Back to Multiple platform build/check report for BioC 3.23:   simplified   long
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2025-12-04 11:35 -0500 (Thu, 04 Dec 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4869
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4576
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 995/2331HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.17.1  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2025-12-03 13:40 -0500 (Wed, 03 Dec 2025)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: devel
git_last_commit: e6c77ab
git_last_commit_date: 2025-11-23 15:13:33 -0500 (Sun, 23 Nov 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    WARNINGS  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for HPiP on nebbiolo1

To the developers/maintainers of the HPiP package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: HPiP
Version: 1.17.1
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.1.tar.gz
StartedAt: 2025-12-04 02:29:45 -0500 (Thu, 04 Dec 2025)
EndedAt: 2025-12-04 02:45:24 -0500 (Thu, 04 Dec 2025)
EllapsedTime: 939.4 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: HPiP.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
    29 | then the Kronecker product is the code{(pm × qn)} block matrix
       |                                       ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
  Code: function(features, gold_standard, classifier = c("avNNet",
                 "svmRadial", "ranger"), resampling.method = "cv",
                 ncross = 2, repeats = 2, verboseIter = TRUE, plots =
                 FALSE, filename = "plots.pdf")
  Docs: function(features, gold_standard, classifier = c("avNNet",
                 "svmRadial", "ranger"), resampling.method = "cv",
                 ncross = 2, repeats = 2, verboseIter = TRUE, plots =
                 TRUE, filename = "plots.pdf")
  Mismatches in argument default values:
    Name: 'plots' Code: FALSE Docs: TRUE

* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                user system elapsed
corr_plot     33.427  0.508  33.937
var_imp       32.800  0.423  33.226
FSmethod      32.587  0.586  33.175
pred_ensembel 12.769  0.119  11.519
enrichfindP    0.517  0.044  15.689
getFASTA       0.337  0.007   6.877
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.


Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘HPiP’ ...
** this is package ‘HPiP’ version ‘1.17.1’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 97.592141 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.345801 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.415604 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.566279 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.323207 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 107.825754 
iter  10 value 93.574853
final  value 93.574847 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.072515 
iter  10 value 85.948080
iter  20 value 84.978128
iter  30 value 84.190499
iter  40 value 83.962656
iter  50 value 83.952774
final  value 83.952298 
converged
Fitting Repeat 3 

# weights:  305
initial  value 97.666269 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.538349 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.344341 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.903253 
iter  10 value 93.371832
final  value 93.371808 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.384363 
final  value 94.050051 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.110551 
iter  10 value 93.583701
iter  20 value 92.953940
final  value 92.953900 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.350329 
iter  10 value 93.689199
final  value 93.582418 
converged
Fitting Repeat 5 

# weights:  507
initial  value 102.703826 
iter  10 value 93.582418
iter  10 value 93.582418
iter  10 value 93.582418
final  value 93.582418 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.638380 
iter  10 value 93.742000
iter  20 value 93.682655
iter  30 value 86.820505
iter  40 value 85.900682
iter  50 value 85.859214
iter  60 value 85.782167
iter  70 value 85.710687
iter  80 value 85.440512
iter  90 value 84.316477
iter 100 value 83.339695
final  value 83.339695 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 107.194051 
iter  10 value 94.060699
iter  20 value 90.626302
iter  30 value 85.390412
iter  40 value 84.617034
iter  50 value 84.437068
iter  60 value 84.302609
iter  70 value 84.107254
iter  80 value 82.958368
iter  90 value 82.415219
iter 100 value 82.318061
final  value 82.318061 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.811544 
iter  10 value 93.951731
iter  20 value 93.688136
iter  30 value 93.686504
iter  40 value 93.684560
iter  50 value 93.677362
iter  60 value 90.642278
iter  70 value 88.153468
iter  80 value 87.945486
iter  90 value 87.412872
iter 100 value 85.911592
final  value 85.911592 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 95.649777 
iter  10 value 94.051717
iter  20 value 93.486439
iter  30 value 89.024679
iter  40 value 87.645625
iter  50 value 86.564584
iter  60 value 86.166343
iter  70 value 85.704687
iter  80 value 85.257242
iter  90 value 84.838817
iter 100 value 83.334968
final  value 83.334968 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 97.729039 
iter  10 value 92.843265
iter  20 value 88.020810
iter  30 value 85.530853
iter  40 value 85.386404
iter  50 value 85.298545
iter  60 value 83.818404
iter  70 value 83.783849
final  value 83.783840 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.639884 
iter  10 value 93.638623
iter  20 value 92.941487
iter  30 value 87.724117
iter  40 value 86.098199
iter  50 value 83.668664
iter  60 value 82.517246
iter  70 value 81.725999
iter  80 value 81.661716
iter  90 value 81.385684
iter 100 value 81.214705
final  value 81.214705 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.817577 
iter  10 value 92.894926
iter  20 value 88.030947
iter  30 value 87.015640
iter  40 value 85.903891
iter  50 value 84.098640
iter  60 value 82.490359
iter  70 value 81.831056
iter  80 value 81.600535
iter  90 value 81.378818
iter 100 value 81.234647
final  value 81.234647 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 106.948936 
iter  10 value 94.056004
iter  20 value 93.457649
iter  30 value 88.195617
iter  40 value 84.629439
iter  50 value 83.751932
iter  60 value 83.408905
iter  70 value 82.880653
iter  80 value 82.327453
iter  90 value 81.847483
iter 100 value 81.650504
final  value 81.650504 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.626080 
iter  10 value 94.095249
iter  20 value 93.980311
iter  30 value 93.239994
iter  40 value 87.104375
iter  50 value 86.183348
iter  60 value 85.689419
iter  70 value 85.603432
iter  80 value 85.226009
iter  90 value 83.216303
iter 100 value 82.532422
final  value 82.532422 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 108.671005 
iter  10 value 93.795293
iter  20 value 90.657212
iter  30 value 85.081082
iter  40 value 84.657132
iter  50 value 84.510768
iter  60 value 84.329945
iter  70 value 83.965539
iter  80 value 83.115201
iter  90 value 81.973947
iter 100 value 81.541521
final  value 81.541521 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 110.974417 
iter  10 value 94.130694
iter  20 value 93.950602
iter  30 value 91.938578
iter  40 value 86.208410
iter  50 value 85.140634
iter  60 value 84.973535
iter  70 value 84.041942
iter  80 value 82.557513
iter  90 value 82.008247
iter 100 value 81.396046
final  value 81.396046 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 109.780847 
iter  10 value 94.406957
iter  20 value 92.498699
iter  30 value 87.227427
iter  40 value 85.851304
iter  50 value 82.247060
iter  60 value 81.456576
iter  70 value 80.804993
iter  80 value 80.657025
iter  90 value 80.566145
iter 100 value 80.484993
final  value 80.484993 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 122.936286 
iter  10 value 89.171007
iter  20 value 87.432413
iter  30 value 86.192144
iter  40 value 85.659634
iter  50 value 83.868890
iter  60 value 83.035169
iter  70 value 82.036171
iter  80 value 81.374348
iter  90 value 81.086095
iter 100 value 81.014400
final  value 81.014400 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 114.755795 
iter  10 value 93.988861
iter  20 value 88.153470
iter  30 value 87.835713
iter  40 value 87.352954
iter  50 value 86.167617
iter  60 value 82.747730
iter  70 value 81.889618
iter  80 value 81.274872
iter  90 value 80.845826
iter 100 value 80.455096
final  value 80.455096 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 117.958513 
iter  10 value 100.070614
iter  20 value 93.063831
iter  30 value 92.663953
iter  40 value 90.845369
iter  50 value 89.313224
iter  60 value 85.697056
iter  70 value 84.433143
iter  80 value 83.833861
iter  90 value 83.552000
iter 100 value 83.443564
final  value 83.443564 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.278435 
final  value 94.054540 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.986902 
final  value 94.054570 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.325137 
final  value 94.054555 
converged
Fitting Repeat 4 

