)
 [1] 15747.80473    91.79259    90.74232    77.86989    25.69443   120.04696
 [7]    54.80371   161.50978   118.35727    62.67625    47.82736    64.13445
[13]   139.17208    60.63461    39.92438    69.60845    53.84112    67.86696
[19]    94.18287   119.30385
> colSd(tmp5,na.rm=TRUE)
 [1] 125.490258   9.580845   9.525876   8.824392   5.068967  10.956594
 [7]   7.402953  12.708650  10.879213   7.916834   6.915733   8.008399
[13]  11.797122   7.786823   6.318574   8.343168   7.337651   8.238141
[19]   9.704786  10.922630
> colMax(tmp5,na.rm=TRUE)
 [1] 465.76568  86.16912  85.81050  87.65272  81.95261  90.85119  80.68661
 [8]  99.21706  86.64730  87.34853  82.80580  85.57135  89.71753  82.23641
[15]  80.63256  84.67081  77.61283  85.55715  84.06151  89.99541
> colMin(tmp5,na.rm=TRUE)
 [1] 58.63517 57.62621 56.68506 57.42530 66.97710 59.59152 57.80492 58.82736
 [9] 55.20630 63.08188 59.80456 61.21692 55.57281 60.08734 59.70463 57.21313
[17] 54.32530 60.54991 55.27794 55.52327
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.23512 73.10133 71.94004 69.59342 70.45671 71.88619 70.21090 70.61291
 [9] 73.36689      NaN
> rowSums(tmp5,na.rm=TRUE)
 [1] 1804.702 1462.027 1438.801 1391.868 1409.134 1437.724 1404.218 1412.258
 [9] 1467.338    0.000
> rowVars(tmp5,na.rm=TRUE)
 [1] 7938.35136   54.38875  112.57519   77.77570   47.99821   96.78519
 [7]   77.67595   71.82691   66.96730         NA
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.097426  7.374873 10.610146  8.819053  6.928074  9.837947  8.813396
 [8]  8.475076  8.183355        NA
> rowMax(tmp5,na.rm=TRUE)
 [1] 465.76568  85.57135  99.21706  94.41129  84.02914  89.99541  87.65272
 [8]  84.67081  90.85119        NA
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.32530 58.55500 55.20630 55.52327 60.85021 56.68506 55.57281 57.28070
 [9] 58.63517       NA
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 113.17296  70.72167  69.57831  68.25833       NaN  71.94830  64.96156
 [8]  79.04322  71.13141  73.22386  69.45960  72.45650  71.40893  72.66938
[15]  67.61288  72.20395  68.62061  75.86702  74.19110  68.54206
> colSums(tmp5,na.rm=TRUE)
 [1] 1018.5566  636.4950  626.2048  614.3250    0.0000  647.5347  584.6540
 [8]  711.3890  640.1827  659.0148  625.1364  652.1085  642.6803  654.0244
[15]  608.5159  649.8356  617.5855  682.8032  667.7199  616.8785
> colVars(tmp5,na.rm=TRUE)
 [1] 17526.84191    98.72676    98.37373    82.23480          NA   121.38335
 [7]    54.74281   135.72191   109.37063    67.56621    53.80223    69.67942
[13]   145.97075    50.40432    25.84481    53.02799    59.12434    72.16626
[19]    82.72381    99.42844
> colSd(tmp5,na.rm=TRUE)
 [1] 132.388980   9.936134   9.918353   9.068341         NA  11.017411
 [7]   7.398839  11.649975  10.458041   8.219867   7.335000   8.347420
[13]  12.081835   7.099600   5.083779   7.282032   7.689235   8.495073
[19]   9.095263   9.971381
> colMax(tmp5,na.rm=TRUE)
 [1] 465.76568  86.16912  85.81050  87.65272      -Inf  90.85119  80.68661
 [8]  99.21706  86.64730  87.34853  82.80580  85.57135  89.71753  82.23641
[15]  76.65437  84.67081  77.61283  85.55715  84.06151  89.99541
> colMin(tmp5,na.rm=TRUE)
 [1] 58.63517 57.62621 56.68506 57.42530      Inf 59.59152 57.80492 62.53681
 [9] 55.20630 63.08188 59.80456 61.21692 55.57281 61.30041 59.70463 60.95002
[17] 54.32530 60.54991 55.27794 55.52327
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 182.67141 298.93458 185.86917 272.89954 223.71355 222.31176 299.84891
 [8] 291.39125  75.43872 175.48040
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 182.67141 298.93458 185.86917 272.89954 223.71355 222.31176 299.84891
 [8] 291.39125  75.43872 175.48040
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -1.136868e-13 -5.684342e-14 -1.705303e-13 -8.526513e-14  0.000000e+00
 [6] -2.273737e-13  1.136868e-13 -1.421085e-14  5.684342e-14 -8.526513e-14
[11] -8.526513e-14 -5.684342e-14  2.842171e-14  0.000000e+00  0.000000e+00
[16]  4.263256e-14  5.684342e-14  1.705303e-13 -1.705303e-13  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
1   4 
1   11 
8   20 
2   15 
10   11 
1   8 
8   1 
7   17 
10   9 
1   6 
4   20 
9   16 
3   5 
3   20 
8   11 
10   16 
1   19 
10   13 
10   16 
10   15 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.162331
> Min(tmp)
[1] -2.181377
> mean(tmp)
[1] 0.179601
> Sum(tmp)
[1] 17.9601
> Var(tmp)
[1] 0.9181874
> 
> rowMeans(tmp)
[1] 0.179601
> rowSums(tmp)
[1] 17.9601
> rowVars(tmp)
[1] 0.9181874
> rowSd(tmp)
[1] 0.958221
> rowMax(tmp)
[1] 2.162331
> rowMin(tmp)
[1] -2.181377
> 
> colMeans(tmp)
  [1] -1.881659663  0.014497473  0.215696401  1.610623186  0.642052136
