Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-09-27 12:04 -0400 (Sat, 27 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4832
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4620
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4565
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4563
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 253/2334HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.73.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-09-26 13:45 -0400 (Fri, 26 Sep 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: 0147962
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on lconway

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.73.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
StartedAt: 2025-09-26 19:53:37 -0400 (Fri, 26 Sep 2025)
EndedAt: 2025-09-26 19:54:33 -0400 (Fri, 26 Sep 2025)
EllapsedTime: 55.5 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.73.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.73.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.73.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.348   0.149   0.508 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480848 25.7    1056620 56.5         NA   634462 33.9
Vcells 891079  6.8    8388608 64.0      98304  2108714 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Sep 26 19:54:03 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Sep 26 19:54:03 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600003e04000>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Sep 26 19:54:09 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Sep 26 19:54:11 2025"
> 
> ColMode(tmp2)
<pointer: 0x600003e04000>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]        [,2]       [,3]         [,4]
[1,] 98.6612586  0.72452831 -0.2155888 -0.010182109
[2,]  1.6186509 -0.04388051  0.8425938  0.344230427
[3,] -0.3941643  0.50034250  1.1275356  0.072069234
[4,] -2.0519922  0.10197282  1.0264319  0.005424855
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]       [,2]      [,3]        [,4]
[1,] 98.6612586 0.72452831 0.2155888 0.010182109
[2,]  1.6186509 0.04388051 0.8425938 0.344230427
[3,]  0.3941643 0.50034250 1.1275356 0.072069234
[4,]  2.0519922 0.10197282 1.0264319 0.005424855
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]       [,4]
[1,] 9.9328374 0.8511923 0.4643154 0.10090644
[2,] 1.2722621 0.2094767 0.9179291 0.58671154
[3,] 0.6278251 0.7073489 1.0618548 0.26845714
[4,] 1.4324776 0.3193318 1.0131297 0.07365361
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 222.98963 34.23645 29.85874 26.01925
[2,]  39.34127 27.13865 35.02188 31.21135
[3,]  31.67241 32.57383 36.74608 27.75664
[4,]  41.37677 28.29529 36.15773 25.74196
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600003e0c000>
> exp(tmp5)
<pointer: 0x600003e0c000>
> log(tmp5,2)
<pointer: 0x600003e0c000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 464.1237
> Min(tmp5)
[1] 53.03557
> mean(tmp5)
[1] 72.34485
> Sum(tmp5)
[1] 14468.97
> Var(tmp5)
[1] 853.2468
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 87.02011 69.35122 67.51964 69.60936 73.04294 70.14159 70.54255 71.77213
 [9] 69.88279 74.56618
> rowSums(tmp5)
 [1] 1740.402 1387.024 1350.393 1392.187 1460.859 1402.832 1410.851 1435.443
 [9] 1397.656 1491.324
> rowVars(tmp5)
 [1] 7938.39681   77.54905   54.61750   65.26426   66.26094   78.97372
 [7]  101.58235   94.09013   70.44737   99.97723
> rowSd(tmp5)
 [1] 89.097681  8.806194  7.390366  8.078630  8.140082  8.886716 10.078807
 [8]  9.700007  8.393293  9.998861
> rowMax(tmp5)
 [1] 464.12370  93.33025  79.09932  86.12032  88.40586  83.43209  93.79037
 [8]  92.66305  82.93640  93.91095
> rowMin(tmp5)
 [1] 54.15565 55.64857 53.03557 53.57852 57.28081 55.78283 57.69508 56.02282
 [9] 54.23220 57.22792
> 
> colMeans(tmp5)
 [1] 112.06057  68.16406  71.49770  66.08074  71.82399  69.28556  69.43798
 [8]  76.57115  64.83420  69.57554  73.80248  69.36829  72.02344  65.57036
[15]  71.59495  69.84237  70.19309  72.69639  71.72222  70.75196
> colSums(tmp5)
 [1] 1120.6057  681.6406  714.9770  660.8074  718.2399  692.8556  694.3798
 [8]  765.7115  648.3420  695.7554  738.0248  693.6829  720.2344  655.7036
[15]  715.9495  698.4237  701.9309  726.9639  717.2222  707.5196
> colVars(tmp5)
 [1] 15379.17687    82.27991    35.52140    88.93628    82.04406    53.15677
 [7]    82.31174    55.11838    60.29101    67.24682   154.66865    45.83955
[13]    78.46499    92.47877   133.63176   109.30509    86.72041    77.50026
[19]    35.67347    58.89137
> colSd(tmp5)
 [1] 124.012809   9.070827   5.959983   9.430603   9.057818   7.290869
 [7]   9.072582   7.424176   7.764728   8.200416  12.436585   6.770491
[13]   8.858046   9.616588  11.559920  10.454907   9.312380   8.803423
[19]   5.972727   7.674071
> colMax(tmp5)
 [1] 464.12370  80.56029  78.65374  78.03921  83.38343  82.93640  83.16618
 [8]  93.33025  83.15474  81.27995  93.91095  79.86352  83.91482  85.78991
[15]  92.66305  86.12092  88.84358  88.40586  81.93699  82.55805
> colMin(tmp5)
 [1] 56.77548 56.48554 62.14706 53.57852 57.51811 61.14124 58.39960 69.72136
 [9] 55.64857 56.02282 61.22857 60.28786 57.28081 55.78283 54.23220 57.50357
[17] 53.03557 63.44257 62.44978 59.45534
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 87.02011       NA 67.51964 69.60936 73.04294 70.14159 70.54255 71.77213
 [9] 69.88279 74.56618
> rowSums(tmp5)
 [1] 1740.402       NA 1350.393 1392.187 1460.859 1402.832 1410.851 1435.443
 [9] 1397.656 1491.324
> rowVars(tmp5)
 [1] 7938.39681   80.67568   54.61750   65.26426   66.26094   78.97372
 [7]  101.58235   94.09013   70.44737   99.97723
> rowSd(tmp5)
 [1] 89.097681  8.981964  7.390366  8.078630  8.140082  8.886716 10.078807
