Back to Multiple platform build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2026-01-01 11:35 -0500 (Thu, 01 Jan 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-12-22 r89219) -- "Unsuffered Consequences" 4808
kjohnson3macOS 13.7.7 Venturaarm64R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences" 4593
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 253/2332HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-12-31 13:40 -0500 (Wed, 31 Dec 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published


CHECK results for BufferedMatrix on kjohnson3

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2025-12-31 18:48:35 -0500 (Wed, 31 Dec 2025)
EndedAt: 2025-12-31 18:48:56 -0500 (Wed, 31 Dec 2025)
EllapsedTime: 20.2 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 1 NOTE
See
  ‘/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch arm64 -std=gnu2x -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.6-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.115   0.043   0.164 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 481248 25.8    1058085 56.6         NA   633817 33.9
Vcells 891449  6.9    8388608 64.0     196608  2110969 16.2
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Dec 31 18:48:46 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Dec 31 18:48:46 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x600003e080c0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Dec 31 18:48:47 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Dec 31 18:48:48 2025"
> 
> ColMode(tmp2)
<pointer: 0x600003e080c0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
             [,1]       [,2]       [,3]       [,4]
[1,] 101.35709731 -0.2070828  0.6939781  0.4059907
[2,]  -0.19144938  0.2758098 -0.2164807 -1.1384039
[3,]   0.04679987 -1.5608529 -0.6154991 -1.9271290
[4,]   0.64404708  1.9885878  2.4981303  0.9059093
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
             [,1]      [,2]      [,3]      [,4]
[1,] 101.35709731 0.2070828 0.6939781 0.4059907
[2,]   0.19144938 0.2758098 0.2164807 1.1384039
[3,]   0.04679987 1.5608529 0.6154991 1.9271290
[4,]   0.64404708 1.9885878 2.4981303 0.9059093
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]      [,3]      [,4]
[1,] 10.0676262 0.4550635 0.8330535 0.6371740
[2,]  0.4375493 0.5251760 0.4652748 1.0669601
[3,]  0.2163328 1.2493410 0.7845375 1.3882107
[4,]  0.8025254 1.4101730 1.5805475 0.9517927
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  2  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 227.03336 29.75772 34.02451 31.77773
[2,]  29.56694 30.52757 29.86923 36.80800
[3,]  27.21013 39.05426 33.46087 40.80924
[4,]  33.66930 41.09032 43.30361 35.42384
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x600003e24000>
> exp(tmp5)
<pointer: 0x600003e24000>
> log(tmp5,2)
<pointer: 0x600003e24000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 472.5402
> Min(tmp5)
[1] 54.66654
> mean(tmp5)
[1] 72.97492
> Sum(tmp5)
[1] 14594.98
> Var(tmp5)
[1] 880.0021
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 90.54005 69.01269 73.69013 74.74865 71.97788 68.73668 69.10008 69.79304
 [9] 72.13873 70.01131
> rowSums(tmp5)
 [1] 1810.801 1380.254 1473.803 1494.973 1439.558 1374.734 1382.002 1395.861
 [9] 1442.775 1400.226
> rowVars(tmp5)
 [1] 8167.72641   50.80668  101.87499   62.70256   72.98801   87.61322
 [7]   47.50697   80.57869   75.90457   67.61645
> rowSd(tmp5)
 [1] 90.375475  7.127880 10.093314  7.918495  8.543302  9.360193  6.892530
 [8]  8.976563  8.712323  8.222922
> rowMax(tmp5)
 [1] 472.54019  84.12784  92.24260  90.13078  85.12832  85.98969  85.99961
 [8]  84.34828  86.79765  89.85244
> rowMin(tmp5)
 [1] 54.66654 58.10087 56.63432 59.44956 58.22834 55.92954 57.77362 55.42291
 [9] 60.38478 58.70441
> 
> colMeans(tmp5)
 [1] 104.34545  70.35423  73.72261  73.51071  73.75414  70.34958  72.05165
 [8]  70.95193  69.84702  75.34791  70.26377  69.47773  71.01589  66.75981
[15]  71.88020  71.37059  73.47967  71.10606  69.47310  70.43643
> colSums(tmp5)
 [1] 1043.4545  703.5423  737.2261  735.1071  737.5414  703.4958  720.5165
 [8]  709.5193  698.4702  753.4791  702.6377  694.7773  710.1589  667.5981
[15]  718.8020  713.7059  734.7967  711.0606  694.7310  704.3643
> colVars(tmp5)
 [1] 16763.94472   119.18364    95.34872    67.24229    76.46602    38.93522
 [7]    57.13942    60.40731    29.77896    71.26381   107.65134    90.35619
[13]    75.36709    48.24949   104.31556    44.14206   111.83578    92.79439
[19]    81.10485    91.23566
> colSd(tmp5)
 [1] 129.475653  10.917126   9.764667   8.200139   8.744485   6.239809
 [7]   7.559062   7.772214   5.457011   8.441789  10.375516   9.505587
[13]   8.681422   6.946185  10.213499   6.643949  10.575244   9.632984
[19]   9.005823   9.551736
> colMax(tmp5)
 [1] 472.54019  85.99961  90.13078  84.93908  89.85244  81.41254  84.05724
 [8]  84.15102  78.42478  88.98329  84.36786  83.96682  85.98969  80.25443
[15]  86.23796  81.65880  92.24260  87.90959  82.30506  84.12784
> colMin(tmp5)
 [1] 56.63432 60.38478 60.74458 58.16828 60.56145 61.98597 60.53056 59.44956
 [9] 61.32844 65.59224 55.55955 54.66654 55.42291 59.16762 55.92954 63.02871
[17] 58.68870 58.52460 59.53223 57.77362
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 90.54005 69.01269 73.69013 74.74865 71.97788       NA 69.10008 69.79304
 [9] 72.13873 70.01131
> rowSums(tmp5)
 [1] 1810.801 1380.254 1473.803 1494.973 1439.558       NA 1382.002 1395.861
 [9] 1442.775 1400.226
> rowVars(tmp5)
 [1] 8167.72641   50.80668  101.87499   62.70256   72.98801   88.57218
 [7]   47.50697   80.57869   75.90457   67.61645