# weights:  103
initial  value 107.767093 
iter  10 value 94.054458
iter  20 value 93.949772
iter  30 value 93.582609
final  value 93.582602 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.329665 
final  value 94.054517 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.321992 
iter  10 value 94.057679
iter  20 value 93.652856
iter  30 value 86.744305
iter  40 value 83.784656
iter  50 value 83.734846
iter  60 value 83.519271
iter  70 value 81.667816
iter  80 value 81.636185
iter  90 value 81.605364
iter 100 value 81.603615
final  value 81.603615 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 95.141327 
iter  10 value 94.057528
iter  20 value 94.041359
iter  30 value 85.758901
final  value 85.739745 
converged
Fitting Repeat 3 

# weights:  305
initial  value 103.660582 
iter  10 value 94.057786
iter  20 value 93.982690
iter  30 value 93.808996
iter  40 value 93.748089
final  value 93.748057 
converged
Fitting Repeat 4 

# weights:  305
initial  value 95.350084 
iter  10 value 94.057173
iter  20 value 94.050879
final  value 94.050351 
converged
Fitting Repeat 5 

# weights:  305
initial  value 104.016427 
iter  10 value 93.588216
iter  20 value 93.585254
iter  30 value 93.583409
final  value 93.583381 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.503987 
iter  10 value 94.060139
iter  20 value 93.479681
iter  30 value 88.918947
iter  40 value 88.573994
iter  50 value 88.134786
iter  60 value 88.098530
iter  70 value 87.529240
iter  80 value 87.528553
iter  90 value 87.441764
iter 100 value 84.697887
final  value 84.697887 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 97.562699 
iter  10 value 94.060411
iter  20 value 94.052943
iter  30 value 90.576597
iter  40 value 84.063570
iter  50 value 83.207876
iter  60 value 82.825012
iter  70 value 80.324321
iter  80 value 80.151696
iter  90 value 80.136750
iter 100 value 80.131932
final  value 80.131932 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 102.408502 
iter  10 value 93.433350
iter  20 value 92.362484
iter  30 value 91.399628
iter  40 value 91.395454
iter  50 value 91.393740
iter  60 value 91.393452
iter  70 value 91.390673
iter  80 value 91.255549
iter  90 value 91.132605
iter 100 value 91.113200
final  value 91.113200 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 103.975877 
iter  10 value 94.061107
iter  20 value 94.039421
iter  30 value 93.587803
iter  40 value 93.017956
iter  50 value 86.937915
iter  60 value 84.937767
final  value 84.926353 
converged
Fitting Repeat 5 

# weights:  507
initial  value 99.487753 
iter  10 value 93.743961
iter  20 value 93.739470
iter  30 value 93.374334
iter  40 value 93.372187
final  value 93.372183 
converged
Fitting Repeat 1 

# weights:  103
initial  value 97.523668 
final  value 94.052911 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.042212 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.309736 
iter  10 value 92.791577
iter  20 value 83.387812
iter  30 value 82.467289
final  value 82.459401 
converged
Fitting Repeat 4 

# weights:  103
initial  value 94.131357 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 108.082952 
final  value 93.502849 
converged
Fitting Repeat 1 

# weights:  305
initial  value 98.790484 
iter  10 value 87.032384
iter  20 value 86.933498
iter  30 value 85.261551
iter  40 value 85.261029
iter  50 value 84.626013
final  value 84.625540 
converged
Fitting Repeat 2 

# weights:  305
initial  value 96.997157 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.611202 
final  value 94.038251 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.813211 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  305
initial  value 102.564572 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 123.050341 
iter  10 value 90.174071
iter  20 value 86.290214
iter  30 value 86.265742
iter  40 value 86.261017
final  value 86.261005 
converged
Fitting Repeat 2 

# weights:  507
initial  value 114.933466 
final  value 94.038251 
converged
Fitting Repeat 3 

# weights:  507
initial  value 110.516383 
iter  10 value 94.100041
iter  20 value 94.021029
iter  30 value 93.691146
final  value 93.655754 
converged
Fitting Repeat 4 

# weights:  507
initial  value 96.321307 
iter  10 value 93.999155
iter  10 value 93.999155
iter  10 value 93.999155
final  value 93.999155 
converged
Fitting Repeat 5 