 [8]  9.700007  8.393293  9.998861
> rowMax(tmp5)
 [1] 464.12370        NA  79.09932  86.12032  88.40586  83.43209  93.79037
 [8]  92.66305  82.93640  93.91095
> rowMin(tmp5)
 [1] 54.15565       NA 53.03557 53.57852 57.28081 55.78283 57.69508 56.02282
 [9] 54.23220 57.22792
> 
> colMeans(tmp5)
 [1] 112.06057  68.16406  71.49770  66.08074  71.82399  69.28556  69.43798
 [8]  76.57115  64.83420  69.57554        NA  69.36829  72.02344  65.57036
[15]  71.59495  69.84237  70.19309  72.69639  71.72222  70.75196
> colSums(tmp5)
 [1] 1120.6057  681.6406  714.9770  660.8074  718.2399  692.8556  694.3798
 [8]  765.7115  648.3420  695.7554        NA  693.6829  720.2344  655.7036
[15]  715.9495  698.4237  701.9309  726.9639  717.2222  707.5196
> colVars(tmp5)
 [1] 15379.17687    82.27991    35.52140    88.93628    82.04406    53.15677
 [7]    82.31174    55.11838    60.29101    67.24682          NA    45.83955
[13]    78.46499    92.47877   133.63176   109.30509    86.72041    77.50026
[19]    35.67347    58.89137
> colSd(tmp5)
 [1] 124.012809   9.070827   5.959983   9.430603   9.057818   7.290869
 [7]   9.072582   7.424176   7.764728   8.200416         NA   6.770491
[13]   8.858046   9.616588  11.559920  10.454907   9.312380   8.803423
[19]   5.972727   7.674071
> colMax(tmp5)
 [1] 464.12370  80.56029  78.65374  78.03921  83.38343  82.93640  83.16618
 [8]  93.33025  83.15474  81.27995        NA  79.86352  83.91482  85.78991
[15]  92.66305  86.12092  88.84358  88.40586  81.93699  82.55805
> colMin(tmp5)
 [1] 56.77548 56.48554 62.14706 53.57852 57.51811 61.14124 58.39960 69.72136
 [9] 55.64857 56.02282       NA 60.28786 57.28081 55.78283 54.23220 57.50357
[17] 53.03557 63.44257 62.44978 59.45534
> 
> Max(tmp5,na.rm=TRUE)
[1] 464.1237
> Min(tmp5,na.rm=TRUE)
[1] 53.03557
> mean(tmp5,na.rm=TRUE)
[1] 72.33731
> Sum(tmp5,na.rm=TRUE)
[1] 14395.12
> Var(tmp5,na.rm=TRUE)
[1] 857.5447
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 87.02011 69.11463 67.51964 69.60936 73.04294 70.14159 70.54255 71.77213
 [9] 69.88279 74.56618
> rowSums(tmp5,na.rm=TRUE)
 [1] 1740.402 1313.178 1350.393 1392.187 1460.859 1402.832 1410.851 1435.443
 [9] 1397.656 1491.324
> rowVars(tmp5,na.rm=TRUE)
 [1] 7938.39681   80.67568   54.61750   65.26426   66.26094   78.97372
 [7]  101.58235   94.09013   70.44737   99.97723
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.097681  8.981964  7.390366  8.078630  8.140082  8.886716 10.078807
 [8]  9.700007  8.393293  9.998861
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.12370  93.33025  79.09932  86.12032  88.40586  83.43209  93.79037
 [8]  92.66305  82.93640  93.91095
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.15565 55.64857 53.03557 53.57852 57.28081 55.78283 57.69508 56.02282
 [9] 54.23220 57.22792
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.06057  68.16406  71.49770  66.08074  71.82399  69.28556  69.43798
 [8]  76.57115  64.83420  69.57554  73.79761  69.36829  72.02344  65.57036
[15]  71.59495  69.84237  70.19309  72.69639  71.72222  70.75196
> colSums(tmp5,na.rm=TRUE)
 [1] 1120.6057  681.6406  714.9770  660.8074  718.2399  692.8556  694.3798
 [8]  765.7115  648.3420  695.7554  664.1785  693.6829  720.2344  655.7036
[15]  715.9495  698.4237  701.9309  726.9639  717.2222  707.5196
> colVars(tmp5,na.rm=TRUE)
 [1] 15379.17687    82.27991    35.52140    88.93628    82.04406    53.15677
 [7]    82.31174    55.11838    60.29101    67.24682   174.00196    45.83955
[13]    78.46499    92.47877   133.63176   109.30509    86.72041    77.50026
[19]    35.67347    58.89137
> colSd(tmp5,na.rm=TRUE)
 [1] 124.012809   9.070827   5.959983   9.430603   9.057818   7.290869
 [7]   9.072582   7.424176   7.764728   8.200416  13.190980   6.770491
[13]   8.858046   9.616588  11.559920  10.454907   9.312380   8.803423
[19]   5.972727   7.674071
> colMax(tmp5,na.rm=TRUE)
 [1] 464.12370  80.56029  78.65374  78.03921  83.38343  82.93640  83.16618
 [8]  93.33025  83.15474  81.27995  93.91095  79.86352  83.91482  85.78991
[15]  92.66305  86.12092  88.84358  88.40586  81.93699  82.55805
> colMin(tmp5,na.rm=TRUE)
 [1] 56.77548 56.48554 62.14706 53.57852 57.51811 61.14124 58.39960 69.72136
 [9] 55.64857 56.02282 61.22857 60.28786 57.28081 55.78283 54.23220 57.50357
[17] 53.03557 63.44257 62.44978 59.45534
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 87.02011      NaN 67.51964 69.60936 73.04294 70.14159 70.54255 71.77213
 [9] 69.88279 74.56618
> rowSums(tmp5,na.rm=TRUE)
 [1] 1740.402    0.000 1350.393 1392.187 1460.859 1402.832 1410.851 1435.443
 [9] 1397.656 1491.324
> rowVars(tmp5,na.rm=TRUE)
 [1] 7938.39681         NA   54.61750   65.26426   66.26094   78.97372
 [7]  101.58235   94.09013   70.44737   99.97723
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.097681        NA  7.390366  8.078630  8.140082  8.886716 10.078807
 [8]  9.700007  8.393293  9.998861
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.12370        NA  79.09932  86.12032  88.40586  83.43209  93.79037
 [8]  92.66305  82.93640  93.91095
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.15565       NA 53.03557 53.57852 57.28081 55.78283 57.69508 56.02282
 [9] 54.23220 57.22792
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.41356  69.46167  71.34262  66.20501  72.09864  69.25935  70.57397
 [8]  74.70903  65.85483  70.53450       NaN  68.69365  72.75268  65.56445
[15]  72.06484  69.00282  70.51635  73.40478  71.70761  70.59162
> colSums(tmp5,na.rm=TRUE)
 [1] 1038.7220  625.1550  642.0836  595.8451  648.8878  623.3341  635.1658
 [8]  672.3813  592.6935  634.8105    0.0000  618.2428  654.7741  590.0800
[15]  648.5836  621.0254  634.6471  660.6430  645.3685  635.3246
> colVars(tmp5,na.rm=TRUE)
