Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-09-27 12:03 -0400 (Sat, 27 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4832
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4620
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4565
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4563
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 253/2334HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-09-26 13:45 -0400 (Fri, 26 Sep 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on nebbiolo2

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-09-26 21:43:41 -0400 (Fri, 26 Sep 2025)
EndedAt: 2025-09-26 21:44:16 -0400 (Fri, 26 Sep 2025)
EllapsedTime: 35.1 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 Patched (2025-08-23 r88802)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.22-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.22-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.22-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.22-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.409   0.060   0.488 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478419 25.6    1047111   56   639600 34.2
Vcells 885237  6.8    8388608   64  2081604 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Sep 26 21:44:03 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Sep 26 21:44:03 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x5a46dc2a2c80>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Sep 26 21:44:03 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Sep 26 21:44:04 2025"
> 
> ColMode(tmp2)
<pointer: 0x5a46dc2a2c80>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]       [,4]
[1,] 99.43223318  0.1574211  1.4862080 0.07780880
[2,] -0.89436057  0.1182634  0.5198764 0.08876358
[3,]  0.06435881 -0.1545949 -1.7296370 0.97288760
[4,] -0.51378301  0.5642300  1.1557359 1.15034930
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]       [,4]
[1,] 99.43223318 0.1574211 1.4862080 0.07780880
[2,]  0.89436057 0.1182634 0.5198764 0.08876358
[3,]  0.06435881 0.1545949 1.7296370 0.97288760
[4,]  0.51378301 0.5642300 1.1557359 1.15034930
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9715712 0.3967633 1.2191013 0.2789423
[2,] 0.9457064 0.3438945 0.7210246 0.2979322
[3,] 0.2536904 0.3931855 1.3151566 0.9863506
[4,] 0.7167866 0.7511524 1.0750516 1.0725434
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 224.14795 29.12505 38.67722 27.86723
[2,]  35.35142 28.55721 32.73012 28.06809
[3,]  27.60126 29.08645 39.88120 35.83639
[4,]  32.68165 33.07575 36.90625 36.87578
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x5a46de47b3a0>
> exp(tmp5)
<pointer: 0x5a46de47b3a0>
> log(tmp5,2)
<pointer: 0x5a46de47b3a0>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 466.5346
> Min(tmp5)
[1] 55.169
> mean(tmp5)
[1] 72.11171
> Sum(tmp5)
[1] 14422.34
> Var(tmp5)
[1] 857.3411
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 87.85839 69.99974 67.92499 70.67645 69.99307 70.23874 70.79534 69.69463
 [9] 71.03578 72.89994
> rowSums(tmp5)
 [1] 1757.168 1399.995 1358.500 1413.529 1399.861 1404.775 1415.907 1393.893
 [9] 1420.716 1457.999
> rowVars(tmp5)
 [1] 7989.70961   74.00099   87.15144   58.40382   46.97185   74.51178
 [7]   71.47038   92.97127   99.07037   80.67164
> rowSd(tmp5)
 [1] 89.385176  8.602383  9.335494  7.642239  6.853601  8.632021  8.454016
 [8]  9.642161  9.953410  8.981739
> rowMax(tmp5)
 [1] 466.53458  87.62184  90.37570  86.17776  83.32982  84.90947  85.31175
 [8]  96.24664  91.19226  87.78457
> rowMin(tmp5)
 [1] 58.00199 58.42004 57.29598 55.29516 60.63765 56.90653 56.83107 55.16900
 [9] 55.19143 56.98823
> 
> colMeans(tmp5)
 [1] 106.44405  67.57530  76.25957  69.67680  69.84197  68.30680  68.95760
 [8]  74.13917  69.99633  64.90653  68.94535  72.51822  68.91900  71.74934
[15]  69.58217  71.97044  72.74744  71.32872  66.56692  71.80242
> colSums(tmp5)
 [1] 1064.4405  675.7530  762.5957  696.7680  698.4197  683.0680  689.5760
 [8]  741.3917  699.9633  649.0653  689.4535  725.1822  689.1900  717.4934
[15]  695.8217  719.7044  727.4744  713.2872  665.6692  718.0242
> colVars(tmp5)
 [1] 16088.05129    55.67478    67.59142    64.15391    35.57093    46.80611
 [7]   110.35614   124.71275   100.15642    55.73855    34.50784    91.18235
[13]   106.98242    82.35371    48.88057    48.90228    65.84997    53.57221
[19]    88.56746    63.49639
> colSd(tmp5)
 [1] 126.838682   7.461553   8.221400   8.009613   5.964137   6.841499
 [7]  10.505053  11.167486  10.007818   7.465825   5.874337   9.548945
[13]  10.343231   9.074894   6.991464   6.993017   8.114800   7.319304
[19]   9.411028   7.968462
> colMax(tmp5)
 [1] 466.53458  80.71219  84.90947  78.58243  78.65333  81.17396  90.20946
 [8]  91.19226  86.32601  75.63028  80.40596  90.37570  96.24664  85.31175
[15]  79.28974  83.32982  86.54159  87.62184  88.09357  81.94216
> colMin(tmp5)
 [1] 55.19143 59.43809 60.28206 58.00199 62.26496 61.74833 56.98823 57.28314
 [9] 60.12233 55.29516 58.48590 59.98740 61.51530 55.16900 57.43274 63.71713
[17] 59.68952 60.56867 58.71292 59.70059
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 87.85839 69.99974 67.92499       NA 69.99307 70.23874 70.79534 69.69463
 [9] 71.03578 72.89994
> rowSums(tmp5)
 [1] 1757.168 1399.995 1358.500       NA 1399.861 1404.775 1415.907 1393.893
 [9] 1420.716 1457.999
> rowVars(tmp5)
 [1] 7989.70961   74.00099   87.15144   47.59639   46.97185   74.51178
 [7]   71.47038   92.97127   99.07037   80.67164
> rowSd(tmp5)
 [1] 89.385176  8.602383  9.335494  6.899014  6.853601  8.632021  8.454016