> rowSd(tmp5)
 [1] 90.375475  7.127880 10.093314  7.918495  8.543302  9.411279  6.892530
 [8]  8.976563  8.712323  8.222922
> rowMax(tmp5)
 [1] 472.54019  84.12784  92.24260  90.13078  85.12832        NA  85.99961
 [8]  84.34828  86.79765  89.85244
> rowMin(tmp5)
 [1] 54.66654 58.10087 56.63432 59.44956 58.22834       NA 57.77362 55.42291
 [9] 60.38478 58.70441
> 
> colMeans(tmp5)
 [1] 104.34545  70.35423  73.72261  73.51071        NA  70.34958  72.05165
 [8]  70.95193  69.84702  75.34791  70.26377  69.47773  71.01589  66.75981
[15]  71.88020  71.37059  73.47967  71.10606  69.47310  70.43643
> colSums(tmp5)
 [1] 1043.4545  703.5423  737.2261  735.1071        NA  703.4958  720.5165
 [8]  709.5193  698.4702  753.4791  702.6377  694.7773  710.1589  667.5981
[15]  718.8020  713.7059  734.7967  711.0606  694.7310  704.3643
> colVars(tmp5)
 [1] 16763.94472   119.18364    95.34872    67.24229          NA    38.93522
 [7]    57.13942    60.40731    29.77896    71.26381   107.65134    90.35619
[13]    75.36709    48.24949   104.31556    44.14206   111.83578    92.79439
[19]    81.10485    91.23566
> colSd(tmp5)
 [1] 129.475653  10.917126   9.764667   8.200139         NA   6.239809
 [7]   7.559062   7.772214   5.457011   8.441789  10.375516   9.505587
[13]   8.681422   6.946185  10.213499   6.643949  10.575244   9.632984
[19]   9.005823   9.551736
> colMax(tmp5)
 [1] 472.54019  85.99961  90.13078  84.93908        NA  81.41254  84.05724
 [8]  84.15102  78.42478  88.98329  84.36786  83.96682  85.98969  80.25443
[15]  86.23796  81.65880  92.24260  87.90959  82.30506  84.12784
> colMin(tmp5)
 [1] 56.63432 60.38478 60.74458 58.16828       NA 61.98597 60.53056 59.44956
 [9] 61.32844 65.59224 55.55955 54.66654 55.42291 59.16762 55.92954 63.02871
[17] 58.68870 58.52460 59.53223 57.77362
> 
> Max(tmp5,na.rm=TRUE)
[1] 472.5402
> Min(tmp5,na.rm=TRUE)
[1] 54.66654
> mean(tmp5,na.rm=TRUE)
[1] 73.0373
> Sum(tmp5,na.rm=TRUE)
[1] 14534.42
> Var(tmp5,na.rm=TRUE)
[1] 883.6644
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.54005 69.01269 73.69013 74.74865 71.97788 69.16696 69.10008 69.79304
 [9] 72.13873 70.01131
> rowSums(tmp5,na.rm=TRUE)
 [1] 1810.801 1380.254 1473.803 1494.973 1439.558 1314.172 1382.002 1395.861
 [9] 1442.775 1400.226
> rowVars(tmp5,na.rm=TRUE)
 [1] 8167.72641   50.80668  101.87499   62.70256   72.98801   88.57218
 [7]   47.50697   80.57869   75.90457   67.61645
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.375475  7.127880 10.093314  7.918495  8.543302  9.411279  6.892530
 [8]  8.976563  8.712323  8.222922
> rowMax(tmp5,na.rm=TRUE)
 [1] 472.54019  84.12784  92.24260  90.13078  85.12832  85.98969  85.99961
 [8]  84.34828  86.79765  89.85244
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.66654 58.10087 56.63432 59.44956 58.22834 55.92954 57.77362 55.42291
 [9] 60.38478 58.70441
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 104.34545  70.35423  73.72261  73.51071  75.21999  70.34958  72.05165
 [8]  70.95193  69.84702  75.34791  70.26377  69.47773  71.01589  66.75981
[15]  71.88020  71.37059  73.47967  71.10606  69.47310  70.43643
> colSums(tmp5,na.rm=TRUE)
 [1] 1043.4545  703.5423  737.2261  735.1071  676.9799  703.4958  720.5165
 [8]  709.5193  698.4702  753.4791  702.6377  694.7773  710.1589  667.5981
[15]  718.8020  713.7059  734.7967  711.0606  694.7310  704.3643
> colVars(tmp5,na.rm=TRUE)
 [1] 16763.94472   119.18364    95.34872    67.24229    61.85109    38.93522
 [7]    57.13942    60.40731    29.77896    71.26381   107.65134    90.35619
[13]    75.36709    48.24949   104.31556    44.14206   111.83578    92.79439
[19]    81.10485    91.23566
> colSd(tmp5,na.rm=TRUE)
 [1] 129.475653  10.917126   9.764667   8.200139   7.864546   6.239809
 [7]   7.559062   7.772214   5.457011   8.441789  10.375516   9.505587
[13]   8.681422   6.946185  10.213499   6.643949  10.575244   9.632984
[19]   9.005823   9.551736
> colMax(tmp5,na.rm=TRUE)
 [1] 472.54019  85.99961  90.13078  84.93908  89.85244  81.41254  84.05724
 [8]  84.15102  78.42478  88.98329  84.36786  83.96682  85.98969  80.25443
[15]  86.23796  81.65880  92.24260  87.90959  82.30506  84.12784
> colMin(tmp5,na.rm=TRUE)
 [1] 56.63432 60.38478 60.74458 58.16828 65.47278 61.98597 60.53056 59.44956
 [9] 61.32844 65.59224 55.55955 54.66654 55.42291 59.16762 55.92954 63.02871
[17] 58.68870 58.52460 59.53223 57.77362
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 90.54005 69.01269 73.69013 74.74865 71.97788      NaN 69.10008 69.79304
 [9] 72.13873 70.01131
> rowSums(tmp5,na.rm=TRUE)
 [1] 1810.801 1380.254 1473.803 1494.973 1439.558    0.000 1382.002 1395.861
 [9] 1442.775 1400.226
> rowVars(tmp5,na.rm=TRUE)
 [1] 8167.72641   50.80668  101.87499   62.70256   72.98801         NA
 [7]   47.50697   80.57869   75.90457   67.61645
> rowSd(tmp5,na.rm=TRUE)
 [1] 90.375475  7.127880 10.093314  7.918495  8.543302        NA  6.892530
 [8]  8.976563  8.712323  8.222922
> rowMax(tmp5,na.rm=TRUE)
 [1] 472.54019  84.12784  92.24260  90.13078  85.12832        NA  85.99961
 [8]  84.34828  86.79765  89.85244
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.66654 58.10087 56.63432 59.44956 58.22834       NA 57.77362 55.42291
 [9] 60.38478 58.70441
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 107.97735  71.40907  75.16462  73.17767       NaN  69.12036  71.81676
 [8]  70.98145  70.40712  76.14608  71.03546  68.65284  69.35213  67.17914
[15]  73.65250  70.38765  75.12311  69.83358  70.57764  71.70225
> colSums(tmp5,na.rm=TRUE)
 [1] 971.7961 642.6817 676.4815 658.5991   0.0000 622.0833 646.3509 638.8331
 [9] 633.6641 685.3147 639.3192 617.8755 624.1692 604.6123 662.8725 633.4889