 [1] 17175.09573    73.62215    39.69100    99.87959    91.45093    59.79364
 [7]    78.08275    22.99884    56.10852    65.30720          NA    46.44908
[13]    82.29049   104.03823   147.85178   115.03874    96.38486    81.54233
[19]    40.13025    65.96357
> colSd(tmp5,na.rm=TRUE)
 [1] 131.053789   8.580335   6.300079   9.993978   9.562998   7.732634
 [7]   8.836445   4.795710   7.490562   8.081287         NA   6.815356
[13]   9.071410  10.199913  12.159432  10.725611   9.817579   9.030079
[19]   6.334844   8.121796
> colMax(tmp5,na.rm=TRUE)
 [1] 464.12370  80.56029  78.65374  78.03921  83.38343  82.93640  83.16618
 [8]  82.91131  83.15474  81.27995      -Inf  79.86352  83.91482  85.78991
[15]  92.66305  86.12092  88.84358  88.40586  81.93699  82.55805
> colMin(tmp5,na.rm=TRUE)
 [1] 56.77548 57.69508 62.14706 53.57852 57.51811 61.14124 58.39960 69.72136
 [9] 57.22792 56.02282      Inf 60.28786 57.28081 55.78283 54.23220 57.50357
[17] 53.03557 63.44257 62.44978 59.45534
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 226.4276 210.8209 212.1187 222.4442 233.9505 203.8541 220.3314 163.2937
 [9] 371.0520 201.5867
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 226.4276 210.8209 212.1187 222.4442 233.9505 203.8541 220.3314 163.2937
 [9] 371.0520 201.5867
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  0.000000e+00  0.000000e+00 -2.842171e-14 -2.842171e-14  2.842171e-14
 [6] -1.136868e-13  0.000000e+00 -1.989520e-13  6.394885e-14  1.705303e-13
[11] -1.136868e-13  8.526513e-14  0.000000e+00 -7.105427e-14  5.684342e-14
[16] -2.842171e-14  0.000000e+00  0.000000e+00  1.421085e-14  8.526513e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
7   15 
7   6 
9   17 
5   5 
1   10 
4   3 
1   1 
8   7 
1   18 
3   5 
6   14 
8   19 
10   5 
5   1 
4   20 
10   19 
8   4 
2   13 
3   19 
3   11 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.085132
> Min(tmp)
[1] -1.887027
> mean(tmp)
[1] -0.1441706
> Sum(tmp)
[1] -14.41706
> Var(tmp)
[1] 0.8630019
> 
> rowMeans(tmp)
[1] -0.1441706
> rowSums(tmp)
[1] -14.41706
> rowVars(tmp)
[1] 0.8630019
> rowSd(tmp)
[1] 0.9289789
> rowMax(tmp)
[1] 2.085132
> rowMin(tmp)
[1] -1.887027
> 
> colMeans(tmp)
  [1] -0.810772707 -1.659092599 -1.168402391  1.328422101  0.242161573
  [6]  0.307079334 -1.462974340 -1.291833453  1.362630537  0.471677217
 [11] -1.840931447  0.496138504  0.041641161 -0.015207261  0.355979912
 [16] -0.238136493 -1.016859701 -1.019801577 -0.512480739 -1.887027067
 [21] -0.968778284 -1.846716705 -1.007907945 -0.125875490  1.291469868
 [26] -1.155570573 -0.174704000 -0.802847032 -0.374467574 -0.038835667
 [31] -0.522697433  0.167407682  1.916282341  1.586875606 -0.432589742
 [36]  0.875852775 -0.231284351 -0.495215178  1.955764080 -1.454267569
 [41]  0.108396440 -0.974535209  0.136515031 -0.103772206  1.053107181
 [46]  0.961143802 -1.222398906  0.293620896  0.934717297  1.279491138
 [51]  0.988130654  0.244491782  0.394198520 -0.238434297 -1.011617426
 [56]  0.378727795 -1.397854367  0.106917102  2.085131716 -1.282149307
 [61] -0.866825127 -1.761870326  0.338742036 -0.451871790 -0.197907716
 [66] -1.048361548  0.949595447  0.431971431 -0.704433232 -0.269797119
 [71] -0.022071503 -0.421938791  0.246902556  0.419966764 -0.232786946
 [76] -0.662915651 -1.670225963  1.023630075  0.014353053  1.181528659
 [81] -0.678464938 -1.274272704  0.432950962  0.554615773  0.644670785
 [86] -0.454874911 -0.104305866 -0.008463068 -1.244500721 -0.086509934
 [91]  1.263685318 -1.229959609  0.094286358  0.293749318 -0.230988175
 [96]  0.758894761 -0.888013133 -0.515490020 -1.279083236  0.661391411
> colSums(tmp)
  [1] -0.810772707 -1.659092599 -1.168402391  1.328422101  0.242161573
  [6]  0.307079334 -1.462974340 -1.291833453  1.362630537  0.471677217
 [11] -1.840931447  0.496138504  0.041641161 -0.015207261  0.355979912
 [16] -0.238136493 -1.016859701 -1.019801577 -0.512480739 -1.887027067
 [21] -0.968778284 -1.846716705 -1.007907945 -0.125875490  1.291469868
 [26] -1.155570573 -0.174704000 -0.802847032 -0.374467574 -0.038835667
 [31] -0.522697433  0.167407682  1.916282341  1.586875606 -0.432589742
 [36]  0.875852775 -0.231284351 -0.495215178  1.955764080 -1.454267569
 [41]  0.108396440 -0.974535209  0.136515031 -0.103772206  1.053107181
 [46]  0.961143802 -1.222398906  0.293620896  0.934717297  1.279491138
 [51]  0.988130654  0.244491782  0.394198520 -0.238434297 -1.011617426
 [56]  0.378727795 -1.397854367  0.106917102  2.085131716 -1.282149307
 [61] -0.866825127 -1.761870326  0.338742036 -0.451871790 -0.197907716
 [66] -1.048361548  0.949595447  0.431971431 -0.704433232 -0.269797119
 [71] -0.022071503 -0.421938791  0.246902556  0.419966764 -0.232786946
 [76] -0.662915651 -1.670225963  1.023630075  0.014353053  1.181528659
 [81] -0.678464938 -1.274272704  0.432950962  0.554615773  0.644670785
 [86] -0.454874911 -0.104305866 -0.008463068 -1.244500721 -0.086509934
 [91]  1.263685318 -1.229959609  0.094286358  0.293749318 -0.230988175
 [96]  0.758894761 -0.888013133 -0.515490020 -1.279083236  0.661391411
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.810772707 -1.659092599 -1.168402391  1.328422101  0.242161573
  [6]  0.307079334 -1.462974340 -1.291833453  1.362630537  0.471677217
 [11] -1.840931447  0.496138504  0.041641161 -0.015207261  0.355979912
 [16] -0.238136493 -1.016859701 -1.019801577 -0.512480739 -1.887027067
 [21] -0.968778284 -1.846716705 -1.007907945 -0.125875490  1.291469868
 [26] -1.155570573 -0.174704000 -0.802847032 -0.374467574 -0.038835667
 [31] -0.522697433  0.167407682  1.916282341  1.586875606 -0.432589742
 [36]  0.875852775 -0.231284351 -0.495215178  1.955764080 -1.454267569
 [41]  0.108396440 -0.974535209  0.136515031 -0.103772206  1.053107181
