| Back to Multiple platform build/check report for BioC 3.23: simplified long |
|
This page was generated on 2025-12-04 11:35 -0500 (Thu, 04 Dec 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" | 4869 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" | 4576 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 995/2331 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.17.1 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | WARNINGS | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | WARNINGS | OK | |||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.17.1 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz |
| StartedAt: 2025-12-03 23:30:04 -0500 (Wed, 03 Dec 2025) |
| EndedAt: 2025-12-03 23:44:01 -0500 (Wed, 03 Dec 2025) |
| EllapsedTime: 836.5 seconds |
| RetCode: 0 |
| Status: WARNINGS |
| CheckDir: HPiP.Rcheck |
| Warnings: 1 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.17.1.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.17.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Unknown package ‘ftrCOOL’ in Rd xrefs
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... WARNING
Codoc mismatches from Rd file 'pred_ensembel.Rd':
pred_ensembel
Code: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
FALSE, filename = "plots.pdf")
Docs: function(features, gold_standard, classifier = c("avNNet",
"svmRadial", "ranger"), resampling.method = "cv",
ncross = 2, repeats = 2, verboseIter = TRUE, plots =
TRUE, filename = "plots.pdf")
Mismatches in argument default values:
Name: 'plots' Code: FALSE Docs: TRUE
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
FSmethod 18.231 0.688 18.991
var_imp 18.108 0.752 18.880
corr_plot 18.026 0.650 18.733
pred_ensembel 6.007 0.121 5.448
enrichfindP 0.184 0.037 23.507
getFASTA 0.029 0.005 7.402
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 WARNING, 3 NOTEs
See
‘/Users/biocbuild/bbs-3.23-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.17.1’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 113.167189
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.506648
iter 10 value 94.053388
iter 20 value 94.052436
iter 20 value 94.052435
iter 20 value 94.052435
final value 94.052435
converged
Fitting Repeat 3
# weights: 103
initial value 104.158639
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 95.147572
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 100.068750
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 102.670724
final value 94.479540
converged
Fitting Repeat 2
# weights: 305
initial value 102.327548
final value 94.052434
converged
Fitting Repeat 3
# weights: 305
initial value 95.155247
final value 94.395062
converged
Fitting Repeat 4
# weights: 305
initial value 126.863809
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 104.335039
iter 10 value 93.571597
iter 20 value 91.841933
iter 30 value 91.814749
final value 91.814654
converged
Fitting Repeat 1
# weights: 507
initial value 96.586247
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 96.960881
iter 10 value 94.484212
iter 10 value 94.484211
iter 10 value 94.484211
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 95.273183
final value 94.275362
converged
Fitting Repeat 4
# weights: 507
initial value 95.613918
final value 94.275362
converged
Fitting Repeat 5
# weights: 507
initial value 145.460746
iter 10 value 94.275363
iter 10 value 94.275362
iter 10 value 94.275362
final value 94.275362
converged
Fitting Repeat 1
# weights: 103
initial value 100.074875
iter 10 value 94.441138
iter 20 value 92.277792
iter 30 value 92.112958
iter 40 value 92.080274
iter 50 value 91.976921
iter 60 value 91.908544
iter 70 value 91.782113
iter 80 value 91.683984
final value 91.683254
converged
Fitting Repeat 2
# weights: 103
initial value 101.430797
iter 10 value 94.502770
iter 20 value 94.464258
iter 30 value 90.614670
iter 40 value 84.393495
iter 50 value 83.987172
iter 60 value 82.645236
iter 70 value 82.213378
iter 80 value 82.144482
iter 90 value 82.086609
final value 82.086598
converged
Fitting Repeat 3
# weights: 103
initial value 98.225984
iter 10 value 94.367459
iter 20 value 85.094177
iter 30 value 84.573196
iter 40 value 83.763687
iter 50 value 83.238473
iter 60 value 82.638918
iter 70 value 82.543633
final value 82.543611
converged
Fitting Repeat 4
# weights: 103
initial value 99.642877
iter 10 value 94.525981
iter 20 value 94.125306
iter 30 value 89.257608
iter 40 value 86.489557
iter 50 value 85.690225
iter 60 value 83.542811
iter 70 value 82.443198
iter 80 value 81.478893
iter 90 value 81.377270
iter 100 value 81.356503
final value 81.356503
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 98.937882
iter 10 value 94.458019
iter 20 value 92.540420
iter 30 value 92.414881
iter 40 value 92.218550
iter 50 value 90.386880
iter 60 value 87.061145
iter 70 value 85.773818
iter 80 value 85.465175
iter 90 value 85.436129
final value 85.432192
converged
Fitting Repeat 1
# weights: 305
initial value 100.144555
iter 10 value 92.611785
iter 20 value 92.095292
iter 30 value 91.683158
iter 40 value 89.325410
iter 50 value 86.420593
iter 60 value 85.317450
iter 70 value 83.079987
iter 80 value 81.150386
iter 90 value 80.734500
iter 100 value 80.571933
final value 80.571933
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.715185
iter 10 value 94.666397
iter 20 value 94.299358
iter 30 value 84.956069
iter 40 value 83.953391
iter 50 value 83.171696
iter 60 value 82.532829
iter 70 value 82.417830
iter 80 value 82.391739
iter 90 value 81.826011
iter 100 value 80.952240
final value 80.952240
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.769163
iter 10 value 94.327491
iter 20 value 88.709865
iter 30 value 87.441159
iter 40 value 87.000657
iter 50 value 84.126456
iter 60 value 83.030404
iter 70 value 81.778384
iter 80 value 81.683418
iter 90 value 81.563031
iter 100 value 81.539072
final value 81.539072
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 111.618409
iter 10 value 94.448882
iter 20 value 93.732451
iter 30 value 86.700087
iter 40 value 85.913375
iter 50 value 85.259261
iter 60 value 82.405769
iter 70 value 81.945065
iter 80 value 81.455294
iter 90 value 81.051056
iter 100 value 80.896565
final value 80.896565
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 123.002060
