Back to Multiple platform build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-12-11 11:35 -0500 (Thu, 11 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4872
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4580
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 253/2331HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-12-10 13:40 -0500 (Wed, 10 Dec 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2025-12-10 23:04:51 -0500 (Wed, 10 Dec 2025)
EndedAt: 2025-12-10 23:05:17 -0500 (Wed, 10 Dec 2025)
EllapsedTime: 26.1 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ...* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.23-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.23-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.23-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.258   0.044   0.288 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478818 25.6    1048392   56   639317 34.2
Vcells 885623  6.8    8388608   64  2082728 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Dec 10 23:05:07 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Dec 10 23:05:07 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x615f2ad9f5e0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Dec 10 23:05:08 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Dec 10 23:05:08 2025"
> 
> ColMode(tmp2)
<pointer: 0x615f2ad9f5e0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
             [,1]        [,2]       [,3]       [,4]
[1,] 100.40548457 -0.93585760 -0.8231939  0.8941408
[2,]  -0.21420227  0.02418701  1.6996222  0.4892309
[3,]  -0.04028607 -1.08661166  0.9504464  0.1179102
[4,]  -0.65478744 -0.29536171  0.2158986 -0.3469138
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
             [,1]       [,2]      [,3]      [,4]
[1,] 100.40548457 0.93585760 0.8231939 0.8941408
[2,]   0.21420227 0.02418701 1.6996222 0.4892309
[3,]   0.04028607 1.08661166 0.9504464 0.1179102
[4,]   0.65478744 0.29536171 0.2158986 0.3469138
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0202537 0.9673973 0.9073004 0.9455902
[2,]  0.4628199 0.1555217 1.3036956 0.6994504
[3,]  0.2007139 1.0424067 0.9749084 0.3433806
[4,]  0.8091894 0.5434719 0.4646489 0.5889939
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.60802 35.60983 34.89620 35.35004
[2,]  29.84240 26.57940 39.73658 32.48374
[3,]  27.04743 36.51068 35.69953 28.55172
[4,]  33.74668 30.73008 29.86239 31.23685
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x615f2a92a840>
> exp(tmp5)
<pointer: 0x615f2a92a840>
> log(tmp5,2)
<pointer: 0x615f2a92a840>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.5735
> Min(tmp5)
[1] 53.24151
> mean(tmp5)
[1] 72.55548
> Sum(tmp5)
[1] 14511.1
> Var(tmp5)
[1] 869.2597
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 93.69473 70.63656 71.20066 69.34100 66.62252 72.25033 70.04221 69.32902
 [9] 72.13370 70.30403
> rowSums(tmp5)
 [1] 1873.895 1412.731 1424.013 1386.820 1332.450 1445.007 1400.844 1386.580
 [9] 1442.674 1406.081
> rowVars(tmp5)
 [1] 7885.38631  107.65151   72.57710   32.33782   69.14561   85.18330
 [7]   66.47467   67.29853  105.37269   65.57109
> rowSd(tmp5)
 [1] 88.799698 10.375525  8.519220  5.686635  8.315384  9.229480  8.153200
 [8]  8.203568 10.265120  8.097598
> rowMax(tmp5)
 [1] 469.57354  92.45555  89.51957  84.41861  80.57282  85.55344  85.73029
 [8]  83.63242  88.50946  82.60000
> rowMin(tmp5)
 [1] 58.42010 53.39231 56.29567 61.45989 53.24151 56.69464 59.23322 53.97721
 [9] 54.51026 56.73159
> 
> colMeans(tmp5)
 [1] 106.42547  67.25839  71.58681  67.21625  71.53904  68.98366  70.11973
 [8]  74.20293  68.43651  72.75321  72.03054  67.87064  71.53643  70.66534
[15]  73.10693  72.08057  71.47593  72.84151  72.36953  68.61010
> colSums(tmp5)
 [1] 1064.2547  672.5839  715.8681  672.1625  715.3904  689.8366  701.1973
 [8]  742.0293  684.3651  727.5321  720.3054  678.7064  715.3643  706.6534
[15]  731.0693  720.8057  714.7593  728.4151  723.6953  686.1010
> colVars(tmp5)
 [1] 16330.39702    63.02391   118.30472    54.35011    85.39104    56.02223
 [7]    74.86803   138.90420   100.43727    13.49404    98.30060    47.95425
[13]    69.87390    76.02446    93.45945    87.52720    53.69118    68.09290
[19]   140.21785    18.47928
> colSd(tmp5)
 [1] 127.790442   7.938760  10.876798   7.372252   9.240727   7.484800
 [7]   8.652631  11.785762  10.021840   3.673423   9.914666   6.924901
[13]   8.359061   8.719200   9.667443   9.355597   7.327426   8.251843
[19]  11.841362   4.298754
> colMax(tmp5)
 [1] 469.57354  75.99219  88.47777  81.48210  86.56268  81.72184  83.44362
 [8]  92.45555  84.52985  76.36969  85.73029  80.76311  86.08658  82.36345
[15]  89.51957  87.69140  80.68386  82.86283  88.50946  76.94075
> colMin(tmp5)
 [1] 56.29567 55.32155 53.24151 56.82706 57.23622 60.56953 53.97721 56.73159
 [9] 53.39231 65.91100 55.45993 58.42010 56.69464 60.45689 61.44967 60.24752
[17] 59.77826 58.21796 54.88001 62.07489
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 93.69473       NA 71.20066 69.34100 66.62252 72.25033 70.04221 69.32902
 [9] 72.13370 70.30403
> rowSums(tmp5)
 [1] 1873.895       NA 1424.013 1386.820 1332.450 1445.007 1400.844 1386.580
 [9] 1442.674 1406.081
> rowVars(tmp5)
 [1] 7885.38631  105.11268   72.57710   32.33782   69.14561   85.18330
 [7]   66.47467   67.29853  105.37269   65.57109
> rowSd(tmp5)
 [1] 88.799698 10.252448  8.519220  5.686635  8.315384  9.229480  8.153200
 [8]  8.203568 10.265120  8.097598
> rowMax(tmp5)
 [1] 469.57354        NA  89.51957  84.41861  80.57282  85.55344  85.73029
 [8]  83.63242  88.50946  82.60000
> rowMin(tmp5)
 [1] 58.42010       NA 56.29567 61.45989 53.24151 56.69464 59.23322 53.97721
 [9] 54.51026 56.73159
> 
> colMeans(tmp5)