[17] 676.1080 628.5023 635.1988 645.3203
> colVars(tmp5,na.rm=TRUE)
 [1] 18711.04248   121.56387    83.87433    74.39980          NA    26.80363
 [7]    63.66118    67.94842    29.97198    73.00476   114.40837    93.99567
[13]    53.64703    52.30244    82.01839    38.79056    95.43014    86.17774
[19]    77.51784    84.61429
> colSd(tmp5,na.rm=TRUE)
 [1] 136.788313  11.025601   9.158293   8.625532         NA   5.177222
 [7]   7.978795   8.243083   5.474667   8.544282  10.696185   9.695136
[13]   7.324414   7.232043   9.056401   6.228206   9.768835   9.283197
[19]   8.804422   9.198603
> colMax(tmp5,na.rm=TRUE)
 [1] 472.54019  85.99961  90.13078  84.93908      -Inf  78.17627  84.05724
 [8]  84.15102  78.42478  88.98329  84.36786  83.96682  80.61463  80.25443
[15]  86.23796  81.65880  92.24260  87.90959  82.30506  84.12784
> colMin(tmp5,na.rm=TRUE)
 [1] 56.63432 60.38478 62.16889 58.16828      Inf 61.98597 60.53056 59.44956
 [9] 61.32844 65.59224 55.55955 54.66654 55.42291 59.16762 58.10087 63.02871
[17] 61.08532 58.52460 60.60459 57.77362
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 297.3735 336.0052 173.9811 406.0047 304.8506 196.2624 280.0391 173.4446
 [9] 172.3293 146.1266
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 297.3735 336.0052 173.9811 406.0047 304.8506 196.2624 280.0391 173.4446
 [9] 172.3293 146.1266
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -8.526513e-14  2.842171e-14 -7.105427e-14 -2.842171e-14 -5.684342e-14
 [6]  1.705303e-13 -8.526513e-14  0.000000e+00 -1.421085e-13  2.842171e-14
[11] -1.136868e-13 -8.526513e-14  3.410605e-13 -5.684342e-14  1.705303e-13
[16] -5.684342e-14 -5.684342e-14 -1.136868e-13  5.684342e-14  0.000000e+00
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
2   20 
5   13 
10   18 
5   17 
1   13 
4   3 
9   20 
1   14 
10   18 
1   3 
9   4 
5   4 
6   20 
1   14 
2   2 
5   13 
8   1 
10   20 
4   3 
1   18 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 1.805953
> Min(tmp)
[1] -2.496075
> mean(tmp)
[1] -0.1535236
> Sum(tmp)
[1] -15.35236
> Var(tmp)
[1] 0.9029861
> 
> rowMeans(tmp)
[1] -0.1535236
> rowSums(tmp)
[1] -15.35236
> rowVars(tmp)
[1] 0.9029861
> rowSd(tmp)
[1] 0.9502558
> rowMax(tmp)
[1] 1.805953
> rowMin(tmp)
[1] -2.496075
> 
> colMeans(tmp)
  [1] -0.64957469  0.83926357 -0.43199322  0.20565296 -1.40507610  0.72153934
  [7] -0.27394353  1.12403664  0.12682465  0.07926006 -1.42094829  0.23864976
 [13] -0.27259524 -1.73731123 -0.12471431 -0.01994455 -2.26885117  0.77232846
 [19] -0.32119071 -0.06255216  1.80595346 -1.70000153 -0.46608791  0.40693328
 [25] -2.03532212 -0.93032403  1.29574803 -1.07962272 -1.03275448  0.18432537
 [31]  0.14599623 -0.25001374  0.70418800 -1.60866128  0.70409855  1.45683451
 [37] -0.68084615 -0.28678519  0.47954725  0.76640799  0.10909803 -0.24278719
 [43]  0.98148749 -1.57563983 -1.49747385 -0.33224615  1.16622123  0.50810470
 [49]  0.51458324  0.05902282 -0.06041356  0.58215241  0.39390147 -0.30217724
 [55]  1.33418564 -0.52794188  1.31792926 -1.51614788 -1.44116964 -0.91856078
 [61] -0.26376300 -2.49607492  0.72527685 -0.11130338 -0.11350589  0.34924976
 [67]  1.18645147  0.26461010  1.34282670 -1.63182049  0.11441156  0.34799250
 [73]  0.93904347  0.17786023 -0.79500589 -0.38050958 -0.22058828  0.99182209
 [79] -0.96361310  1.03331914  0.04225670  0.32066298  0.84656487  0.23757572
 [85]  0.09730071  0.74536993 -1.26653185 -1.02217277 -0.96967339 -1.58815309
 [91] -0.88311062 -1.79518273  0.45649745 -0.37877853 -0.96605713  0.10788949
 [97] -1.00173488  1.46126424 -0.76779361 -1.07583797
> colSums(tmp)
  [1] -0.64957469  0.83926357 -0.43199322  0.20565296 -1.40507610  0.72153934
  [7] -0.27394353  1.12403664  0.12682465  0.07926006 -1.42094829  0.23864976
 [13] -0.27259524 -1.73731123 -0.12471431 -0.01994455 -2.26885117  0.77232846
 [19] -0.32119071 -0.06255216  1.80595346 -1.70000153 -0.46608791  0.40693328
 [25] -2.03532212 -0.93032403  1.29574803 -1.07962272 -1.03275448  0.18432537
 [31]  0.14599623 -0.25001374  0.70418800 -1.60866128  0.70409855  1.45683451
 [37] -0.68084615 -0.28678519  0.47954725  0.76640799  0.10909803 -0.24278719
 [43]  0.98148749 -1.57563983 -1.49747385 -0.33224615  1.16622123  0.50810470
 [49]  0.51458324  0.05902282 -0.06041356  0.58215241  0.39390147 -0.30217724
 [55]  1.33418564 -0.52794188  1.31792926 -1.51614788 -1.44116964 -0.91856078
 [61] -0.26376300 -2.49607492  0.72527685 -0.11130338 -0.11350589  0.34924976
 [67]  1.18645147  0.26461010  1.34282670 -1.63182049  0.11441156  0.34799250
 [73]  0.93904347  0.17786023 -0.79500589 -0.38050958 -0.22058828  0.99182209
 [79] -0.96361310  1.03331914  0.04225670  0.32066298  0.84656487  0.23757572
 [85]  0.09730071  0.74536993 -1.26653185 -1.02217277 -0.96967339 -1.58815309
 [91] -0.88311062 -1.79518273  0.45649745 -0.37877853 -0.96605713  0.10788949
 [97] -1.00173488  1.46126424 -0.76779361 -1.07583797
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.64957469  0.83926357 -0.43199322  0.20565296 -1.40507610  0.72153934
  [7] -0.27394353  1.12403664  0.12682465  0.07926006 -1.42094829  0.23864976
 [13] -0.27259524 -1.73731123 -0.12471431 -0.01994455 -2.26885117  0.77232846
 [19] -0.32119071 -0.06255216  1.80595346 -1.70000153 -0.46608791  0.40693328
 [25] -2.03532212 -0.93032403  1.29574803 -1.07962272 -1.03275448  0.18432537
 [31]  0.14599623 -0.25001374  0.70418800 -1.60866128  0.70409855  1.45683451
 [37] -0.68084615 -0.28678519  0.47954725  0.76640799  0.10909803 -0.24278719
 [43]  0.98148749 -1.57563983 -1.49747385 -0.33224615  1.16622123  0.50810470
 [49]  0.51458324  0.05902282 -0.06041356  0.58215241  0.39390147 -0.30217724