iter 10 value 94.526484
iter 20 value 93.618185
iter 30 value 89.287220
iter 40 value 88.200145
iter 50 value 84.194551
iter 60 value 82.430712
iter 70 value 81.586452
iter 80 value 81.426122
iter 90 value 81.224541
iter 100 value 81.103106
final value 81.103106
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.294160
iter 10 value 95.680704
iter 20 value 93.948732
iter 30 value 85.655948
iter 40 value 84.269623
iter 50 value 83.765617
iter 60 value 83.472601
iter 70 value 83.079389
iter 80 value 80.654762
iter 90 value 79.580854
iter 100 value 79.353281
final value 79.353281
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 121.977910
iter 10 value 94.691304
iter 20 value 94.284550
iter 30 value 92.867848
iter 40 value 89.917756
iter 50 value 85.778078
iter 60 value 81.866185
iter 70 value 80.698516
iter 80 value 80.370121
iter 90 value 79.885467
iter 100 value 79.520845
final value 79.520845
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 106.645359
iter 10 value 94.480952
iter 20 value 93.793558
iter 30 value 93.248328
iter 40 value 92.941216
iter 50 value 92.205958
iter 60 value 88.540112
iter 70 value 83.573527
iter 80 value 80.936563
iter 90 value 80.648489
iter 100 value 80.266542
final value 80.266542
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 127.971935
iter 10 value 94.921589
iter 20 value 87.618314
iter 30 value 86.313719
iter 40 value 85.587496
iter 50 value 84.675393
iter 60 value 84.332953
iter 70 value 82.254961
iter 80 value 80.845862
iter 90 value 80.167059
iter 100 value 80.052156
final value 80.052156
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 118.879504
iter 10 value 96.402843
iter 20 value 91.661689
iter 30 value 89.808714
iter 40 value 87.799965
iter 50 value 86.439048
iter 60 value 85.232565
iter 70 value 85.007323
iter 80 value 84.509404
iter 90 value 83.007285
iter 100 value 81.650490
final value 81.650490
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.152730
iter 10 value 94.481210
iter 20 value 94.327677
final value 94.327608
converged
Fitting Repeat 2
# weights: 103
initial value 102.070924
final value 94.485870
converged
Fitting Repeat 3
# weights: 103
initial value 98.575869
final value 94.485932
converged
Fitting Repeat 4
# weights: 103
initial value 96.767058
final value 94.486041
converged
Fitting Repeat 5
# weights: 103
initial value 96.272479
iter 10 value 94.386709
final value 94.327332
converged
Fitting Repeat 1
# weights: 305
initial value 108.053993
iter 10 value 94.494481
iter 20 value 94.477749
iter 30 value 91.279056
iter 40 value 90.374742
iter 50 value 85.924283
iter 60 value 84.090301
iter 70 value 84.089299
iter 80 value 84.085076
iter 90 value 84.084603
iter 100 value 84.084482
final value 84.084482
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.138481
iter 10 value 94.280877
iter 20 value 94.275824
final value 94.275553
converged
Fitting Repeat 3
# weights: 305
initial value 107.637347
iter 10 value 93.948162
iter 20 value 89.229548
iter 30 value 85.959021
iter 40 value 85.667375
iter 50 value 85.590273
iter 60 value 85.587676
iter 70 value 85.585602
iter 80 value 85.326669
iter 90 value 85.271351
iter 100 value 84.276243
final value 84.276243
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.781626
iter 10 value 94.330785
iter 20 value 92.127703
iter 30 value 86.420899
iter 40 value 86.334757
iter 50 value 86.332319
iter 60 value 85.170010
iter 70 value 82.900857
iter 80 value 82.749634
iter 90 value 82.749287
final value 82.749150
converged
Fitting Repeat 5
# weights: 305
initial value 95.298074
iter 10 value 94.489177
iter 20 value 94.484244
iter 30 value 93.344490
iter 40 value 85.333268
iter 50 value 80.483620
iter 60 value 80.204081
iter 70 value 79.909309
iter 80 value 79.657202
iter 90 value 79.504088
final value 79.502871
converged
Fitting Repeat 1
# weights: 507
initial value 107.515388
iter 10 value 94.491943
iter 20 value 94.343712
iter 30 value 84.886787
final value 84.885568
converged
Fitting Repeat 2
# weights: 507
initial value 122.601495
iter 10 value 94.283637
iter 20 value 94.279114
iter 30 value 89.481579
iter 40 value 85.637663
iter 50 value 82.742257
iter 60 value 79.758735
iter 70 value 79.717168
iter 80 value 79.457509
iter 90 value 79.352480
iter 100 value 79.180747
final value 79.180747
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.131227
iter 10 value 94.283515
iter 20 value 94.265057
iter 30 value 84.270072
iter 40 value 83.674319
iter 50 value 82.168430
iter 60 value 82.095102
iter 70 value 82.092161
final value 82.092076
converged
Fitting Repeat 4
# weights: 507
initial value 121.708520
iter 10 value 94.492371
iter 20 value 94.015025
iter 30 value 87.141539
iter 40 value 82.347723
iter 50 value 82.068810
iter 60 value 81.869914
final value 81.868658
converged
Fitting Repeat 5
# weights: 507
initial value 115.101397
iter 10 value 94.492367
iter 20 value 94.483812
iter 30 value 91.505134
iter 40 value 87.976537
iter 50 value 83.015620
iter 60 value 82.744305
iter 70 value 82.739775
final value 82.739756
converged
Fitting Repeat 1
# weights: 103
initial value 99.361660
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 98.101399
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 102.796839
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 94.582527
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 102.497614
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 100.236137
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 96.302984
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 124.455457
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 111.434450
iter 10 value 92.716611
final value 92.716378
converged
Fitting Repeat 5
# weights: 305
initial value 97.976011
iter 10 value 92.301960
iter 20 value 92.220089
iter 30 value 91.728568
iter 40 value 91.714294
final value 91.714286
converged
Fitting Repeat 1
# weights: 507
initial value 116.024434
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 94.550702
final value 94.052909
converged
Fitting Repeat 3
# weights: 507
initial value 107.683805
iter 10 value 94.062261
iter 20 value 92.892795
final value 92.892737
converged
Fitting Repeat 4
# weights: 507
initial value 98.460232
iter 10 value 93.368593
final value 93.356725
converged
Fitting Repeat 5