  [6] -0.343397862  0.408361902 -0.769234033 -0.915200576 -1.371178189
 [11]  1.500754637 -0.512154622  0.320666073 -0.250926582 -0.253441222
 [16] -2.181377477 -0.245945987  1.065549621 -0.827262899  1.669953071
 [21]  0.228755904 -0.522692157  0.914663913  1.215793454  0.007433862
 [26]  1.169726857 -0.270156264  0.394863925  0.256278256  0.382371081
 [31]  1.939854167 -0.783082280  0.815976398  1.850001314 -0.005231804
 [36] -1.028225729 -0.310441683  0.929908248 -0.219497587  1.104904828
 [41] -0.455618794 -0.471808925  0.402935618  1.844666124  0.337531340
 [46] -0.569223894 -0.157533523 -0.422643286  1.234277958 -1.199668989
 [51] -1.502675039  0.817796684 -0.155165575  1.915992474 -0.114340429
 [56]  0.456868403  1.181726450 -0.488810425  0.605920383 -0.490332158
 [61] -0.690717995  0.413985974 -1.244286081  0.672735282  1.829956347
 [66]  1.473847791  1.559632462  2.162331117 -0.299201473 -0.148560231
 [71]  0.045781005  0.123312748 -0.004923859  0.633865543  0.338853799
 [76]  0.101625891 -0.893875873  1.428282527  0.305155063  0.162657083
 [81] -1.663036946 -1.119059435  0.033252550 -0.981971355  1.712801763
 [86]  0.986387971 -1.370796380 -0.784441025  0.457445096  0.405431955
 [91]  1.913656976  0.169230868  0.965869304 -0.063987305  1.025283037
 [96] -0.650406683  0.102807256 -1.131362119  0.448681940  0.796377150
> colSums(tmp)
  [1] -1.881659663  0.014497473  0.215696401  1.610623186  0.642052136
  [6] -0.343397862  0.408361902 -0.769234033 -0.915200576 -1.371178189
 [11]  1.500754637 -0.512154622  0.320666073 -0.250926582 -0.253441222
 [16] -2.181377477 -0.245945987  1.065549621 -0.827262899  1.669953071
 [21]  0.228755904 -0.522692157  0.914663913  1.215793454  0.007433862
 [26]  1.169726857 -0.270156264  0.394863925  0.256278256  0.382371081
 [31]  1.939854167 -0.783082280  0.815976398  1.850001314 -0.005231804
 [36] -1.028225729 -0.310441683  0.929908248 -0.219497587  1.104904828
 [41] -0.455618794 -0.471808925  0.402935618  1.844666124  0.337531340
 [46] -0.569223894 -0.157533523 -0.422643286  1.234277958 -1.199668989
 [51] -1.502675039  0.817796684 -0.155165575  1.915992474 -0.114340429
 [56]  0.456868403  1.181726450 -0.488810425  0.605920383 -0.490332158
 [61] -0.690717995  0.413985974 -1.244286081  0.672735282  1.829956347
 [66]  1.473847791  1.559632462  2.162331117 -0.299201473 -0.148560231
 [71]  0.045781005  0.123312748 -0.004923859  0.633865543  0.338853799
 [76]  0.101625891 -0.893875873  1.428282527  0.305155063  0.162657083
 [81] -1.663036946 -1.119059435  0.033252550 -0.981971355  1.712801763
 [86]  0.986387971 -1.370796380 -0.784441025  0.457445096  0.405431955
 [91]  1.913656976  0.169230868  0.965869304 -0.063987305  1.025283037
 [96] -0.650406683  0.102807256 -1.131362119  0.448681940  0.796377150
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -1.881659663  0.014497473  0.215696401  1.610623186  0.642052136
  [6] -0.343397862  0.408361902 -0.769234033 -0.915200576 -1.371178189
 [11]  1.500754637 -0.512154622  0.320666073 -0.250926582 -0.253441222
 [16] -2.181377477 -0.245945987  1.065549621 -0.827262899  1.669953071
 [21]  0.228755904 -0.522692157  0.914663913  1.215793454  0.007433862
 [26]  1.169726857 -0.270156264  0.394863925  0.256278256  0.382371081
 [31]  1.939854167 -0.783082280  0.815976398  1.850001314 -0.005231804
 [36] -1.028225729 -0.310441683  0.929908248 -0.219497587  1.104904828
 [41] -0.455618794 -0.471808925  0.402935618  1.844666124  0.337531340
 [46] -0.569223894 -0.157533523 -0.422643286  1.234277958 -1.199668989
 [51] -1.502675039  0.817796684 -0.155165575  1.915992474 -0.114340429
 [56]  0.456868403  1.181726450 -0.488810425  0.605920383 -0.490332158
 [61] -0.690717995  0.413985974 -1.244286081  0.672735282  1.829956347
 [66]  1.473847791  1.559632462  2.162331117 -0.299201473 -0.148560231
 [71]  0.045781005  0.123312748 -0.004923859  0.633865543  0.338853799
 [76]  0.101625891 -0.893875873  1.428282527  0.305155063  0.162657083
 [81] -1.663036946 -1.119059435  0.033252550 -0.981971355  1.712801763
 [86]  0.986387971 -1.370796380 -0.784441025  0.457445096  0.405431955
 [91]  1.913656976  0.169230868  0.965869304 -0.063987305  1.025283037
 [96] -0.650406683  0.102807256 -1.131362119  0.448681940  0.796377150
> colMin(tmp)
  [1] -1.881659663  0.014497473  0.215696401  1.610623186  0.642052136
  [6] -0.343397862  0.408361902 -0.769234033 -0.915200576 -1.371178189
 [11]  1.500754637 -0.512154622  0.320666073 -0.250926582 -0.253441222
 [16] -2.181377477 -0.245945987  1.065549621 -0.827262899  1.669953071
 [21]  0.228755904 -0.522692157  0.914663913  1.215793454  0.007433862