 [8]  9.642161  9.953410  8.981739
> rowMax(tmp5)
 [1] 466.53458  87.62184  90.37570        NA  83.32982  84.90947  85.31175
 [8]  96.24664  91.19226  87.78457
> rowMin(tmp5)
 [1] 58.00199 58.42004 57.29598       NA 60.63765 56.90653 56.83107 55.16900
 [9] 55.19143 56.98823
> 
> colMeans(tmp5)
 [1] 106.44405  67.57530  76.25957  69.67680  69.84197  68.30680  68.95760
 [8]        NA  69.99633  64.90653  68.94535  72.51822  68.91900  71.74934
[15]  69.58217  71.97044  72.74744  71.32872  66.56692  71.80242
> colSums(tmp5)
 [1] 1064.4405  675.7530  762.5957  696.7680  698.4197  683.0680  689.5760
 [8]        NA  699.9633  649.0653  689.4535  725.1822  689.1900  717.4934
[15]  695.8217  719.7044  727.4744  713.2872  665.6692  718.0242
> colVars(tmp5)
 [1] 16088.05129    55.67478    67.59142    64.15391    35.57093    46.80611
 [7]   110.35614          NA   100.15642    55.73855    34.50784    91.18235
[13]   106.98242    82.35371    48.88057    48.90228    65.84997    53.57221
[19]    88.56746    63.49639
> colSd(tmp5)
 [1] 126.838682   7.461553   8.221400   8.009613   5.964137   6.841499
 [7]  10.505053         NA  10.007818   7.465825   5.874337   9.548945
[13]  10.343231   9.074894   6.991464   6.993017   8.114800   7.319304
[19]   9.411028   7.968462
> colMax(tmp5)
 [1] 466.53458  80.71219  84.90947  78.58243  78.65333  81.17396  90.20946
 [8]        NA  86.32601  75.63028  80.40596  90.37570  96.24664  85.31175
[15]  79.28974  83.32982  86.54159  87.62184  88.09357  81.94216
> colMin(tmp5)
 [1] 55.19143 59.43809 60.28206 58.00199 62.26496 61.74833 56.98823       NA
 [9] 60.12233 55.29516 58.48590 59.98740 61.51530 55.16900 57.43274 63.71713
[17] 59.68952 60.56867 58.71292 59.70059
> 
> Max(tmp5,na.rm=TRUE)
[1] 466.5346
> Min(tmp5,na.rm=TRUE)
[1] 55.169
> mean(tmp5,na.rm=TRUE)
[1] 72.04102
> Sum(tmp5,na.rm=TRUE)
[1] 14336.16
> Var(tmp5,na.rm=TRUE)
[1] 860.6668
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 87.85839 69.99974 67.92499 69.86059 69.99307 70.23874 70.79534 69.69463
 [9] 71.03578 72.89994
> rowSums(tmp5,na.rm=TRUE)
 [1] 1757.168 1399.995 1358.500 1327.351 1399.861 1404.775 1415.907 1393.893
 [9] 1420.716 1457.999
> rowVars(tmp5,na.rm=TRUE)
 [1] 7989.70961   74.00099   87.15144   47.59639   46.97185   74.51178
 [7]   71.47038   92.97127   99.07037   80.67164
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.385176  8.602383  9.335494  6.899014  6.853601  8.632021  8.454016
 [8]  9.642161  9.953410  8.981739
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.53458  87.62184  90.37570  81.94216  83.32982  84.90947  85.31175
 [8]  96.24664  91.19226  87.78457
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.00199 58.42004 57.29598 55.29516 60.63765 56.90653 56.83107 55.16900
 [9] 55.19143 56.98823
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 106.44405  67.57530  76.25957  69.67680  69.84197  68.30680  68.95760
 [8]  72.80155  69.99633  64.90653  68.94535  72.51822  68.91900  71.74934
[15]  69.58217  71.97044  72.74744  71.32872  66.56692  71.80242
> colSums(tmp5,na.rm=TRUE)
 [1] 1064.4405  675.7530  762.5957  696.7680  698.4197  683.0680  689.5760
 [8]  655.2139  699.9633  649.0653  689.4535  725.1822  689.1900  717.4934
[15]  695.8217  719.7044  727.4744  713.2872  665.6692  718.0242
> colVars(tmp5,na.rm=TRUE)
 [1] 16088.05129    55.67478    67.59142    64.15391    35.57093    46.80611
 [7]   110.35614   120.17300   100.15642    55.73855    34.50784    91.18235
[13]   106.98242    82.35371    48.88057    48.90228    65.84997    53.57221
[19]    88.56746    63.49639
> colSd(tmp5,na.rm=TRUE)
 [1] 126.838682   7.461553   8.221400   8.009613   5.964137   6.841499
 [7]  10.505053  10.962345  10.007818   7.465825   5.874337   9.548945
[13]  10.343231   9.074894   6.991464   6.993017   8.114800   7.319304
[19]   9.411028   7.968462
> colMax(tmp5,na.rm=TRUE)
 [1] 466.53458  80.71219  84.90947  78.58243  78.65333  81.17396  90.20946
 [8]  91.19226  86.32601  75.63028  80.40596  90.37570  96.24664  85.31175
[15]  79.28974  83.32982  86.54159  87.62184  88.09357  81.94216
> colMin(tmp5,na.rm=TRUE)
 [1] 55.19143 59.43809 60.28206 58.00199 62.26496 61.74833 56.98823 57.28314
 [9] 60.12233 55.29516 58.48590 59.98740 61.51530 55.16900 57.43274 63.71713
[17] 59.68952 60.56867 58.71292 59.70059
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 87.85839 69.99974 67.92499      NaN 69.99307 70.23874 70.79534 69.69463
 [9] 71.03578 72.89994
> rowSums(tmp5,na.rm=TRUE)
 [1] 1757.168 1399.995 1358.500    0.000 1399.861 1404.775 1415.907 1393.893
 [9] 1420.716 1457.999
> rowVars(tmp5,na.rm=TRUE)
 [1] 7989.70961   74.00099   87.15144         NA   46.97185   74.51178
 [7]   71.47038   92.97127   99.07037   80.67164
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.385176  8.602383  9.335494        NA  6.853601  8.632021  8.454016
 [8]  9.642161  9.953410  8.981739
> rowMax(tmp5,na.rm=TRUE)
 [1] 466.53458  87.62184  90.37570        NA  83.32982  84.90947  85.31175
 [8]  96.24664  91.19226  87.78457
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.00199 58.42004 57.29598       NA 60.63765 56.90653 56.83107 55.16900
 [9] 55.19143 56.98823
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 110.71310  67.43446  76.19780  68.89065  69.79478  68.56002  69.13309
 [8]       NaN  69.70211  65.97446  69.24201  72.45785  69.74163  71.95552
[15]  68.83603  71.71634  72.08024  72.52428  66.99186  70.67578
> colSums(tmp5,na.rm=TRUE)
 [1] 996.4179 606.9102 685.7802 620.0159 628.1530 617.0402 622.1978   0.0000
 [9] 627.3190 593.7701 623.1781 652.1207 627.6747 647.5997 619.5243 645.4471