# weights:  507
initial  value 94.974437 
iter  10 value 93.117122
iter  20 value 91.189079
iter  30 value 91.183556
iter  30 value 91.183556
iter  30 value 91.183556
final  value 91.183556 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.713088 
iter  10 value 93.004050
iter  20 value 86.915866
iter  30 value 85.798539
iter  40 value 83.675150
iter  50 value 83.064962
iter  60 value 82.540198
iter  70 value 81.795155
iter  80 value 81.366033
iter  90 value 81.214379
final  value 81.208071 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.364752 
iter  10 value 93.606434
iter  20 value 90.061798
iter  30 value 84.739931
iter  40 value 83.561977
iter  50 value 83.052208
iter  60 value 82.554254
iter  70 value 81.577600
iter  80 value 81.499896
iter  90 value 81.255066
iter 100 value 81.208127
final  value 81.208127 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.981905 
iter  10 value 94.056513
iter  20 value 86.952145
iter  30 value 86.749587
iter  40 value 86.614079
iter  50 value 86.076959
iter  60 value 84.372605
iter  70 value 83.594133
iter  80 value 83.009236
iter  90 value 82.989627
iter 100 value 82.953764
final  value 82.953764 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 102.723618 
iter  10 value 93.869840
iter  20 value 87.645306
iter  30 value 85.137223
iter  40 value 84.550235
iter  50 value 83.500499
iter  60 value 81.370829
iter  70 value 81.114586
iter  80 value 81.105434
final  value 81.104876 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.155624 
iter  10 value 93.950975
iter  20 value 89.824233
iter  30 value 86.558836
iter  40 value 82.895210
iter  50 value 82.093052
iter  60 value 81.923656
iter  70 value 81.392545
iter  80 value 81.285941
final  value 81.208071 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.589073 
iter  10 value 94.046755
iter  20 value 93.927557
iter  30 value 92.177302
iter  40 value 90.669675
iter  50 value 83.667945
iter  60 value 81.307682
iter  70 value 80.955561
iter  80 value 80.828070
iter  90 value 80.401902
iter 100 value 80.008220
final  value 80.008220 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 108.604970 
iter  10 value 93.492115
iter  20 value 88.025985
iter  30 value 86.864360
iter  40 value 86.349523
iter  50 value 84.068761
iter  60 value 83.359949
iter  70 value 83.169465
iter  80 value 83.137518
iter  90 value 83.124511
iter 100 value 83.109593
final  value 83.109593 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 109.899050 
iter  10 value 91.834460
iter  20 value 85.735532
iter  30 value 84.528678
iter  40 value 82.643246
iter  50 value 82.014506
iter  60 value 81.757850
iter  70 value 81.573753
iter  80 value 81.508762
iter  90 value 80.706306
iter 100 value 80.507723
final  value 80.507723 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 104.791926 
iter  10 value 94.023017
iter  20 value 91.171474
iter  30 value 86.234633
iter  40 value 84.388072
iter  50 value 82.462565
iter  60 value 81.466979
iter  70 value 80.576415
iter  80 value 79.968751
iter  90 value 79.786050
iter 100 value 79.519120
final  value 79.519120 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 110.266156 
iter  10 value 92.059620
iter  20 value 86.783633
iter  30 value 84.899873
iter  40 value 83.227732
iter  50 value 82.075202
iter  60 value 81.609898
iter  70 value 81.139957
iter  80 value 80.677320
iter  90 value 80.538159
iter 100 value 80.436082
final  value 80.436082 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.129675 
iter  10 value 94.647175
iter  20 value 94.099205
iter  30 value 93.174652
iter  40 value 89.757700
iter  50 value 86.427720
iter  60 value 84.967386
iter  70 value 81.417155
iter  80 value 80.131884
iter  90 value 79.819413
iter 100 value 79.614533
final  value 79.614533 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 113.859430 
iter  10 value 94.489907
iter  20 value 88.702659
iter  30 value 85.560921
iter  40 value 85.175777
iter  50 value 82.343023
iter  60 value 81.033367
iter  70 value 80.741350
iter  80 value 79.926933
iter  90 value 79.609776
iter 100 value 79.513723
final  value 79.513723 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 108.449622 
iter  10 value 94.242653
iter  20 value 92.374398
iter  30 value 86.231512
iter  40 value 85.724606
iter  50 value 85.131906
iter  60 value 83.838116
iter  70 value 82.098433
iter  80 value 81.290655
iter  90 value 80.551963
iter 100 value 80.084111
final  value 80.084111 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 155.316784 
iter  10 value 94.384321
iter  20 value 87.348631
iter  30 value 84.305874
iter  40 value 82.962784
iter  50 value 81.934554
iter  60 value 80.867030
iter  70 value 80.371390
iter  80 value 80.094205
iter  90 value 79.992419
iter 100 value 79.868550
final  value 79.868550 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.667554 
iter  10 value 95.204754
iter  20 value 94.098773
iter  30 value 89.196474
iter  40 value 85.136169
iter  50 value 84.642146
iter  60 value 84.558160
iter  70 value 83.774208
iter  80 value 82.271207
iter  90 value 80.963429
iter 100 value 80.520987
final  value 80.520987 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.419793 
final  value 94.054565 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.135302 
final  value 94.054830 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.114012 
iter  10 value 94.054632
iter  20 value 94.027573
iter  30 value 92.757899
iter  40 value 92.248364
iter  50 value 83.678625
iter  60 value 83.329472
iter  70 value 82.933607
final  value 82.933549 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.090134 
final  value 94.054736 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.113722 
iter  10 value 94.039951
iter  20 value 94.038443
iter  30 value 84.918381
iter  40 value 84.779747
final  value 84.779466 
converged
Fitting Repeat 1 

# weights:  305
initial  value 94.726842 
iter  10 value 94.042695
iter  20 value 94.040695
iter  30 value 94.038568
iter  40 value 93.630670
iter  50 value 85.437070
iter  60 value 82.545668
iter  70 value 81.641327
iter  80 value 81.607382
iter  90 value 81.500569
iter 100 value 81.499742
final  value 81.499742 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 105.183246 
iter  10 value 94.061010
iter  20 value 94.059582
iter  30 value 94.049482
iter  40 value 92.469501
iter  50 value 85.991777
iter  60 value 85.978217
iter  70 value 85.964413
iter  80 value 85.947525
iter  90 value 85.840864
iter 100 value 85.839065
final  value 85.839065 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 99.511201 
iter  10 value 94.057850
iter  20 value 94.051755
iter  30 value 90.006848
iter  40 value 87.641542
iter  50 value 85.513506
iter  60 value 84.266694
iter  70 value 84.264508
iter  80 value 84.255185
iter  90 value 84.216583
iter 100 value 84.216124
final  value 84.216124 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 100.498778 
iter  10 value 93.950946
iter  20 value 93.949027
iter  30 value 93.942219
iter  40 value 88.066617
iter  50 value 86.224820
iter  60 value 86.203311
iter  70 value 86.192776
iter  80 value 85.133985
iter  90 value 85.097229
iter 100 value 85.092625
final  value 85.092625 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 97.854671 
iter  10 value 93.808714
iter  20 value 93.515387
iter  30 value 93.513629
iter  40 value 85.142933
iter  50 value 84.619008
iter  60 value 84.153798
iter  70 value 83.920517
final  value 83.919900 
converged
Fitting Repeat 1 

