Back to Build/check report for BioC 3.23:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2026-01-31 11:32 -0500 (Sat, 31 Jan 2026).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences" 4852
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 254/2347HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.75.0  (landing page)
Ben Bolstad
Snapshot Date: 2026-01-30 13:40 -0500 (Fri, 30 Jan 2026)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: devel
git_last_commit: ecdbf23
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
See other builds for BufferedMatrix in R Universe.


CHECK results for BufferedMatrix on nebbiolo1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.75.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
StartedAt: 2026-01-30 21:43:10 -0500 (Fri, 30 Jan 2026)
EndedAt: 2026-01-30 21:43:35 -0500 (Fri, 30 Jan 2026)
EllapsedTime: 25.0 seconds
RetCode: 0
Status:   OK  
CheckDir: BufferedMatrix.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings BufferedMatrix_1.75.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck’
* using R Under development (unstable) (2026-01-15 r89304)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.75.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... OK
* used C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... INFO
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ...* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.75.0’
** using staged installation
** libs
using C compiler: ‘gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0’
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c RBufferedMatrix.c -o RBufferedMatrix.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c: In function ‘dbm_ReadOnlyMode’:
doubleBufferedMatrix.c:1580:7: warning: suggest parentheses around operand of ‘!’ or change ‘&’ to ‘&&’ or ‘!’ to ‘~’ [-Wparentheses]
 1580 |   if (!(Matrix->readonly) & setting){
      |       ^~~~~~~~~~~~~~~~~~~
doubleBufferedMatrix.c: At top level:
doubleBufferedMatrix.c:3327:12: warning: ‘sort_double’ defined but not used [-Wunused-function]
 3327 | static int sort_double(const double *a1,const double *a2){
      |            ^~~~~~~~~~~
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
gcc -std=gnu2x -I"/home/biocbuild/bbs-3.23-bioc/R/include" -DNDEBUG   -I/usr/local/include    -fpic  -g -O2  -Wall -Werror=format-security -c init_package.c -o init_package.o
gcc -std=gnu2x -shared -L/home/biocbuild/bbs-3.23-bioc/R/lib -L/usr/local/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -L/home/biocbuild/bbs-3.23-bioc/R/lib -lR
installing to /home/biocbuild/bbs-3.23-bioc/R/site-library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.233   0.055   0.277 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) max used (Mb)
Ncells 478920 25.6    1048721 56.1   639242 34.2
Vcells 885815  6.8    8388608 64.0  2083259 15.9
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Jan 30 21:43:25 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Jan 30 21:43:25 2026"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x65513c64fc10>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Fri Jan 30 21:43:25 2026"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Fri Jan 30 21:43:26 2026"
> 
> ColMode(tmp2)
<pointer: 0x65513c64fc10>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]        [,2]      [,3]        [,4]
[1,] 100.9184815 -0.09398166 -1.064896 -0.75838368
[2,]   0.2814900 -1.30254687  1.477044 -0.01464194
[3,]   0.3663978 -0.28938463 -1.066688 -0.11742386
[4,]  -0.1029263  0.67681563  1.923708  1.04589904