 [26]  1.169726857 -0.270156264  0.394863925  0.256278256  0.382371081
 [31]  1.939854167 -0.783082280  0.815976398  1.850001314 -0.005231804
 [36] -1.028225729 -0.310441683  0.929908248 -0.219497587  1.104904828
 [41] -0.455618794 -0.471808925  0.402935618  1.844666124  0.337531340
 [46] -0.569223894 -0.157533523 -0.422643286  1.234277958 -1.199668989
 [51] -1.502675039  0.817796684 -0.155165575  1.915992474 -0.114340429
 [56]  0.456868403  1.181726450 -0.488810425  0.605920383 -0.490332158
 [61] -0.690717995  0.413985974 -1.244286081  0.672735282  1.829956347
 [66]  1.473847791  1.559632462  2.162331117 -0.299201473 -0.148560231
 [71]  0.045781005  0.123312748 -0.004923859  0.633865543  0.338853799
 [76]  0.101625891 -0.893875873  1.428282527  0.305155063  0.162657083
 [81] -1.663036946 -1.119059435  0.033252550 -0.981971355  1.712801763
 [86]  0.986387971 -1.370796380 -0.784441025  0.457445096  0.405431955
 [91]  1.913656976  0.169230868  0.965869304 -0.063987305  1.025283037
 [96] -0.650406683  0.102807256 -1.131362119  0.448681940  0.796377150
> colMedians(tmp)
  [1] -1.881659663  0.014497473  0.215696401  1.610623186  0.642052136
  [6] -0.343397862  0.408361902 -0.769234033 -0.915200576 -1.371178189
 [11]  1.500754637 -0.512154622  0.320666073 -0.250926582 -0.253441222
 [16] -2.181377477 -0.245945987  1.065549621 -0.827262899  1.669953071
 [21]  0.228755904 -0.522692157  0.914663913  1.215793454  0.007433862
 [26]  1.169726857 -0.270156264  0.394863925  0.256278256  0.382371081
 [31]  1.939854167 -0.783082280  0.815976398  1.850001314 -0.005231804
 [36] -1.028225729 -0.310441683  0.929908248 -0.219497587  1.104904828
 [41] -0.455618794 -0.471808925  0.402935618  1.844666124  0.337531340
 [46] -0.569223894 -0.157533523 -0.422643286  1.234277958 -1.199668989
 [51] -1.502675039  0.817796684 -0.155165575  1.915992474 -0.114340429
 [56]  0.456868403  1.181726450 -0.488810425  0.605920383 -0.490332158
 [61] -0.690717995  0.413985974 -1.244286081  0.672735282  1.829956347
 [66]  1.473847791  1.559632462  2.162331117 -0.299201473 -0.148560231
 [71]  0.045781005  0.123312748 -0.004923859  0.633865543  0.338853799
 [76]  0.101625891 -0.893875873  1.428282527  0.305155063  0.162657083
 [81] -1.663036946 -1.119059435  0.033252550 -0.981971355  1.712801763
 [86]  0.986387971 -1.370796380 -0.784441025  0.457445096  0.405431955
 [91]  1.913656976  0.169230868  0.965869304 -0.063987305  1.025283037
 [96] -0.650406683  0.102807256 -1.131362119  0.448681940  0.796377150
> colRanges(tmp)
         [,1]       [,2]      [,3]     [,4]      [,5]       [,6]      [,7]
[1,] -1.88166 0.01449747 0.2156964 1.610623 0.6420521 -0.3433979 0.4083619
[2,] -1.88166 0.01449747 0.2156964 1.610623 0.6420521 -0.3433979 0.4083619
          [,8]       [,9]     [,10]    [,11]      [,12]     [,13]      [,14]
[1,] -0.769234 -0.9152006 -1.371178 1.500755 -0.5121546 0.3206661 -0.2509266
[2,] -0.769234 -0.9152006 -1.371178 1.500755 -0.5121546 0.3206661 -0.2509266
          [,15]     [,16]     [,17]   [,18]      [,19]    [,20]     [,21]
[1,] -0.2534412 -2.181377 -0.245946 1.06555 -0.8272629 1.669953 0.2287559
[2,] -0.2534412 -2.181377 -0.245946 1.06555 -0.8272629 1.669953 0.2287559
          [,22]     [,23]    [,24]       [,25]    [,26]      [,27]     [,28]
[1,] -0.5226922 0.9146639 1.215793 0.007433862 1.169727 -0.2701563 0.3948639
[2,] -0.5226922 0.9146639 1.215793 0.007433862 1.169727 -0.2701563 0.3948639
         [,29]     [,30]    [,31]      [,32]     [,33]    [,34]        [,35]
[1,] 0.2562783 0.3823711 1.939854 -0.7830823 0.8159764 1.850001 -0.005231804
[2,] 0.2562783 0.3823711 1.939854 -0.7830823 0.8159764 1.850001 -0.005231804
         [,36]      [,37]     [,38]      [,39]    [,40]      [,41]      [,42]
[1,] -1.028226 -0.3104417 0.9299082 -0.2194976 1.104905 -0.4556188 -0.4718089
[2,] -1.028226 -0.3104417 0.9299082 -0.2194976 1.104905 -0.4556188 -0.4718089
         [,43]    [,44]     [,45]      [,46]      [,47]      [,48]    [,49]
[1,] 0.4029356 1.844666 0.3375313 -0.5692239 -0.1575335 -0.4226433 1.234278
[2,] 0.4029356 1.844666 0.3375313 -0.5692239 -0.1575335 -0.4226433 1.234278
         [,50]     [,51]     [,52]      [,53]    [,54]      [,55]     [,56]
[1,] -1.199669 -1.502675 0.8177967 -0.1551656 1.915992 -0.1143404 0.4568684
[2,] -1.199669 -1.502675 0.8177967 -0.1551656 1.915992 -0.1143404 0.4568684
        [,57]      [,58]     [,59]      [,60]     [,61]    [,62]     [,63]
[1,] 1.181726 -0.4888104 0.6059204 -0.4903322 -0.690718 0.413986 -1.244286
[2,] 1.181726 -0.4888104 0.6059204 -0.4903322 -0.690718 0.413986 -1.244286