 [1] 106.42547  67.25839        NA  67.21625  71.53904  68.98366  70.11973
 [8]  74.20293  68.43651  72.75321  72.03054  67.87064  71.53643  70.66534
[15]  73.10693  72.08057  71.47593  72.84151  72.36953  68.61010
> colSums(tmp5)
 [1] 1064.2547  672.5839        NA  672.1625  715.3904  689.8366  701.1973
 [8]  742.0293  684.3651  727.5321  720.3054  678.7064  715.3643  706.6534
[15]  731.0693  720.8057  714.7593  728.4151  723.6953  686.1010
> colVars(tmp5)
 [1] 16330.39702    63.02391          NA    54.35011    85.39104    56.02223
 [7]    74.86803   138.90420   100.43727    13.49404    98.30060    47.95425
[13]    69.87390    76.02446    93.45945    87.52720    53.69118    68.09290
[19]   140.21785    18.47928
> colSd(tmp5)
 [1] 127.790442   7.938760         NA   7.372252   9.240727   7.484800
 [7]   8.652631  11.785762  10.021840   3.673423   9.914666   6.924901
[13]   8.359061   8.719200   9.667443   9.355597   7.327426   8.251843
[19]  11.841362   4.298754
> colMax(tmp5)
 [1] 469.57354  75.99219        NA  81.48210  86.56268  81.72184  83.44362
 [8]  92.45555  84.52985  76.36969  85.73029  80.76311  86.08658  82.36345
[15]  89.51957  87.69140  80.68386  82.86283  88.50946  76.94075
> colMin(tmp5)
 [1] 56.29567 55.32155       NA 56.82706 57.23622 60.56953 53.97721 56.73159
 [9] 53.39231 65.91100 55.45993 58.42010 56.69464 60.45689 61.44967 60.24752
[17] 59.77826 58.21796 54.88001 62.07489
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.5735
> Min(tmp5,na.rm=TRUE)
[1] 53.24151
> mean(tmp5,na.rm=TRUE)
[1] 72.50447
> Sum(tmp5,na.rm=TRUE)
[1] 14428.39
> Var(tmp5,na.rm=TRUE)
[1] 873.1269
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 93.69473 70.00130 71.20066 69.34100 66.62252 72.25033 70.04221 69.32902
 [9] 72.13370 70.30403
> rowSums(tmp5,na.rm=TRUE)
 [1] 1873.895 1330.025 1424.013 1386.820 1332.450 1445.007 1400.844 1386.580
 [9] 1442.674 1406.081
> rowVars(tmp5,na.rm=TRUE)
 [1] 7885.38631  105.11268   72.57710   32.33782   69.14561   85.18330
 [7]   66.47467   67.29853  105.37269   65.57109
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.799698 10.252448  8.519220  5.686635  8.315384  9.229480  8.153200
 [8]  8.203568 10.265120  8.097598
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.57354  92.45555  89.51957  84.41861  80.57282  85.55344  85.73029
 [8]  83.63242  88.50946  82.60000
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.42010 53.39231 56.29567 61.45989 53.24151 56.69464 59.23322 53.97721
 [9] 54.51026 56.73159
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 106.42547  67.25839  70.35129  67.21625  71.53904  68.98366  70.11973
 [8]  74.20293  68.43651  72.75321  72.03054  67.87064  71.53643  70.66534
[15]  73.10693  72.08057  71.47593  72.84151  72.36953  68.61010
> colSums(tmp5,na.rm=TRUE)
 [1] 1064.2547  672.5839  633.1616  672.1625  715.3904  689.8366  701.1973
 [8]  742.0293  684.3651  727.5321  720.3054  678.7064  715.3643  706.6534
[15]  731.0693  720.8057  714.7593  728.4151  723.6953  686.1010
> colVars(tmp5,na.rm=TRUE)
 [1] 16330.39702    63.02391   115.91960    54.35011    85.39104    56.02223
 [7]    74.86803   138.90420   100.43727    13.49404    98.30060    47.95425
[13]    69.87390    76.02446    93.45945    87.52720    53.69118    68.09290
[19]   140.21785    18.47928
> colSd(tmp5,na.rm=TRUE)
 [1] 127.790442   7.938760  10.766596   7.372252   9.240727   7.484800
 [7]   8.652631  11.785762  10.021840   3.673423   9.914666   6.924901
[13]   8.359061   8.719200   9.667443   9.355597   7.327426   8.251843
[19]  11.841362   4.298754
> colMax(tmp5,na.rm=TRUE)
 [1] 469.57354  75.99219  88.47777  81.48210  86.56268  81.72184  83.44362
 [8]  92.45555  84.52985  76.36969  85.73029  80.76311  86.08658  82.36345
[15]  89.51957  87.69140  80.68386  82.86283  88.50946  76.94075
> colMin(tmp5,na.rm=TRUE)
 [1] 56.29567 55.32155 53.24151 56.82706 57.23622 60.56953 53.97721 56.73159
 [9] 53.39231 65.91100 55.45993 58.42010 56.69464 60.45689 61.44967 60.24752
[17] 59.77826 58.21796 54.88001 62.07489
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 93.69473      NaN 71.20066 69.34100 66.62252 72.25033 70.04221 69.32902
 [9] 72.13370 70.30403
> rowSums(tmp5,na.rm=TRUE)
 [1] 1873.895    0.000 1424.013 1386.820 1332.450 1445.007 1400.844 1386.580
 [9] 1442.674 1406.081
> rowVars(tmp5,na.rm=TRUE)
 [1] 7885.38631         NA   72.57710   32.33782   69.14561   85.18330
 [7]   66.47467   67.29853  105.37269   65.57109
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.799698        NA  8.519220  5.686635  8.315384  9.229480  8.153200
 [8]  8.203568 10.265120  8.097598
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.57354        NA  89.51957  84.41861  80.57282  85.55344  85.73029
 [8]  83.63242  88.50946  82.60000
> rowMin(tmp5,na.rm=TRUE)
 [1] 58.42010       NA 56.29567 61.45989 53.24151 56.69464 59.23322 53.97721
 [9] 54.51026 56.73159
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 111.34907  68.58470       NaN  67.17243  71.63192  69.33850  69.69469
 [8]  72.17486  70.10809  73.41968  72.29417  68.10586  69.91974  71.53163
[15]  73.56756  73.39536  71.33870  72.14196  70.80891  68.44464
> colSums(tmp5,na.rm=TRUE)
 [1] 1002.1416  617.2623    0.0000  604.5518  644.6873  624.0465  627.2522
 [8]  649.5738  630.9728  660.7771  650.6475  612.9527  629.2777  643.7846
[15]  662.1080  660.5582  642.0483  649.2777  637.2802  616.0018
> colVars(tmp5,na.rm=TRUE)
 [1] 18098.97576    51.11187          NA    61.12227    95.96785    61.60852
 [7]    82.19415   109.99527    81.55749    10.18371   109.80633    53.32609
[13]    49.20441    77.08495   102.75486    79.02071    60.19073    71.09912
[19]   130.34512    20.48122
> colSd(tmp5,na.rm=TRUE)
 [1] 134.532434   7.149257         NA   7.818073   9.796318   7.849110