# weights:  507
initial  value 95.507307 
iter  10 value 92.589743
iter  20 value 92.449656
iter  30 value 92.247278
iter  40 value 92.245368
final  value 92.245099 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.213112 
iter  10 value 94.017579
iter  20 value 94.013258
iter  30 value 93.961436
iter  40 value 85.478465
iter  50 value 83.892578
iter  60 value 83.835729
iter  70 value 83.798815
iter  80 value 83.509109
iter  90 value 81.329883
iter 100 value 80.433261
final  value 80.433261 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 114.087599 
iter  10 value 94.006827
iter  20 value 94.002237
iter  30 value 93.979558
iter  40 value 87.137165
iter  50 value 86.786804
iter  60 value 84.670740
iter  70 value 83.400004
iter  80 value 83.387586
final  value 83.387231 
converged
Fitting Repeat 4 

# weights:  507
initial  value 108.714091 
iter  10 value 94.061619
iter  20 value 94.053911
iter  30 value 91.896640
iter  40 value 83.508776
iter  50 value 82.320949
iter  60 value 82.223995
iter  70 value 82.223475
final  value 82.223366 
converged
Fitting Repeat 5 

# weights:  507
initial  value 102.392293 
iter  10 value 94.046762
iter  20 value 94.039261
iter  30 value 93.968467
iter  40 value 84.117308
iter  50 value 84.070738
final  value 84.069649 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.968016 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 105.290514 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 105.561051 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.058471 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.746379 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 121.160689 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 95.595123 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 116.550180 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 99.596444 
iter  10 value 88.687771
iter  20 value 87.603064
iter  30 value 87.576817
iter  40 value 87.564236
iter  50 value 87.564051
iter  50 value 87.564050
iter  50 value 87.564050
final  value 87.564050 
converged
Fitting Repeat 5 

# weights:  305
initial  value 111.752209 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.224576 
final  value 94.443243 
converged
Fitting Repeat 2 

# weights:  507
initial  value 99.486928 
iter  10 value 87.105060
iter  20 value 85.109641
iter  30 value 84.969970
iter  40 value 84.916433
final  value 84.916364 
converged
Fitting Repeat 3 

# weights:  507
initial  value 114.587422 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 103.992138 
iter  10 value 94.338030
final  value 94.337732 
converged
Fitting Repeat 5 

# weights:  507
initial  value 95.592853 
iter  10 value 94.337794
final  value 94.337729 
converged
Fitting Repeat 1 

# weights:  103
initial  value 111.027528 
iter  10 value 94.318682
iter  20 value 93.406045
iter  30 value 92.775227
iter  40 value 92.253387
iter  50 value 91.911107
iter  60 value 91.818201
iter  70 value 91.798491
iter  80 value 84.032276
iter  90 value 83.187722
iter 100 value 83.137279
final  value 83.137279 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 108.996860 
iter  10 value 94.278511
iter  20 value 88.573787
iter  30 value 88.074487
iter  40 value 87.393724
iter  50 value 86.462854
iter  60 value 84.999223
iter  70 value 84.734563
iter  80 value 84.727220
iter  90 value 84.702630
iter 100 value 84.635540
final  value 84.635540 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 97.999923 
iter  10 value 94.464053
iter  20 value 93.905043
iter  30 value 93.039537
iter  40 value 90.329182
iter  50 value 85.855548
iter  60 value 84.649072
iter  70 value 84.059343
iter  80 value 83.941520
iter  90 value 83.533748
iter 100 value 83.146631
final  value 83.146631 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 115.576618 
iter  10 value 94.448723
iter  20 value 93.538888
iter  30 value 92.607720
iter  40 value 92.150281
iter  50 value 92.104850
iter  50 value 92.104849
iter  50 value 92.104849
final  value 92.104849 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.742343 
iter  10 value 94.280703
iter  20 value 90.564177
iter  30 value 89.117897
iter  40 value 88.477018
iter  50 value 88.196073
iter  60 value 86.185260
iter  70 value 85.488381
iter  80 value 85.480675
iter  90 value 85.479362
final  value 85.479353 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.483321 
iter  10 value 94.500989
iter  20 value 90.159803
iter  30 value 86.690922
iter  40 value 86.274858
iter  50 value 84.865995
iter  60 value 83.002347
iter  70 value 82.382185
iter  80 value 82.093226
iter  90 value 82.013332
iter 100 value 81.988202
final  value 81.988202 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 100.301057 
iter  10 value 94.408946
iter  20 value 92.001888
iter  30 value 87.358641
iter  40 value 84.571480
iter  50 value 84.078535
iter  60 value 83.105935
iter  70 value 82.465510
iter  80 value 82.402754
iter  90 value 82.243299
iter 100 value 82.152004
final  value 82.152004 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 110.520310 
iter  10 value 94.693967
iter  20 value 93.168268
iter  30 value 90.687817
iter  40 value 87.561426
iter  50 value 85.581570
iter  60 value 84.945909
iter  70 value 84.463692
iter  80 value 83.724189
iter  90 value 82.652981
iter 100 value 82.167352
final  value 82.167352 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 120.636232 
iter  10 value 96.823033
iter  20 value 94.676816
iter  30 value 92.771265
iter  40 value 89.875332
iter  50 value 85.036181
iter  60 value 84.195505
iter  70 value 83.847754
iter  80 value 82.583951
iter  90 value 82.237592
iter 100 value 82.064966
final  value 82.064966 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 103.878048 
iter  10 value 95.009936
iter  20 value 91.532290
iter  30 value 88.429934
iter  40 value 84.430157
iter  50 value 83.055489
iter  60 value 82.627377
iter  70 value 82.092596
iter  80 value 81.915468
iter  90 value 81.829476
iter 100 value 81.796635
final  value 81.796635 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 104.600391 
iter  10 value 95.017397
iter  20 value 91.225617
iter  30 value 89.679430
iter  40 value 87.288298
iter  50 value 85.658497
iter  60 value 84.030169
iter  70 value 83.718247
iter  80 value 82.762040
iter  90 value 82.368028
iter 100 value 82.196950
final  value 82.196950 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 108.364284 
iter  10 value 94.512572
iter  20 value 93.454084
iter  30 value 92.088868
iter  40 value 91.794443
iter  50 value 86.959652
iter  60 value 85.669726
iter  70 value 85.192006
iter  80 value 84.052156
iter  90 value 83.396786
iter 100 value 83.101680
final  value 83.101680 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 145.915441 
iter  10 value 97.527626
iter  20 value 94.970857
iter  30 value 93.531273
iter  40 value 87.975702
iter  50 value 84.540330
iter  60 value 84.264598
iter  70 value 82.637641
iter  80 value 81.923344
iter  90 value 81.700795
iter 100 value 81.625063
final  value 81.625063 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 138.142616 
iter  10 value 94.375700
iter  20 value 93.894646
iter  30 value 88.015471
iter  40 value 86.432592
iter  50 value 84.983553
iter  60 value 83.558708
iter  70 value 82.211867
iter  80 value 82.029068
iter  90 value 81.832139
iter 100 value 81.704899
final  value 81.704899 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.148203 
iter  10 value 94.657999
iter  20 value 94.463672
iter  30 value 93.251898
iter  40 value 89.682906
iter  50 value 85.759803
iter  60 value 84.040279
iter  70 value 82.877143
iter  80 value 82.589147
iter  90 value 82.291243
iter 100 value 82.121254
final  value 82.121254 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.278711 
final  value 94.485929 
converged
Fitting Repeat 2 