 [55]  1.33418564 -0.52794188  1.31792926 -1.51614788 -1.44116964 -0.91856078
 [61] -0.26376300 -2.49607492  0.72527685 -0.11130338 -0.11350589  0.34924976
 [67]  1.18645147  0.26461010  1.34282670 -1.63182049  0.11441156  0.34799250
 [73]  0.93904347  0.17786023 -0.79500589 -0.38050958 -0.22058828  0.99182209
 [79] -0.96361310  1.03331914  0.04225670  0.32066298  0.84656487  0.23757572
 [85]  0.09730071  0.74536993 -1.26653185 -1.02217277 -0.96967339 -1.58815309
 [91] -0.88311062 -1.79518273  0.45649745 -0.37877853 -0.96605713  0.10788949
 [97] -1.00173488  1.46126424 -0.76779361 -1.07583797
> colMin(tmp)
  [1] -0.64957469  0.83926357 -0.43199322  0.20565296 -1.40507610  0.72153934
  [7] -0.27394353  1.12403664  0.12682465  0.07926006 -1.42094829  0.23864976
 [13] -0.27259524 -1.73731123 -0.12471431 -0.01994455 -2.26885117  0.77232846
 [19] -0.32119071 -0.06255216  1.80595346 -1.70000153 -0.46608791  0.40693328
 [25] -2.03532212 -0.93032403  1.29574803 -1.07962272 -1.03275448  0.18432537
 [31]  0.14599623 -0.25001374  0.70418800 -1.60866128  0.70409855  1.45683451
 [37] -0.68084615 -0.28678519  0.47954725  0.76640799  0.10909803 -0.24278719
 [43]  0.98148749 -1.57563983 -1.49747385 -0.33224615  1.16622123  0.50810470
 [49]  0.51458324  0.05902282 -0.06041356  0.58215241  0.39390147 -0.30217724
 [55]  1.33418564 -0.52794188  1.31792926 -1.51614788 -1.44116964 -0.91856078
 [61] -0.26376300 -2.49607492  0.72527685 -0.11130338 -0.11350589  0.34924976
 [67]  1.18645147  0.26461010  1.34282670 -1.63182049  0.11441156  0.34799250
 [73]  0.93904347  0.17786023 -0.79500589 -0.38050958 -0.22058828  0.99182209
 [79] -0.96361310  1.03331914  0.04225670  0.32066298  0.84656487  0.23757572
 [85]  0.09730071  0.74536993 -1.26653185 -1.02217277 -0.96967339 -1.58815309
 [91] -0.88311062 -1.79518273  0.45649745 -0.37877853 -0.96605713  0.10788949
 [97] -1.00173488  1.46126424 -0.76779361 -1.07583797
> colMedians(tmp)
  [1] -0.64957469  0.83926357 -0.43199322  0.20565296 -1.40507610  0.72153934
  [7] -0.27394353  1.12403664  0.12682465  0.07926006 -1.42094829  0.23864976
 [13] -0.27259524 -1.73731123 -0.12471431 -0.01994455 -2.26885117  0.77232846
 [19] -0.32119071 -0.06255216  1.80595346 -1.70000153 -0.46608791  0.40693328
 [25] -2.03532212 -0.93032403  1.29574803 -1.07962272 -1.03275448  0.18432537
 [31]  0.14599623 -0.25001374  0.70418800 -1.60866128  0.70409855  1.45683451
 [37] -0.68084615 -0.28678519  0.47954725  0.76640799  0.10909803 -0.24278719
 [43]  0.98148749 -1.57563983 -1.49747385 -0.33224615  1.16622123  0.50810470
 [49]  0.51458324  0.05902282 -0.06041356  0.58215241  0.39390147 -0.30217724
 [55]  1.33418564 -0.52794188  1.31792926 -1.51614788 -1.44116964 -0.91856078
 [61] -0.26376300 -2.49607492  0.72527685 -0.11130338 -0.11350589  0.34924976
 [67]  1.18645147  0.26461010  1.34282670 -1.63182049  0.11441156  0.34799250
 [73]  0.93904347  0.17786023 -0.79500589 -0.38050958 -0.22058828  0.99182209
 [79] -0.96361310  1.03331914  0.04225670  0.32066298  0.84656487  0.23757572
 [85]  0.09730071  0.74536993 -1.26653185 -1.02217277 -0.96967339 -1.58815309
 [91] -0.88311062 -1.79518273  0.45649745 -0.37877853 -0.96605713  0.10788949
 [97] -1.00173488  1.46126424 -0.76779361 -1.07583797
> colRanges(tmp)
           [,1]      [,2]       [,3]     [,4]      [,5]      [,6]       [,7]
[1,] -0.6495747 0.8392636 -0.4319932 0.205653 -1.405076 0.7215393 -0.2739435
[2,] -0.6495747 0.8392636 -0.4319932 0.205653 -1.405076 0.7215393 -0.2739435
         [,8]      [,9]      [,10]     [,11]     [,12]      [,13]     [,14]
[1,] 1.124037 0.1268247 0.07926006 -1.420948 0.2386498 -0.2725952 -1.737311
[2,] 1.124037 0.1268247 0.07926006 -1.420948 0.2386498 -0.2725952 -1.737311
          [,15]       [,16]     [,17]     [,18]      [,19]       [,20]    [,21]
[1,] -0.1247143 -0.01994455 -2.268851 0.7723285 -0.3211907 -0.06255216 1.805953
[2,] -0.1247143 -0.01994455 -2.268851 0.7723285 -0.3211907 -0.06255216 1.805953
         [,22]      [,23]     [,24]     [,25]     [,26]    [,27]     [,28]
[1,] -1.700002 -0.4660879 0.4069333 -2.035322 -0.930324 1.295748 -1.079623
[2,] -1.700002 -0.4660879 0.4069333 -2.035322 -0.930324 1.295748 -1.079623
         [,29]     [,30]     [,31]      [,32]    [,33]     [,34]     [,35]
[1,] -1.032754 0.1843254 0.1459962 -0.2500137 0.704188 -1.608661 0.7040985
[2,] -1.032754 0.1843254 0.1459962 -0.2500137 0.704188 -1.608661 0.7040985
        [,36]      [,37]      [,38]     [,39]    [,40]    [,41]      [,42]
[1,] 1.456835 -0.6808461 -0.2867852 0.4795472 0.766408 0.109098 -0.2427872
[2,] 1.456835 -0.6808461 -0.2867852 0.4795472 0.766408 0.109098 -0.2427872
         [,43]    [,44]     [,45]      [,46]    [,47]     [,48]     [,49]
[1,] 0.9814875 -1.57564 -1.497474 -0.3322461 1.166221 0.5081047 0.5145832
[2,] 0.9814875 -1.57564 -1.497474 -0.3322461 1.166221 0.5081047 0.5145832
          [,50]       [,51]     [,52]     [,53]      [,54]    [,55]      [,56]
[1,] 0.05902282 -0.06041356 0.5821524 0.3939015 -0.3021772 1.334186 -0.5279419
[2,] 0.05902282 -0.06041356 0.5821524 0.3939015 -0.3021772 1.334186 -0.5279419
        [,57]     [,58]    [,59]      [,60]     [,61]     [,62]     [,63]
[1,] 1.317929 -1.516148 -1.44117 -0.9185608 -0.263763 -2.496075 0.7252769
[2,] 1.317929 -1.516148 -1.44117 -0.9185608 -0.263763 -2.496075 0.7252769
          [,64]      [,65]     [,66]    [,67]     [,68]    [,69]    [,70]
[1,] -0.1113034 -0.1135059 0.3492498 1.186451 0.2646101 1.342827 -1.63182
[2,] -0.1113034 -0.1135059 0.3492498 1.186451 0.2646101 1.342827 -1.63182
         [,71]     [,72]     [,73]     [,74]      [,75]      [,76]      [,77]