 [7]   9.066099  10.487863   9.030918   3.191192  10.478851   7.302472
[13]   7.014586   8.779804  10.136807   8.889360   7.758269   8.432029
[19]  11.416879   4.525618
> colMax(tmp5,na.rm=TRUE)
 [1] 469.57354  75.99219      -Inf  81.48210  86.56268  81.72184  83.44362
 [8]  83.77541  84.52985  76.36969  85.73029  80.76311  82.58287  82.36345
[15]  89.51957  87.69140  80.68386  82.86283  88.50946  76.94075
> colMin(tmp5,na.rm=TRUE)
 [1] 56.29567 55.61386      Inf 56.82706 57.23622 60.56953 53.97721 56.73159
 [9] 54.51026 65.91100 55.45993 58.42010 56.69464 60.45689 61.44967 61.36905
[17] 59.77826 58.21796 54.88001 62.07489
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 243.1002 319.0038 134.7096 119.7997  88.7220 309.1423 130.5921 267.3026
 [9] 146.4220 242.6192
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 243.1002 319.0038 134.7096 119.7997  88.7220 309.1423 130.5921 267.3026
 [9] 146.4220 242.6192
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -2.842171e-14 -1.136868e-13 -1.136868e-13  8.526513e-14 -7.105427e-14
 [6]  4.263256e-14  2.842171e-14 -8.526513e-14 -7.105427e-14 -2.842171e-14
[11]  8.526513e-14 -5.684342e-14  2.273737e-13 -1.421085e-13  8.526513e-14
[16]  2.842171e-14 -2.273737e-13 -5.684342e-14 -5.684342e-14  9.947598e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
1   11 
9   7 
6   9 
10   3 
7   12 
4   19 
1   8 
9   7 
5   10 
4   20 
2   1 
5   16 
3   2 
2   2 
9   19 
4   4 
7   5 
3   4 
8   13 
9   4 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.260882
> Min(tmp)
[1] -2.651792
> mean(tmp)
[1] -0.07867525
> Sum(tmp)
[1] -7.867525
> Var(tmp)
[1] 0.9985259
> 
> rowMeans(tmp)
[1] -0.07867525
> rowSums(tmp)
[1] -7.867525
> rowVars(tmp)
[1] 0.9985259
> rowSd(tmp)
[1] 0.9992627
> rowMax(tmp)
[1] 2.260882
> rowMin(tmp)
[1] -2.651792
> 
> colMeans(tmp)
  [1]  1.155094475 -0.142289387 -0.053702762  1.299780576 -0.280604568
  [6]  0.642478923  1.038362877  0.694518075  0.065601252  1.072584899
 [11]  0.933879693 -1.780853922 -0.776525434 -1.390774618 -0.494362207
 [16] -0.412666059 -0.400364024 -0.140554258 -1.511697516  0.401844913
 [21] -0.550308444  0.474645914  2.260881519 -0.164930943 -0.329481642
 [26]  0.980009037  0.580013541  0.051047307 -1.049448781 -1.889552120
 [31]  0.706074893 -0.530048395  0.258945079  1.292245756  0.136785237
 [36]  1.730319410 -0.758437549 -0.741488298  0.084272541 -0.397120114
 [41] -0.103452244  0.094699420  0.231163276 -0.895696192  0.822093776
 [46] -1.670162965  1.048647313  0.147340269 -1.154698137  1.312607909
 [51] -2.301041718 -0.445617717 -2.067722241  0.193258923  0.581403099
 [56]  0.936243059 -2.651792402  0.061694731  0.631898708 -0.698485202
 [61]  1.270105491  0.337554474 -0.559183281  0.712986096  1.814245082
 [66] -0.391177715  1.679149611 -0.166029659  0.696474576  1.361634315
 [71] -0.919529739 -0.431989173 -0.478125619 -1.616096891  1.586277525
 [76] -0.113108600 -1.926474778  0.508314788 -0.754862914 -1.617343655
 [81] -0.368567814 -0.767333718  0.778644301 -0.009583018  0.741151360
 [86] -1.792123611 -0.379666769  0.010981319 -0.599864367 -0.681554474
 [91]  0.191428613 -0.258404606 -0.397683793 -0.005921476  0.026378180
 [96]  1.447322491 -0.832363034  0.268614946 -1.834724263 -0.533632090
> colSums(tmp)
  [1]  1.155094475 -0.142289387 -0.053702762  1.299780576 -0.280604568
  [6]  0.642478923  1.038362877  0.694518075  0.065601252  1.072584899
 [11]  0.933879693 -1.780853922 -0.776525434 -1.390774618 -0.494362207
 [16] -0.412666059 -0.400364024 -0.140554258 -1.511697516  0.401844913
 [21] -0.550308444  0.474645914  2.260881519 -0.164930943 -0.329481642
 [26]  0.980009037  0.580013541  0.051047307 -1.049448781 -1.889552120
 [31]  0.706074893 -0.530048395  0.258945079  1.292245756  0.136785237
 [36]  1.730319410 -0.758437549 -0.741488298  0.084272541 -0.397120114
 [41] -0.103452244  0.094699420  0.231163276 -0.895696192  0.822093776
 [46] -1.670162965  1.048647313  0.147340269 -1.154698137  1.312607909
 [51] -2.301041718 -0.445617717 -2.067722241  0.193258923  0.581403099
 [56]  0.936243059 -2.651792402  0.061694731  0.631898708 -0.698485202
 [61]  1.270105491  0.337554474 -0.559183281  0.712986096  1.814245082
 [66] -0.391177715  1.679149611 -0.166029659  0.696474576  1.361634315
 [71] -0.919529739 -0.431989173 -0.478125619 -1.616096891  1.586277525
 [76] -0.113108600 -1.926474778  0.508314788 -0.754862914 -1.617343655
 [81] -0.368567814 -0.767333718  0.778644301 -0.009583018  0.741151360
 [86] -1.792123611 -0.379666769  0.010981319 -0.599864367 -0.681554474
 [91]  0.191428613 -0.258404606 -0.397683793 -0.005921476  0.026378180
 [96]  1.447322491 -0.832363034  0.268614946 -1.834724263 -0.533632090
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  1.155094475 -0.142289387 -0.053702762  1.299780576 -0.280604568
  [6]  0.642478923  1.038362877  0.694518075  0.065601252  1.072584899
 [11]  0.933879693 -1.780853922 -0.776525434 -1.390774618 -0.494362207
 [16] -0.412666059 -0.400364024 -0.140554258 -1.511697516  0.401844913
 [21] -0.550308444  0.474645914  2.260881519 -0.164930943 -0.329481642
 [26]  0.980009037  0.580013541  0.051047307 -1.049448781 -1.889552120
 [31]  0.706074893 -0.530048395  0.258945079  1.292245756  0.136785237
 [36]  1.730319410 -0.758437549 -0.741488298  0.084272541 -0.397120114
 [41] -0.103452244  0.094699420  0.231163276 -0.895696192  0.822093776
 [46] -1.670162965  1.048647313  0.147340269 -1.154698137  1.312607909
 [51] -2.301041718 -0.445617717 -2.067722241  0.193258923  0.581403099
 [56]  0.936243059 -2.651792402  0.061694731  0.631898708 -0.698485202
 [61]  1.270105491  0.337554474 -0.559183281  0.712986096  1.814245082
 [66] -0.391177715  1.679149611 -0.166029659  0.696474576  1.361634315