[17] 648.7222 652.7185 602.9267 636.0820
> colVars(tmp5,na.rm=TRUE)
 [1] 17894.02853    62.41098    75.99742    65.22036    39.99224    51.93550
 [7]   123.80420          NA   111.70215    49.87553    37.83125   102.53915
[13]   112.74207    92.16964    48.72754    54.28872    69.07334    44.18835
[19]    97.60699    57.15368
> colSd(tmp5,na.rm=TRUE)
 [1] 133.768563   7.900062   8.717650   8.075912   6.323942   7.206629
 [7]  11.126734         NA  10.568924   7.062261   6.150712  10.126162
[13]  10.618007   9.600502   6.980511   7.368088   8.311037   6.647432
[19]   9.879625   7.560005
> colMax(tmp5,na.rm=TRUE)
 [1] 466.53458  80.71219  84.90947  78.58243  78.65333  81.17396  90.20946
 [8]      -Inf  86.32601  75.63028  80.40596  90.37570  96.24664  85.31175
[15]  79.28974  83.32982  86.54159  87.62184  88.09357  81.91731
> colMin(tmp5,na.rm=TRUE)
 [1] 55.19143 59.43809 60.28206 58.00199 62.26496 61.74833 56.98823      Inf
 [9] 60.12233 56.90653 58.48590 59.98740 62.49664 55.16900 57.43274 63.71713
[17] 59.68952 65.06567 58.71292 59.70059
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 199.3776 255.2055 296.4575 129.8004 173.7879 277.5414 280.5665 117.9549
 [9] 164.1422 316.1128
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 199.3776 255.2055 296.4575 129.8004 173.7879 277.5414 280.5665 117.9549
 [9] 164.1422 316.1128
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14 -5.684342e-14 -8.526513e-14  1.421085e-13  1.705303e-13
 [6]  0.000000e+00  1.705303e-13 -5.684342e-14 -5.684342e-14 -1.705303e-13
[11]  0.000000e+00  0.000000e+00 -5.684342e-14 -8.526513e-14 -1.847411e-13
[16]  4.263256e-14 -5.684342e-14  5.684342e-14  1.989520e-13 -8.526513e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
6   1 
1   12 
5   19 
2   19 
10   14 
3   4 
6   7 
3   19 
10   20 
10   20 
10   12 
4   14 
5   2 
7   9 
6   20 
7   3 
9   1 
3   2 
9   20 
9   11 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.38151
> Min(tmp)
[1] -2.239756
> mean(tmp)
[1] 0.01462326
> Sum(tmp)
[1] 1.462326
> Var(tmp)
[1] 1.012612
> 
> rowMeans(tmp)
[1] 0.01462326
> rowSums(tmp)
[1] 1.462326
> rowVars(tmp)
[1] 1.012612
> rowSd(tmp)
[1] 1.006286
> rowMax(tmp)
[1] 2.38151
> rowMin(tmp)
[1] -2.239756
> 
> colMeans(tmp)
  [1]  0.65672801  0.02595090 -0.08594878  0.28554666  0.41322026  0.57068018
  [7] -1.03981585 -1.29434132 -1.39081739  0.79377578 -0.27992087  0.29811198
 [13] -0.18167129 -0.88747721 -0.30892239 -0.51889286 -2.23975586  1.54489373
 [19] -0.33381889  1.61503067  1.27653818 -0.24374882  0.11122267 -0.63751955
 [25] -0.14618368 -0.01824757 -1.01142933  1.23425888  1.40284563  0.98869436
 [31]  0.84357084  1.80601904  2.38150984  0.21781183  0.51325161 -1.13098390
 [37] -0.33712227  0.53647186  1.99492089 -1.91672070 -0.39149524  0.15066811
 [43]  1.33196924 -1.21343462  0.62407026 -0.26951957  0.56152488 -1.20604711
 [49] -1.13328087 -1.18000993 -0.02163137  0.36921338 -1.80946466 -1.24430211
 [55]  0.32692294 -1.30792216  1.77811506  1.52342201 -1.02769906 -0.84426021
 [61] -1.70736560 -0.95844087  0.53323994  0.38939318  0.45334132 -0.58444900
 [67]  0.31579482 -1.56632425  0.77409368 -0.20472446  0.62021504  0.07114204
 [73] -1.15267928  0.30543145  1.40245871 -0.54998371  1.60268319  1.87748034
 [79]  0.05437960 -0.16218853 -0.15763249 -0.47243949  0.11452080 -0.07053110
 [85] -0.21866490  0.59438402 -0.98538771  1.18872548 -0.96564640 -1.40571109
 [91]  0.11972491  0.21885260  0.35944951 -1.36679188  0.17232615 -0.25914982
 [97] -0.19204307  1.13035109  2.26388520 -0.64394730
> colSums(tmp)
  [1]  0.65672801  0.02595090 -0.08594878  0.28554666  0.41322026  0.57068018
  [7] -1.03981585 -1.29434132 -1.39081739  0.79377578 -0.27992087  0.29811198
 [13] -0.18167129 -0.88747721 -0.30892239 -0.51889286 -2.23975586  1.54489373
 [19] -0.33381889  1.61503067  1.27653818 -0.24374882  0.11122267 -0.63751955
 [25] -0.14618368 -0.01824757 -1.01142933  1.23425888  1.40284563  0.98869436
 [31]  0.84357084  1.80601904  2.38150984  0.21781183  0.51325161 -1.13098390
 [37] -0.33712227  0.53647186  1.99492089 -1.91672070 -0.39149524  0.15066811
 [43]  1.33196924 -1.21343462  0.62407026 -0.26951957  0.56152488 -1.20604711
 [49] -1.13328087 -1.18000993 -0.02163137  0.36921338 -1.80946466 -1.24430211
 [55]  0.32692294 -1.30792216  1.77811506  1.52342201 -1.02769906 -0.84426021
 [61] -1.70736560 -0.95844087  0.53323994  0.38939318  0.45334132 -0.58444900
 [67]  0.31579482 -1.56632425  0.77409368 -0.20472446  0.62021504  0.07114204
 [73] -1.15267928  0.30543145  1.40245871 -0.54998371  1.60268319  1.87748034
 [79]  0.05437960 -0.16218853 -0.15763249 -0.47243949  0.11452080 -0.07053110
 [85] -0.21866490  0.59438402 -0.98538771  1.18872548 -0.96564640 -1.40571109
 [91]  0.11972491  0.21885260  0.35944951 -1.36679188  0.17232615 -0.25914982
 [97] -0.19204307  1.13035109  2.26388520 -0.64394730
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.65672801  0.02595090 -0.08594878  0.28554666  0.41322026  0.57068018
  [7] -1.03981585 -1.29434132 -1.39081739  0.79377578 -0.27992087  0.29811198
 [13] -0.18167129 -0.88747721 -0.30892239 -0.51889286 -2.23975586  1.54489373
 [19] -0.33381889  1.61503067  1.27653818 -0.24374882  0.11122267 -0.63751955
 [25] -0.14618368 -0.01824757 -1.01142933  1.23425888  1.40284563  0.98869436
 [31]  0.84357084  1.80601904  2.38150984  0.21781183  0.51325161 -1.13098390
 [37] -0.33712227  0.53647186  1.99492089 -1.91672070 -0.39149524  0.15066811
 [43]  1.33196924 -1.21343462  0.62407026 -0.26951957  0.56152488 -1.20604711