# weights: 507
initial value 105.662410
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 102.663572
iter 10 value 93.120054
iter 20 value 88.739276
iter 30 value 87.838445
iter 40 value 87.365980
iter 50 value 87.283468
iter 60 value 87.139973
iter 70 value 85.955830
iter 80 value 85.257117
iter 90 value 85.198667
iter 100 value 85.156115
final value 85.156115
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.690496
iter 10 value 94.072097
iter 20 value 94.018630
iter 30 value 93.428522
iter 40 value 93.230076
iter 50 value 89.569838
iter 60 value 87.776119
iter 70 value 87.535189
iter 80 value 86.697916
iter 90 value 86.165227
iter 100 value 85.589837
final value 85.589837
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 105.069780
iter 10 value 94.054497
iter 20 value 88.508512
iter 30 value 86.339926
iter 40 value 83.832886
iter 50 value 83.590706
iter 60 value 83.358835
iter 70 value 83.305026
final value 83.284630
converged
Fitting Repeat 4
# weights: 103
initial value 113.065586
iter 10 value 94.008183
iter 20 value 93.430730
iter 30 value 93.428124
iter 40 value 93.426912
iter 50 value 93.312483
iter 60 value 90.083690
iter 70 value 89.627900
iter 80 value 87.197368
iter 90 value 84.357956
iter 100 value 83.747711
final value 83.747711
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 120.227554
iter 10 value 94.054614
iter 20 value 93.784604
iter 30 value 88.882959
iter 40 value 87.403406
iter 50 value 84.671528
iter 60 value 83.653870
iter 70 value 83.392563
iter 80 value 83.313323
iter 90 value 83.295746
iter 100 value 83.284438
final value 83.284438
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 116.420532
iter 10 value 94.061456
iter 20 value 93.252621
iter 30 value 89.776293
iter 40 value 87.573013
iter 50 value 87.125752
iter 60 value 85.027625
iter 70 value 84.803871
iter 80 value 84.778154
iter 90 value 84.706285
iter 100 value 84.623151
final value 84.623151
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.015952
iter 10 value 93.332341
iter 20 value 89.457549
iter 30 value 87.010727
iter 40 value 85.776547
iter 50 value 85.625595
iter 60 value 84.947895
iter 70 value 83.928126
iter 80 value 83.545377
iter 90 value 82.972345
iter 100 value 82.291490
final value 82.291490
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.911946
iter 10 value 93.461916
iter 20 value 93.427415
iter 30 value 93.405656
iter 40 value 90.317309
iter 50 value 87.236138
iter 60 value 85.926938
iter 70 value 85.599158
iter 80 value 84.985994
iter 90 value 83.884849
iter 100 value 83.596010
final value 83.596010
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.992654
iter 10 value 94.156836
iter 20 value 93.493581
iter 30 value 93.415359
iter 40 value 89.194188
iter 50 value 87.257507
iter 60 value 86.359832
iter 70 value 85.675959
iter 80 value 85.474633
iter 90 value 85.324340
iter 100 value 85.298906
final value 85.298906
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 121.501667
iter 10 value 93.359289
iter 20 value 91.063840
iter 30 value 86.287189
iter 40 value 85.710957
iter 50 value 85.439561
iter 60 value 85.219068
iter 70 value 84.912745
iter 80 value 84.208181
iter 90 value 83.993455
iter 100 value 83.904794
final value 83.904794
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.838169
iter 10 value 94.745062
iter 20 value 90.995215
iter 30 value 86.131966
iter 40 value 85.078179
iter 50 value 84.945343
iter 60 value 84.038978
iter 70 value 83.836615
iter 80 value 83.663410
iter 90 value 83.361752
iter 100 value 82.752962
final value 82.752962
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 118.445935
iter 10 value 94.310214
iter 20 value 92.936588
iter 30 value 87.907471
iter 40 value 85.235448
iter 50 value 83.345061
iter 60 value 82.611935
iter 70 value 82.339072
iter 80 value 81.932177
iter 90 value 81.856718
iter 100 value 81.788590
final value 81.788590
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 113.808570
iter 10 value 95.947084
iter 20 value 89.343116
iter 30 value 87.708837
iter 40 value 85.451533
iter 50 value 85.224773
iter 60 value 85.180138
iter 70 value 85.136568
iter 80 value 84.727456
iter 90 value 83.447994
iter 100 value 83.070269
final value 83.070269
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.074725
iter 10 value 94.632327
iter 20 value 86.576902
iter 30 value 85.954284
iter 40 value 84.960659
iter 50 value 83.366903
iter 60 value 83.236908
iter 70 value 83.125580
iter 80 value 83.097426
iter 90 value 82.974287
iter 100 value 82.713520
final value 82.713520
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 102.618265
iter 10 value 95.741715
iter 20 value 89.199651
iter 30 value 87.737639
iter 40 value 85.421844
iter 50 value 84.564904
iter 60 value 83.833122
iter 70 value 83.358430
iter 80 value 82.158930
iter 90 value 81.920968
iter 100 value 81.700005
final value 81.700005
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.317930
iter 10 value 94.054432
iter 20 value 94.052715
iter 30 value 92.897836
iter 40 value 92.894728
iter 50 value 85.228582
iter 60 value 85.155736
final value 85.150804
converged
Fitting Repeat 2
# weights: 103
initial value 96.621561
iter 10 value 87.252959
iter 20 value 87.250602
iter 30 value 87.238278
iter 40 value 85.931745
iter 50 value 85.370819
final value 85.369765
converged
Fitting Repeat 3
# weights: 103
initial value 95.661241
final value 94.054465
converged
Fitting Repeat 4
# weights: 103
initial value 99.333798
iter 10 value 94.029354
iter 20 value 92.476506
iter 30 value 89.108453
final value 89.108442
converged
Fitting Repeat 5
# weights: 103
initial value 94.317890
iter 10 value 91.592290
final value 91.435057
converged
Fitting Repeat 1
# weights: 305
initial value 96.920989
iter 10 value 94.057361
iter 20 value 93.981994
final value 93.357155
converged
Fitting Repeat 2
# weights: 305
initial value 96.179042
iter 10 value 94.057608
iter 20 value 94.053101
iter 30 value 91.700621
iter 40 value 91.377680
iter 50 value 88.024370
iter 60 value 84.938540
iter 70 value 84.500115
iter 80 value 84.371209
final value 84.371157
converged
Fitting Repeat 3
# weights: 305
initial value 100.782310
iter 10 value 94.059682
iter 20 value 94.055920
iter 30 value 90.402806
iter 40 value 85.676114
iter 50 value 85.370523
final value 85.370517
converged