 [71] -0.919529739 -0.431989173 -0.478125619 -1.616096891  1.586277525
 [76] -0.113108600 -1.926474778  0.508314788 -0.754862914 -1.617343655
 [81] -0.368567814 -0.767333718  0.778644301 -0.009583018  0.741151360
 [86] -1.792123611 -0.379666769  0.010981319 -0.599864367 -0.681554474
 [91]  0.191428613 -0.258404606 -0.397683793 -0.005921476  0.026378180
 [96]  1.447322491 -0.832363034  0.268614946 -1.834724263 -0.533632090
> colMin(tmp)
  [1]  1.155094475 -0.142289387 -0.053702762  1.299780576 -0.280604568
  [6]  0.642478923  1.038362877  0.694518075  0.065601252  1.072584899
 [11]  0.933879693 -1.780853922 -0.776525434 -1.390774618 -0.494362207
 [16] -0.412666059 -0.400364024 -0.140554258 -1.511697516  0.401844913
 [21] -0.550308444  0.474645914  2.260881519 -0.164930943 -0.329481642
 [26]  0.980009037  0.580013541  0.051047307 -1.049448781 -1.889552120
 [31]  0.706074893 -0.530048395  0.258945079  1.292245756  0.136785237
 [36]  1.730319410 -0.758437549 -0.741488298  0.084272541 -0.397120114
 [41] -0.103452244  0.094699420  0.231163276 -0.895696192  0.822093776
 [46] -1.670162965  1.048647313  0.147340269 -1.154698137  1.312607909
 [51] -2.301041718 -0.445617717 -2.067722241  0.193258923  0.581403099
 [56]  0.936243059 -2.651792402  0.061694731  0.631898708 -0.698485202
 [61]  1.270105491  0.337554474 -0.559183281  0.712986096  1.814245082
 [66] -0.391177715  1.679149611 -0.166029659  0.696474576  1.361634315
 [71] -0.919529739 -0.431989173 -0.478125619 -1.616096891  1.586277525
 [76] -0.113108600 -1.926474778  0.508314788 -0.754862914 -1.617343655
 [81] -0.368567814 -0.767333718  0.778644301 -0.009583018  0.741151360
 [86] -1.792123611 -0.379666769  0.010981319 -0.599864367 -0.681554474
 [91]  0.191428613 -0.258404606 -0.397683793 -0.005921476  0.026378180
 [96]  1.447322491 -0.832363034  0.268614946 -1.834724263 -0.533632090
> colMedians(tmp)
  [1]  1.155094475 -0.142289387 -0.053702762  1.299780576 -0.280604568
  [6]  0.642478923  1.038362877  0.694518075  0.065601252  1.072584899
 [11]  0.933879693 -1.780853922 -0.776525434 -1.390774618 -0.494362207
 [16] -0.412666059 -0.400364024 -0.140554258 -1.511697516  0.401844913
 [21] -0.550308444  0.474645914  2.260881519 -0.164930943 -0.329481642
 [26]  0.980009037  0.580013541  0.051047307 -1.049448781 -1.889552120
 [31]  0.706074893 -0.530048395  0.258945079  1.292245756  0.136785237
 [36]  1.730319410 -0.758437549 -0.741488298  0.084272541 -0.397120114
 [41] -0.103452244  0.094699420  0.231163276 -0.895696192  0.822093776
 [46] -1.670162965  1.048647313  0.147340269 -1.154698137  1.312607909
 [51] -2.301041718 -0.445617717 -2.067722241  0.193258923  0.581403099
 [56]  0.936243059 -2.651792402  0.061694731  0.631898708 -0.698485202
 [61]  1.270105491  0.337554474 -0.559183281  0.712986096  1.814245082
 [66] -0.391177715  1.679149611 -0.166029659  0.696474576  1.361634315
 [71] -0.919529739 -0.431989173 -0.478125619 -1.616096891  1.586277525
 [76] -0.113108600 -1.926474778  0.508314788 -0.754862914 -1.617343655
 [81] -0.368567814 -0.767333718  0.778644301 -0.009583018  0.741151360
 [86] -1.792123611 -0.379666769  0.010981319 -0.599864367 -0.681554474
 [91]  0.191428613 -0.258404606 -0.397683793 -0.005921476  0.026378180
 [96]  1.447322491 -0.832363034  0.268614946 -1.834724263 -0.533632090
> colRanges(tmp)
         [,1]       [,2]        [,3]     [,4]       [,5]      [,6]     [,7]
[1,] 1.155094 -0.1422894 -0.05370276 1.299781 -0.2806046 0.6424789 1.038363
[2,] 1.155094 -0.1422894 -0.05370276 1.299781 -0.2806046 0.6424789 1.038363
          [,8]       [,9]    [,10]     [,11]     [,12]      [,13]     [,14]
[1,] 0.6945181 0.06560125 1.072585 0.9338797 -1.780854 -0.7765254 -1.390775
[2,] 0.6945181 0.06560125 1.072585 0.9338797 -1.780854 -0.7765254 -1.390775
          [,15]      [,16]     [,17]      [,18]     [,19]     [,20]      [,21]
[1,] -0.4943622 -0.4126661 -0.400364 -0.1405543 -1.511698 0.4018449 -0.5503084
[2,] -0.4943622 -0.4126661 -0.400364 -0.1405543 -1.511698 0.4018449 -0.5503084
         [,22]    [,23]      [,24]      [,25]    [,26]     [,27]      [,28]
[1,] 0.4746459 2.260882 -0.1649309 -0.3294816 0.980009 0.5800135 0.05104731
[2,] 0.4746459 2.260882 -0.1649309 -0.3294816 0.980009 0.5800135 0.05104731
         [,29]     [,30]     [,31]      [,32]     [,33]    [,34]     [,35]
[1,] -1.049449 -1.889552 0.7060749 -0.5300484 0.2589451 1.292246 0.1367852
[2,] -1.049449 -1.889552 0.7060749 -0.5300484 0.2589451 1.292246 0.1367852
        [,36]      [,37]      [,38]      [,39]      [,40]      [,41]      [,42]
[1,] 1.730319 -0.7584375 -0.7414883 0.08427254 -0.3971201 -0.1034522 0.09469942
[2,] 1.730319 -0.7584375 -0.7414883 0.08427254 -0.3971201 -0.1034522 0.09469942
         [,43]      [,44]     [,45]     [,46]    [,47]     [,48]     [,49]
[1,] 0.2311633 -0.8956962 0.8220938 -1.670163 1.048647 0.1473403 -1.154698
[2,] 0.2311633 -0.8956962 0.8220938 -1.670163 1.048647 0.1473403 -1.154698
        [,50]     [,51]      [,52]     [,53]     [,54]     [,55]     [,56]
[1,] 1.312608 -2.301042 -0.4456177 -2.067722 0.1932589 0.5814031 0.9362431
[2,] 1.312608 -2.301042 -0.4456177 -2.067722 0.1932589 0.5814031 0.9362431
         [,57]      [,58]     [,59]      [,60]    [,61]     [,62]      [,63]
[1,] -2.651792 0.06169473 0.6318987 -0.6984852 1.270105 0.3375545 -0.5591833
[2,] -2.651792 0.06169473 0.6318987 -0.6984852 1.270105 0.3375545 -0.5591833
         [,64]    [,65]      [,66]   [,67]      [,68]     [,69]    [,70]
[1,] 0.7129861 1.814245 -0.3911777 1.67915 -0.1660297 0.6964746 1.361634
[2,] 0.7129861 1.814245 -0.3911777 1.67915 -0.1660297 0.6964746 1.361634
          [,71]      [,72]      [,73]     [,74]    [,75]      [,76]     [,77]
[1,] -0.9195297 -0.4319892 -0.4781256 -1.616097 1.586278 -0.1131086 -1.926475