 [49] -1.13328087 -1.18000993 -0.02163137  0.36921338 -1.80946466 -1.24430211
 [55]  0.32692294 -1.30792216  1.77811506  1.52342201 -1.02769906 -0.84426021
 [61] -1.70736560 -0.95844087  0.53323994  0.38939318  0.45334132 -0.58444900
 [67]  0.31579482 -1.56632425  0.77409368 -0.20472446  0.62021504  0.07114204
 [73] -1.15267928  0.30543145  1.40245871 -0.54998371  1.60268319  1.87748034
 [79]  0.05437960 -0.16218853 -0.15763249 -0.47243949  0.11452080 -0.07053110
 [85] -0.21866490  0.59438402 -0.98538771  1.18872548 -0.96564640 -1.40571109
 [91]  0.11972491  0.21885260  0.35944951 -1.36679188  0.17232615 -0.25914982
 [97] -0.19204307  1.13035109  2.26388520 -0.64394730
> colMin(tmp)
  [1]  0.65672801  0.02595090 -0.08594878  0.28554666  0.41322026  0.57068018
  [7] -1.03981585 -1.29434132 -1.39081739  0.79377578 -0.27992087  0.29811198
 [13] -0.18167129 -0.88747721 -0.30892239 -0.51889286 -2.23975586  1.54489373
 [19] -0.33381889  1.61503067  1.27653818 -0.24374882  0.11122267 -0.63751955
 [25] -0.14618368 -0.01824757 -1.01142933  1.23425888  1.40284563  0.98869436
 [31]  0.84357084  1.80601904  2.38150984  0.21781183  0.51325161 -1.13098390
 [37] -0.33712227  0.53647186  1.99492089 -1.91672070 -0.39149524  0.15066811
 [43]  1.33196924 -1.21343462  0.62407026 -0.26951957  0.56152488 -1.20604711
 [49] -1.13328087 -1.18000993 -0.02163137  0.36921338 -1.80946466 -1.24430211
 [55]  0.32692294 -1.30792216  1.77811506  1.52342201 -1.02769906 -0.84426021
 [61] -1.70736560 -0.95844087  0.53323994  0.38939318  0.45334132 -0.58444900
 [67]  0.31579482 -1.56632425  0.77409368 -0.20472446  0.62021504  0.07114204
 [73] -1.15267928  0.30543145  1.40245871 -0.54998371  1.60268319  1.87748034
 [79]  0.05437960 -0.16218853 -0.15763249 -0.47243949  0.11452080 -0.07053110
 [85] -0.21866490  0.59438402 -0.98538771  1.18872548 -0.96564640 -1.40571109
 [91]  0.11972491  0.21885260  0.35944951 -1.36679188  0.17232615 -0.25914982
 [97] -0.19204307  1.13035109  2.26388520 -0.64394730
> colMedians(tmp)
  [1]  0.65672801  0.02595090 -0.08594878  0.28554666  0.41322026  0.57068018
  [7] -1.03981585 -1.29434132 -1.39081739  0.79377578 -0.27992087  0.29811198
 [13] -0.18167129 -0.88747721 -0.30892239 -0.51889286 -2.23975586  1.54489373
 [19] -0.33381889  1.61503067  1.27653818 -0.24374882  0.11122267 -0.63751955
 [25] -0.14618368 -0.01824757 -1.01142933  1.23425888  1.40284563  0.98869436
 [31]  0.84357084  1.80601904  2.38150984  0.21781183  0.51325161 -1.13098390
 [37] -0.33712227  0.53647186  1.99492089 -1.91672070 -0.39149524  0.15066811
 [43]  1.33196924 -1.21343462  0.62407026 -0.26951957  0.56152488 -1.20604711
 [49] -1.13328087 -1.18000993 -0.02163137  0.36921338 -1.80946466 -1.24430211
 [55]  0.32692294 -1.30792216  1.77811506  1.52342201 -1.02769906 -0.84426021
 [61] -1.70736560 -0.95844087  0.53323994  0.38939318  0.45334132 -0.58444900
 [67]  0.31579482 -1.56632425  0.77409368 -0.20472446  0.62021504  0.07114204
 [73] -1.15267928  0.30543145  1.40245871 -0.54998371  1.60268319  1.87748034
 [79]  0.05437960 -0.16218853 -0.15763249 -0.47243949  0.11452080 -0.07053110
 [85] -0.21866490  0.59438402 -0.98538771  1.18872548 -0.96564640 -1.40571109
 [91]  0.11972491  0.21885260  0.35944951 -1.36679188  0.17232615 -0.25914982
 [97] -0.19204307  1.13035109  2.26388520 -0.64394730
> colRanges(tmp)
         [,1]      [,2]        [,3]      [,4]      [,5]      [,6]      [,7]
[1,] 0.656728 0.0259509 -0.08594878 0.2855467 0.4132203 0.5706802 -1.039816
[2,] 0.656728 0.0259509 -0.08594878 0.2855467 0.4132203 0.5706802 -1.039816
          [,8]      [,9]     [,10]      [,11]    [,12]      [,13]      [,14]
[1,] -1.294341 -1.390817 0.7937758 -0.2799209 0.298112 -0.1816713 -0.8874772
[2,] -1.294341 -1.390817 0.7937758 -0.2799209 0.298112 -0.1816713 -0.8874772
          [,15]      [,16]     [,17]    [,18]      [,19]    [,20]    [,21]
[1,] -0.3089224 -0.5188929 -2.239756 1.544894 -0.3338189 1.615031 1.276538
[2,] -0.3089224 -0.5188929 -2.239756 1.544894 -0.3338189 1.615031 1.276538
          [,22]     [,23]      [,24]      [,25]       [,26]     [,27]    [,28]
[1,] -0.2437488 0.1112227 -0.6375196 -0.1461837 -0.01824757 -1.011429 1.234259
[2,] -0.2437488 0.1112227 -0.6375196 -0.1461837 -0.01824757 -1.011429 1.234259
        [,29]     [,30]     [,31]    [,32]   [,33]     [,34]     [,35]
[1,] 1.402846 0.9886944 0.8435708 1.806019 2.38151 0.2178118 0.5132516
[2,] 1.402846 0.9886944 0.8435708 1.806019 2.38151 0.2178118 0.5132516
         [,36]      [,37]     [,38]    [,39]     [,40]      [,41]     [,42]
[1,] -1.130984 -0.3371223 0.5364719 1.994921 -1.916721 -0.3914952 0.1506681
[2,] -1.130984 -0.3371223 0.5364719 1.994921 -1.916721 -0.3914952 0.1506681
        [,43]     [,44]     [,45]      [,46]     [,47]     [,48]     [,49]
[1,] 1.331969 -1.213435 0.6240703 -0.2695196 0.5615249 -1.206047 -1.133281
[2,] 1.331969 -1.213435 0.6240703 -0.2695196 0.5615249 -1.206047 -1.133281
        [,50]       [,51]     [,52]     [,53]     [,54]     [,55]     [,56]
[1,] -1.18001 -0.02163137 0.3692134 -1.809465 -1.244302 0.3269229 -1.307922
[2,] -1.18001 -0.02163137 0.3692134 -1.809465 -1.244302 0.3269229 -1.307922
        [,57]    [,58]     [,59]      [,60]     [,61]      [,62]     [,63]
[1,] 1.778115 1.523422 -1.027699 -0.8442602 -1.707366 -0.9584409 0.5332399
[2,] 1.778115 1.523422 -1.027699 -0.8442602 -1.707366 -0.9584409 0.5332399
         [,64]     [,65]     [,66]     [,67]     [,68]     [,69]      [,70]
[1,] 0.3893932 0.4533413 -0.584449 0.3157948 -1.566324 0.7740937 -0.2047245
[2,] 0.3893932 0.4533413 -0.584449 0.3157948 -1.566324 0.7740937 -0.2047245