         [,64]    [,65]    [,66]    [,67]    [,68]      [,69]      [,70]
[1,] 0.6727353 1.829956 1.473848 1.559632 2.162331 -0.2992015 -0.1485602
[2,] 0.6727353 1.829956 1.473848 1.559632 2.162331 -0.2992015 -0.1485602
        [,71]     [,72]        [,73]     [,74]     [,75]     [,76]      [,77]
[1,] 0.045781 0.1233127 -0.004923859 0.6338655 0.3388538 0.1016259 -0.8938759
[2,] 0.045781 0.1233127 -0.004923859 0.6338655 0.3388538 0.1016259 -0.8938759
        [,78]     [,79]     [,80]     [,81]     [,82]      [,83]      [,84]
[1,] 1.428283 0.3051551 0.1626571 -1.663037 -1.119059 0.03325255 -0.9819714
[2,] 1.428283 0.3051551 0.1626571 -1.663037 -1.119059 0.03325255 -0.9819714
        [,85]    [,86]     [,87]     [,88]     [,89]    [,90]    [,91]
[1,] 1.712802 0.986388 -1.370796 -0.784441 0.4574451 0.405432 1.913657
[2,] 1.712802 0.986388 -1.370796 -0.784441 0.4574451 0.405432 1.913657
         [,92]     [,93]       [,94]    [,95]      [,96]     [,97]     [,98]
[1,] 0.1692309 0.9658693 -0.06398731 1.025283 -0.6504067 0.1028073 -1.131362
[2,] 0.1692309 0.9658693 -0.06398731 1.025283 -0.6504067 0.1028073 -1.131362
         [,99]    [,100]
[1,] 0.4486819 0.7963772
[2,] 0.4486819 0.7963772
> 
> 
> Max(tmp2)
[1] 2.718625
> Min(tmp2)
[1] -1.831925
> mean(tmp2)
[1] 0.07341089
> Sum(tmp2)
[1] 7.341089
> Var(tmp2)
[1] 0.9883782
> 
> rowMeans(tmp2)
  [1]  1.625502417 -0.486223296 -1.308437150  0.276274678  0.337172442
  [6] -0.741505872 -1.004773583  0.684360289 -1.417838954  0.424002384
 [11]  0.802474269 -0.051819690  0.420932497  0.254104530  0.797624150
 [16]  1.662769215 -1.417386237 -1.227806073 -0.339244075 -0.494091382
 [21]  1.280596456 -1.460646735  1.163307341  0.282057595  2.020519382
 [26] -1.205930519  0.860712400  2.718625475 -0.300524020  0.178986109
 [31]  1.027343474 -1.177546366  1.267449575 -0.967186692  0.223493575
 [36]  0.872259101  1.096039237 -1.821699895  1.236595792  0.513815192
 [41] -1.290616328  1.314591615 -1.831925200 -0.282153870 -0.285876411
 [46]  2.231537157 -0.798731649 -0.272982526 -0.336426118 -0.255331580
 [51]  1.349391949 -0.800886541 -0.517126024 -0.843865652  0.459196959
 [56]  0.379182018 -1.175556260  0.281195422 -1.133489951 -0.502976126
 [61]  0.423008165  1.455311431 -1.754134146  2.595506947  0.150366883
 [66]  0.513528951  0.976029586  1.080550664 -0.062917982 -0.652430792
 [71]  0.693851270 -0.161634080  0.762770057  0.662306019 -0.001116071
 [76] -0.705398907 -0.948315881  0.027857076  0.429912822 -0.998371708
 [81] -0.518657300 -1.218998191 -0.561410965  0.358093411  0.773158404
 [86]  0.566827856 -0.417929794  0.301012952  1.040765048  0.942798049
 [91] -0.426579612 -0.261481503  0.812743383 -0.299213865 -0.306147311
 [96] -0.339618470  0.299775952 -1.243877612  1.697870020 -0.636229790
> rowSums(tmp2)
  [1]  1.625502417 -0.486223296 -1.308437150  0.276274678  0.337172442
  [6] -0.741505872 -1.004773583  0.684360289 -1.417838954  0.424002384
 [11]  0.802474269 -0.051819690  0.420932497  0.254104530  0.797624150
 [16]  1.662769215 -1.417386237 -1.227806073 -0.339244075 -0.494091382
 [21]  1.280596456 -1.460646735  1.163307341  0.282057595  2.020519382
 [26] -1.205930519  0.860712400  2.718625475 -0.300524020  0.178986109
 [31]  1.027343474 -1.177546366  1.267449575 -0.967186692  0.223493575
 [36]  0.872259101  1.096039237 -1.821699895  1.236595792  0.513815192
 [41] -1.290616328  1.314591615 -1.831925200 -0.282153870 -0.285876411
 [46]  2.231537157 -0.798731649 -0.272982526 -0.336426118 -0.255331580
 [51]  1.349391949 -0.800886541 -0.517126024 -0.843865652  0.459196959
 [56]  0.379182018 -1.175556260  0.281195422 -1.133489951 -0.502976126
 [61]  0.423008165  1.455311431 -1.754134146  2.595506947  0.150366883
 [66]  0.513528951  0.976029586  1.080550664 -0.062917982 -0.652430792
 [71]  0.693851270 -0.161634080  0.762770057  0.662306019 -0.001116071
 [76] -0.705398907 -0.948315881  0.027857076  0.429912822 -0.998371708
 [81] -0.518657300 -1.218998191 -0.561410965  0.358093411  0.773158404
 [86]  0.566827856 -0.417929794  0.301012952  1.040765048  0.942798049
 [91] -0.426579612 -0.261481503  0.812743383 -0.299213865 -0.306147311
 [96] -0.339618470  0.299775952 -1.243877612  1.697870020 -0.636229790
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.625502417 -0.486223296 -1.308437150  0.276274678  0.337172442
  [6] -0.741505872 -1.004773583  0.684360289 -1.417838954  0.424002384
 [11]  0.802474269 -0.051819690  0.420932497  0.254104530  0.797624150
 [16]  1.662769215 -1.417386237 -1.227806073 -0.339244075 -0.494091382
 [21]  1.280596456 -1.460646735  1.163307341  0.282057595  2.020519382
 [26] -1.205930519  0.860712400  2.718625475 -0.300524020  0.178986109