[2,] -0.9195297 -0.4319892 -0.4781256 -1.616097 1.586278 -0.1131086 -1.926475
         [,78]      [,79]     [,80]      [,81]      [,82]     [,83]
[1,] 0.5083148 -0.7548629 -1.617344 -0.3685678 -0.7673337 0.7786443
[2,] 0.5083148 -0.7548629 -1.617344 -0.3685678 -0.7673337 0.7786443
            [,84]     [,85]     [,86]      [,87]      [,88]      [,89]
[1,] -0.009583018 0.7411514 -1.792124 -0.3796668 0.01098132 -0.5998644
[2,] -0.009583018 0.7411514 -1.792124 -0.3796668 0.01098132 -0.5998644
          [,90]     [,91]      [,92]      [,93]        [,94]      [,95]
[1,] -0.6815545 0.1914286 -0.2584046 -0.3976838 -0.005921476 0.02637818
[2,] -0.6815545 0.1914286 -0.2584046 -0.3976838 -0.005921476 0.02637818
        [,96]     [,97]     [,98]     [,99]     [,100]
[1,] 1.447322 -0.832363 0.2686149 -1.834724 -0.5336321
[2,] 1.447322 -0.832363 0.2686149 -1.834724 -0.5336321
> 
> 
> Max(tmp2)
[1] 2.571405
> Min(tmp2)
[1] -2.737896
> mean(tmp2)
[1] 0.07475466
> Sum(tmp2)
[1] 7.475466
> Var(tmp2)
[1] 0.9450352
> 
> rowMeans(tmp2)
  [1]  0.097226544  2.571405428  1.405857176  0.472097475 -1.183998216
  [6] -0.440952599 -1.049749230  1.522583679 -0.868687336  0.713237328
 [11]  0.878521450 -1.238163266  0.632044369  1.523943943 -0.212831361
 [16]  0.211502167  0.731340091 -0.385126896 -0.944779524 -1.706673320
 [21]  1.328210863  0.079844240  0.364375749 -0.596589447 -1.267410640
 [26] -0.846695888  0.466831991 -0.218547115  0.285588470  0.308050078
 [31] -0.347264604 -0.050239717 -0.708653994 -1.734161517  2.083594248
 [36]  0.491931364  0.257716211 -0.164334983  0.065023498  0.515039466
 [41]  0.414901051  0.036172093  0.856781590 -1.022658832  1.086381815
 [46] -2.117914503  0.004068901 -0.490867165 -0.325565446 -0.590291318
 [51] -0.478384855  0.219211292  0.409229350  0.197214396 -0.517790212
 [56]  1.299075011  0.403232490 -0.512884332  0.635215333  0.597027788
 [61] -0.448771587 -0.625280513 -0.186055203 -0.239248422  1.521882427
 [66] -0.935960532 -2.737896034  0.276236851 -0.874436695  0.680931132
 [71] -0.639134670  1.383135818  2.349805060  0.191505576 -0.098296778
 [76] -0.637856799  1.284358110 -0.390527007  0.495773932 -0.836259899
 [81] -0.134348049 -0.526704028 -1.754284837  1.076581623  1.597106451
 [86] -0.185713966 -0.094681699 -0.661198891  0.688067515 -0.478075237
 [91]  1.551003527 -1.145263675  0.393783681  1.261582984  1.255702802
 [96]  1.138637358 -0.131288061  1.670779154  0.125707579 -0.849093872
> rowSums(tmp2)
  [1]  0.097226544  2.571405428  1.405857176  0.472097475 -1.183998216
  [6] -0.440952599 -1.049749230  1.522583679 -0.868687336  0.713237328
 [11]  0.878521450 -1.238163266  0.632044369  1.523943943 -0.212831361
 [16]  0.211502167  0.731340091 -0.385126896 -0.944779524 -1.706673320
 [21]  1.328210863  0.079844240  0.364375749 -0.596589447 -1.267410640
 [26] -0.846695888  0.466831991 -0.218547115  0.285588470  0.308050078
 [31] -0.347264604 -0.050239717 -0.708653994 -1.734161517  2.083594248
 [36]  0.491931364  0.257716211 -0.164334983  0.065023498  0.515039466
 [41]  0.414901051  0.036172093  0.856781590 -1.022658832  1.086381815
 [46] -2.117914503  0.004068901 -0.490867165 -0.325565446 -0.590291318
 [51] -0.478384855  0.219211292  0.409229350  0.197214396 -0.517790212
 [56]  1.299075011  0.403232490 -0.512884332  0.635215333  0.597027788
 [61] -0.448771587 -0.625280513 -0.186055203 -0.239248422  1.521882427
 [66] -0.935960532 -2.737896034  0.276236851 -0.874436695  0.680931132
 [71] -0.639134670  1.383135818  2.349805060  0.191505576 -0.098296778
 [76] -0.637856799  1.284358110 -0.390527007  0.495773932 -0.836259899
 [81] -0.134348049 -0.526704028 -1.754284837  1.076581623  1.597106451
 [86] -0.185713966 -0.094681699 -0.661198891  0.688067515 -0.478075237
 [91]  1.551003527 -1.145263675  0.393783681  1.261582984  1.255702802
 [96]  1.138637358 -0.131288061  1.670779154  0.125707579 -0.849093872
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.097226544  2.571405428  1.405857176  0.472097475 -1.183998216
  [6] -0.440952599 -1.049749230  1.522583679 -0.868687336  0.713237328
 [11]  0.878521450 -1.238163266  0.632044369  1.523943943 -0.212831361
 [16]  0.211502167  0.731340091 -0.385126896 -0.944779524 -1.706673320
 [21]  1.328210863  0.079844240  0.364375749 -0.596589447 -1.267410640
 [26] -0.846695888  0.466831991 -0.218547115  0.285588470  0.308050078
 [31] -0.347264604 -0.050239717 -0.708653994 -1.734161517  2.083594248
 [36]  0.491931364  0.257716211 -0.164334983  0.065023498  0.515039466
 [41]  0.414901051  0.036172093  0.856781590 -1.022658832  1.086381815
 [46] -2.117914503  0.004068901 -0.490867165 -0.325565446 -0.590291318
 [51] -0.478384855  0.219211292  0.409229350  0.197214396 -0.517790212
 [56]  1.299075011  0.403232490 -0.512884332  0.635215333  0.597027788
 [61] -0.448771587 -0.625280513 -0.186055203 -0.239248422  1.521882427
 [66] -0.935960532 -2.737896034  0.276236851 -0.874436695  0.680931132
 [71] -0.639134670  1.383135818  2.349805060  0.191505576 -0.098296778
 [76] -0.637856799  1.284358110 -0.390527007  0.495773932 -0.836259899
 [81] -0.134348049 -0.526704028 -1.754284837  1.076581623  1.597106451
 [86] -0.185713966 -0.094681699 -0.661198891  0.688067515 -0.478075237
 [91]  1.551003527 -1.145263675  0.393783681  1.261582984  1.255702802
 [96]  1.138637358 -0.131288061  1.670779154  0.125707579 -0.849093872
> rowMin(tmp2)
  [1]  0.097226544  2.571405428  1.405857176  0.472097475 -1.183998216
  [6] -0.440952599 -1.049749230  1.522583679 -0.868687336  0.713237328
 [11]  0.878521450 -1.238163266  0.632044369  1.523943943 -0.212831361
 [16]  0.211502167  0.731340091 -0.385126896 -0.944779524 -1.706673320
 [21]  1.328210863  0.079844240  0.364375749 -0.596589447 -1.267410640