        [,71]      [,72]     [,73]     [,74]    [,75]      [,76]    [,77]
[1,] 0.620215 0.07114204 -1.152679 0.3054314 1.402459 -0.5499837 1.602683
[2,] 0.620215 0.07114204 -1.152679 0.3054314 1.402459 -0.5499837 1.602683
       [,78]     [,79]      [,80]      [,81]      [,82]     [,83]      [,84]
[1,] 1.87748 0.0543796 -0.1621885 -0.1576325 -0.4724395 0.1145208 -0.0705311
[2,] 1.87748 0.0543796 -0.1621885 -0.1576325 -0.4724395 0.1145208 -0.0705311
          [,85]    [,86]      [,87]    [,88]      [,89]     [,90]     [,91]
[1,] -0.2186649 0.594384 -0.9853877 1.188725 -0.9656464 -1.405711 0.1197249
[2,] -0.2186649 0.594384 -0.9853877 1.188725 -0.9656464 -1.405711 0.1197249
         [,92]     [,93]     [,94]     [,95]      [,96]      [,97]    [,98]
[1,] 0.2188526 0.3594495 -1.366792 0.1723262 -0.2591498 -0.1920431 1.130351
[2,] 0.2188526 0.3594495 -1.366792 0.1723262 -0.2591498 -0.1920431 1.130351
        [,99]     [,100]
[1,] 2.263885 -0.6439473
[2,] 2.263885 -0.6439473
> 
> 
> Max(tmp2)
[1] 2.444436
> Min(tmp2)
[1] -2.921975
> mean(tmp2)
[1] -0.02461392
> Sum(tmp2)
[1] -2.461392
> Var(tmp2)
[1] 1.038331
> 
> rowMeans(tmp2)
  [1] -0.72375616 -0.21639855 -0.45403352  1.00149018  0.48123445  2.36028357
  [7] -0.16174544  0.94635376 -0.06234064 -0.84197049  1.85031696  2.35235488
 [13] -0.56580959  0.28825029 -0.96143264 -2.92197527  0.84584050 -0.98359333
 [19]  0.34206345  1.09308999  1.22801827  2.44443623  0.98530644 -0.89447534
 [25]  0.63915681 -0.83158948  1.24789077 -0.85837587  2.01941668 -0.13327608
 [31]  0.29051968 -0.59976248  0.98823368 -0.17083063 -2.70679678 -0.96300765
 [37]  0.37865072 -0.62652183 -0.98891464 -1.93575196  0.46695220 -0.22402326
 [43] -0.25694854 -0.34054942  0.35368326  0.39657704  0.41111588 -0.03644582
 [49] -0.44193765 -0.84100275 -1.49355004 -1.57580396 -0.35915896  0.51020549
 [55]  0.16268660  0.01741814  1.46285605  0.41012632  0.66900988 -1.61599277
 [61]  0.27420783 -0.31460113 -0.18506552  0.82860968 -0.01088739  0.06777546
 [67] -0.47857128 -0.35733128 -0.28184675 -0.44865441  1.08676381  0.79796433
 [73] -0.94309696 -0.24518715  0.70208093 -1.67609238  0.51398726  0.41781092
 [79]  0.25703210 -1.32544697 -1.45588262 -0.66472921  0.66216212 -0.36950937
 [85] -0.56577568  0.34897291 -0.06815979 -0.77785983 -1.12925819  1.56551996
 [91]  1.39933446 -0.05854619  1.56455807 -0.28642945  0.39736768 -1.11817545
 [97]  0.44818241 -0.77576219  0.60674458 -1.71936384
> rowSums(tmp2)
  [1] -0.72375616 -0.21639855 -0.45403352  1.00149018  0.48123445  2.36028357
  [7] -0.16174544  0.94635376 -0.06234064 -0.84197049  1.85031696  2.35235488
 [13] -0.56580959  0.28825029 -0.96143264 -2.92197527  0.84584050 -0.98359333
 [19]  0.34206345  1.09308999  1.22801827  2.44443623  0.98530644 -0.89447534
 [25]  0.63915681 -0.83158948  1.24789077 -0.85837587  2.01941668 -0.13327608
 [31]  0.29051968 -0.59976248  0.98823368 -0.17083063 -2.70679678 -0.96300765
 [37]  0.37865072 -0.62652183 -0.98891464 -1.93575196  0.46695220 -0.22402326
 [43] -0.25694854 -0.34054942  0.35368326  0.39657704  0.41111588 -0.03644582
 [49] -0.44193765 -0.84100275 -1.49355004 -1.57580396 -0.35915896  0.51020549
 [55]  0.16268660  0.01741814  1.46285605  0.41012632  0.66900988 -1.61599277
 [61]  0.27420783 -0.31460113 -0.18506552  0.82860968 -0.01088739  0.06777546
 [67] -0.47857128 -0.35733128 -0.28184675 -0.44865441  1.08676381  0.79796433
 [73] -0.94309696 -0.24518715  0.70208093 -1.67609238  0.51398726  0.41781092
 [79]  0.25703210 -1.32544697 -1.45588262 -0.66472921  0.66216212 -0.36950937
 [85] -0.56577568  0.34897291 -0.06815979 -0.77785983 -1.12925819  1.56551996
 [91]  1.39933446 -0.05854619  1.56455807 -0.28642945  0.39736768 -1.11817545
 [97]  0.44818241 -0.77576219  0.60674458 -1.71936384
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -0.72375616 -0.21639855 -0.45403352  1.00149018  0.48123445  2.36028357
  [7] -0.16174544  0.94635376 -0.06234064 -0.84197049  1.85031696  2.35235488
 [13] -0.56580959  0.28825029 -0.96143264 -2.92197527  0.84584050 -0.98359333
 [19]  0.34206345  1.09308999  1.22801827  2.44443623  0.98530644 -0.89447534
 [25]  0.63915681 -0.83158948  1.24789077 -0.85837587  2.01941668 -0.13327608
 [31]  0.29051968 -0.59976248  0.98823368 -0.17083063 -2.70679678 -0.96300765
 [37]  0.37865072 -0.62652183 -0.98891464 -1.93575196  0.46695220 -0.22402326
 [43] -0.25694854 -0.34054942  0.35368326  0.39657704  0.41111588 -0.03644582
 [49] -0.44193765 -0.84100275 -1.49355004 -1.57580396 -0.35915896  0.51020549
 [55]  0.16268660  0.01741814  1.46285605  0.41012632  0.66900988 -1.61599277
 [61]  0.27420783 -0.31460113 -0.18506552  0.82860968 -0.01088739  0.06777546
 [67] -0.47857128 -0.35733128 -0.28184675 -0.44865441  1.08676381  0.79796433
 [73] -0.94309696 -0.24518715  0.70208093 -1.67609238  0.51398726  0.41781092
 [79]  0.25703210 -1.32544697 -1.45588262 -0.66472921  0.66216212 -0.36950937
 [85] -0.56577568  0.34897291 -0.06815979 -0.77785983 -1.12925819  1.56551996
 [91]  1.39933446 -0.05854619  1.56455807 -0.28642945  0.39736768 -1.11817545
 [97]  0.44818241 -0.77576219  0.60674458 -1.71936384
> rowMin(tmp2)
  [1] -0.72375616 -0.21639855 -0.45403352  1.00149018  0.48123445  2.36028357
  [7] -0.16174544  0.94635376 -0.06234064 -0.84197049  1.85031696  2.35235488
 [13] -0.56580959  0.28825029 -0.96143264 -2.92197527  0.84584050 -0.98359333
 [19]  0.34206345  1.09308999  1.22801827  2.44443623  0.98530644 -0.89447534
 [25]  0.63915681 -0.83158948  1.24789077 -0.85837587  2.01941668 -0.13327608
 [31]  0.29051968 -0.59976248  0.98823368 -0.17083063 -2.70679678 -0.96300765