Fitting Repeat 4
# weights: 305
initial value 103.694497
iter 10 value 93.796484
iter 20 value 93.790316
iter 30 value 89.065465
iter 40 value 86.646630
final value 86.603299
converged
Fitting Repeat 5
# weights: 305
initial value 94.970431
iter 10 value 94.057577
iter 20 value 93.367751
iter 30 value 87.697938
iter 40 value 87.498132
iter 50 value 87.495297
iter 60 value 87.492516
iter 70 value 87.474626
iter 80 value 87.444232
iter 90 value 87.442272
iter 100 value 87.441837
final value 87.441837
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 98.805836
iter 10 value 94.060573
iter 20 value 92.865611
iter 30 value 90.572685
iter 40 value 88.985232
final value 88.985127
converged
Fitting Repeat 2
# weights: 507
initial value 107.860086
iter 10 value 93.844336
iter 20 value 93.837207
final value 93.836348
converged
Fitting Repeat 3
# weights: 507
initial value 95.256215
iter 10 value 93.807892
iter 20 value 93.793754
iter 30 value 93.792806
iter 40 value 93.790186
iter 50 value 91.142706
iter 60 value 88.027214
iter 70 value 86.926518
iter 80 value 86.908505
iter 90 value 86.907689
iter 100 value 86.689706
final value 86.689706
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 98.522874
iter 10 value 88.723522
iter 20 value 87.436212
iter 30 value 87.419519
iter 40 value 87.418214
iter 50 value 87.414654
iter 60 value 87.413870
iter 70 value 85.079430
iter 80 value 84.590561
iter 90 value 84.590429
final value 84.589115
converged
Fitting Repeat 5
# weights: 507
initial value 97.549462
iter 10 value 92.381647
iter 20 value 92.238184
iter 30 value 92.234037
iter 40 value 91.974116
iter 50 value 91.939955
iter 60 value 91.932008
iter 70 value 91.895977
final value 91.895652
converged
Fitting Repeat 1
# weights: 103
initial value 96.010736
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 98.300331
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.385805
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 96.810866
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.475817
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 103.540037
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 97.022733
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 108.484780
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 102.237882
iter 10 value 88.967639
iter 20 value 85.082739
iter 30 value 84.775174
iter 40 value 84.732227
final value 84.711713
converged
Fitting Repeat 5
# weights: 305
initial value 130.162565
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 98.126565
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 113.091824
final value 94.466823
converged
Fitting Repeat 3
# weights: 507
initial value 104.318826
iter 10 value 93.699869
final value 93.692939
converged
Fitting Repeat 4
# weights: 507
initial value 99.272295
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 99.130571
iter 10 value 94.139368
iter 10 value 94.139368
iter 10 value 94.139368
final value 94.139368
converged
Fitting Repeat 1
# weights: 103
initial value 96.217078
iter 10 value 94.467303
iter 20 value 94.298693
iter 30 value 93.975400
iter 40 value 93.864835
iter 50 value 93.750840
iter 60 value 89.166694
iter 70 value 87.366889
iter 80 value 85.305402
iter 90 value 84.963190
iter 100 value 84.624729
final value 84.624729
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 96.572220
iter 10 value 94.498867
iter 20 value 91.604151
iter 30 value 86.946954
iter 40 value 86.671282
iter 50 value 86.535349
iter 60 value 86.151342
iter 70 value 83.276402
iter 80 value 83.050273
iter 90 value 83.040091
final value 83.039983
converged
Fitting Repeat 3
# weights: 103
initial value 101.781785
iter 10 value 94.084668
iter 20 value 92.591303
iter 30 value 87.790381
iter 40 value 86.738278
iter 50 value 83.268927
iter 60 value 81.969303
iter 70 value 81.558452
iter 80 value 81.547327
final value 81.547325
converged
Fitting Repeat 4
# weights: 103
initial value 101.496872
iter 10 value 94.488938
iter 20 value 94.480649
iter 30 value 93.998242
iter 40 value 93.930373
iter 50 value 93.901904
iter 60 value 89.179078
iter 70 value 87.909824
iter 80 value 86.807308
iter 90 value 84.576683
iter 100 value 82.138674
final value 82.138674
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 101.968695
iter 10 value 94.385897
iter 20 value 85.056669
iter 30 value 84.398808
iter 40 value 83.981442
iter 50 value 83.690768
iter 60 value 83.521788
final value 83.521214
converged
Fitting Repeat 1
# weights: 305
initial value 109.892728
iter 10 value 94.279825
iter 20 value 88.071954
iter 30 value 84.780966
iter 40 value 82.648545
iter 50 value 80.625146
iter 60 value 80.365886
iter 70 value 79.968595
iter 80 value 79.770619
iter 90 value 79.736618
iter 100 value 79.719497
final value 79.719497
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.502543
iter 10 value 94.661132
iter 20 value 93.869300
iter 30 value 86.083600
iter 40 value 85.335295
iter 50 value 83.928097
iter 60 value 81.548506
iter 70 value 80.131905
iter 80 value 80.024669
iter 90 value 80.012223
iter 100 value 80.006742
final value 80.006742
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.979612
iter 10 value 94.421086
iter 20 value 91.240369
iter 30 value 83.620626
iter 40 value 82.532536
iter 50 value 82.153725
iter 60 value 81.761015
iter 70 value 81.647025
iter 80 value 81.473429
iter 90 value 80.989171
iter 100 value 80.366501
final value 80.366501
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 119.095255
iter 10 value 93.540039
iter 20 value 89.122457
iter 30 value 82.851745
iter 40 value 81.841563
iter 50 value 81.194717
iter 60 value 80.868968
iter 70 value 80.545238
iter 80 value 80.303676
iter 90 value 80.197859
iter 100 value 80.154399
final value 80.154399
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 136.245018
iter 10 value 93.266775
iter 20 value 87.970878
iter 30 value 86.318878
iter 40 value 86.206186
iter 50 value 85.853392
iter 60 value 82.936724
iter 70 value 81.883338
iter 80 value 80.968803
iter 90 value 80.453748
iter 100 value 80.288224
final value 80.288224
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.718309
iter 10 value 96.038134
iter 20 value 92.725077
iter 30 value 87.381237
iter 40 value 86.039605
iter 50 value 83.555428
iter 60 value 81.899772