# weights:  103
initial  value 109.402820 
final  value 94.444978 
converged
Fitting Repeat 3 

# weights:  103
initial  value 111.796928 
final  value 94.485940 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.016004 
final  value 94.485663 
converged
Fitting Repeat 5 

# weights:  103
initial  value 105.872142 
final  value 94.355821 
converged
Fitting Repeat 1 

# weights:  305
initial  value 115.563364 
iter  10 value 94.490070
iter  20 value 94.441729
iter  30 value 87.094603
iter  40 value 84.412697
iter  50 value 84.280372
iter  60 value 84.072359
iter  70 value 84.068141
iter  80 value 84.014261
iter  90 value 84.014063
iter  90 value 84.014063
final  value 84.014063 
converged
Fitting Repeat 2 

# weights:  305
initial  value 110.170833 
iter  10 value 94.489163
iter  20 value 94.453737
iter  30 value 87.113109
iter  40 value 86.690515
iter  50 value 86.688509
iter  60 value 86.688386
iter  70 value 86.390701
iter  80 value 83.788975
iter  90 value 83.641520
iter 100 value 83.631391
final  value 83.631391 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.592565 
iter  10 value 94.448060
iter  20 value 94.432966
iter  30 value 94.428730
iter  40 value 94.008363
iter  50 value 86.683462
iter  60 value 84.736518
iter  70 value 84.490978
iter  80 value 84.417869
iter  90 value 84.408475
final  value 84.408035 
converged
Fitting Repeat 4 

# weights:  305
initial  value 107.234966 
iter  10 value 94.449100
iter  20 value 94.445439
iter  30 value 94.443700
iter  40 value 93.126297
iter  50 value 93.084903
iter  60 value 92.643635
iter  70 value 92.642514
iter  80 value 92.633898
iter  90 value 92.220014
iter 100 value 92.133689
final  value 92.133689 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.862861 
iter  10 value 94.488938
iter  20 value 94.461979
iter  30 value 92.308243
final  value 92.302888 
converged
Fitting Repeat 1 

# weights:  507
initial  value 100.005342 
iter  10 value 94.456963
iter  20 value 89.662162
iter  30 value 89.638390
iter  40 value 88.216803
iter  50 value 88.210300
final  value 88.210275 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.979098 
iter  10 value 94.451776
iter  20 value 93.397597
iter  30 value 86.551458
iter  40 value 86.519363
iter  50 value 86.518278
iter  60 value 86.418852
iter  70 value 86.348240
iter  80 value 85.979044
final  value 85.978854 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.282835 
iter  10 value 94.451346
iter  20 value 94.290097
iter  30 value 87.648915
iter  40 value 86.569614
final  value 86.565488 
converged
Fitting Repeat 4 

# weights:  507
initial  value 97.684431 
iter  10 value 94.451783
iter  20 value 93.865165
iter  30 value 89.763836
iter  40 value 89.375759
iter  50 value 89.220195
iter  60 value 89.219314
iter  70 value 89.218255
iter  80 value 88.662376
iter  90 value 86.680177
iter 100 value 85.558967
final  value 85.558967 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 102.227094 
iter  10 value 86.335672
iter  20 value 85.761884
iter  30 value 85.758562
iter  40 value 84.690128
iter  50 value 84.478694
iter  60 value 83.481949
iter  70 value 81.241958
iter  80 value 81.079700
iter  90 value 80.832399
iter 100 value 80.784137
final  value 80.784137 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 113.607256 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.985136 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.464303 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 103.110838 
final  value 94.466823 
converged
Fitting Repeat 5 

# weights:  103
initial  value 97.916685 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 117.154436 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 108.066353 
iter  10 value 91.695602
iter  20 value 87.804697
iter  30 value 87.732084
iter  40 value 87.728143
final  value 87.728141 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.502362 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 109.796498 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 97.003927 
final  value 94.466823 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.778711 
iter  10 value 94.470230
iter  20 value 94.466831
final  value 94.466824 
converged
Fitting Repeat 2 

# weights:  507
initial  value 94.685601 
iter  10 value 91.965382
iter  20 value 91.538149
final  value 91.533919 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.434968 
final  value 94.466823 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.896269 
iter  10 value 93.676351
iter  20 value 91.685607
iter  30 value 90.275104
iter  40 value 89.902431
iter  50 value 89.759205
iter  60 value 89.754910
final  value 89.754867 
converged
Fitting Repeat 5 

# weights:  507
initial  value 105.279635 
final  value 94.466823 
converged
Fitting Repeat 1 

# weights:  103
initial  value 110.167375 
iter  10 value 94.486494
iter  20 value 93.768779
iter  30 value 93.290003
iter  40 value 90.018799
iter  50 value 89.422796
iter  60 value 88.808028
iter  70 value 84.851745
iter  80 value 84.836548
iter  90 value 84.834979
final  value 84.834959 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.110870 
iter  10 value 90.557475
iter  20 value 86.532337
iter  30 value 85.483102
iter  40 value 85.274916
iter  50 value 84.857407
iter  60 value 84.835051
final  value 84.834959 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.507303 
iter  10 value 94.489014
iter  20 value 87.076341
iter  30 value 85.613924
iter  40 value 85.530202
iter  50 value 85.520522
final  value 85.517772 
converged
Fitting Repeat 4 