 [46]  0.961143802 -1.222398906  0.293620896  0.934717297  1.279491138
 [51]  0.988130654  0.244491782  0.394198520 -0.238434297 -1.011617426
 [56]  0.378727795 -1.397854367  0.106917102  2.085131716 -1.282149307
 [61] -0.866825127 -1.761870326  0.338742036 -0.451871790 -0.197907716
 [66] -1.048361548  0.949595447  0.431971431 -0.704433232 -0.269797119
 [71] -0.022071503 -0.421938791  0.246902556  0.419966764 -0.232786946
 [76] -0.662915651 -1.670225963  1.023630075  0.014353053  1.181528659
 [81] -0.678464938 -1.274272704  0.432950962  0.554615773  0.644670785
 [86] -0.454874911 -0.104305866 -0.008463068 -1.244500721 -0.086509934
 [91]  1.263685318 -1.229959609  0.094286358  0.293749318 -0.230988175
 [96]  0.758894761 -0.888013133 -0.515490020 -1.279083236  0.661391411
> colMin(tmp)
  [1] -0.810772707 -1.659092599 -1.168402391  1.328422101  0.242161573
  [6]  0.307079334 -1.462974340 -1.291833453  1.362630537  0.471677217
 [11] -1.840931447  0.496138504  0.041641161 -0.015207261  0.355979912
 [16] -0.238136493 -1.016859701 -1.019801577 -0.512480739 -1.887027067
 [21] -0.968778284 -1.846716705 -1.007907945 -0.125875490  1.291469868
 [26] -1.155570573 -0.174704000 -0.802847032 -0.374467574 -0.038835667
 [31] -0.522697433  0.167407682  1.916282341  1.586875606 -0.432589742
 [36]  0.875852775 -0.231284351 -0.495215178  1.955764080 -1.454267569
 [41]  0.108396440 -0.974535209  0.136515031 -0.103772206  1.053107181
 [46]  0.961143802 -1.222398906  0.293620896  0.934717297  1.279491138
 [51]  0.988130654  0.244491782  0.394198520 -0.238434297 -1.011617426
 [56]  0.378727795 -1.397854367  0.106917102  2.085131716 -1.282149307
 [61] -0.866825127 -1.761870326  0.338742036 -0.451871790 -0.197907716
 [66] -1.048361548  0.949595447  0.431971431 -0.704433232 -0.269797119
 [71] -0.022071503 -0.421938791  0.246902556  0.419966764 -0.232786946
 [76] -0.662915651 -1.670225963  1.023630075  0.014353053  1.181528659
 [81] -0.678464938 -1.274272704  0.432950962  0.554615773  0.644670785
 [86] -0.454874911 -0.104305866 -0.008463068 -1.244500721 -0.086509934
 [91]  1.263685318 -1.229959609  0.094286358  0.293749318 -0.230988175
 [96]  0.758894761 -0.888013133 -0.515490020 -1.279083236  0.661391411
> colMedians(tmp)
  [1] -0.810772707 -1.659092599 -1.168402391  1.328422101  0.242161573
  [6]  0.307079334 -1.462974340 -1.291833453  1.362630537  0.471677217
 [11] -1.840931447  0.496138504  0.041641161 -0.015207261  0.355979912
 [16] -0.238136493 -1.016859701 -1.019801577 -0.512480739 -1.887027067
 [21] -0.968778284 -1.846716705 -1.007907945 -0.125875490  1.291469868
 [26] -1.155570573 -0.174704000 -0.802847032 -0.374467574 -0.038835667
 [31] -0.522697433  0.167407682  1.916282341  1.586875606 -0.432589742
 [36]  0.875852775 -0.231284351 -0.495215178  1.955764080 -1.454267569
 [41]  0.108396440 -0.974535209  0.136515031 -0.103772206  1.053107181
 [46]  0.961143802 -1.222398906  0.293620896  0.934717297  1.279491138
 [51]  0.988130654  0.244491782  0.394198520 -0.238434297 -1.011617426
 [56]  0.378727795 -1.397854367  0.106917102  2.085131716 -1.282149307
 [61] -0.866825127 -1.761870326  0.338742036 -0.451871790 -0.197907716
 [66] -1.048361548  0.949595447  0.431971431 -0.704433232 -0.269797119
 [71] -0.022071503 -0.421938791  0.246902556  0.419966764 -0.232786946
 [76] -0.662915651 -1.670225963  1.023630075  0.014353053  1.181528659
 [81] -0.678464938 -1.274272704  0.432950962  0.554615773  0.644670785
 [86] -0.454874911 -0.104305866 -0.008463068 -1.244500721 -0.086509934
 [91]  1.263685318 -1.229959609  0.094286358  0.293749318 -0.230988175
 [96]  0.758894761 -0.888013133 -0.515490020 -1.279083236  0.661391411
> colRanges(tmp)
           [,1]      [,2]      [,3]     [,4]      [,5]      [,6]      [,7]
[1,] -0.8107727 -1.659093 -1.168402 1.328422 0.2421616 0.3070793 -1.462974
[2,] -0.8107727 -1.659093 -1.168402 1.328422 0.2421616 0.3070793 -1.462974
          [,8]     [,9]     [,10]     [,11]     [,12]      [,13]       [,14]
[1,] -1.291833 1.362631 0.4716772 -1.840931 0.4961385 0.04164116 -0.01520726
[2,] -1.291833 1.362631 0.4716772 -1.840931 0.4961385 0.04164116 -0.01520726
         [,15]      [,16]    [,17]     [,18]      [,19]     [,20]      [,21]
[1,] 0.3559799 -0.2381365 -1.01686 -1.019802 -0.5124807 -1.887027 -0.9687783
[2,] 0.3559799 -0.2381365 -1.01686 -1.019802 -0.5124807 -1.887027 -0.9687783
         [,22]     [,23]      [,24]   [,25]     [,26]     [,27]     [,28]
[1,] -1.846717 -1.007908 -0.1258755 1.29147 -1.155571 -0.174704 -0.802847
[2,] -1.846717 -1.007908 -0.1258755 1.29147 -1.155571 -0.174704 -0.802847
          [,29]       [,30]      [,31]     [,32]    [,33]    [,34]      [,35]
[1,] -0.3744676 -0.03883567 -0.5226974 0.1674077 1.916282 1.586876 -0.4325897
[2,] -0.3744676 -0.03883567 -0.5226974 0.1674077 1.916282 1.586876 -0.4325897
         [,36]      [,37]      [,38]    [,39]     [,40]     [,41]      [,42]
[1,] 0.8758528 -0.2312844 -0.4952152 1.955764 -1.454268 0.1083964 -0.9745352
[2,] 0.8758528 -0.2312844 -0.4952152 1.955764 -1.454268 0.1083964 -0.9745352
        [,43]      [,44]    [,45]     [,46]     [,47]     [,48]     [,49]
[1,] 0.136515 -0.1037722 1.053107 0.9611438 -1.222399 0.2936209 0.9347173
[2,] 0.136515 -0.1037722 1.053107 0.9611438 -1.222399 0.2936209 0.9347173
        [,50]     [,51]     [,52]     [,53]      [,54]     [,55]     [,56]
[1,] 1.279491 0.9881307 0.2444918 0.3941985 -0.2384343 -1.011617 0.3787278
[2,] 1.279491 0.9881307 0.2444918 0.3941985 -0.2384343 -1.011617 0.3787278
         [,57]     [,58]    [,59]     [,60]      [,61]    [,62]    [,63]
[1,] -1.397854 0.1069171 2.085132 -1.282149 -0.8668251 -1.76187 0.338742
[2,] -1.397854 0.1069171 2.085132 -1.282149 -0.8668251 -1.76187 0.338742