iter 70 value 81.052338
iter 80 value 80.341407
iter 90 value 80.081853
iter 100 value 79.993332
final value 79.993332
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.401168
iter 10 value 95.075695
iter 20 value 93.900778
iter 30 value 85.861000
iter 40 value 82.961396
iter 50 value 82.824695
iter 60 value 82.113420
iter 70 value 80.917719
iter 80 value 80.306218
iter 90 value 80.118909
iter 100 value 80.061835
final value 80.061835
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.001883
iter 10 value 94.697807
iter 20 value 94.124611
iter 30 value 85.343280
iter 40 value 82.875058
iter 50 value 81.830010
iter 60 value 81.525055
iter 70 value 80.759449
iter 80 value 80.507122
iter 90 value 80.228093
iter 100 value 80.042566
final value 80.042566
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.427611
iter 10 value 94.285749
iter 20 value 91.375388
iter 30 value 89.718907
iter 40 value 88.274776
iter 50 value 87.436479
iter 60 value 84.337705
iter 70 value 82.644825
iter 80 value 82.324146
iter 90 value 81.805418
iter 100 value 81.352532
final value 81.352532
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.157490
iter 10 value 94.433120
iter 20 value 91.436021
iter 30 value 87.186190
iter 40 value 85.906480
iter 50 value 84.814691
iter 60 value 83.712723
iter 70 value 83.201708
iter 80 value 82.675352
iter 90 value 80.477583
iter 100 value 79.838157
final value 79.838157
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.332563
iter 10 value 91.743079
iter 20 value 84.588313
iter 30 value 84.587674
iter 40 value 83.957639
iter 50 value 83.956969
iter 60 value 83.915334
iter 70 value 83.753011
final value 83.752742
converged
Fitting Repeat 2
# weights: 103
initial value 103.531922
final value 94.485723
converged
Fitting Repeat 3
# weights: 103
initial value 94.812844
final value 94.485774
converged
Fitting Repeat 4
# weights: 103
initial value 105.606173
final value 94.485875
converged
Fitting Repeat 5
# weights: 103
initial value 106.492121
final value 94.486164
converged
Fitting Repeat 1
# weights: 305
initial value 94.790742
iter 10 value 94.488913
iter 20 value 94.477335
iter 30 value 93.871835
final value 93.871749
converged
Fitting Repeat 2
# weights: 305
initial value 112.200760
iter 10 value 93.467050
iter 20 value 93.455937
iter 30 value 87.665318
iter 40 value 82.833209
iter 50 value 81.321508
iter 60 value 80.530498
iter 70 value 80.516667
iter 80 value 80.497333
iter 90 value 80.199882
iter 100 value 80.159225
final value 80.159225
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.629038
iter 10 value 89.299935
iter 20 value 84.587954
iter 30 value 84.579877
iter 40 value 83.783371
iter 50 value 82.847448
iter 60 value 82.590138
iter 70 value 82.588548
iter 80 value 82.587049
iter 90 value 82.503469
iter 100 value 82.009005
final value 82.009005
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.302618
iter 10 value 94.489101
iter 20 value 88.999666
iter 30 value 83.532701
iter 40 value 82.235380
iter 50 value 80.715818
iter 60 value 80.320724
iter 70 value 80.164641
iter 80 value 80.162610
final value 80.162302
converged
Fitting Repeat 5
# weights: 305
initial value 96.921572
iter 10 value 93.534067
iter 20 value 93.530523
iter 30 value 93.072049
iter 40 value 85.520851
iter 50 value 85.478777
iter 60 value 82.702204
iter 70 value 82.609040
iter 80 value 82.419833
iter 90 value 82.295778
iter 100 value 82.295476
final value 82.295476
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 119.281916
iter 10 value 90.895264
iter 20 value 83.607097
iter 30 value 82.607892
iter 40 value 82.601778
iter 50 value 82.600608
iter 60 value 82.597593
final value 82.594088
converged
Fitting Repeat 2
# weights: 507
initial value 113.334865
iter 10 value 94.492219
iter 20 value 94.484206
iter 30 value 93.843016
iter 40 value 93.700707
iter 50 value 84.661218
iter 60 value 82.789774
iter 70 value 81.211118
iter 80 value 80.336932
iter 90 value 78.988252
iter 100 value 78.851053
final value 78.851053
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 107.563182
iter 10 value 94.492239
iter 20 value 94.480188
iter 30 value 93.929199
iter 40 value 84.587787
iter 50 value 84.569469
iter 60 value 83.770262
final value 83.764083
converged
Fitting Repeat 4
# weights: 507
initial value 127.384802
iter 10 value 93.790099
iter 20 value 93.786591
iter 30 value 92.339079
iter 40 value 87.138132
iter 50 value 84.825199
iter 60 value 80.810855
iter 70 value 79.850054
iter 80 value 79.610399
iter 90 value 79.073856
iter 100 value 78.838370
final value 78.838370
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 98.676118
iter 10 value 94.491123
iter 20 value 93.874512
iter 30 value 93.734019
iter 40 value 93.535238
final value 93.535234
converged
Fitting Repeat 1
# weights: 103
initial value 96.596092
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 112.699631
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.615732
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 106.735419
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 102.461116
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 113.862342
final value 94.467391
converged
Fitting Repeat 2
# weights: 305
initial value 97.261938
iter 10 value 93.513128
final value 92.221661
converged
Fitting Repeat 3
# weights: 305
initial value 117.607993
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 94.696432
final value 94.467391
converged
Fitting Repeat 5
# weights: 305
initial value 96.096867
final value 94.467391
converged
Fitting Repeat 1
# weights: 507
initial value 133.243562
final value 94.467386
converged
Fitting Repeat 2
# weights: 507
initial value 97.804316
final value 94.467391
converged
Fitting Repeat 3
# weights: 507
initial value 99.063354
final value 94.467391
converged
Fitting Repeat 4
# weights: 507
initial value 109.630877
iter 10 value 94.461515
iter 20 value 93.916424
iter 30 value 93.913328
final value 93.913318
converged
Fitting Repeat 5
# weights: 507
initial value 95.293795
iter 10 value 86.041153
iter 20 value 85.349470
iter 30 value 85.348932
iter 40 value 85.348020
iter 50 value 84.586117
final value 84.578587
converged
Fitting Repeat 1
# weights: 103
initial value 100.824948
iter 10 value 89.627554
iter 20 value 87.391419
iter 30 value 86.884888
iter 40 value 86.680063