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]       [,2]     [,3]       [,4]
[1,] 100.9184815 0.09398166 1.064896 0.75838368
[2,]   0.2814900 1.30254687 1.477044 0.01464194
[3,]   0.3663978 0.28938463 1.066688 0.11742386
[4,]   0.1029263 0.67681563 1.923708 1.04589904
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]     [,3]      [,4]
[1,] 10.0458191 0.3065643 1.031938 0.8708523
[2,]  0.5305563 1.1412918 1.215337 0.1210039
[3,]  0.6053080 0.5379448 1.032806 0.3426717
[4,]  0.3208212 0.8226881 1.386978 1.0226921
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 226.37667 28.15962 36.38428 34.46691
[2,]  30.58705 37.71546 38.63041 26.22468
[3,]  31.41948 30.66883 36.39475 28.54414
[4,]  28.31114 33.90370 40.79349 36.27282
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x65513cca9b90>
> exp(tmp5)
<pointer: 0x65513cca9b90>
> log(tmp5,2)
<pointer: 0x65513cca9b90>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 471.1734
> Min(tmp5)
[1] 53.01861
> mean(tmp5)
[1] 73.28744
> Sum(tmp5)
[1] 14657.49
> Var(tmp5)
[1] 871.6976
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 91.26596 69.26810 70.51354 70.53360 73.21579 72.26069 70.69888 73.35145
 [9] 72.76487 69.00151
> rowSums(tmp5)
 [1] 1825.319 1385.362 1410.271 1410.672 1464.316 1445.214 1413.978 1467.029
 [9] 1455.297 1380.030
> rowVars(tmp5)
 [1] 8051.70237   76.05436   46.25709   92.45499   62.61342  104.58830
 [7]   96.23290   70.93271   62.23342   65.69337
> rowSd(tmp5)
 [1] 89.731279  8.720915  6.801257  9.615352  7.912864 10.226842  9.809837
 [8]  8.422156  7.888816  8.105145
> rowMax(tmp5)
 [1] 471.17338  83.87969  85.04175  90.99199  85.96325  89.69527  84.33865
 [8]  89.07021  88.47196  89.70324
> rowMin(tmp5)
 [1] 54.22504 54.58324 59.41089 55.89113 57.07228 54.15087 53.01861 59.40135
 [9] 60.56909 57.34160
> 
> colMeans(tmp5)
 [1] 108.18068  69.03214  74.96003  69.19429  70.72366  73.90035  71.70806
 [8]  72.14422  68.42139  72.61170  75.51608  73.31001  71.05471  71.78269
[15]  72.11315  70.32909  68.37066  71.30298  70.19851  70.89437
> colSums(tmp5)
 [1] 1081.8068  690.3214  749.6003  691.9429  707.2366  739.0035  717.0806
 [8]  721.4422  684.2139  726.1170  755.1608  733.1001  710.5471  717.8269
[15]  721.1315  703.2909  683.7066  713.0298  701.9851  708.9437
> colVars(tmp5)
 [1] 16302.15633    52.01293    65.93230    84.98904    56.37767    73.95850
 [7]    79.54739    98.07215    43.79532    59.94122   134.70191    94.41281
[13]    73.98509    46.66510   101.27720   104.13787    94.25195    76.41001
[19]    78.54077    46.58135
> colSd(tmp5)
 [1] 127.679898   7.211999   8.119871   9.218950   7.508507   8.599913
 [7]   8.918934   9.903138   6.617804   7.742172  11.606115   9.716625
[13]   8.601458   6.831186  10.063658  10.204797   9.708344   8.741282
[19]   8.862323   6.825053
> colMax(tmp5)
 [1] 471.17338  78.49980  84.90630  84.85623  82.68790  89.07021  82.50129
 [8]  88.47196  76.70742  85.96325  89.70324  87.45165  79.41801  79.40738
[15]  88.41159  90.99199  84.95278  81.99966  89.69527  83.25484
> colMin(tmp5)
 [1] 58.92593 58.61057 60.19984 54.58324 59.04902 62.15225 56.74561 54.22504
 [9] 57.14500 61.69579 54.04226 55.18960 57.34160 55.89113 59.13932 57.07228
[17] 53.01861 54.15087 58.22978 61.18752
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 91.26596 69.26810 70.51354       NA 73.21579 72.26069 70.69888 73.35145
 [9] 72.76487 69.00151
> rowSums(tmp5)
 [1] 1825.319 1385.362 1410.271       NA 1464.316 1445.214 1413.978 1467.029
 [9] 1455.297 1380.030
> rowVars(tmp5)