 [26] -0.846695888  0.466831991 -0.218547115  0.285588470  0.308050078
 [31] -0.347264604 -0.050239717 -0.708653994 -1.734161517  2.083594248
 [36]  0.491931364  0.257716211 -0.164334983  0.065023498  0.515039466
 [41]  0.414901051  0.036172093  0.856781590 -1.022658832  1.086381815
 [46] -2.117914503  0.004068901 -0.490867165 -0.325565446 -0.590291318
 [51] -0.478384855  0.219211292  0.409229350  0.197214396 -0.517790212
 [56]  1.299075011  0.403232490 -0.512884332  0.635215333  0.597027788
 [61] -0.448771587 -0.625280513 -0.186055203 -0.239248422  1.521882427
 [66] -0.935960532 -2.737896034  0.276236851 -0.874436695  0.680931132
 [71] -0.639134670  1.383135818  2.349805060  0.191505576 -0.098296778
 [76] -0.637856799  1.284358110 -0.390527007  0.495773932 -0.836259899
 [81] -0.134348049 -0.526704028 -1.754284837  1.076581623  1.597106451
 [86] -0.185713966 -0.094681699 -0.661198891  0.688067515 -0.478075237
 [91]  1.551003527 -1.145263675  0.393783681  1.261582984  1.255702802
 [96]  1.138637358 -0.131288061  1.670779154  0.125707579 -0.849093872
> 
> colMeans(tmp2)
[1] 0.07475466
> colSums(tmp2)
[1] 7.475466
> colVars(tmp2)
[1] 0.9450352
> colSd(tmp2)
[1] 0.9721292
> colMax(tmp2)
[1] 2.571405
> colMin(tmp2)
[1] -2.737896
> colMedians(tmp2)
[1] 0.0505978
> colRanges(tmp2)
          [,1]
[1,] -2.737896
[2,]  2.571405
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.9384564 -2.4571063 -1.0021530  4.8506045  2.2688687  4.8913050
 [7]  0.7831273 -0.6589322 -0.7416719  1.2420553
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.2705240
[2,] -0.5411216
[3,] -0.2285464
[4,]  0.6002179
[5,]  2.9191736
> 
> rowApply(tmp,sum)
 [1] -2.4330327  0.1798979  0.9288404  3.7485796  0.8013178  2.1264553
 [7]  3.4391250 -6.6741156  0.3129727  7.6845135
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    3    3   10    2    8    5    5    4    9     1
 [2,]    1    7    5    8    6    3    7    6    1     2
 [3,]    4    4    6   10    3    2    2    3    8     4
 [4,]   10   10    7    1    1    9    6    9    5     7
 [5,]    7    9    1    4    5    8    9    8    4     5
 [6,]    8    6    3    3   10   10    8    2    3     9
 [7,]    9    8    2    7    2    6   10    1    7     6
 [8,]    5    5    9    9    9    4    1    7    2     3
 [9,]    2    1    8    5    7    7    3    5   10     8
[10,]    6    2    4    6    4    1    4   10    6    10
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -4.16150704 -0.38783193 -1.31192488 -1.20193388  0.07283615 -0.95857061
 [7]  4.20802673  1.95772593 -3.60962489 -0.70328372 -3.00925607 -1.24387174
[13]  2.58824377  3.44541419 -5.06452376 -3.50525020  0.31766465 -1.07647033
[19] -0.15572787  4.55568617
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -2.2218187
[2,] -0.9374888
[3,] -0.7314492
[4,] -0.6000537
[5,]  0.3293033
> 
> rowApply(tmp,sum)
[1] -5.1744736 -1.1265433  0.9236607 -8.2466265  4.3798034
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   14    2    2    6    4
[2,]    8   11    3   20   12
[3,]    6   12   12   11    6
[4,]    5   20    7    2    5
[5,]   16   13    9    8    9
> 
> 
> as.matrix(tmp)
           [,1]        [,2]       [,3]       [,4]         [,5]       [,6]
[1,]  0.3293033 -0.50874100 -0.9160726 -1.0399904  0.544424505 -0.1908672
[2,] -2.2218187  0.01492332  0.1940741  2.1186941  0.201465637 -1.2366941
[3,] -0.9374888 -0.74400280  0.1568427 -0.2334676 -0.101766457 -1.3302347
[4,] -0.7314492  0.79541511 -0.4797629 -1.7622061 -0.580432729  0.7841755
[5,] -0.6000537  0.05457344 -0.2670061 -0.2849639  0.009145193  1.0150499
           [,7]        [,8]       [,9]      [,10]      [,11]       [,12]
[1,]  1.4105966 -0.44265376 -2.2431168  0.1066654 -2.1754154 -0.12293633
[2,]  1.7904559  1.10486069 -0.2403008 -1.0620244 -0.5425301 -0.64452493
[3,]  0.8104813 -0.13568970  0.3523502  0.3108353 -0.2394765  0.57806222
[4,] -0.6467421  0.03992827 -0.4942281 -1.4310857  0.1711720 -1.09882408
[5,]  0.8432351  1.39128042 -0.9843295  1.3723256 -0.2230061  0.04435139
           [,13]      [,14]      [,15]       [,16]       [,17]      [,18]
[1,]  0.59639302 -0.1521728 -0.6356498 -1.95364371  0.83302768 -1.1752992
[2,]  2.07441400  0.8635345 -1.1477550 -2.37342429  0.45082781 -1.5995126
[3,] -0.45845408  0.7605611 -0.5371336  0.58440204 -0.04708246  1.6648187
[4,]  0.35206440  0.4704363 -1.2129022  0.25627212  0.25718016 -0.5239041
[5,]  0.02382643  1.5030550 -1.5310831 -0.01885635 -1.17628854  0.5574269
           [,19]      [,20]
[1,]  0.33790959  2.2237652
[2,]  1.34468452 -0.2158930
[3,] -0.06496135  0.5350653
[4,] -2.10317488 -0.3085583
[5,]  0.32981425  2.3213070
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  566  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
         col1      col2     col3       col4      col5      col6      col7
row1 1.020308 -1.230785 1.064716 -0.4532034 0.5587288 -1.410371 0.2505447
           col8       col9     col10     col11     col12     col13    col14
row1 -0.4141437 -0.4843652 -3.185163 -1.102863 -0.898475 0.1748548 -1.07089
         col15     col16     col17      col18      col19     col20
row1 0.2575734 0.2473895 -1.422482 -0.5541838 -0.8817644 -1.833933
> tmp[,"col10"]
           col10
row1 -3.18516265
row2  0.33307356
row3 -0.06951501
row4  3.12793514
row5 -1.74820811
> tmp[c("row1","row5"),]
         col1       col2      col3       col4      col5      col6       col7
row1 1.020308 -1.2307845  1.064716 -0.4532034 0.5587288 -1.410371 0.25054467
row5 1.286014 -0.5636349 -1.074860  0.8087938 0.5798894  2.258013 0.09078278
           col8       col9     col10     col11      col12     col13     col14
row1 -0.4141437 -0.4843652 -3.185163 -1.102863 -0.8984750 0.1748548 -1.070890