iter 50 value 86.627306
final value 86.620931
converged
Fitting Repeat 2
# weights: 103
initial value 97.818019
iter 10 value 89.768509
iter 20 value 87.249958
iter 30 value 86.357190
iter 40 value 86.245150
iter 50 value 86.083323
iter 60 value 86.009013
final value 85.988003
converged
Fitting Repeat 3
# weights: 103
initial value 102.912553
iter 10 value 94.430879
iter 20 value 93.390564
iter 30 value 88.473188
iter 40 value 87.597276
iter 50 value 86.735327
iter 60 value 86.588649
iter 70 value 86.522529
iter 80 value 84.657555
iter 90 value 83.759093
iter 100 value 83.709586
final value 83.709586
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 100.152799
iter 10 value 94.490201
iter 20 value 92.685469
iter 30 value 89.020220
iter 40 value 87.270823
iter 50 value 86.945492
iter 60 value 86.286162
iter 70 value 85.988561
iter 80 value 83.585773
iter 90 value 83.218263
final value 83.216717
converged
Fitting Repeat 5
# weights: 103
initial value 107.747322
iter 10 value 94.573899
iter 20 value 94.486594
iter 30 value 94.195975
iter 40 value 90.963513
iter 50 value 87.168222
iter 60 value 86.709213
iter 70 value 86.569719
iter 80 value 86.256603
iter 90 value 84.301222
iter 100 value 83.853674
final value 83.853674
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 119.285262
iter 10 value 94.514155
iter 20 value 94.383943
iter 30 value 87.821508
iter 40 value 86.216341
iter 50 value 84.707941
iter 60 value 81.864250
iter 70 value 80.885683
iter 80 value 80.762293
iter 90 value 80.662785
iter 100 value 80.477282
final value 80.477282
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.164727
iter 10 value 94.472496
iter 20 value 94.100070
iter 30 value 89.360011
iter 40 value 87.426815
iter 50 value 87.283396
iter 60 value 86.870691
iter 70 value 86.514641
iter 80 value 85.580064
iter 90 value 83.371677
iter 100 value 81.278639
final value 81.278639
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.886954
iter 10 value 94.359880
iter 20 value 92.937646
iter 30 value 88.966927
iter 40 value 87.083001
iter 50 value 82.755221
iter 60 value 81.946706
iter 70 value 81.386349
iter 80 value 80.902525
iter 90 value 80.649011
iter 100 value 80.601096
final value 80.601096
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 119.089532
iter 10 value 94.437557
iter 20 value 85.459521
iter 30 value 84.264520
iter 40 value 83.692672
iter 50 value 83.307316
iter 60 value 82.213892
iter 70 value 81.904808
iter 80 value 81.748233
iter 90 value 81.276506
iter 100 value 81.181561
final value 81.181561
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 106.587650
iter 10 value 94.504013
iter 20 value 88.448958
iter 30 value 87.158790
iter 40 value 87.060653
iter 50 value 86.374853
iter 60 value 84.368625
iter 70 value 82.056503
iter 80 value 81.501459
iter 90 value 81.250344
iter 100 value 80.771233
final value 80.771233
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 105.482475
iter 10 value 95.166517
iter 20 value 90.490801
iter 30 value 86.461120
iter 40 value 84.171493
iter 50 value 82.948722
iter 60 value 82.587703
iter 70 value 82.335345
iter 80 value 82.175492
iter 90 value 81.899168
iter 100 value 81.337357
final value 81.337357
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 105.739194
iter 10 value 94.512284
iter 20 value 93.598383
iter 30 value 87.293021
iter 40 value 86.469905
iter 50 value 85.010951
iter 60 value 83.437762
iter 70 value 82.742953
iter 80 value 82.184125
iter 90 value 80.956465
iter 100 value 80.627742
final value 80.627742
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.729701
iter 10 value 95.815397
iter 20 value 93.580089
iter 30 value 92.503958
iter 40 value 84.806414
iter 50 value 82.352356
iter 60 value 82.187958
iter 70 value 81.290542
iter 80 value 80.266446
iter 90 value 79.796801
iter 100 value 79.591997
final value 79.591997
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.528870
iter 10 value 94.475309
iter 20 value 88.744132
iter 30 value 85.246804
iter 40 value 84.388011
iter 50 value 83.615245
iter 60 value 83.326410
iter 70 value 83.283977
iter 80 value 83.271285
iter 90 value 82.877709
iter 100 value 82.029129
final value 82.029129
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 111.995767
iter 10 value 94.497306
iter 20 value 90.609874
iter 30 value 88.062781
iter 40 value 87.377861
iter 50 value 85.863940
iter 60 value 84.244563
iter 70 value 82.707968
iter 80 value 81.900944
iter 90 value 81.749183
iter 100 value 81.698125
final value 81.698125
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.414385
final value 94.486060
converged
Fitting Repeat 2
# weights: 103
initial value 102.347296
iter 10 value 94.486100
iter 20 value 94.473919
iter 30 value 89.910435
iter 40 value 89.358750
iter 50 value 89.358373
iter 60 value 88.897061
iter 70 value 88.860145
iter 70 value 88.860144
iter 70 value 88.860144
final value 88.860144
converged
Fitting Repeat 3
# weights: 103
initial value 96.220836
iter 10 value 94.481143
iter 20 value 94.306852
iter 30 value 93.247541
iter 40 value 93.138148
iter 50 value 93.137242
final value 93.137120
converged
Fitting Repeat 4
# weights: 103
initial value 97.555388
final value 94.485792
converged
Fitting Repeat 5
# weights: 103
initial value 102.725274
final value 94.485836
converged
Fitting Repeat 1
# weights: 305
initial value 97.280960
iter 10 value 94.488875
iter 20 value 94.483853
iter 30 value 94.276426
final value 94.276425
converged
Fitting Repeat 2
# weights: 305
initial value 112.555440
iter 10 value 94.149775
iter 20 value 94.125185
iter 30 value 94.113942
iter 40 value 94.112664
iter 50 value 86.604091
iter 60 value 86.187469
iter 70 value 84.906214
final value 84.405910
converged
Fitting Repeat 3
# weights: 305
initial value 94.623019
iter 10 value 94.488736
iter 20 value 94.313250
iter 30 value 87.835128
final value 87.821459
converged
Fitting Repeat 4
# weights: 305
initial value 95.723346
iter 10 value 94.488931
iter 20 value 94.453828
iter 30 value 86.769434
iter 40 value 85.893175
iter 50 value 85.834264
iter 60 value 82.844451
iter 70 value 82.700500
iter 80 value 82.576137
iter 90 value 82.567553
iter 100 value 82.563819
final value 82.563819
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 97.787105
iter 10 value 94.471602