[1,] 0.1144116 0.3479925 0.9390435 0.1778602 -0.7950059 -0.3805096 -0.2205883
[2,] 0.1144116 0.3479925 0.9390435 0.1778602 -0.7950059 -0.3805096 -0.2205883
         [,78]      [,79]    [,80]     [,81]    [,82]     [,83]     [,84]
[1,] 0.9918221 -0.9636131 1.033319 0.0422567 0.320663 0.8465649 0.2375757
[2,] 0.9918221 -0.9636131 1.033319 0.0422567 0.320663 0.8465649 0.2375757
          [,85]     [,86]     [,87]     [,88]      [,89]     [,90]      [,91]
[1,] 0.09730071 0.7453699 -1.266532 -1.022173 -0.9696734 -1.588153 -0.8831106
[2,] 0.09730071 0.7453699 -1.266532 -1.022173 -0.9696734 -1.588153 -0.8831106
         [,92]     [,93]      [,94]      [,95]     [,96]     [,97]    [,98]
[1,] -1.795183 0.4564975 -0.3787785 -0.9660571 0.1078895 -1.001735 1.461264
[2,] -1.795183 0.4564975 -0.3787785 -0.9660571 0.1078895 -1.001735 1.461264
          [,99]    [,100]
[1,] -0.7677936 -1.075838
[2,] -0.7677936 -1.075838
> 
> 
> Max(tmp2)
[1] 3.007208
> Min(tmp2)
[1] -2.746814
> mean(tmp2)
[1] 0.1344827
> Sum(tmp2)
[1] 13.44827
> Var(tmp2)
[1] 1.306198
> 
> rowMeans(tmp2)
  [1] -2.26233039 -0.76438189 -0.74152081  3.00720761 -1.11770467 -1.47777566
  [7]  0.14562865  0.92237828  0.73397005  0.17687658  1.26735553  1.33152853
 [13] -0.62826088 -0.48492652  1.37629095 -0.13544375 -0.04592552  0.41546945
 [19]  0.94662331  1.44904119 -0.41149178  0.38809852  0.08398255 -0.02225991
 [25]  0.06946701 -0.40970000  0.96894554 -0.85757215  2.26918969 -0.47078077
 [31] -0.78204453  0.64442130 -0.28148701  0.78343031 -1.68314111  0.15133953
 [37] -0.07309244 -0.98178704 -0.86469192  0.61209955 -1.03352244  2.83511014
 [43] -0.91765660  1.40804273  1.01008720  0.90725341  0.13311274 -1.26715962
 [49] -2.74681391 -0.77491512 -0.19623869 -0.26647628 -1.15895569 -0.12807026
 [55] -0.96273673  0.81022011  0.12641883 -0.59556912  0.59657704  1.03595365
 [61] -0.19372994  1.44100724  0.89322913 -1.06140059  0.53862462 -0.62928513
 [67]  1.52279658 -0.90177289  0.88765275  1.35320511 -0.45841097 -0.38903240
 [73] -2.13655121  1.08989827 -0.56808667 -0.14631392 -0.98031779 -0.09962175
 [79] -1.92859559  1.78135435  0.28640597  0.55427136  0.31611124  0.72802539
 [85]  2.08103581  0.47985211  0.15663312 -0.01056935 -2.47412305 -0.35919721
 [91] -1.25215157  2.42044498  0.89638159  0.08759201  1.37893429  0.16872333
 [97]  1.58025787  1.26735567  0.18617990  2.87977201
> rowSums(tmp2)
  [1] -2.26233039 -0.76438189 -0.74152081  3.00720761 -1.11770467 -1.47777566
  [7]  0.14562865  0.92237828  0.73397005  0.17687658  1.26735553  1.33152853
 [13] -0.62826088 -0.48492652  1.37629095 -0.13544375 -0.04592552  0.41546945
 [19]  0.94662331  1.44904119 -0.41149178  0.38809852  0.08398255 -0.02225991
 [25]  0.06946701 -0.40970000  0.96894554 -0.85757215  2.26918969 -0.47078077
 [31] -0.78204453  0.64442130 -0.28148701  0.78343031 -1.68314111  0.15133953
 [37] -0.07309244 -0.98178704 -0.86469192  0.61209955 -1.03352244  2.83511014
 [43] -0.91765660  1.40804273  1.01008720  0.90725341  0.13311274 -1.26715962
 [49] -2.74681391 -0.77491512 -0.19623869 -0.26647628 -1.15895569 -0.12807026
 [55] -0.96273673  0.81022011  0.12641883 -0.59556912  0.59657704  1.03595365
 [61] -0.19372994  1.44100724  0.89322913 -1.06140059  0.53862462 -0.62928513
 [67]  1.52279658 -0.90177289  0.88765275  1.35320511 -0.45841097 -0.38903240
 [73] -2.13655121  1.08989827 -0.56808667 -0.14631392 -0.98031779 -0.09962175
 [79] -1.92859559  1.78135435  0.28640597  0.55427136  0.31611124  0.72802539
 [85]  2.08103581  0.47985211  0.15663312 -0.01056935 -2.47412305 -0.35919721
 [91] -1.25215157  2.42044498  0.89638159  0.08759201  1.37893429  0.16872333
 [97]  1.58025787  1.26735567  0.18617990  2.87977201
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -2.26233039 -0.76438189 -0.74152081  3.00720761 -1.11770467 -1.47777566
  [7]  0.14562865  0.92237828  0.73397005  0.17687658  1.26735553  1.33152853
 [13] -0.62826088 -0.48492652  1.37629095 -0.13544375 -0.04592552  0.41546945
 [19]  0.94662331  1.44904119 -0.41149178  0.38809852  0.08398255 -0.02225991
 [25]  0.06946701 -0.40970000  0.96894554 -0.85757215  2.26918969 -0.47078077
 [31] -0.78204453  0.64442130 -0.28148701  0.78343031 -1.68314111  0.15133953
 [37] -0.07309244 -0.98178704 -0.86469192  0.61209955 -1.03352244  2.83511014
 [43] -0.91765660  1.40804273  1.01008720  0.90725341  0.13311274 -1.26715962
 [49] -2.74681391 -0.77491512 -0.19623869 -0.26647628 -1.15895569 -0.12807026
 [55] -0.96273673  0.81022011  0.12641883 -0.59556912  0.59657704  1.03595365
 [61] -0.19372994  1.44100724  0.89322913 -1.06140059  0.53862462 -0.62928513
 [67]  1.52279658 -0.90177289  0.88765275  1.35320511 -0.45841097 -0.38903240
 [73] -2.13655121  1.08989827 -0.56808667 -0.14631392 -0.98031779 -0.09962175
 [79] -1.92859559  1.78135435  0.28640597  0.55427136  0.31611124  0.72802539
 [85]  2.08103581  0.47985211  0.15663312 -0.01056935 -2.47412305 -0.35919721
 [91] -1.25215157  2.42044498  0.89638159  0.08759201  1.37893429  0.16872333
 [97]  1.58025787  1.26735567  0.18617990  2.87977201
> rowMin(tmp2)
  [1] -2.26233039 -0.76438189 -0.74152081  3.00720761 -1.11770467 -1.47777566
  [7]  0.14562865  0.92237828  0.73397005  0.17687658  1.26735553  1.33152853
 [13] -0.62826088 -0.48492652  1.37629095 -0.13544375 -0.04592552  0.41546945
 [19]  0.94662331  1.44904119 -0.41149178  0.38809852  0.08398255 -0.02225991
 [25]  0.06946701 -0.40970000  0.96894554 -0.85757215  2.26918969 -0.47078077
 [31] -0.78204453  0.64442130 -0.28148701  0.78343031 -1.68314111  0.15133953
 [37] -0.07309244 -0.98178704 -0.86469192  0.61209955 -1.03352244  2.83511014