 [31]  1.027343474 -1.177546366  1.267449575 -0.967186692  0.223493575
 [36]  0.872259101  1.096039237 -1.821699895  1.236595792  0.513815192
 [41] -1.290616328  1.314591615 -1.831925200 -0.282153870 -0.285876411
 [46]  2.231537157 -0.798731649 -0.272982526 -0.336426118 -0.255331580
 [51]  1.349391949 -0.800886541 -0.517126024 -0.843865652  0.459196959
 [56]  0.379182018 -1.175556260  0.281195422 -1.133489951 -0.502976126
 [61]  0.423008165  1.455311431 -1.754134146  2.595506947  0.150366883
 [66]  0.513528951  0.976029586  1.080550664 -0.062917982 -0.652430792
 [71]  0.693851270 -0.161634080  0.762770057  0.662306019 -0.001116071
 [76] -0.705398907 -0.948315881  0.027857076  0.429912822 -0.998371708
 [81] -0.518657300 -1.218998191 -0.561410965  0.358093411  0.773158404
 [86]  0.566827856 -0.417929794  0.301012952  1.040765048  0.942798049
 [91] -0.426579612 -0.261481503  0.812743383 -0.299213865 -0.306147311
 [96] -0.339618470  0.299775952 -1.243877612  1.697870020 -0.636229790
> rowMin(tmp2)
  [1]  1.625502417 -0.486223296 -1.308437150  0.276274678  0.337172442
  [6] -0.741505872 -1.004773583  0.684360289 -1.417838954  0.424002384
 [11]  0.802474269 -0.051819690  0.420932497  0.254104530  0.797624150
 [16]  1.662769215 -1.417386237 -1.227806073 -0.339244075 -0.494091382
 [21]  1.280596456 -1.460646735  1.163307341  0.282057595  2.020519382
 [26] -1.205930519  0.860712400  2.718625475 -0.300524020  0.178986109
 [31]  1.027343474 -1.177546366  1.267449575 -0.967186692  0.223493575
 [36]  0.872259101  1.096039237 -1.821699895  1.236595792  0.513815192
 [41] -1.290616328  1.314591615 -1.831925200 -0.282153870 -0.285876411
 [46]  2.231537157 -0.798731649 -0.272982526 -0.336426118 -0.255331580
 [51]  1.349391949 -0.800886541 -0.517126024 -0.843865652  0.459196959
 [56]  0.379182018 -1.175556260  0.281195422 -1.133489951 -0.502976126
 [61]  0.423008165  1.455311431 -1.754134146  2.595506947  0.150366883
 [66]  0.513528951  0.976029586  1.080550664 -0.062917982 -0.652430792
 [71]  0.693851270 -0.161634080  0.762770057  0.662306019 -0.001116071
 [76] -0.705398907 -0.948315881  0.027857076  0.429912822 -0.998371708
 [81] -0.518657300 -1.218998191 -0.561410965  0.358093411  0.773158404
 [86]  0.566827856 -0.417929794  0.301012952  1.040765048  0.942798049
 [91] -0.426579612 -0.261481503  0.812743383 -0.299213865 -0.306147311
 [96] -0.339618470  0.299775952 -1.243877612  1.697870020 -0.636229790
> 
> colMeans(tmp2)
[1] 0.07341089
> colSums(tmp2)
[1] 7.341089
> colVars(tmp2)
[1] 0.9883782
> colSd(tmp2)
[1] 0.9941721
> colMax(tmp2)
[1] 2.718625
> colMin(tmp2)
[1] -1.831925
> colMedians(tmp2)
[1] 0.08911198
> colRanges(tmp2)
          [,1]
[1,] -1.831925
[2,]  2.718625
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.9968508 -1.2788232  0.1847706  1.4253740  3.4439455  3.5249142
 [7]  0.1860215  2.1544075  0.6535016  0.5115779
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.5781826
[2,] -0.5321115
[3,] -0.2954927
[4,]  0.4459023
[5,]  1.1624154
> 
> rowApply(tmp,sum)
 [1] -0.0167515 -1.0846108  2.2502260  4.3690081 -0.6998723  2.4307193
 [7]  0.7614006  1.2935780  0.7450729 -1.2399316
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    3    9    2    1    9    4    4    3    2    10
 [2,]    5    6    5    8    4    3    8    7    1     1
 [3,]    7    2   10    4    1    7    1    2    9     8
 [4,]    9    7    4    3    5   10    2    6    6     4
 [5,]   10   10    3    5    7    9    5    9    3     5
 [6,]    6    5    6    2    8    8    9    5    7     6
 [7,]    8    4    9    7    2    6    3    8    8     3
 [8,]    1    3    8   10   10    1    7   10    4     9
 [9,]    4    8    1    6    3    2   10    4    5     7
[10,]    2    1    7    9    6    5    6    1   10     2
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.90760189 -1.30982698  1.74784735 -1.39762155  0.07984367 -1.94872694
 [7]  3.56689621  0.96320371 -2.49924996 -1.61278584  0.39867814 -1.92466735
[13] -0.09860039  0.68966365  1.22565432 -1.19833011  1.17407149  4.32131580
[19] -4.84611309  2.60604174
> colApply(tmp,quantile)[,1]
             [,1]
[1,] -0.617708087
[2,] -0.213935015
[3,]  0.009898373
[4,]  0.988445847
[5,]  1.740900767
> 
> rowApply(tmp,sum)
[1] -3.4212010 -0.3143546  4.5853205 -3.3267842  4.3219149
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   11    8    4   20   15
[2,]    3    3    8    4   18
[3,]   14    6   18   15    9
[4,]    2    9   14    7   11
[5,]   19    5   12    5    5
> 
> 
> as.matrix(tmp)
             [,1]        [,2]         [,3]       [,4]       [,5]       [,6]