          [,64]      [,65]     [,66]     [,67]     [,68]      [,69]      [,70]
[1,] -0.4518718 -0.1979077 -1.048362 0.9495954 0.4319714 -0.7044332 -0.2697971
[2,] -0.4518718 -0.1979077 -1.048362 0.9495954 0.4319714 -0.7044332 -0.2697971
          [,71]      [,72]     [,73]     [,74]      [,75]      [,76]     [,77]
[1,] -0.0220715 -0.4219388 0.2469026 0.4199668 -0.2327869 -0.6629157 -1.670226
[2,] -0.0220715 -0.4219388 0.2469026 0.4199668 -0.2327869 -0.6629157 -1.670226
       [,78]      [,79]    [,80]      [,81]     [,82]    [,83]     [,84]
[1,] 1.02363 0.01435305 1.181529 -0.6784649 -1.274273 0.432951 0.5546158
[2,] 1.02363 0.01435305 1.181529 -0.6784649 -1.274273 0.432951 0.5546158
         [,85]      [,86]      [,87]        [,88]     [,89]       [,90]
[1,] 0.6446708 -0.4548749 -0.1043059 -0.008463068 -1.244501 -0.08650993
[2,] 0.6446708 -0.4548749 -0.1043059 -0.008463068 -1.244501 -0.08650993
        [,91]    [,92]      [,93]     [,94]      [,95]     [,96]      [,97]
[1,] 1.263685 -1.22996 0.09428636 0.2937493 -0.2309882 0.7588948 -0.8880131
[2,] 1.263685 -1.22996 0.09428636 0.2937493 -0.2309882 0.7588948 -0.8880131
        [,98]     [,99]    [,100]
[1,] -0.51549 -1.279083 0.6613914
[2,] -0.51549 -1.279083 0.6613914
> 
> 
> Max(tmp2)
[1] 2.197331
> Min(tmp2)
[1] -2.563855
> mean(tmp2)
[1] -0.1829726
> Sum(tmp2)
[1] -18.29726
> Var(tmp2)
[1] 0.9849666
> 
> rowMeans(tmp2)
  [1] -1.50073555 -0.75024647 -0.96407867 -1.13180526 -0.18961174 -0.98491001
  [7]  0.09097498 -0.74446726 -0.14641384  0.76026464 -0.63558439 -0.11989931
 [13] -0.74404392 -0.44715962  0.34572140 -1.41345871 -0.99453727  0.66528502
 [19] -1.81791292  0.36377045 -0.95487237 -0.94334217  0.31541278 -0.48513743
 [25] -0.14305862 -0.54582211  1.29508461  0.31616953 -1.02975488  0.25491270
 [31] -0.76179824 -2.56385544  0.55496538 -0.20941187  0.72805827  0.06785496
 [37] -0.17417349  0.13313894  1.01734330  0.78421503 -1.61792213  0.23264199
 [43] -1.44880103 -1.13056717  2.19733142 -0.10420106  1.08698210 -2.23915998
 [49] -0.16944706 -1.39870199  0.59484900 -1.97624534 -0.08928817  1.73165282
 [55]  1.02959669 -0.74899652  0.69330085 -0.60699981 -0.04390492  0.33304560
 [61] -0.93983430 -1.88776042  2.11371935 -0.28507915 -1.00155022 -0.43900915
 [67]  2.11449677 -0.50175874 -0.35632703  0.50633665 -2.10729377  0.96911909
 [73]  1.25473393 -0.24088130  0.93964992  0.38753290 -0.76940387 -1.29053833
 [79] -0.20417289  0.79077606 -0.60228343 -1.17043905  1.34211598  0.43189344
 [85]  0.06402687 -0.43721370 -0.60293784 -0.12661636 -1.23886562  2.03605797
 [91]  0.46501516 -0.14192201 -1.35567834 -0.06159583  0.73429994  0.53050901
 [97] -1.13371261 -0.41592990  0.92181327 -0.21080287
> rowSums(tmp2)
  [1] -1.50073555 -0.75024647 -0.96407867 -1.13180526 -0.18961174 -0.98491001
  [7]  0.09097498 -0.74446726 -0.14641384  0.76026464 -0.63558439 -0.11989931
 [13] -0.74404392 -0.44715962  0.34572140 -1.41345871 -0.99453727  0.66528502
 [19] -1.81791292  0.36377045 -0.95487237 -0.94334217  0.31541278 -0.48513743
 [25] -0.14305862 -0.54582211  1.29508461  0.31616953 -1.02975488  0.25491270
 [31] -0.76179824 -2.56385544  0.55496538 -0.20941187  0.72805827  0.06785496
 [37] -0.17417349  0.13313894  1.01734330  0.78421503 -1.61792213  0.23264199
 [43] -1.44880103 -1.13056717  2.19733142 -0.10420106  1.08698210 -2.23915998
 [49] -0.16944706 -1.39870199  0.59484900 -1.97624534 -0.08928817  1.73165282
 [55]  1.02959669 -0.74899652  0.69330085 -0.60699981 -0.04390492  0.33304560
 [61] -0.93983430 -1.88776042  2.11371935 -0.28507915 -1.00155022 -0.43900915
 [67]  2.11449677 -0.50175874 -0.35632703  0.50633665 -2.10729377  0.96911909
 [73]  1.25473393 -0.24088130  0.93964992  0.38753290 -0.76940387 -1.29053833
 [79] -0.20417289  0.79077606 -0.60228343 -1.17043905  1.34211598  0.43189344
 [85]  0.06402687 -0.43721370 -0.60293784 -0.12661636 -1.23886562  2.03605797
 [91]  0.46501516 -0.14192201 -1.35567834 -0.06159583  0.73429994  0.53050901
 [97] -1.13371261 -0.41592990  0.92181327 -0.21080287
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -1.50073555 -0.75024647 -0.96407867 -1.13180526 -0.18961174 -0.98491001
  [7]  0.09097498 -0.74446726 -0.14641384  0.76026464 -0.63558439 -0.11989931
 [13] -0.74404392 -0.44715962  0.34572140 -1.41345871 -0.99453727  0.66528502
 [19] -1.81791292  0.36377045 -0.95487237 -0.94334217  0.31541278 -0.48513743
 [25] -0.14305862 -0.54582211  1.29508461  0.31616953 -1.02975488  0.25491270
 [31] -0.76179824 -2.56385544  0.55496538 -0.20941187  0.72805827  0.06785496
 [37] -0.17417349  0.13313894  1.01734330  0.78421503 -1.61792213  0.23264199
 [43] -1.44880103 -1.13056717  2.19733142 -0.10420106  1.08698210 -2.23915998
 [49] -0.16944706 -1.39870199  0.59484900 -1.97624534 -0.08928817  1.73165282
 [55]  1.02959669 -0.74899652  0.69330085 -0.60699981 -0.04390492  0.33304560
 [61] -0.93983430 -1.88776042  2.11371935 -0.28507915 -1.00155022 -0.43900915
 [67]  2.11449677 -0.50175874 -0.35632703  0.50633665 -2.10729377  0.96911909
 [73]  1.25473393 -0.24088130  0.93964992  0.38753290 -0.76940387 -1.29053833
 [79] -0.20417289  0.79077606 -0.60228343 -1.17043905  1.34211598  0.43189344
 [85]  0.06402687 -0.43721370 -0.60293784 -0.12661636 -1.23886562  2.03605797
 [91]  0.46501516 -0.14192201 -1.35567834 -0.06159583  0.73429994  0.53050901
 [97] -1.13371261 -0.41592990  0.92181327 -0.21080287
> rowMin(tmp2)
  [1] -1.50073555 -0.75024647 -0.96407867 -1.13180526 -0.18961174 -0.98491001
  [7]  0.09097498 -0.74446726 -0.14641384  0.76026464 -0.63558439 -0.11989931
 [13] -0.74404392 -0.44715962  0.34572140 -1.41345871 -0.99453727  0.66528502
 [19] -1.81791292  0.36377045 -0.95487237 -0.94334217  0.31541278 -0.48513743