 [37]  0.37865072 -0.62652183 -0.98891464 -1.93575196  0.46695220 -0.22402326
 [43] -0.25694854 -0.34054942  0.35368326  0.39657704  0.41111588 -0.03644582
 [49] -0.44193765 -0.84100275 -1.49355004 -1.57580396 -0.35915896  0.51020549
 [55]  0.16268660  0.01741814  1.46285605  0.41012632  0.66900988 -1.61599277
 [61]  0.27420783 -0.31460113 -0.18506552  0.82860968 -0.01088739  0.06777546
 [67] -0.47857128 -0.35733128 -0.28184675 -0.44865441  1.08676381  0.79796433
 [73] -0.94309696 -0.24518715  0.70208093 -1.67609238  0.51398726  0.41781092
 [79]  0.25703210 -1.32544697 -1.45588262 -0.66472921  0.66216212 -0.36950937
 [85] -0.56577568  0.34897291 -0.06815979 -0.77785983 -1.12925819  1.56551996
 [91]  1.39933446 -0.05854619  1.56455807 -0.28642945  0.39736768 -1.11817545
 [97]  0.44818241 -0.77576219  0.60674458 -1.71936384
> 
> colMeans(tmp2)
[1] -0.02461392
> colSums(tmp2)
[1] -2.461392
> colVars(tmp2)
[1] 1.038331
> colSd(tmp2)
[1] 1.018985
> colMax(tmp2)
[1] 2.444436
> colMin(tmp2)
[1] -2.921975
> colMedians(tmp2)
[1] -0.06525022
> colRanges(tmp2)
          [,1]
[1,] -2.921975
[2,]  2.444436
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.1592397 -2.2413878  3.9369400  2.1458683 -2.3075420 -1.3852223
 [7] -1.2988463 -0.1325874  1.3424596  0.4124911
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.1508291
[2,] -0.5544491
[3,] -0.2873016
[4,]  0.2220186
[5,]  1.7831827
> 
> rowApply(tmp,sum)
 [1]  1.0662189 -2.1051214 -0.5442247  0.2537154 -1.1114866  0.9731067
 [7] -4.3211976  4.0057916  2.8130476 -1.7169166
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    6    4    7    3    7    3    7    9    2     2
 [2,]    3    2    6    1    5    5    2    5   10     9
 [3,]    8    8    2    9    8    1    8   10    4     8
 [4,]   10   10    3    5    6    6    6    7    5     3
 [5,]    4    5    1    2    9    4    4    4    6     4
 [6,]    7    7    8    6    1    8    3    2    8     5
 [7,]    2    3    5    7    2    7    1    6    9    10
 [8,]    1    9    9    4    3    2    9    8    7     6
 [9,]    5    6   10    8   10   10   10    1    1     1
[10,]    9    1    4   10    4    9    5    3    3     7
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  3.0853285  0.8587215  2.7284176  2.2269812  2.0264831 -2.3431978
 [7] -3.6826973  1.1727541  1.2246978  4.7760022 -0.1199866 -1.1997606
[13] -0.2628153 -0.2937726  3.6883915 -0.8292391  0.9976916 -2.8532281
[19] -3.9043333  1.2614632
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.2059636
[2,] -0.1918904
[3,]  0.5375542
[4,]  1.2931215
[5,]  1.6525068
> 
> rowApply(tmp,sum)
[1] -2.59665839  5.98379068 -0.04611152  3.05739115  2.15948964
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   20   18   10    8   14
[2,]    3   14   12    6   16
[3,]   13   12   14   17   11
[4,]   10    2   15   20   15
[5,]   18   15    8   12   12
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,]  1.2931215 -0.6640552 0.09812729 -0.1035305  0.7184848 -0.4985560
[2,]  1.6525068  0.7271760 0.20594568 -0.9681788  1.0252697  1.1766777
[3,] -0.1918904  0.6084950 0.70007616  0.7861874 -0.2356395 -1.5465631
[4,] -0.2059636 -0.6237187 1.56137425  1.9453098  0.1340786 -0.8494949
[5,]  0.5375542  0.8108244 0.16289424  0.5671933  0.3842895 -0.6252616
           [,7]        [,8]         [,9]       [,10]       [,11]      [,12]
[1,] -1.3951671 -0.31230551 -0.407710502 -0.06744338 -0.09503613  0.1439526
[2,]  0.4837760  1.51345781  2.214634592  3.05255037 -0.05540266 -0.6410962
[3,] -1.8754493 -0.69422029  1.016016323  0.92416645  0.69547488  0.8755037
[4,] -1.7837690  0.57907506  0.008320651  1.74155460 -0.39213897 -0.9372710
[5,]  0.8879121  0.08674702 -1.606563272 -0.87482586 -0.27288372 -0.6408498
          [,13]      [,14]      [,15]       [,16]      [,17]      [,18]
[1,] -0.4998922 -0.5148531  1.1417766 -0.56049221  0.2802150 -2.0542415
[2,]  0.1516420 -0.5733269 -0.4304167 -1.19445765 -0.9035119 -0.9151039
[3,]  1.3379681 -0.4632038 -0.7995692  1.43553496 -1.0143778 -0.2253836
[4,] -1.0514014  0.2531706  1.2731008 -0.09765196  1.6309023  0.6637818
[5,] -0.2011318  1.0044407  2.5035000 -0.41217228  1.0044640 -0.3222809
          [,19]       [,20]
[1,]  0.1978496  0.70309755
[2,] -0.5251164 -0.01323497
[3,] -1.6523427  0.27310526
[4,] -0.6831216 -0.10874602
[5,] -1.2416021  0.40724137
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1     col2      col3       col4      col5      col6       col7
row1 -0.3974612 1.346775 -0.953105 -0.6825562 0.0229699 0.9172779 -0.9743388
           col8       col9     col10     col11      col12    col13     col14
row1 -0.6933916 -0.3537638 -1.016353 -1.581491 -0.2354865 -1.09006 -0.950556
        col15     col16     col17     col18    col19     col20
row1 1.019829 0.1157143 -1.385032 0.4924558 1.395394 -1.125406
> tmp[,"col10"]
          col10
row1 -1.0163525
row2 -0.4416230
row3  0.9231766
row4  0.2735262
row5 -0.7067889
> tmp[c("row1","row5"),]
           col1      col2      col3       col4       col5      col6       col7
row1 -0.3974612  1.346775 -0.953105 -0.6825562  0.0229699 0.9172779 -0.9743388
row5 -0.9407037 -1.918756 -1.439296  0.1485587 -1.0262549 1.2371888  0.8216104
           col8       col9      col10       col11      col12      col13
row1 -0.6933916 -0.3537638 -1.0163525 -1.58149080 -0.2354865 -1.0900605
row5  0.7805378  1.0598288 -0.7067889  0.02829377 -0.6812574 -0.5485674
          col14      col15       col16     col17      col18      col19
row1 -0.9505560  1.0198292 0.115714325 -1.385032  0.4924558  1.3953936