[1,]  0.009898373 -1.07129339  0.121473941 -1.3384130  1.4295222  0.1144808
[2,] -0.213935015 -1.22403193 -0.320586599 -0.2028238 -0.4504788 -0.2155410
[3,] -0.617708087  0.03691556  1.135924030  0.5786119  0.4125825  1.0391731
[4,]  1.740900767 -0.98716072  0.809515650 -0.6270052 -0.8257046 -0.1492428
[5,]  0.988445847  1.93574350  0.001520331  0.1920086 -0.4860777 -2.7375970
          [,7]        [,8]       [,9]       [,10]       [,11]       [,12]
[1,] 0.5260499  0.80028735  0.3645172 -1.05089188 -0.69130328 -0.86845466
[2,] 1.3254669  0.06243721  1.4468098  1.14784657  0.10198862 -1.69695555
[3,] 0.4924769  1.59551030 -0.3525654 -0.61880617 -0.09750476  1.07237464
[4,] 1.0937383  0.01757671 -2.2969865 -1.05213035  1.51149475  0.06069768
[5,] 0.1291642 -1.51260786 -1.6610251 -0.03880402 -0.42599719 -0.49232947
          [,13]      [,14]      [,15]       [,16]      [,17]      [,18]
[1,] -1.4859779 -0.7370956  0.8075263  0.05308585 -0.4917424 -0.7135435
[2,]  0.6936995  0.8997169 -0.1985896 -0.12803264 -1.2638014  1.1850137
[3,] -0.4851858  0.1255615 -1.1536692 -1.00444627  1.3415409  0.2767612
[4,] -0.2561026  0.0599205  1.0194366  0.08253447 -0.4569563  1.3997115
[5,]  1.4349664  0.3415603  0.7509502 -0.20147152  2.0450307  2.1733729
           [,19]      [,20]
[1,] -0.68655257  1.4872253
[2,] -1.12168306 -0.1408744
[3,]  0.04152415  0.7662495
[4,] -3.72202958 -0.7489925
[5,]  0.64262797  1.2424338
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  654  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
         col1      col2      col3      col4      col5     col6     col7
row1 1.356679 0.5195355 -1.894708 -0.916972 0.2022877 1.230672 1.089209
          col8       col9    col10     col11     col12     col13     col14
row1 0.3783719 -0.5515506 1.012954 -1.274332 0.6057786 0.4216477 0.7289838
         col15      col16     col17     col18      col19     col20
row1 0.1707689 -0.4964342 -1.496669 -1.728229 -0.1330356 0.9904147
> tmp[,"col10"]
          col10
row1  1.0129543
row2 -0.7284443
row3 -0.4065220
row4  0.3505840
row5  0.2347394
> tmp[c("row1","row5"),]
          col1        col2      col3       col4      col5       col6       col7
row1 1.3566791  0.51953547 -1.894708 -0.9169720 0.2022877  1.2306715  1.0892086
row5 0.4812739 -0.08930079 -1.819073  0.8551598 0.7359802 -0.9252783 -0.3210119
           col8       col9     col10      col11      col12     col13     col14
row1  0.3783719 -0.5515506 1.0129543 -1.2743324  0.6057786 0.4216477 0.7289838
row5 -0.8229279 -0.3496816 0.2347394  0.2720021 -2.1585364 0.3593378 1.1282357
         col15      col16      col17      col18      col19     col20
row1 0.1707689 -0.4964342 -1.4966689 -1.7282291 -0.1330356 0.9904147
row5 0.1588499 -0.3377576  0.4227425  0.4855643  0.3135873 1.3247442
> tmp[,c("col6","col20")]
           col6     col20
row1  1.2306715 0.9904147
row2 -0.3034056 0.9463766
row3  1.9211968 0.4328194
row4 -0.9634229 0.3808736
row5 -0.9252783 1.3247442
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1  1.2306715 0.9904147
row5 -0.9252783 1.3247442
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2    col3     col4     col5     col6    col7     col8
row1 49.94798 49.60332 50.9057 51.02975 50.87593 104.3431 52.3102 50.98305
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.85118 49.05763 50.97527 50.12824 50.94126 49.56736 50.75482 47.77714
        col17    col18    col19    col20
row1 50.85218 51.28859 51.18232 104.3705
> tmp[,"col10"]
        col10
row1 49.05763
row2 30.33940
row3 29.32232
row4 28.79789
row5 51.63635
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.94798 49.60332 50.90570 51.02975 50.87593 104.3431 52.31020 50.98305
row5 49.23737 48.77063 51.49858 47.89471 50.61137 105.8696 50.05579 50.26405
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.85118 49.05763 50.97527 50.12824 50.94126 49.56736 50.75482 47.77714
row5 49.18048 51.63635 50.37359 49.89133 50.49398 48.67126 49.99138 49.57381
        col17    col18    col19    col20
row1 50.85218 51.28859 51.18232 104.3705
row5 50.25202 49.27742 50.60057 105.3974
> tmp[,c("col6","col20")]
          col6     col20
row1 104.34312 104.37047
row2  75.69558  75.28535
row3  75.34108  73.66996
row4  74.17106  74.11445
row5 105.86961 105.39740
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.3431 104.3705
row5 105.8696 105.3974
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.3431 104.3705
row5 105.8696 105.3974
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.9323914
[2,] -0.7403048
[3,] -1.0495920
[4,]  1.4024448
[5,] -0.2299990
> tmp[,c("col17","col7")]
          col17       col7
[1,] -0.2749776 -0.2458198