 [43] -0.91765660  1.40804273  1.01008720  0.90725341  0.13311274 -1.26715962
 [49] -2.74681391 -0.77491512 -0.19623869 -0.26647628 -1.15895569 -0.12807026
 [55] -0.96273673  0.81022011  0.12641883 -0.59556912  0.59657704  1.03595365
 [61] -0.19372994  1.44100724  0.89322913 -1.06140059  0.53862462 -0.62928513
 [67]  1.52279658 -0.90177289  0.88765275  1.35320511 -0.45841097 -0.38903240
 [73] -2.13655121  1.08989827 -0.56808667 -0.14631392 -0.98031779 -0.09962175
 [79] -1.92859559  1.78135435  0.28640597  0.55427136  0.31611124  0.72802539
 [85]  2.08103581  0.47985211  0.15663312 -0.01056935 -2.47412305 -0.35919721
 [91] -1.25215157  2.42044498  0.89638159  0.08759201  1.37893429  0.16872333
 [97]  1.58025787  1.26735567  0.18617990  2.87977201
> 
> colMeans(tmp2)
[1] 0.1344827
> colSums(tmp2)
[1] 13.44827
> colVars(tmp2)
[1] 1.306198
> colSd(tmp2)
[1] 1.14289
> colMax(tmp2)
[1] 3.007208
> colMin(tmp2)
[1] -2.746814
> colMedians(tmp2)
[1] 0.1070054
> colRanges(tmp2)
          [,1]
[1,] -2.746814
[2,]  3.007208
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  4.9367489  3.5259922 -5.3471893  0.8775147  4.2099779 -6.4936770
 [7]  0.9098540 -3.2943894 -2.5969284  4.0543534
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.9382234
[2,] -0.2733826
[3,]  0.5571766
[4,]  1.1093371
[5,]  2.5733849
> 
> rowApply(tmp,sum)
 [1]  1.0066014 -4.2401569 -0.2608341  3.2318023 -7.6615914  4.0440856
 [7]  6.9045367 -0.7004799 -1.7144941  0.1727874
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    9    5    7    8    8    2    4   10    3    10
 [2,]   10    8   10    7    7    8    9    5    1     8
 [3,]    2    3    2    9    2    9    3    1    9     1
 [4,]    1    7    6    6    6    6    8    8    6     4
 [5,]    5    4    1    5   10   10   10    3    8     9
 [6,]    4    2    5    1    4    1    2    7    4     2
 [7,]    3   10    4   10    5    4    1    9    2     5
 [8,]    6    9    3    4    1    5    5    2    5     6
 [9,]    8    1    8    2    3    3    6    6    7     3
[10,]    7    6    9    3    9    7    7    4   10     7
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.09614609  2.84405617 -3.48155980 -0.08948422  0.67643725 -0.33068766
 [7]  1.99644080  1.12951742  1.05321012  3.77482749 -0.47526434 -1.38761749
[13]  4.04939235  1.29809860  0.05731887  1.30039654  1.01654192 -0.66866747
[19] -0.14918780 -2.24769158
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.6495239
[2,] -1.6202384
[3,]  0.4537088
[4,]  0.5584186
[5,]  1.1614888
> 
> rowApply(tmp,sum)
[1] -0.07361517  5.87530881 -9.38473944  6.83036497  6.02261191
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    1   13    2   17   12
[2,]    5   17    9   19   15
[3,]   13    4    1    1   14
[4,]    2   14   17    4   10
[5,]   10    9   15   10   13
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]        [,5]       [,6]
[1,] -1.6495239 -0.5455783  0.1829930 -0.7788231 -0.21816854  0.1463871
[2,]  0.5584186  1.2246888 -0.7295738  0.7931472  0.09363012 -0.8466235
[3,] -1.6202384 -0.6182021 -2.3762001  0.4312538 -0.12271540  0.9956194
[4,]  1.1614888  1.8850383 -1.2544987 -0.7262510  0.24621827 -0.2876000
[5,]  0.4537088  0.8981094  0.6957197  0.1911888  0.67747281 -0.3384708
           [,7]       [,8]        [,9]      [,10]      [,11]      [,12]
[1,]  0.3326393 -0.2537484  0.39546983  1.6572595  0.5615273 -0.7056357
[2,]  0.2258013  1.8955743 -0.09862312  0.9451983 -1.0617627 -0.1199923
[3,] -0.3468486 -0.4368635  0.03912447 -0.9137942 -0.1553938 -1.2091366
[4,]  1.4034736  2.1490376  1.11907223  0.3997141  0.4418839  0.7709271
[5,]  0.3813752 -2.2244825 -0.40183329  1.6864498 -0.2615190 -0.1237801
         [,13]      [,14]      [,15]       [,16]        [,17]      [,18]
[1,] 0.9067349 -0.3854135  0.1752503 -0.45260134 -0.571469363  0.6892185
[2,] 0.4329897  1.4910759  1.4090470  0.94364871  0.248083186 -0.9661024
[3,] 0.6432522 -0.5208934 -0.1596412 -0.88641448  1.453772900 -1.3254944
[4,] 1.1589877  0.9570436 -0.8291814 -0.05217594 -0.107826467 -0.4473994
[5,] 0.9074278 -0.2437139 -0.5381557  1.74793959 -0.006018342  1.3811102
           [,19]       [,20]
[1,]  0.75241410 -0.31254674
[2,] -0.03747955 -0.52583711
[3,] -0.98702765 -1.26889832
[4,] -1.04920311 -0.10838436
[5,]  1.17210841 -0.03202505
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  653  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  567  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
        col1    col2       col3      col4      col5       col6     col7
row1 1.63741 1.77113 -0.1400635 0.1011929 0.1314678 -0.9465538 1.118188
         col8      col9     col10     col11      col12       col13     col14
row1 1.088571 -0.794476 -1.664523 0.7249562 -0.4747373 -0.06467885 0.7883808
         col15       col16     col17     col18      col19       col20
row1 0.2874503 -0.03720228 0.7195594 0.2396738 -0.6525759 -0.07467552
> tmp[,"col10"]
           col10
row1 -1.66452327
row2 -1.41049076
row3  0.64576872
row4  0.01884858
row5  0.64382086
> tmp[c("row1","row5"),]
          col1      col2       col3      col4      col5       col6      col7
row1 1.6374102  1.771130 -0.1400635 0.1011929 0.1314678 -0.9465538 1.1181882
row5 0.2098643 -1.488975  0.8833072 0.9583851 0.3674498 -1.3718305 0.6966311
          col8       col9      col10     col11      col12       col13
row1 1.0885711 -0.7944760 -1.6645233 0.7249562 -0.4747373 -0.06467885
row5 0.5478391 -0.6211687  0.6438209 2.4324697 -3.5489624  0.33831859
          col14     col15       col16      col17     col18      col19
row1  0.7883808 0.2874503 -0.03720228  0.7195594 0.2396738 -0.6525759
row5 -0.7018155 1.2893192 -0.28559277 -2.1509484 0.4619228  0.3575220