iter 20 value 94.467545
final value 94.467530
converged
Fitting Repeat 1
# weights: 507
initial value 142.721892
iter 10 value 94.475286
iter 20 value 94.470327
iter 30 value 93.225324
iter 40 value 92.251410
iter 50 value 92.087805
iter 60 value 92.073528
iter 60 value 92.073527
iter 60 value 92.073527
final value 92.073527
converged
Fitting Repeat 2
# weights: 507
initial value 116.470459
iter 10 value 94.475400
iter 20 value 94.468169
iter 30 value 88.493288
iter 40 value 87.363796
final value 87.361300
converged
Fitting Repeat 3
# weights: 507
initial value 105.795038
iter 10 value 89.955394
iter 20 value 86.471934
iter 30 value 85.429929
iter 40 value 85.199899
iter 50 value 85.197004
final value 85.194954
converged
Fitting Repeat 4
# weights: 507
initial value 95.425262
iter 10 value 94.036105
iter 20 value 93.135811
iter 30 value 92.925279
iter 40 value 92.609357
iter 50 value 92.575462
iter 60 value 92.573739
iter 60 value 92.573739
final value 92.573739
converged
Fitting Repeat 5
# weights: 507
initial value 96.974040
iter 10 value 94.477654
iter 20 value 94.475251
iter 30 value 94.127253
iter 40 value 89.728274
iter 50 value 84.679095
iter 60 value 84.040501
iter 70 value 83.945390
iter 80 value 83.333219
iter 90 value 83.010892
iter 100 value 81.789339
final value 81.789339
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.438636
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 99.289291
final value 93.860355
converged
Fitting Repeat 3
# weights: 103
initial value 118.511314
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 101.445246
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.735679
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 96.581545
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 103.839235
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 94.639106
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 94.597082
final value 93.582418
converged
Fitting Repeat 5
# weights: 305
initial value 98.089770
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 128.465309
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 103.948043
final value 93.628453
converged
Fitting Repeat 3
# weights: 507
initial value 99.921266
final value 93.582418
converged
Fitting Repeat 4
# weights: 507
initial value 99.958619
final value 93.582418
converged
Fitting Repeat 5
# weights: 507
initial value 108.399771
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 104.651078
iter 10 value 94.086507
iter 20 value 93.756325
iter 30 value 93.704406
iter 40 value 93.688199
iter 50 value 93.034431
iter 60 value 92.996447
iter 70 value 87.069917
iter 80 value 85.979523
iter 90 value 83.961309
iter 100 value 83.750126
final value 83.750126
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 101.385884
iter 10 value 93.999746
iter 20 value 93.708249
iter 30 value 93.689785
iter 40 value 93.155935
iter 50 value 93.033364
iter 60 value 87.203706
iter 70 value 86.552819
iter 80 value 86.176173
iter 90 value 85.822411
iter 100 value 82.442721
final value 82.442721
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.080988
iter 10 value 94.049116
iter 20 value 93.776798
iter 30 value 92.599166
iter 40 value 88.013621
iter 50 value 87.268061
iter 60 value 85.329945
iter 70 value 81.068664
iter 80 value 80.980343
iter 90 value 80.662103
iter 100 value 79.198804
final value 79.198804
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 98.026917
iter 10 value 93.956928
iter 20 value 83.326390
iter 30 value 82.489553
iter 40 value 81.227291
iter 50 value 80.841578
iter 60 value 79.352875
iter 70 value 78.965777
iter 80 value 78.960705
final value 78.919512
converged
Fitting Repeat 5
# weights: 103
initial value 97.749745
iter 10 value 86.503250
iter 20 value 84.576165
iter 30 value 84.123888
iter 40 value 83.217458
iter 50 value 82.197647
iter 60 value 82.183511
iter 70 value 81.591948
iter 80 value 81.176232
iter 90 value 81.167643
final value 81.167627
converged
Fitting Repeat 1
# weights: 305
initial value 100.005292
iter 10 value 92.220064
iter 20 value 82.190789
iter 30 value 81.094571
iter 40 value 79.972471
iter 50 value 79.389308
iter 60 value 78.862988
iter 70 value 78.218394
iter 80 value 77.810464
iter 90 value 77.759107
iter 100 value 77.657787
final value 77.657787
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.305513
iter 10 value 93.690600
iter 20 value 91.613167
iter 30 value 88.970164
iter 40 value 85.181028
iter 50 value 84.117208
iter 60 value 81.986572
iter 70 value 79.085518
iter 80 value 77.830821
iter 90 value 77.692984
iter 100 value 77.612724
final value 77.612724
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.118971
iter 10 value 94.114109
iter 20 value 93.690504
iter 30 value 84.115652
iter 40 value 82.598703
iter 50 value 82.285018
iter 60 value 81.820972
iter 70 value 80.688573
iter 80 value 79.332902
iter 90 value 78.761448
iter 100 value 78.577074
final value 78.577074
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.324380
iter 10 value 93.228833
iter 20 value 93.049841
iter 30 value 93.008834
iter 40 value 83.941578
iter 50 value 81.879842
iter 60 value 79.303100
iter 70 value 78.812438
iter 80 value 78.431541
iter 90 value 78.186021
iter 100 value 77.952822
final value 77.952822
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.871924
iter 10 value 93.868478
iter 20 value 93.698674
iter 30 value 85.019720
iter 40 value 81.921427
iter 50 value 79.266565
iter 60 value 78.352852
iter 70 value 77.847656
iter 80 value 77.632222
iter 90 value 77.566125
iter 100 value 77.526301
final value 77.526301
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 113.586598
iter 10 value 93.878697
iter 20 value 89.633513
iter 30 value 82.525790
iter 40 value 81.646552
iter 50 value 81.514617
iter 60 value 80.840491
iter 70 value 80.327486
iter 80 value 79.742983
iter 90 value 78.323457
iter 100 value 77.784607
final value 77.784607
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.895311
iter 10 value 93.639135
iter 20 value 83.484909
iter 30 value 81.433249
iter 40 value 79.059593
iter 50 value 78.405262
iter 60 value 78.029185
iter 70 value 77.839757
iter 80 value 77.780642
iter 90 value 77.694077
iter 100 value 77.384601
final value 77.384601
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.978359