[2,] -0.7855934  1.2373921
[3,]  0.9667047 -1.3356212
[4,] -0.6073248  0.4701106
[5,]  0.2162185 -0.6935128
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6       col20
[1,]  1.1465095 -0.64434834
[2,]  0.2113530  0.13099650
[3,] -0.4836192 -0.03857352
[4,]  0.3216892  1.09898380
[5,]  1.9171416  0.21930469
> subBufferedMatrix(tmp,1,c("col6"))[,1]
        col1
[1,] 1.14651
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
         col6
[1,] 1.146510
[2,] 0.211353
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]      [,2]      [,3]       [,4]       [,5]       [,6]       [,7]
row3  0.2512268 -2.275876 0.3261429 -0.6788291 0.08149149  0.2509147  0.8632491
row1 -0.5401699  1.633263 1.1600872  1.0724316 1.67894102 -1.9035433 -0.5003080
          [,8]      [,9]      [,10]      [,11]      [,12]      [,13]      [,14]
row3 -1.261382 0.4777164 -0.8117843 -0.5923942 -0.2385767 -1.5042551 -0.4912122
row1  2.769277 1.5253396 -1.1304494  0.6214823  0.5505900  0.0320929  0.8564957
        [,15]     [,16]      [,17]      [,18]       [,19]      [,20]
row3 1.129447 1.0984972  0.2302537 -0.9336831 -1.79702902 -0.6427323
row1 1.340413 0.4201502 -0.7793846  0.2019720 -0.04015658  0.9647662
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]     [,2]       [,3]       [,4]      [,5]       [,6]       [,7]
row2 0.2194138 1.095188 -0.3618322 -0.7216213 0.2575965 -0.4919963 -0.8040585
           [,8]     [,9]    [,10]
row2 -0.7396717 1.440336 1.041429
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]      [,2]      [,3]       [,4]       [,5]       [,6]    [,7]
row5 0.08762513 -1.009624 -0.281248 -0.1931984 0.02415846 -0.9658016 1.27496
           [,8]     [,9]     [,10]      [,11]     [,12]     [,13]      [,14]
row5 -0.5973151 -1.26026 -1.347093 -0.3187399 -1.851554 0.9421156 -0.9684808
        [,15]     [,16]     [,17]       [,18]    [,19]     [,20]
row5 1.010014 0.5462432 -1.165269 -0.09024162 1.443068 -1.719943
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x57c68aa1e730>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff4d92678" 
 [2] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff2b11012e"
 [3] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff64a76c22"
 [4] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff3c52861" 
 [5] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff4b70d0e2"
 [6] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff375cdb66"
 [7] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202effbeb2c5b" 
 [8] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff130f2803"
 [9] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff71f6fa8" 
[10] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff12d5277a"
[11] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff61eacd37"
[12] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff2255a70" 
[13] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff16405b2d"
[14] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff319dc6f2"
[15] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM202eff7bb95735"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x57c68a8b3110>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x57c68a8b3110>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x57c68a8b3110>
> rowMedians(tmp)
  [1] -0.028704229 -0.468592201 -0.230412012  0.390595542 -0.133039463
  [6] -0.059492765  0.640478559  0.337751248 -0.061363135 -0.187541782
 [11]  0.285797479  0.131354612  0.673240981 -0.300757872  0.307106148
 [16] -0.021047314  0.407433210  0.280167044  0.221931379 -0.567920841
 [21] -0.143986755  0.542559097  0.801473185  0.463050787  0.321597229
 [26] -0.260525382 -0.067143785 -0.186059934  0.359466365  0.601111486
 [31]  0.065745025 -0.302591562 -0.020046304 -0.066726510 -0.088465122
 [36]  0.199413505  0.059455465  0.534944897 -0.221815999  0.309051717
 [41]  0.250510192  0.419015511 -0.107005036 -0.246371893  0.280252601
 [46]  0.242587539 -0.185053820  0.049986144  1.042074361  0.140487728
 [51] -0.405799133  0.015303642 -0.276336911  0.662204327  0.009650907
 [56] -0.111811717  0.488793166 -0.173811937 -0.318664659  0.220142528
 [61] -0.153168623  0.170597628 -0.149423191 -0.681810972  0.664087330
 [66] -0.431678781  0.211962112  0.190154888  0.007259954 -0.258710858
 [71] -0.262381259 -0.053688987 -0.316546687  0.524600304 -0.054845700
 [76] -0.206846803  0.001420961 -0.058377552  0.072288409  0.075028110
 [81] -0.040901176 -0.734957780 -0.328467028  0.051128963 -0.044347761
 [86]  0.306766599 -0.162610845  0.019370855 -0.049127208  0.071555960
 [91]  0.018696811  0.036472135  0.227314979 -0.561873390 -0.149583644