           col20
row1 -0.07467552
row5  0.34156875
> tmp[,c("col6","col20")]
           col6       col20
row1 -0.9465538 -0.07467552
row2  0.1864666  0.71765759
row3 -0.1344203 -1.91873135
row4  0.4000561 -2.00974598
row5 -1.3718305  0.34156875
> tmp[c("row1","row5"),c("col6","col20")]
           col6       col20
row1 -0.9465538 -0.07467552
row5 -1.3718305  0.34156875
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1   col2     col3    col4     col5     col6     col7     col8
row1 50.58572 49.576 50.51766 48.8674 51.64135 104.2201 50.69927 49.03622
         col9    col10    col11    col12    col13    col14   col15    col16
row1 49.34961 52.41319 50.29224 49.75979 49.79345 48.89991 51.0389 48.59138
        col17    col18    col19    col20
row1 49.09297 50.70766 51.44625 106.1671
> tmp[,"col10"]
        col10
row1 52.41319
row2 28.76118
row3 29.30739
row4 28.65957
row5 49.91104
> tmp[c("row1","row5"),]
         col1     col2     col3    col4     col5     col6     col7     col8
row1 50.58572 49.57600 50.51766 48.8674 51.64135 104.2201 50.69927 49.03622
row5 51.95945 48.87432 50.36412 49.7155 50.16034 106.5558 51.55753 49.43697
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.34961 52.41319 50.29224 49.75979 49.79345 48.89991 51.03890 48.59138
row5 49.72807 49.91104 49.39022 50.56347 49.82087 50.10261 47.92909 50.37883
        col17    col18    col19    col20
row1 49.09297 50.70766 51.44625 106.1671
row5 50.71891 49.81612 50.24409 105.2190
> tmp[,c("col6","col20")]
          col6     col20
row1 104.22007 106.16714
row2  75.56472  74.53640
row3  74.52187  75.94456
row4  74.69836  76.20860
row5 106.55581 105.21896
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 104.2201 106.1671
row5 106.5558 105.2190
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 104.2201 106.1671
row5 106.5558 105.2190
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,]  1.89760930
[2,] -1.23257046
[3,]  0.06655482
[4,] -1.66007855
[5,]  0.65875917
> tmp[,c("col17","col7")]
          col17       col7
[1,]  0.3939772 -0.4013733
[2,] -1.9118018  1.3105654
[3,] -0.1035772  0.8535749
[4,]  0.7322288  0.4980854
[5,] -0.9322764 -2.1669060
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -0.5442509  0.3562754
[2,]  1.5876571  0.4523879
[3,] -0.7688135  1.5190338
[4,] -2.1940116 -0.2908070
[5,]  2.2789030 -1.5354362
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.5442509
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.5442509
[2,]  1.5876571
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
row3  1.01549111 -0.9175402 -0.3847709 1.41461702 -0.2875253 -1.5158313
row1 -0.02958465 -0.3279641  2.3989022 0.09864621 -1.0507131 -0.8781799
            [,7]       [,8]       [,9]     [,10]      [,11]      [,12]
row3 -0.05349723 -1.8725981 -0.2524964 0.1235900 0.44647016  1.4620770
row1 -0.35859184 -0.5706581 -0.8814480 0.6246359 0.09337355 -0.5086867
         [,13]    [,14]     [,15]      [,16]      [,17]     [,18]     [,19]
row3 0.2942504 1.699689 0.1167701 -0.8483722 -1.1662749 0.5468316 0.8163533
row1 1.0166957 1.573554 1.1159235 -0.2558555 -0.5154149 1.2180775 0.4049408
          [,20]
row3 -0.2595258
row1 -1.9411095
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]     [,2]       [,3]       [,4]      [,5]       [,6]      [,7]
row2 0.6091414 1.897017 -0.8583975 -0.4835242 0.6807148 -0.4785149 0.5387451
           [,8]      [,9]      [,10]
row2 -0.4923166 -1.198448 -0.6182851
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
         [,1]      [,2]      [,3]      [,4]      [,5]      [,6]       [,7]
row5 1.177339 0.9613434 0.2825838 0.2865678 -1.130912 0.3942869 -0.3821764
           [,8]      [,9]       [,10]    [,11]     [,12]     [,13]     [,14]
row5 0.06776863 0.9772737 -0.05219594 1.125226 -2.920545 0.7006524 -1.187049
           [,15]      [,16]       [,17]      [,18]     [,19]      [,20]
row5 0.007217459 -0.1192202 -0.09802375 -0.8607309 -0.781631 -0.3688588
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x600003e14480>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc5379a36a6"
 [2] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc56d79e8ce"
 [3] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc55ea36488"
 [4] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc5391d4d42"
 [5] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc532bb4559"
 [6] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc524c5f014"
 [7] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc53f14c3e8"
 [8] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc56c49d4b2"
 [9] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc5632b29a8"
[10] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc526bc0775"
[11] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc528da631" 
[12] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc52199dc46"
[13] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc57c4c88e5"
[14] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc54afb224" 
[15] "/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM15bc52ad85be3"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x600003e100c0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x600003e100c0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x600003e100c0>
> rowMedians(tmp)
  [1]  0.212613399 -0.110091516 -0.303424179 -0.353156260 -0.007818376
  [6] -0.295662962  0.175718149  0.207981325  0.353539173 -0.096373679
 [11] -0.606332169 -0.713171601 -0.364025597  0.606241388 -0.123559004
 [16] -0.173064871 -0.555141749  0.165384078 -0.111161467 -0.058129617
 [21]  0.149447795 -0.010781333  0.264528040 -0.365829506  0.649243621