row5  0.8436112 -0.1098522 0.001295352  1.009541 -0.2874213 -0.3842981
          col20
row1 -1.1254064
row5 -0.5338079
> tmp[,c("col6","col20")]
           col6      col20
row1  0.9172779 -1.1254064
row2 -2.0977001  0.9700780
row3  0.1649011  0.1598387
row4  0.6879295 -0.9881472
row5  1.2371888 -0.5338079
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 0.9172779 -1.1254064
row5 1.2371888 -0.5338079
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1    col2    col3     col4     col5     col6     col7     col8
row1 50.19404 49.0059 49.2352 50.29598 50.91673 103.5188 49.79838 49.49928
         col9    col10    col11    col12   col13    col14   col15    col16
row1 49.04882 51.45427 49.93616 50.48074 50.6488 50.85146 50.6033 49.99897
        col17    col18    col19    col20
row1 50.29871 49.94646 50.37732 106.7114
> tmp[,"col10"]
        col10
row1 51.45427
row2 28.91751
row3 31.45855
row4 29.91916
row5 50.19878
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 50.19404 49.00590 49.23520 50.29598 50.91673 103.5188 49.79838 49.49928
row5 50.06704 51.35754 48.37686 48.52780 50.47629 105.2515 52.70603 50.94499
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.04882 51.45427 49.93616 50.48074 50.64880 50.85146 50.60330 49.99897
row5 49.53048 50.19878 50.96644 48.11005 50.65878 49.93158 49.11426 49.44456
        col17    col18    col19    col20
row1 50.29871 49.94646 50.37732 106.7114
row5 47.96663 50.64926 50.72901 104.3783
> tmp[,c("col6","col20")]
          col6     col20
row1 103.51883 106.71141
row2  76.74711  74.29888
row3  75.07153  73.87572
row4  72.96113  73.45984
row5 105.25153 104.37829
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 103.5188 106.7114
row5 105.2515 104.3783
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 103.5188 106.7114
row5 105.2515 104.3783
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -1.0557540
[2,]  0.6930734
[3,]  0.9971858
[4,]  1.0542243
[5,] -0.7868718
> tmp[,c("col17","col7")]
           col17       col7
[1,]  0.63251836  0.8732129
[2,] -0.05531944 -1.6732636
[3,] -0.83788442  1.2855121
[4,] -0.96696466 -1.8527690
[5,] -0.68870856 -0.8094612
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -2.0476832  0.4653766
[2,] -0.5322004 -1.5510197
[3,] -0.1488003 -1.9976169
[4,]  1.7338745 -1.2017770
[5,]  0.9726934 -0.8917268
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] -2.047683
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -2.0476832
[2,] -0.5322004
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
          [,1]       [,2]       [,3]     [,4]       [,5]      [,6]      [,7]
row3 0.1205118  2.1722353 -0.5163323 0.196234 -0.3751283  1.388835 0.6018009
row1 0.1825598 -0.0174407 -0.2834109 1.216846  1.1776577 -0.321555 1.3797987
           [,8]       [,9]      [,10]      [,11]      [,12]      [,13]
row3 -0.1613885  0.6627048 -0.6698244 -0.4078539 -0.2481883  0.1243984
row1  0.4418825 -0.7948700  0.8853778  0.4138059 -0.8866085 -1.0339262
         [,14]      [,15]      [,16]     [,17]      [,18]      [,19]     [,20]
row3 -1.471197 -0.7697593  0.8402127 1.1321819 -1.5908023 -0.4474951  1.638878
row1  2.321727 -1.1622494 -0.1483881 0.1594797  0.3733485 -2.6002976 -1.208111
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]    [,2]      [,3]      [,4]     [,5]       [,6]      [,7]
row2 -1.150166 -1.4407 0.3165323 -1.439007 -0.80853 0.07639089 -1.490548
          [,8]       [,9]     [,10]
row2 0.9244824 -0.1634364 -1.448039
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
            [,1]     [,2]      [,3]      [,4]     [,5]       [,6]     [,7]
row5 -0.08576345 1.981794 -1.129529 0.2716274 1.045022 0.05770107 2.808895
           [,8]       [,9]     [,10]     [,11]     [,12]      [,13]     [,14]
row5 -0.3320085 -0.9157615 0.2968891 -1.446072 0.3385609 -0.8994412 0.1771971
         [,15]     [,16]      [,17]    [,18]   [,19]    [,20]
row5 0.4965119 -1.160332 0.07488201 1.206097 1.26768 -1.50696
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x5a46dce74b00>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d2e126368" 
 [2] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d270d94596"
 [3] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d22c9ddc58"
 [4] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d2797540b0"
 [5] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d21b2f4b24"
 [6] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d2221acc32"
 [7] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d241b23703"
 [8] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d23f588674"
 [9] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d255cda893"
[10] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d24afb2a6c"
[11] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d2657be067"
[12] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d267bdd0ea"
[13] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d2fda1707" 
[14] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d278356a26"
[15] "/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BM3fc1d24ea82c0d"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x5a46de7bcd70>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x5a46de7bcd70>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x5a46de7bcd70>
> rowMedians(tmp)
  [1] -0.535368876  0.243194498 -0.011028199  0.563191783  0.267553839
  [6]  0.451191636  0.432421535 -0.039348145 -0.518993194 -0.178644392
 [11]  0.008352902 -0.294844939 -0.249000013  0.132621966  0.196232504
 [16]  0.292207498 -0.293019960 -0.508082546 -0.132062504 -0.220792354
 [21] -1.004221014  0.129821517  0.315136930 -0.006243691 -0.114920911