 [96] -0.283960526 -0.491878728  0.163954983  0.267800816  0.296440204
[101] -0.273099849 -0.556507459  0.395096364 -0.091818637  0.245662654
[106]  0.188335634 -0.627731293  0.538905682 -0.240147814 -0.076623799
[111] -0.239394798  0.212652847  0.048277512  0.035184361  0.499674679
[116] -0.139769634  0.042609775 -0.553382156  0.072812097  0.332710356
[121]  0.049680941  0.008782636 -0.235300790  0.291159052 -0.044659473
[126]  0.254445769 -0.168763304 -0.283367868  0.058421336  0.292067139
[131] -0.094305991 -0.193243904  0.002272612 -0.042316171  0.031660942
[136] -0.264356276  0.162568116  0.286194200 -0.014572085 -0.227030018
[141]  0.354905907 -0.456594018  0.027759959  0.337589255 -0.269423443
[146] -0.075113709 -0.170353359  0.419650308 -0.220683634 -0.239496141
[151]  0.453669640  0.038075244  0.147596425 -0.263495597 -0.087368244
[156] -0.979868658 -0.443405345 -0.935729674  0.284040973  0.236369996
[161]  0.331918328  0.016538053  0.127430302 -0.107519563 -0.084094225
[166]  0.221963390 -0.225376051  0.734240034 -0.139365648 -0.171096021
[171] -0.463353001 -0.226666490 -0.033210573 -0.785706387 -0.339499885
[176] -0.381597079  0.097299787 -0.276313818 -0.204626236  0.198067313
[181]  0.160054123 -0.350489534  0.180550300 -0.518702901 -0.158311500
[186]  0.249768149  0.017489493 -0.583733024  0.055499501  0.285191106
[191] -0.329255650  0.006745790 -0.244855782  0.306580389 -0.345135457
[196]  0.074270754  0.149987972  0.201108503  0.263910456 -0.403566112
[201] -0.326551389  0.869051058 -0.679712570 -0.196314112 -0.277699015
[206]  0.513891568 -0.278774129  0.041310805  0.134180353  0.032008985
[211] -0.119167962  0.223359296 -0.024694566 -0.153935891  0.327411958
[216] -0.276045273  0.216388581 -0.971984530  0.288892005  0.579582280
[221]  0.054613031  0.349953638  0.166771047 -0.298789901 -0.192841152
[226] -0.191167479 -0.509540914 -0.063258456 -0.003555345  0.296435771
> 
> proc.time()
   user  system elapsed 
  1.245   0.674   1.907 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5f876bb03370>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5f876bb03370>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5f876bb03370>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x5f876bb03370>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x5f876baeb1c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876baeb1c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x5f876baeb1c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876baeb1c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5f876baeb1c0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876bdce120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876bdce120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5f876bdce120>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5f876bdce120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5f876bdce120>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x5f876bdce120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5f876bdce120>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x5f876bdce120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5f876bdce120>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876ab1e390>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x5f876ab1e390>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876ab1e390>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876ab1e390>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile202fc21ec63960" "BufferedMatrixFile202fc245fe0ff6"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile202fc21ec63960" "BufferedMatrixFile202fc245fe0ff6"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876aa153d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876aa153d0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5f876aa153d0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5f876aa153d0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x5f876aa153d0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x5f876aa153d0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876c54afa0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5f876c54afa0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5f876c54afa0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x5f876c54afa0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5f876ad22ff0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5f876ad22ff0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.236   0.055   0.278 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.2 (2025-10-31) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.243   0.046   0.277 

Example timings