 [25] -0.14305862 -0.54582211  1.29508461  0.31616953 -1.02975488  0.25491270
 [31] -0.76179824 -2.56385544  0.55496538 -0.20941187  0.72805827  0.06785496
 [37] -0.17417349  0.13313894  1.01734330  0.78421503 -1.61792213  0.23264199
 [43] -1.44880103 -1.13056717  2.19733142 -0.10420106  1.08698210 -2.23915998
 [49] -0.16944706 -1.39870199  0.59484900 -1.97624534 -0.08928817  1.73165282
 [55]  1.02959669 -0.74899652  0.69330085 -0.60699981 -0.04390492  0.33304560
 [61] -0.93983430 -1.88776042  2.11371935 -0.28507915 -1.00155022 -0.43900915
 [67]  2.11449677 -0.50175874 -0.35632703  0.50633665 -2.10729377  0.96911909
 [73]  1.25473393 -0.24088130  0.93964992  0.38753290 -0.76940387 -1.29053833
 [79] -0.20417289  0.79077606 -0.60228343 -1.17043905  1.34211598  0.43189344
 [85]  0.06402687 -0.43721370 -0.60293784 -0.12661636 -1.23886562  2.03605797
 [91]  0.46501516 -0.14192201 -1.35567834 -0.06159583  0.73429994  0.53050901
 [97] -1.13371261 -0.41592990  0.92181327 -0.21080287
> 
> colMeans(tmp2)
[1] -0.1829726
> colSums(tmp2)
[1] -18.29726
> colVars(tmp2)
[1] 0.9849666
> colSd(tmp2)
[1] 0.9924548
> colMax(tmp2)
[1] 2.197331
> colMin(tmp2)
[1] -2.563855
> colMedians(tmp2)
[1] -0.1818926
> colRanges(tmp2)
          [,1]
[1,] -2.563855
[2,]  2.197331
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.53199839 -1.61897861  6.18349349  1.94709799  0.03387125  4.54265340
 [7]  1.66880403 -0.36502629  0.34047982 -3.93469461
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.8987626
[2,] -0.5233872
[3,]  0.3242882
[4,]  0.5404374
[5,]  0.6487456
> 
> rowApply(tmp,sum)
 [1]  3.3664367 -1.0766656  0.0934966  3.6908209  3.6018503 -1.0360016
 [7] -1.5807277  1.9113693  0.1976205  0.1614996
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    2    6    8    4    5    8    2    3    7     6
 [2,]    1    7    3    8    3   10    5    2    4     4
 [3,]    3   10    2    9   10    4   10    8    1     7
 [4,]    5    3   10    7    7    9    8    4    8     3
 [5,]    6    1    5    6    2    7    4    5    6    10
 [6,]    8    9    1   10    9    5    6    9    3     8
 [7,]    7    4    7    1    4    3    3   10   10     5
 [8,]    9    8    6    5    6    1    7    7    5     1
 [9,]   10    2    4    2    8    6    9    1    9     2
[10,]    4    5    9    3    1    2    1    6    2     9
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  1.68800832 -1.35173175 -2.22853836  0.76888548 -0.52921091  2.73699530
 [7]  1.67197555 -2.17828748  0.59220966  0.48856386  1.95221545  2.58987087
[13]  0.01598081  1.48192628 -2.27055095 -1.31958633  3.62799107 -0.64372801
[19] -4.60632176  1.11655055
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.8192060
[2,] -0.6404717
[3,]  0.1689413
[4,]  0.6341227
[5,]  2.3446220
> 
> rowApply(tmp,sum)
[1] -0.3759122  4.8022158  3.5214735 -4.6568709  0.3123115
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   14    3   20   15    4
[2,]   11   19    2    7    3
[3,]    2   16   14    4    2
[4,]   18    4   13    9   12
[5,]   13   11    3   16    6
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]        [,5]       [,6]
[1,]  0.1689413 -0.1361460 -1.0680333  1.0855542  0.02695172  0.6471327
[2,] -0.6404717  1.5585732  0.9197798 -0.4194967  0.17096208  1.3081059
[3,]  2.3446220 -1.1467452  0.4258646  0.4079214 -0.83887865  1.2602475
[4,]  0.6341227 -0.5877165 -1.0550044 -0.5564641  0.64462455 -1.0152043
[5,] -0.8192060 -1.0396972 -1.4511450  0.2513707 -0.53287061  0.5367136
           [,7]         [,8]       [,9]      [,10]       [,11]      [,12]
[1,] -0.5792465 -0.118331539  0.5839269 -0.9179192  1.60234031 -0.2828568
[2,]  0.2043035 -0.045492438 -0.1781060  0.7694127  0.68280293 -0.2302904
[3,]  0.3256558  0.004320357 -0.5612086  0.5285898 -1.83272801  0.6371986
[4,]  0.7730871 -1.252119251  0.9362665 -0.3612100  1.43794373 -0.2365902
[5,]  0.9481756 -0.766664609 -0.1886692  0.4696905  0.06185648  2.7024096
           [,13]       [,14]         [,15]        [,16]      [,17]       [,18]
[1,]  0.59402824 -1.12084901 -0.7509110619 -0.493192054 -0.3714144 -0.16627528
[2,] -0.15269493  0.06636345 -1.8623901901  1.003805796  2.4103637  0.02471336
[3,] -0.47601986  1.99418460 -0.4033278218 -0.007464406  1.2343349  0.30884794
[4,]  0.06277933  0.11905301  0.7463567575 -2.015505671 -0.5820836 -1.19021884
[5,] -0.01211197  0.42317423 -0.0002786333  0.192770001  0.9367904  0.37920481
          [,19]      [,20]
[1,]  1.2105237 -0.2901359
[2,] -1.0482971  0.2602687
[3,] -0.8126659  0.1287244
[4,] -0.4953388 -0.6636492
[5,] -3.4605437  1.6813425
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  650  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  561  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
         col1       col2      col3      col4     col5      col6      col7
row1 1.679937 -0.3924391 -1.495053 -1.875874 2.785698 0.2755891 -1.728422
          col8       col9     col10     col11       col12     col13    col14
row1 0.9532954 -0.2027182 -1.472569 0.3863205 -0.08943985 0.8700259 -2.09003
          col15     col16      col17      col18       col19      col20
row1 -0.9694772 0.8631989 -0.6972942 -0.3450097 -0.02847436 -0.4085375
> tmp[,"col10"]
          col10
row1 -1.4725691
row2 -1.1032303
row3 -1.0001647
row4 -0.7862599
row5  0.5663490
> tmp[c("row1","row5"),]
          col1       col2      col3       col4      col5      col6      col7
row1 1.6799372 -0.3924391 -1.495053 -1.8758739  2.785698 0.2755891 -1.728422
row5 0.5164276 -0.1907379  2.441635 -0.2269072 -1.029797 1.5756126  1.020307
          col8       col9     col10      col11       col12     col13     col14
row1 0.9532954 -0.2027182 -1.472569  0.3863205 -0.08943985 0.8700259 -2.090030