 [26]  0.398226497  0.134398822  0.149592209  0.731296736 -0.095769154
 [31]  0.100438459  0.577692748 -0.089959901  0.138099840  0.297622784
 [36]  0.402954322 -0.267293334 -0.116573502  0.101938674  0.222844130
 [41] -0.043183284  0.122677382  0.330550520  0.474269693 -0.038591288
 [46]  0.094853304 -0.291254394 -0.235943862  0.246205878 -0.008520212
 [51]  0.836243337  0.270450529 -0.392724829  0.534148092 -0.487012102
 [56] -0.614465755  0.502130001 -0.190627445 -0.609060358 -0.275134608
 [61] -0.139235100  0.154495869  0.420160072  0.436523230  0.363045298
 [66]  0.040714496  0.120199483  0.124183515 -0.122014141 -0.137601384
 [71] -0.169520424 -0.068096090  0.302884887 -0.319182461 -0.626099225
 [76] -0.113282010 -0.221309721 -0.208364743  0.296126321  0.223211835
 [81] -0.287137688 -0.109834543 -0.262244148  0.516745783  0.009656359
 [86] -0.445137363 -0.116848751  0.048501260  0.654283137  0.223027869
 [91]  0.093180115  0.108393558 -0.373707353  0.458535301 -0.403985292
 [96]  0.288284849 -0.302367202 -0.177947734 -0.268669287  0.212417356
[101] -0.558351036  0.023271772 -0.102854251  0.494505905 -0.190207254
[106] -0.236178499  0.591836893 -0.893401369 -0.368661633  0.602912556
[111]  0.461740528  0.296706814 -0.244687689 -0.015537552  0.713516142
[116]  0.136358207  0.542176274 -0.212190104  0.086479952  0.433140652
[121]  0.575022413  0.224904552  0.298641231  0.282164460 -0.456892423
[126] -0.252826591 -0.541595573 -0.440418564 -0.280501421 -0.169065430
[131]  0.633797799 -0.151334765  0.033256542  0.121095819 -0.550970238
[136] -0.051436178  0.042952369 -0.010252221  0.718262591  0.025469708
[141] -0.268477397 -0.142650815  0.593602820  0.279125462  0.127185116
[146]  0.066989193 -0.322625082  0.096345315 -0.012594243 -0.462974980
[151] -0.169048120 -0.036178000  0.145836641 -0.134388546  0.383027185
[156] -0.345823322  0.408340619  0.568344302 -0.186594502 -0.336616311
[161]  0.208239461 -0.278287438  0.058619074 -0.128575405  0.406986107
[166]  0.285776497 -0.247579959 -0.123993431 -0.262490096  0.128477075
[171] -0.041049847 -0.012404338  0.112446993 -0.397602405  0.008188418
[176] -0.589305391 -0.213320254 -0.666031864 -0.117340399  0.345773396
[181] -0.653212330  0.095398246 -0.149188569  0.300408018 -0.202623628
[186]  0.320072585 -0.138405679  0.007409804  0.275022415  0.218282363
[191]  0.654214285 -0.522755901  0.012133232  0.016903902  0.123695635
[196] -0.038515943  0.204417529 -0.090118041 -0.200892452  0.631149562
[201] -0.674421599  0.142900753 -0.130745385  0.008313109 -0.067201988
[206]  0.038920226 -0.531976426  0.340429536  0.004173015  0.140126622
[211] -0.170141874  0.030683386 -0.014878579  0.153388880 -0.560214549
[216] -0.465160479  0.027841028  0.301708821  0.379388134 -0.374725748
[221] -0.221092998 -0.259968236  0.430404625  0.001269455 -0.045785570
[226] -0.024041765 -0.625715933 -0.424245268 -0.145701905  0.056272545
> 
> proc.time()
   user  system elapsed 
  2.042   1.086   3.300 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5fbee17b0c80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5fbee17b0c80>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5fbee17b0c80>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x5fbee17b0c80>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x5fbee1447a00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee1447a00>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x5fbee1447a00>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee1447a00>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5fbee1447a00>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee1512660>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee1512660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5fbee1512660>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5fbee1512660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5fbee1512660>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x5fbee1512660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5fbee1512660>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x5fbee1512660>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x5fbee1512660>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee1a343d0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x5fbee1a343d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee1a343d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee1a343d0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile3fc3cd19f8ee25" "BufferedMatrixFile3fc3cd3504f6d3"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile3fc3cd19f8ee25" "BufferedMatrixFile3fc3cd3504f6d3"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee3b91460>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee3b91460>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5fbee3b91460>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x5fbee3b91460>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x5fbee3b91460>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x5fbee3b91460>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee31c8e60>
> .Call("R_bm_AddColumn",P)
<pointer: 0x5fbee31c8e60>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x5fbee31c8e60>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x5fbee31c8e60>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5fbee203b710>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x5fbee203b710>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.306   0.039   0.357 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.396   0.048   0.503 

Example timings