# weights:  103
initial  value 109.209975 
iter  10 value 94.314483
iter  20 value 88.439372
iter  30 value 87.548003
iter  40 value 86.400461
iter  50 value 85.744542
iter  60 value 85.386671
final  value 85.370714 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.954123 
iter  10 value 94.637810
iter  20 value 88.988675
iter  30 value 85.728155
iter  40 value 84.552756
iter  50 value 84.316354
iter  60 value 83.342418
iter  70 value 82.349559
iter  80 value 82.080114
iter  90 value 81.665315
iter 100 value 81.536681
final  value 81.536681 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 105.816010 
iter  10 value 90.000714
iter  20 value 88.160525
iter  30 value 85.977856
iter  40 value 84.408278
iter  50 value 83.775861
iter  60 value 83.052572
iter  70 value 82.662632
iter  80 value 82.044017
iter  90 value 81.480691
iter 100 value 81.418760
final  value 81.418760 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 113.449115 
iter  10 value 94.387455
iter  20 value 93.618642
iter  30 value 92.321766
iter  40 value 86.707278
iter  50 value 84.812481
iter  60 value 84.373168
iter  70 value 83.945090
iter  80 value 81.865224
iter  90 value 80.918506
iter 100 value 80.529216
final  value 80.529216 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 115.961094 
iter  10 value 94.654845
iter  20 value 94.130823
iter  30 value 84.802687
iter  40 value 83.846591
iter  50 value 82.740251
iter  60 value 82.104753
iter  70 value 81.991724
iter  80 value 81.795742
iter  90 value 80.882821
iter 100 value 80.411229
final  value 80.411229 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.294998 
iter  10 value 94.245938
iter  20 value 89.309029
iter  30 value 88.839596
iter  40 value 88.701835
iter  50 value 87.128813
iter  60 value 85.035219
iter  70 value 84.087497
iter  80 value 83.600439
iter  90 value 83.488726
iter 100 value 82.534164
final  value 82.534164 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 100.900473 
iter  10 value 94.490110
iter  20 value 87.432891
iter  30 value 86.354628
iter  40 value 86.273870
iter  50 value 86.028838
iter  60 value 84.159941
iter  70 value 83.339934
iter  80 value 81.747161
iter  90 value 80.745532
iter 100 value 80.620218
final  value 80.620218 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 109.733476 
iter  10 value 88.955849
iter  20 value 85.902796
iter  30 value 84.918032
iter  40 value 82.559686
iter  50 value 81.883419
iter  60 value 81.597014
iter  70 value 81.462975
iter  80 value 81.393690
iter  90 value 80.644752
iter 100 value 80.496070
final  value 80.496070 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 116.149028 
iter  10 value 94.042560
iter  20 value 91.680112
iter  30 value 90.745963
iter  40 value 90.607151
iter  50 value 84.624464
iter  60 value 83.645411
iter  70 value 82.761917
iter  80 value 82.311283
iter  90 value 81.772025
iter 100 value 81.562908
final  value 81.562908 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 104.338994 
iter  10 value 94.435310
iter  20 value 93.331906
iter  30 value 91.648009
iter  40 value 89.852344
iter  50 value 84.662415
iter  60 value 83.795736
iter  70 value 83.557655
iter  80 value 82.738531
iter  90 value 82.555805
iter 100 value 82.224351
final  value 82.224351 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.400150 
iter  10 value 91.725124
iter  20 value 88.994205
iter  30 value 88.344130
iter  40 value 87.155605
iter  50 value 85.571016
iter  60 value 84.978825
iter  70 value 84.275151
iter  80 value 82.859018
iter  90 value 82.319527
iter 100 value 81.541276
final  value 81.541276 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 122.604756 
iter  10 value 94.834653
iter  20 value 91.603831
iter  30 value 88.639364
iter  40 value 88.391107
iter  50 value 86.685618
iter  60 value 85.282732
iter  70 value 84.599167
iter  80 value 83.679825
iter  90 value 82.819273
iter 100 value 82.570547
final  value 82.570547 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 97.457753 
final  value 94.485817 
converged
Fitting Repeat 2 

# weights:  103
initial  value 99.517443 
final  value 94.485835 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.507980 
final  value 94.485649 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.588057 
final  value 94.485820 
converged
Fitting Repeat 5 

# weights:  103
initial  value 102.868966 
final  value 94.486107 
converged
Fitting Repeat 1 

# weights:  305
initial  value 102.325443 
iter  10 value 94.489702
iter  20 value 94.433188
iter  30 value 93.558402
final  value 93.558397 
converged
Fitting Repeat 2 

# weights:  305
initial  value 101.620039 
iter  10 value 94.471539
iter  20 value 93.896565
iter  30 value 93.165579
iter  40 value 92.679148
iter  50 value 86.516412
iter  60 value 85.406759
iter  70 value 81.836763
iter  80 value 80.530818
iter  90 value 80.385454
iter 100 value 80.381592
final  value 80.381592 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 116.465091 
iter  10 value 94.489969
iter  20 value 94.484874
iter  30 value 88.034869
iter  40 value 86.723862
iter  50 value 86.639635
iter  60 value 83.757980
iter  70 value 83.547647
iter  80 value 83.500998
iter  90 value 83.500717
iter 100 value 83.500286
final  value 83.500286 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 117.754657 
iter  10 value 94.471989
iter  20 value 94.468266
iter  30 value 91.836251
iter  40 value 88.766746
iter  50 value 88.757351
final  value 88.756868 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.057817 
iter  10 value 94.488441
iter  20 value 94.330538
iter  30 value 85.102999
iter  40 value 85.097081
iter  50 value 84.904890
iter  60 value 84.592381
iter  70 value 84.587485
iter  80 value 84.269052
iter  90 value 83.232813
iter 100 value 83.224613
final  value 83.224613 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 120.520943 
iter  10 value 94.493451
iter  20 value 94.485888
iter  30 value 88.809358
iter  40 value 85.753293
iter  50 value 85.674869
iter  60 value 85.672946
iter  70 value 85.669645
iter  80 value 85.669490
iter  90 value 85.669093
iter 100 value 85.567395
final  value 85.567395 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 125.775926 
iter  10 value 94.494271
iter  20 value 94.484576
iter  30 value 93.558797
iter  40 value 93.558630
iter  40 value 93.558629
final  value 93.558627 
converged
Fitting Repeat 3 