row5 0.5388343 -0.2868837  0.566349 -1.0867392  0.71722329 1.2387994 -2.488544
          col15      col16      col17      col18       col19      col20
row1 -0.9694772  0.8631989 -0.6972942 -0.3450097 -0.02847436 -0.4085375
row5  2.3052214 -0.8371678  0.5923838 -2.0272510 -0.77776327 -1.5893174
> tmp[,c("col6","col20")]
            col6       col20
row1  0.27558910 -0.40853750
row2  0.01529201  0.72081781
row3 -0.31671568  0.54920461
row4 -1.42803303 -0.06616157
row5  1.57561261 -1.58931739
> tmp[c("row1","row5"),c("col6","col20")]
          col6      col20
row1 0.2755891 -0.4085375
row5 1.5756126 -1.5893174
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.64766 52.11435 50.65151 49.66549 49.48825 102.9577 49.27223 49.73916
         col9    col10   col11    col12    col13    col14   col15    col16
row1 51.07293 49.93304 48.7494 50.12281 52.14208 50.00082 49.8368 50.49995
        col17    col18    col19    col20
row1 50.94652 50.15836 49.07083 101.6424
> tmp[,"col10"]
        col10
row1 49.93304
row2 31.05743
row3 29.67431
row4 30.60924
row5 49.25322
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 49.64766 52.11435 50.65151 49.66549 49.48825 102.9577 49.27223 49.73916
row5 50.22495 51.17661 50.97549 50.23070 50.73862 104.0613 49.91619 51.79564
         col9    col10   col11    col12    col13    col14    col15    col16
row1 51.07293 49.93304 48.7494 50.12281 52.14208 50.00082 49.83680 50.49995
row5 48.50482 49.25322 48.8758 49.87007 51.16988 50.74177 50.13977 50.74841
        col17    col18    col19    col20
row1 50.94652 50.15836 49.07083 101.6424
row5 50.02318 50.17195 50.36815 106.0636
> tmp[,c("col6","col20")]
          col6     col20
row1 102.95767 101.64244
row2  75.37995  74.50829
row3  74.83981  75.30072
row4  74.85045  74.82755
row5 104.06126 106.06356
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 102.9577 101.6424
row5 104.0613 106.0636
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 102.9577 101.6424
row5 104.0613 106.0636
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.3571970
[2,] -0.6506666
[3,]  0.1023662
[4,]  0.8009540
[5,]  0.1560263
> tmp[,c("col17","col7")]
            col17         col7
[1,] -0.372178193  1.186979417
[2,] -1.044523355 -0.004441262
[3,] -0.177219759 -0.182961998
[4,]  0.388118294  0.222145490
[5,] -0.006285899 -0.431076431
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
            col6        col20
[1,]  0.38007564  1.270270125
[2,] -0.40197240  0.179070013
[3,]  1.36155691 -0.927184867
[4,]  0.13855659  0.005322517
[5,] -0.06975389 -0.881015022
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.3800756
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,]  0.3800756
[2,] -0.4019724
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]        [,2]      [,3]        [,4]      [,5]        [,6]
row3 -0.8540951 -0.11226453  1.264442 -0.16946530  1.492509 -0.03424799
row1  0.9765687 -0.06659749 -1.931915 -0.05152548 -1.788459  1.02207909
            [,7]       [,8]        [,9]      [,10]      [,11]      [,12]
row3  0.03254106  0.6759014 -0.11234768 -0.2790675 -0.3943935  1.0449804
row1 -0.30022396 -0.8401806  0.04208667 -0.5616783 -1.4450258 -0.5031053
           [,13]      [,14]      [,15]      [,16]      [,17]     [,18]
row3 -0.05632373 0.61595253  1.6626004  2.7250281 -1.5530007 -1.261125
row1 -0.88000378 0.03678452 -0.5158808 -0.4815005  0.7488364  2.190819
           [,19]     [,20]
row3 -0.03847748 -1.216968
row1  0.08182161 -1.198384
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]      [,3]      [,4]      [,5]       [,6]     [,7]
row2 0.2223831 -0.8082451 -1.546403 0.0358901 -0.751569 -0.0599086 2.069934
          [,8]      [,9]    [,10]
row2 -1.142377 0.2423386 1.885341
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]        [,2]      [,3]      [,4]       [,5]       [,6]     [,7]
row5 0.3065405 -0.04459719 0.2044894 0.6379516 -0.1115578 -0.2474139 1.542681
          [,8]       [,9]      [,10]     [,11]      [,12]      [,13]      [,14]
row5 0.9929201 -0.9138297 -0.5230909 0.5141885 -0.1370625 -0.6868319 -0.4832639
          [,15]    [,16]     [,17]      [,18]     [,19]      [,20]
row5 -0.1943902 1.960502 -1.092832 -0.2270363 0.2463745 -0.7632753
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600003e780c0>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba1532f4e95f"
 [2] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba156d05761b"
 [3] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba1518d1e88" 
 [4] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba1557cf7383"
 [5] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba1574a8ca7e"
 [6] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba1575865207"
 [7] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba15457385d8"
 [8] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba1523584b87"
 [9] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba1579c69e31"
[10] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba155ebbe16c"
[11] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba15ccaa0b"  
[12] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba157cafb895"
[13] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba15747f7e26"
[14] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba155e332c8a"
[15] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMba1571b14856"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600003ee4000>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600003ee4000>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600003ee4000>
> rowMedians(tmp)
  [1] -0.012902664  0.249676198 -0.348492107 -0.030337050  0.315867590
  [6] -0.290676892 -0.313715614 -0.043151507 -0.429632905 -0.038893481