row5 -0.6077462 -0.3346169 -1.748208  1.157392  0.6837553 0.8046291  1.268201
          col15      col16      col17      col18      col19     col20
row1  0.2575734 0.24738948 -1.4224824 -0.5541838 -0.8817644 -1.833933
row5 -0.4444500 0.09154792 -0.8386311 -0.8699076 -0.8613920 -1.401650
> tmp[,c("col6","col20")]
           col6      col20
row1 -1.4103711 -1.8339328
row2 -0.8212756  1.3968862
row3 -1.2029578  0.5822585
row4  0.0627726 -0.8925972
row5  2.2580133 -1.4016501
> tmp[c("row1","row5"),c("col6","col20")]
          col6     col20
row1 -1.410371 -1.833933
row5  2.258013 -1.401650
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.18778 50.53398 48.74564 50.71047 51.37719 105.9132 49.76309 50.77707
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.66582 49.89496 50.43681 49.95029 52.40587 49.26223 50.73239 49.72996
        col17    col18    col19    col20
row1 50.31412 49.54632 50.06123 104.4994
> tmp[,"col10"]
        col10
row1 49.89496
row2 28.49312
row3 29.61141
row4 31.28303
row5 49.69142
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.18778 50.53398 48.74564 50.71047 51.37719 105.9132 49.76309 50.77707
row5 50.55307 49.78095 50.82265 49.27827 49.50900 103.9064 49.49914 50.47132
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.66582 49.89496 50.43681 49.95029 52.40587 49.26223 50.73239 49.72996
row5 47.79397 49.69142 49.21158 49.91565 49.03869 49.82264 50.46881 50.62570
        col17    col18    col19    col20
row1 50.31412 49.54632 50.06123 104.4994
row5 49.83587 49.48283 50.13756 104.3020
> tmp[,c("col6","col20")]
          col6     col20
row1 105.91321 104.49945
row2  74.49662  75.73955
row3  75.27015  75.72592
row4  74.62677  73.31378
row5 103.90644 104.30197
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 105.9132 104.4994
row5 103.9064 104.3020
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 105.9132 104.4994
row5 103.9064 104.3020
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,] -0.6782375
[2,]  0.2876505
[3,] -0.4179132
[4,]  0.8035204
[5,]  0.6561503
> tmp[,c("col17","col7")]
           col17       col7
[1,]  0.46715669  0.6909691
[2,] -1.11497300  1.2700046
[3,] -0.03633910 -0.9979111
[4,] -1.11217693 -0.1258670
[5,] -0.09792117 -0.2178144
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  0.6801876 -0.3850136
[2,]  0.6477257 -1.2341890
[3,] -1.3639447  0.2144883
[4,] -0.2137176  1.2122360
[5,]  0.4218961 -1.4143169
> subBufferedMatrix(tmp,1,c("col6"))[,1]
          col1
[1,] 0.6801876
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,] 0.6801876
[2,] 0.6477257
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]      [,4]       [,5]      [,6]
row3  0.2510642 -1.1650437 -0.6194735 0.4599019 -0.4303795 0.2115256
row1 -1.1561174  0.7793623 -2.0770840 0.4257995 -0.8965178 0.9505101
            [,7]       [,8]      [,9]       [,10]      [,11]     [,12]
row3 -0.60187782  1.4275432 2.0715406 -0.23495664 -0.3913157 -1.038841
row1 -0.07007768 -0.9700921 0.1108444  0.03924477  1.0623344 -1.836262
          [,13]     [,14]      [,15]      [,16]     [,17]       [,18]     [,19]
row3  1.2107626 0.2215306  1.2142104 -0.8910046 0.7333159 -0.02601116 0.6988431
row1 -0.1849684 1.3224036 -0.3230357  0.0533856 0.7585117 -2.15960650 0.4611253
         [,20]
row3 0.1504575
row1 1.1467521
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]      [,2]      [,3]      [,4]      [,5]      [,6]      [,7]
row2 0.4656389 -1.560907 0.5343559 -1.216584 0.8104728 0.6663979 0.4803029
           [,8]      [,9]      [,10]
row2 0.07827835 0.8381522 -0.5710235
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]      [,2]      [,3]      [,4]      [,5]       [,6]      [,7]
row5 -0.4155865 0.2848419 0.5205057 0.7249222 0.7307127 -0.5765371 -2.001302
          [,8]       [,9]     [,10]    [,11]    [,12]     [,13]    [,14]
row5 -1.036557 -0.9531039 0.5444311 1.378916 1.060277 -1.131785 1.107404
         [,15]     [,16]    [,17]      [,18]     [,19]      [,20]
row5 0.5498876 0.4924302 1.896951 -0.2581271 0.7480144 -0.9517109
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x615f2ba42a50>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d9652d87d5"
 [2] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d93e5e7453"
 [3] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d967124e6f"
 [4] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d932edab9f"
 [5] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d913773fae"
 [6] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d953de1f50"
 [7] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d967b93cd3"
 [8] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d956f4b1c1"
 [9] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d925cce2f1"
[10] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d96ee49b3c"
[11] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d9183e5cd9"
[12] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d95d66e485"
[13] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d9b05a0f"  
[14] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d95c2db1c3"
[15] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM2497d96cb2e4ef"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x615f2bdac3b0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x615f2bdac3b0>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x615f2bdac3b0>
> rowMedians(tmp)
  [1]  0.2083837416  0.0173926089 -0.1378463596  0.1491740084 -0.3591330771
  [6] -0.1064827506  0.2869005219 -0.1934911551 -0.5223459272 -0.0411159417
 [11] -0.6743691683  0.3671163762  0.5129520703  0.0203345227  0.1110405378
 [16] -0.3869651376 -0.0770672125  0.0389797730  0.1404774447  0.2939932678
 [21] -0.1468900423 -0.0557788124 -0.0223674639 -0.1534116628  0.3853195350