# weights:  507
initial  value 104.646664 
iter  10 value 94.491396
iter  20 value 93.851882
iter  30 value 90.560399
iter  40 value 90.260202
iter  50 value 89.802048
iter  60 value 89.456850
iter  70 value 89.456088
iter  80 value 89.455203
iter  90 value 87.189031
iter 100 value 85.621573
final  value 85.621573 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.639382 
iter  10 value 94.492321
iter  20 value 94.484149
iter  30 value 93.201547
iter  40 value 90.103614
iter  50 value 85.729499
iter  60 value 85.703558
iter  70 value 84.079115
iter  80 value 81.865073
iter  90 value 81.856373
iter 100 value 81.841512
final  value 81.841512 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 126.391980 
iter  10 value 94.541556
iter  20 value 94.097578
iter  30 value 87.684275
iter  40 value 84.544204
iter  50 value 84.493827
iter  60 value 84.459515
iter  70 value 84.404876
iter  80 value 83.910454
iter  90 value 83.152595
iter 100 value 83.104998
final  value 83.104998 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 96.881546 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 96.827372 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 100.027181 
iter  10 value 94.026543
iter  10 value 94.026542
iter  10 value 94.026542
final  value 94.026542 
converged
Fitting Repeat 4 

# weights:  103
initial  value 96.111030 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.461052 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 126.128283 
iter  10 value 93.715479
final  value 93.714942 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.109841 
final  value 94.484137 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.837647 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 110.488384 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 105.270649 
iter  10 value 92.863250
iter  20 value 79.639935
iter  30 value 79.227006
iter  40 value 79.179434
iter  50 value 79.050791
iter  60 value 78.787216
iter  70 value 78.758692
iter  80 value 78.736161
iter  90 value 78.659972
final  value 78.653671 
converged
Fitting Repeat 1 

# weights:  507
initial  value 113.331731 
iter  10 value 89.237971
iter  20 value 80.054988
iter  30 value 79.601286
iter  40 value 79.511654
iter  50 value 79.511404
final  value 79.511388 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.237245 
iter  10 value 89.930187
iter  20 value 89.713136
iter  30 value 89.542452
final  value 89.542428 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.830599 
final  value 94.026542 
converged
Fitting Repeat 4 

# weights:  507
initial  value 102.891711 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.536548 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.650293 
iter  10 value 94.375366
iter  20 value 90.812379
iter  30 value 90.756095
iter  40 value 90.632675
iter  50 value 89.125761
iter  60 value 89.041698
iter  70 value 89.027813
iter  80 value 89.023356
final  value 89.023314 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.673670 
iter  10 value 94.274369
iter  20 value 84.184740
iter  30 value 80.917905
iter  40 value 80.678491
iter  50 value 78.402156
iter  60 value 78.124888
final  value 78.124686 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.636410 
iter  10 value 94.458209
iter  20 value 88.881104
iter  30 value 81.658002
iter  40 value 81.537767
iter  50 value 81.424116
iter  60 value 81.201227
iter  70 value 80.997237
iter  80 value 80.952776
iter  80 value 80.952776
iter  80 value 80.952776
final  value 80.952776 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.154258 
final  value 94.488535 
converged
Fitting Repeat 5 

# weights:  103
initial  value 103.634733 
iter  10 value 93.724184
iter  20 value 85.180992
iter  30 value 84.932928
iter  40 value 81.607442
iter  50 value 80.987387
iter  60 value 80.953290
iter  70 value 80.952791
final  value 80.952776 
converged
Fitting Repeat 1 

# weights:  305
initial  value 119.656826 
iter  10 value 94.239261
iter  20 value 85.507248
iter  30 value 83.949206
iter  40 value 81.371333
iter  50 value 80.336869
iter  60 value 79.028963
iter  70 value 78.295649
iter  80 value 77.276308
iter  90 value 77.151631
iter 100 value 77.049643
final  value 77.049643 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 106.485319 
iter  10 value 93.988354
iter  20 value 84.665583
iter  30 value 83.112892
iter  40 value 79.855740
iter  50 value 79.053219
iter  60 value 78.570546
iter  70 value 78.442887
iter  80 value 78.277860
iter  90 value 78.182046
iter 100 value 78.149610
final  value 78.149610 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 103.662028 
iter  10 value 94.496526
iter  20 value 94.153401
iter  30 value 93.547378
iter  40 value 91.173584
iter  50 value 90.450594
iter  60 value 88.382235
iter  70 value 81.959873
iter  80 value 81.344149
iter  90 value 81.201655
iter 100 value 80.010829
final  value 80.010829 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 105.221809 
iter  10 value 94.496288
iter  20 value 94.132285
iter  30 value 93.984179
iter  40 value 89.933417
iter  50 value 81.775601
iter  60 value 79.507684
iter  70 value 79.257176
iter  80 value 78.440868
iter  90 value 77.803253
iter 100 value 77.295995
final  value 77.295995 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 121.203008 
iter  10 value 94.399848
iter  20 value 91.414073
iter  30 value 86.628565
iter  40 value 86.227646
iter  50 value 85.166148
iter  60 value 83.678067
iter  70 value 80.106953
iter  80 value 79.467824
iter  90 value 79.069582
iter 100 value 78.802416
final  value 78.802416 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 117.342882 
iter  10 value 94.596038
iter  20 value 86.610809
iter  30 value 83.183052
iter  40 value 82.347919
iter  50 value 79.884980
iter  60 value 79.184533
iter  70 value 78.393950
iter  80 value 77.464911
iter  90 value 77.272515
iter 100 value 77.085368
final  value 77.085368 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.049719 
iter  10 value 95.411428
iter  20 value 94.499070
iter  30 value 90.710020
iter  40 value 85.512676
iter  50 value 80.793470
iter  60 value 78.444915
iter  70 value 77.711625
iter  80 value 76.945019
iter  90 value 76.697355
iter 100 value 76.514107
final  value 76.514107 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 111.444541 
iter  10 value 94.175451
iter  20 value 87.059238
iter  30 value 81.671313
iter  40 value 79.430016
iter  50 value 78.842054
iter  60 value 78.520598
iter  70 value 78.300296
iter  80 value 77.985886
iter  90 value 77.943556
iter 100 value 77.890082
final  value 77.890082 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 120.385638 
iter  10 value 94.585299
iter  20 value 90.848563
iter  30 value 83.701760
iter  40 value 83.382877
iter  50 value 81.816362
iter  60 value 79.717919
iter  70 value 78.114431
iter  80 value 77.941102
iter  90 value 77.466644
iter 100 value 77.255383
final  value 77.255383 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 107.732607 
iter  10 value 94.780298
iter  20 value 88.991208
iter  30 value 82.281969
iter  40 value 79.955228
iter  50 value 78.756629
iter  60 value 76.835584
iter  70 value 76.657817
iter  80 value 76.545974
iter  90 value 76.233802
iter 100 value 76.053638
final  value 76.053638 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 107.704985 
iter  10 value 94.808234
iter  20 value 94.705273
iter  30 value 94.510444
final  value 94.484222 
converged
Fitting Repeat 2 