iter 10 value 94.125729
iter 20 value 93.960603
iter 30 value 92.345091
iter 40 value 84.505734
iter 50 value 80.558777
iter 60 value 79.273071
iter 70 value 78.835105
iter 80 value 78.164607
iter 90 value 78.083925
iter 100 value 77.831973
final value 77.831973
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 103.146669
iter 10 value 93.949328
iter 20 value 90.320247
iter 30 value 82.819637
iter 40 value 82.336713
iter 50 value 81.802937
iter 60 value 79.508463
iter 70 value 78.529395
iter 80 value 77.733244
iter 90 value 77.644294
iter 100 value 77.586366
final value 77.586366
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.562436
iter 10 value 94.195146
iter 20 value 93.300174
iter 30 value 88.782969
iter 40 value 84.769836
iter 50 value 82.680275
iter 60 value 81.936710
iter 70 value 81.077195
iter 80 value 80.809718
iter 90 value 79.985957
iter 100 value 78.758619
final value 78.758619
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 107.980651
final value 94.054497
converged
Fitting Repeat 2
# weights: 103
initial value 100.140532
final value 94.054621
converged
Fitting Repeat 3
# weights: 103
initial value 94.794371
final value 94.054514
converged
Fitting Repeat 4
# weights: 103
initial value 95.970970
iter 10 value 93.330118
final value 93.330115
converged
Fitting Repeat 5
# weights: 103
initial value 95.384060
final value 94.054484
converged
Fitting Repeat 1
# weights: 305
initial value 113.180782
iter 10 value 94.057664
iter 20 value 94.051232
iter 30 value 89.273101
iter 40 value 86.472025
iter 50 value 86.463690
iter 60 value 86.330872
iter 70 value 86.329097
iter 80 value 83.362687
iter 90 value 81.981443
final value 81.977057
converged
Fitting Repeat 2
# weights: 305
initial value 95.360030
iter 10 value 93.587836
iter 20 value 93.133944
iter 30 value 92.820664
iter 40 value 92.820229
iter 50 value 92.819489
iter 60 value 85.645487
iter 70 value 81.626082
iter 80 value 81.602283
iter 90 value 80.928619
iter 100 value 80.927241
final value 80.927241
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 97.305175
iter 10 value 94.058163
iter 20 value 94.053582
final value 94.053413
converged
Fitting Repeat 4
# weights: 305
initial value 102.361572
iter 10 value 94.057063
iter 20 value 93.992619
iter 30 value 91.475003
iter 40 value 89.693550
iter 50 value 89.692950
iter 60 value 89.001435
iter 70 value 88.894169
iter 80 value 88.893726
iter 90 value 88.126685
iter 100 value 87.959291
final value 87.959291
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.028572
iter 10 value 94.058134
iter 20 value 93.977078
iter 30 value 89.058686
iter 40 value 83.363233
iter 50 value 82.121239
iter 60 value 82.002368
iter 70 value 81.896343
iter 80 value 81.752598
iter 90 value 81.645524
iter 100 value 80.983846
final value 80.983846
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 99.379295
iter 10 value 88.552773
iter 20 value 80.847716
iter 30 value 78.578281
iter 40 value 77.927872
iter 50 value 77.925038
final value 77.921114
converged
Fitting Repeat 2
# weights: 507
initial value 116.165101
iter 10 value 93.986132
iter 20 value 93.418936
iter 30 value 93.414431
iter 40 value 92.862204
final value 92.862134
converged
Fitting Repeat 3
# weights: 507
initial value 114.030742
iter 10 value 94.060794
iter 20 value 94.031776
iter 30 value 93.183395
iter 40 value 89.121841
iter 50 value 83.120199
iter 60 value 82.711584
iter 70 value 82.698878
final value 82.698783
converged
Fitting Repeat 4
# weights: 507
initial value 94.576104
iter 10 value 85.918356
iter 20 value 82.515985
iter 30 value 82.140714
iter 40 value 80.748920
iter 50 value 79.395109
iter 60 value 79.360422
iter 70 value 79.297527
iter 80 value 79.295798
iter 90 value 79.294467
iter 100 value 78.865998
final value 78.865998
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 100.421840
iter 10 value 93.605088
iter 20 value 93.586536
iter 30 value 93.580428
final value 93.580071
converged
Fitting Repeat 1
# weights: 305
initial value 124.772354
iter 10 value 117.895058
iter 20 value 117.642790
iter 30 value 114.604434
iter 40 value 114.603698
final value 114.603433
converged
Fitting Repeat 2
# weights: 305
initial value 128.500172
iter 10 value 117.763778
iter 20 value 117.572342
iter 30 value 110.554786
iter 40 value 105.154051
iter 50 value 104.417510
final value 104.417227
converged
Fitting Repeat 3
# weights: 305
initial value 118.130209
iter 10 value 117.895114
iter 20 value 117.883348
iter 30 value 108.669363
iter 40 value 107.259326
iter 50 value 107.252693
final value 107.252678
converged
Fitting Repeat 4
# weights: 305
initial value 141.007859
iter 10 value 117.895239
iter 20 value 117.890326
final value 117.890303
converged
Fitting Repeat 5
# weights: 305
initial value 118.608144
iter 10 value 117.525446
iter 20 value 117.504686
iter 30 value 117.499035
iter 40 value 106.355988
iter 50 value 103.226565
iter 60 value 103.208376
final value 103.208267
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Wed Dec 3 23:43:56 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
18.742 0.459 73.482
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 18.231 | 0.688 | 18.991 | |
| FreqInteractors | 0.144 | 0.010 | 0.155 | |
| calculateAAC | 0.014 | 0.002 | 0.015 | |
| calculateAutocor | 0.248 | 0.022 | 0.271 | |
| calculateCTDC | 0.032 | 0.004 | 0.036 | |
| calculateCTDD | 0.155 | 0.008 | 0.161 | |
| calculateCTDT | 0.055 | 0.005 | 0.060 | |
| calculateCTriad | 0.145 | 0.013 | 0.160 | |
| calculateDC | 0.032 | 0.004 | 0.035 | |
| calculateF | 0.103 | 0.005 | 0.109 | |
| calculateKSAAP | 0.031 | 0.004 | 0.037 | |
| calculateQD_Sm | 0.649 | 0.055 | 0.710 | |
| calculateTC | 0.677 | 0.063 | 0.742 | |
| calculateTC_Sm | 0.095 | 0.009 | 0.103 | |
| corr_plot | 18.026 | 0.650 | 18.733 | |
| enrichfindP | 0.184 | 0.037 | 23.507 | |
| enrichfind_hp | 0.013 | 0.003 | 1.023 | |
| enrichplot | 0.156 | 0.004 | 0.161 | |
| filter_missing_values | 0.000 | 0.000 | 0.001 | |
| getFASTA | 0.029 | 0.005 | 7.402 | |
| getHPI | 0.000 | 0.000 | 0.001 | |
| get_negativePPI | 0.001 | 0.000 | 0.001 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.000 | 0.001 | 0.001 | |
| plotPPI | 0.031 | 0.002 | 0.034 | |
| pred_ensembel | 6.007 | 0.121 | 5.448 | |
| var_imp | 18.108 | 0.752 | 18.880 | |