 [26] -0.403433229  0.138617552 -0.256760091 -0.106883546  0.218366126
 [31] -0.130355957 -0.185135562 -0.001885849  0.350297527 -0.026159304
 [36]  0.107818968  0.443620583 -0.309385536  0.002589780 -0.003618767
 [41] -0.005754642  0.189431963 -0.012338652  0.056564439  0.055094935
 [46]  0.020132117  0.274211345  0.730364222  0.022394957 -0.081916842
 [51]  0.179973687 -0.487461500  0.328443482 -0.094508092  0.680384692
 [56]  0.427399226 -0.238131524  0.206059833 -0.116442902 -0.022245267
 [61]  0.256892309  0.098421192 -0.195036277  0.012503150 -0.003125730
 [66] -0.182035293  0.403286257  0.291352517 -0.133107638 -0.208994204
 [71] -0.230558117  0.535628627  0.164528103 -0.501475464 -0.491313301
 [76]  0.188225233  0.028396141 -0.392985103 -0.290224664 -0.102298964
 [81] -0.146844431  0.187128058 -0.254504553  0.319858180  0.823330281
 [86]  0.087099336  0.220085559  0.320995071  0.017121074  0.084472965
 [91]  0.185595448 -0.272442481 -0.237374247  0.794236440 -0.140785023
 [96]  0.436203087 -0.220502181  0.352347236  0.104331258 -0.570222244
[101] -0.063230450  0.095584767  0.496554470 -0.466651345  0.239529062
[106] -0.237416537  0.278407246 -0.087568153 -0.271780674 -0.228841776
[111]  0.089961832 -0.189127517  0.676058072 -0.744558002  0.015878005
[116]  0.153293618  0.210848372  0.137953134  0.109327313 -0.280713967
[121] -0.208463096 -0.557552563  0.096034062  0.061549595 -0.082093422
[126] -0.121721742 -0.102943852 -0.458822875 -0.210926308 -0.554501166
[131] -0.078869790 -0.070137353 -0.062194676 -0.173532274 -0.142149654
[136] -0.181121638 -0.093788316 -0.008548858  0.033501670 -0.020034909
[141] -0.852949899  0.023773631 -0.028642329  0.243940516  0.158615572
[146]  0.192382867 -0.112327752  0.104467764 -0.093404775  0.024753490
[151]  0.801845694 -0.200971156 -0.030556101 -0.375488579 -0.278312298
[156]  0.499153828  0.120922416 -0.046963657 -0.150558630  0.136323828
[161] -0.156741010  0.287945200 -0.291511797  0.408397831 -0.639529991
[166] -0.053570934  0.102894307  0.371133807 -0.310290179 -0.423556089
[171] -0.473873679 -0.467989289 -0.214747148  0.007746801 -0.299807325
[176]  0.187226620  0.070274019 -0.035136146 -0.008933681 -0.337962044
[181] -0.036588194  0.446382758 -0.115646536 -0.401280126 -0.251952618
[186] -0.039007372 -0.432944895  0.095358932 -0.424759659 -0.064930119
[191]  0.025519486  0.133022726 -0.039888173  0.130894282  0.577028547
[196]  0.382194309 -0.078459607 -0.402967875  0.761830274  0.063410136
[201]  0.522983338  0.095455036  0.138601095  0.351711424 -0.197462657
[206] -0.224227912  0.266269429 -0.436181277 -0.218099090  0.020273832
[211] -0.186596549  0.060293344 -0.347859470  0.154300040  0.290142713
[216]  0.059687565 -0.524954366  0.023908439 -0.017356064  0.083535203
[221]  0.044620224 -0.476360431 -0.121207354  0.104442611  0.560407436
[226]  0.421786098  0.206308423 -0.048572642  0.354321202 -0.754837459
> 
> proc.time()
   user  system elapsed 
  0.719   3.692   4.908 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000030a4120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000030a4120>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000030a4120>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6000030a4120>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600003094000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003094000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600003094000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600003094000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600003094000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000030a82a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000030a82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000030a82a0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000030a82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000030a82a0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6000030a82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000030a82a0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6000030a82a0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000030a82a0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000030b84e0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x6000030b84e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000030b84e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000030b84e0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile15f2c1986fa89" "BufferedMatrixFile15f2c56e2275f"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile15f2c1986fa89" "BufferedMatrixFile15f2c56e2275f"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000030b8720>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000030b8720>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000030b8720>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000030b8720>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x6000030b8720>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x6000030b8720>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000030a00c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000030a00c0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000030a00c0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6000030a00c0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000030a0240>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000030a0240>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.141   0.069   0.204 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2025-11-04 r88984) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.130   0.036   0.161 

Example timings