# weights:  103
initial  value 103.225800 
iter  10 value 94.029108
iter  20 value 94.027640
final  value 94.026694 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.457710 
final  value 94.485926 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.016174 
final  value 94.485775 
converged
Fitting Repeat 5 

# weights:  103
initial  value 108.019338 
final  value 94.485871 
converged
Fitting Repeat 1 

# weights:  305
initial  value 112.394395 
iter  10 value 94.489066
iter  20 value 94.484242
iter  30 value 93.866535
iter  40 value 93.551567
iter  50 value 86.818669
iter  60 value 85.118500
iter  70 value 85.115647
iter  80 value 85.105637
iter  90 value 83.381422
iter 100 value 83.213995
final  value 83.213995 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 110.830167 
iter  10 value 94.489391
iter  20 value 94.403836
iter  30 value 83.677600
iter  40 value 82.837467
iter  50 value 79.184888
iter  60 value 79.089086
iter  70 value 79.074812
iter  80 value 79.062557
iter  90 value 79.059394
iter 100 value 79.042195
final  value 79.042195 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 92.609993 
iter  10 value 85.790198
iter  20 value 84.723628
iter  30 value 84.708968
iter  40 value 82.131271
iter  50 value 78.604183
iter  60 value 78.248896
iter  70 value 78.237171
iter  80 value 77.545287
iter  90 value 75.949736
iter 100 value 75.700848
final  value 75.700848 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 109.082382 
iter  10 value 94.031620
iter  20 value 93.964508
iter  30 value 88.624544
iter  40 value 79.089995
iter  50 value 78.513025
iter  60 value 77.974117
iter  70 value 77.935295
final  value 77.935153 
converged
Fitting Repeat 5 

# weights:  305
initial  value 98.156121 
iter  10 value 94.031305
iter  20 value 94.026412
iter  30 value 92.197651
iter  40 value 86.056035
iter  50 value 85.630531
iter  60 value 85.416678
iter  70 value 80.783307
iter  80 value 80.712981
iter  90 value 80.108184
final  value 80.107267 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.663253 
iter  10 value 94.035313
iter  20 value 93.937197
iter  30 value 93.794987
final  value 93.790881 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.564743 
iter  10 value 94.492333
iter  20 value 94.484261
final  value 94.484217 
converged
Fitting Repeat 3 

# weights:  507
initial  value 95.827231 
iter  10 value 86.168552
iter  20 value 84.972136
iter  30 value 84.960598
iter  40 value 84.958248
iter  50 value 84.952927
iter  60 value 84.952013
iter  70 value 82.819052
iter  80 value 79.802379
iter  90 value 79.713599
iter 100 value 79.532619
final  value 79.532619 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 107.101081 
iter  10 value 92.996040
iter  20 value 83.321030
iter  30 value 83.287036
iter  40 value 83.079561
iter  50 value 82.972984
iter  60 value 82.961116
iter  70 value 82.959304
iter  80 value 82.863308
iter  90 value 82.120667
iter 100 value 79.138737
final  value 79.138737 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 96.307442 
iter  10 value 94.492339
iter  20 value 94.484411
iter  30 value 88.406989
iter  40 value 87.178244
iter  50 value 87.177706
iter  60 value 87.175039
iter  70 value 85.091532
iter  80 value 83.802446
iter  90 value 81.971046
iter 100 value 81.890592
final  value 81.890592 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 136.824183 
iter  10 value 117.524685
iter  20 value 112.180964
iter  30 value 108.429825
iter  40 value 104.890335
iter  50 value 103.076526
iter  60 value 101.988316
iter  70 value 101.585142
iter  80 value 101.380991
final  value 101.341156 
converged
Fitting Repeat 2 

# weights:  507
initial  value 147.929429 
iter  10 value 117.497251
iter  20 value 107.752937
iter  30 value 107.397435
iter  40 value 105.407701
iter  50 value 105.006441
iter  60 value 104.041818
iter  70 value 103.153668
iter  80 value 102.372958
iter  90 value 101.913027
iter 100 value 101.416285
final  value 101.416285 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 143.511874 
iter  10 value 111.679588
iter  20 value 106.282742
iter  30 value 104.987757
iter  40 value 103.104153
iter  50 value 102.173651
iter  60 value 101.342658
iter  70 value 100.915589
iter  80 value 100.643747
iter  90 value 100.273717
iter 100 value 100.155504
final  value 100.155504 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 148.152376 
iter  10 value 117.902613
iter  20 value 115.280164
iter  30 value 109.276624
iter  40 value 106.614814
iter  50 value 104.535414
iter  60 value 103.068297
iter  70 value 102.466213
iter  80 value 101.745097
iter  90 value 101.654195
iter 100 value 101.563876
final  value 101.563876 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 127.788104 
iter  10 value 118.330675
iter  20 value 117.484120
iter  30 value 110.951569
iter  40 value 109.319646
iter  50 value 107.402493
iter  60 value 103.142848
iter  70 value 102.479226
iter  80 value 102.211734
iter  90 value 102.047472
iter 100 value 101.801256
final  value 101.801256 
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Thu Dec  4 02:35:20 2025 
*********************************************** 
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: `repeats` has no meaning for this resampling method. 
2: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 41.453   1.162  95.002 

Example timings

HPiP.Rcheck/HPiP-Ex.timings

nameusersystemelapsed
FSmethod32.587 0.58633.175
FreqInteractors0.4220.0360.457
calculateAAC0.0290.0030.033
calculateAutocor0.2700.0180.289
calculateCTDC0.0710.0000.071
calculateCTDD0.4440.0030.447
calculateCTDT0.1350.0010.137
calculateCTriad0.3450.0080.353
calculateDC0.0820.0080.090
calculateF0.2860.0010.287
calculateKSAAP0.0970.0040.100
calculateQD_Sm1.6090.0341.643
calculateTC1.5160.1341.650
calculateTC_Sm0.2490.0050.254
corr_plot33.427 0.50833.937
enrichfindP 0.517 0.04415.689
enrichfind_hp0.0440.0031.173
enrichplot0.4750.0020.477
filter_missing_values0.0000.0000.001
getFASTA0.3370.0076.877
getHPI0.0010.0010.001
get_negativePPI0.0010.0010.001
get_positivePPI000
impute_missing_data0.0000.0010.001
plotPPI0.0820.0000.082
pred_ensembel12.769 0.11911.519
var_imp32.800 0.42333.226