 [26] -0.2876867602  0.1161096031  0.1451798912 -0.0268252095 -0.0816524368
 [31] -0.1678213974  0.2196343740 -0.2830271409  0.3129109641 -0.0199061504
 [36] -0.4263266374 -0.3063479544 -0.0046473313  0.0346230164 -0.1167302898
 [41]  0.1099388548  0.0900493671 -0.1720396783  0.0933301330  0.4676590684
 [46] -0.2767703587  0.1264116812  0.2281211485  0.6720393934 -0.0439392530
 [51]  0.4997871463  0.0597971710  0.4801128495  0.4490628374 -0.0657898995
 [56]  0.0456508936  0.2978634937  0.4134191094  0.5231875291 -0.1068494655
 [61] -0.1287598609 -0.0969963845 -0.2111448883  0.8798803144  0.1436777285
 [66]  0.5924526273  0.1100053223  0.4618147915  0.2487021357 -0.0243393401
 [71] -0.2261310193  0.0240422416 -0.3676503209  0.0718611378  0.2568722120
 [76]  0.0078151784  0.1301433674  0.3987585296 -0.0395877627 -0.6677388719
 [81]  0.4515246986 -0.6000013775  0.3478204865 -0.3105042030  0.0912463924
 [86] -0.2016280257  0.1945954548  0.1387435342 -0.4852201276 -0.3754945569
 [91] -0.1720868999  0.3355951366 -0.1263755697  0.2272063423  0.0257242310
 [96] -0.6046472375  0.4067223979  0.1996206719 -0.1341948096  0.3006558481
[101] -0.0196774396 -0.1578472610 -0.2783828431  0.2640807632  0.5449263309
[106] -0.4231252416 -0.1948407301 -0.2876173573  0.1483678439 -0.3250602625
[111] -0.0093654569  0.0002284598 -0.1897829895  1.1073160142 -0.4375977790
[116]  0.1737051188 -0.0900542337  0.8069408581  0.2500851421  0.2683788955
[121]  0.2755526620 -0.3210221630  0.7122453730  0.1060325332 -0.1561635005
[126] -0.0297032608  0.0374329937  0.1904561349 -0.3680446972  0.4149452197
[131]  0.0885399720  0.1044526705  0.2869019473  0.4787461104  0.3744454420
[136] -0.1233332971  0.0414494507 -0.2238854911  0.7347670725  0.1614626347
[141] -0.1004177937  0.1422787032 -0.3343775918 -0.2169926623  0.1565470496
[146] -0.7505726695  0.0417681437 -0.3755707479  0.2393697721  0.0085351177
[151]  0.1723678026  0.1254559822 -0.1538840084  0.0027579449  0.1410623944
[156]  0.1973969544 -0.1805346182  0.1330357536 -0.2969391621  0.2842787630
[161] -0.0795409983  0.2940418227 -0.0742711125  0.1968288258 -0.0614695386
[166]  0.2850314924 -0.1654967344 -0.1203635007 -0.0022363340  0.1098697949
[171] -0.5864856218  0.3851557179 -0.3451630561  0.5723034568 -0.5095273437
[176]  0.0766901644  0.0594545815  0.6652840154 -0.1540502290 -0.5282548744
[181] -0.0111941383  0.1907408752  0.0321808449 -0.0328254683 -0.1154927025
[186]  0.1561414806  0.0609566925 -0.2599478643  0.5964723488 -0.2010171534
[191]  0.0177067329  0.4695413354  0.0924768239 -0.0577249984  0.8037068221
[196] -0.4613773052 -0.3519543041 -0.1934367025 -0.2671686234  0.3777041489
[201] -0.0735490007  0.1008140460 -0.6454346758 -0.3788182377  0.0154006748
[206]  0.2273031764 -0.2645958443  0.3853324825 -0.2557463575  0.3512060089
[211]  0.1712245362  0.2551527299 -0.2354374658 -0.3116736481 -0.2009166179
[216] -0.0172706699 -0.1928843320  0.6689882750  0.1302677725  0.1463690013
[221] -0.1796570483  0.3727967190 -0.5173773545  0.2383388615  0.4102892866
[226]  0.2807558692  0.1263081902  0.2992298320  0.3243247141 -0.1824913307
> 
> proc.time()
   user  system elapsed 
  1.295   1.466   2.748 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x64d9ad83fb20>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x64d9ad83fb20>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x64d9ad83fb20>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x64d9ad83fb20>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x64d9ad820410>
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ad820410>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x64d9ad820410>
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ad820410>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x64d9ad820410>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ac0cd7a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ac0cd7a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x64d9ac0cd7a0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x64d9ac0cd7a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x64d9ac0cd7a0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x64d9ac0cd7a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x64d9ac0cd7a0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x64d9ac0cd7a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x64d9ac0cd7a0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ad09f680>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x64d9ad09f680>
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ad09f680>
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ad09f680>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2498ee2af190e3" "BufferedMatrixFile2498ee59938ec1"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile2498ee2af190e3" "BufferedMatrixFile2498ee59938ec1"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ace33490>
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ace33490>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x64d9ace33490>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x64d9ace33490>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x64d9ace33490>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x64d9ace33490>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ae48f110>
> .Call("R_bm_AddColumn",P)
<pointer: 0x64d9ae48f110>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x64d9ae48f110>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x64d9ae48f110>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x64d9ae5325e0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x64d9ae5325e0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.261   0.059   0.306 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.246   0.051   0.284 

Example timings