 [11] -0.114531003 -0.002644223 -0.040099894  0.161257317  0.030135886
 [16]  0.331509994 -0.313838903  0.193040775 -0.021584027 -0.293333691
 [21] -0.358265388  0.125439434  0.101522993 -0.004651297  0.169164778
 [26] -0.056346525 -0.386450678 -0.639203253 -0.073737427 -0.201873245
 [31] -0.181028502  0.152110121  0.370421437 -0.388227683  0.059890956
 [36]  0.293108551  0.061364597  0.008799202  0.216819945 -0.325733307
 [41] -0.337756384 -0.533613944 -0.219448686  0.217508107  0.248583688
 [46] -0.463289959 -0.136032756 -0.204487080 -0.075219430  0.197451562
 [51]  0.176139269  0.317876999  0.412218002 -1.075657345 -0.175631415
 [56] -0.293775558 -0.075966598  0.192918051  0.352403039  0.113339071
 [61]  0.160956708  0.324970459 -0.353471228  0.020822282 -0.092776256
 [66] -0.772851451  0.439072842 -0.472031489 -0.072681057  0.067641250
 [71] -0.201649377 -0.283845035 -0.025766309 -0.160783041  0.097812777
 [76] -0.081745861  0.200078463  0.341561342 -0.372496015 -0.437045953
 [81]  0.524615725  0.193386301 -0.422642306  0.204337824  0.576440808
 [86]  0.753862499  0.402724516 -0.111577457 -0.187167113  0.048687914
 [91]  0.158838531 -0.367603178 -0.074961298 -0.134257008  0.075478383
 [96]  0.401829262  0.277927464 -0.122756397  0.135079728 -0.139792054
[101] -0.168831245 -0.054341722  0.157908650 -0.016091811 -0.008244820
[106]  0.651672643 -0.205081182 -0.113146478 -0.438023097  0.187578131
[111] -0.391043545  0.223419833  0.011588717  0.056501615 -0.295008911
[116] -0.047817509 -0.011426143  0.161818616  0.122111470  0.118865498
[121] -0.409706886 -0.228033308  0.435349903  0.342162145  0.033671961
[126]  0.159986481 -0.229857326 -0.353316352  0.815015521 -0.088921227
[131]  0.389512501 -0.299207207 -0.502011326  0.165345472  0.585488468
[136]  0.578269903  0.792295583 -0.077290476  0.164711620 -0.250716515
[141]  0.221134679  0.042107155  0.132601366  0.049625038 -0.033047007
[146] -0.569065074 -0.277440653 -0.335610722  0.228280993  0.125807648
[151]  0.849482623  0.196101199  0.252603126  0.131735016  0.331843967
[156] -0.379218123  0.039820854  0.081499125  0.224799335  0.205026212
[161] -0.069566975 -0.306117211 -0.670310690 -0.610489299 -0.248763495
[166]  0.433018027 -0.744048053  0.056263729 -0.573978083  0.349248530
[171] -0.484398038 -0.288277701  0.425310902  0.172887625 -0.026502298
[176] -0.013960239 -0.617286664  0.153646769 -0.141952304  0.411108686
[181]  0.192666349  0.072915912 -0.129421285  0.100839299  0.547732316
[186]  0.110415277 -0.064329055 -0.565921143  0.094152289  0.247794936
[191]  0.405634912 -0.077362964  0.380252328 -0.029867749 -0.223850379
[196]  0.209731891 -0.091889290 -0.333397649 -0.148080646 -0.059407416
[201]  0.093884859 -0.385194514  0.105779260 -0.435840186 -0.303096263
[206]  0.327642071 -0.462415327  0.252060116 -0.104896774  0.291114981
[211]  0.002468273 -0.379426957 -0.190228625  0.217141022 -0.630926216
[216] -0.226164789 -0.014733755  0.091220017  0.113964768  0.208163358
[221]  0.091981489  0.440473167 -0.491188993  0.010830110  0.459461855
[226] -0.253180610  0.216340164  0.473008712  0.105954603  0.056014234
> 
> proc.time()
   user  system elapsed 
  2.807  17.094  20.846 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000012180c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000012180c0>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000012180c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6000012180c0>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600001230120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001230120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600001230120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001230120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001230120>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001260120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001260120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001260120>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600001260120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001260120>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600001260120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001260120>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600001260120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600001260120>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001214000>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600001214000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001214000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600001214000>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilec20365de8263" "BufferedMatrixFilec203734265d4"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilec20365de8263" "BufferedMatrixFilec203734265d4"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000123c120>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000123c120>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60000123c120>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x60000123c120>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x60000123c120>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x60000123c120>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000123c2a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x60000123c2a0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x60000123c2a0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x60000123c2a0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001220000>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600001220000>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.364   0.165   0.517 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.323   0.089   0.399 

Example timings