 [1] 8051.70237   76.05436   46.25709   97.49217   62.61342  104.58830
 [7]   96.23290   70.93271   62.23342   65.69337
> rowSd(tmp5)
 [1] 89.731279  8.720915  6.801257  9.873812  7.912864 10.226842  9.809837
 [8]  8.422156  7.888816  8.105145
> rowMax(tmp5)
 [1] 471.17338  83.87969  85.04175        NA  85.96325  89.69527  84.33865
 [8]  89.07021  88.47196  89.70324
> rowMin(tmp5)
 [1] 54.22504 54.58324 59.41089       NA 57.07228 54.15087 53.01861 59.40135
 [9] 60.56909 57.34160
> 
> colMeans(tmp5)
 [1] 108.18068  69.03214  74.96003  69.19429  70.72366  73.90035  71.70806
 [8]  72.14422  68.42139  72.61170  75.51608  73.31001  71.05471  71.78269
[15]  72.11315  70.32909  68.37066        NA  70.19851  70.89437
> colSums(tmp5)
 [1] 1081.8068  690.3214  749.6003  691.9429  707.2366  739.0035  717.0806
 [8]  721.4422  684.2139  726.1170  755.1608  733.1001  710.5471  717.8269
[15]  721.1315  703.2909  683.7066        NA  701.9851  708.9437
> colVars(tmp5)
 [1] 16302.15633    52.01293    65.93230    84.98904    56.37767    73.95850
 [7]    79.54739    98.07215    43.79532    59.94122   134.70191    94.41281
[13]    73.98509    46.66510   101.27720   104.13787    94.25195          NA
[19]    78.54077    46.58135
> colSd(tmp5)
 [1] 127.679898   7.211999   8.119871   9.218950   7.508507   8.599913
 [7]   8.918934   9.903138   6.617804   7.742172  11.606115   9.716625
[13]   8.601458   6.831186  10.063658  10.204797   9.708344         NA
[19]   8.862323   6.825053
> colMax(tmp5)
 [1] 471.17338  78.49980  84.90630  84.85623  82.68790  89.07021  82.50129
 [8]  88.47196  76.70742  85.96325  89.70324  87.45165  79.41801  79.40738
[15]  88.41159  90.99199  84.95278        NA  89.69527  83.25484
> colMin(tmp5)
 [1] 58.92593 58.61057 60.19984 54.58324 59.04902 62.15225 56.74561 54.22504
 [9] 57.14500 61.69579 54.04226 55.18960 57.34160 55.89113 59.13932 57.07228
[17] 53.01861       NA 58.22978 61.18752
> 
> Max(tmp5,na.rm=TRUE)
[1] 471.1734
> Min(tmp5,na.rm=TRUE)
[1] 53.01861
> mean(tmp5,na.rm=TRUE)
[1] 73.29473
> Sum(tmp5,na.rm=TRUE)
[1] 14585.65
> Var(tmp5,na.rm=TRUE)
[1] 876.0894
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.26596 69.26810 70.51354 70.46505 73.21579 72.26069 70.69888 73.35145
 [9] 72.76487 69.00151
> rowSums(tmp5,na.rm=TRUE)
 [1] 1825.319 1385.362 1410.271 1338.836 1464.316 1445.214 1413.978 1467.029
 [9] 1455.297 1380.030
> rowVars(tmp5,na.rm=TRUE)
 [1] 8051.70237   76.05436   46.25709   97.49217   62.61342  104.58830
 [7]   96.23290   70.93271   62.23342   65.69337
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.731279  8.720915  6.801257  9.873812  7.912864 10.226842  9.809837
 [8]  8.422156  7.888816  8.105145
> rowMax(tmp5,na.rm=TRUE)
 [1] 471.17338  83.87969  85.04175  90.99199  85.96325  89.69527  84.33865
 [8]  89.07021  88.47196  89.70324
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.22504 54.58324 59.41089 55.89113 57.07228 54.15087 53.01861 59.40135
 [9] 60.56909 57.34160
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 108.18068  69.03214  74.96003  69.19429  70.72366  73.90035  71.70806
 [8]  72.14422  68.42139  72.61170  75.51608  73.31001  71.05471  71.78269
[15]  72.11315  70.32909  68.37066  71.24374  70.19851  70.89437
> colSums(tmp5,na.rm=TRUE)
 [1] 1081.8068  690.3214  749.6003  691.9429  707.2366  739.0035  717.0806
 [8]  721.4422  684.2139  726.1170  755.1608  733.1001  710.5471  717.8269
[15]  721.1315  703.2909  683.7066  641.1937  701.9851  708.9437
> colVars(tmp5,na.rm=TRUE)
 [1] 16302.15633    52.01293    65.93230    84.98904    56.37767    73.95850
 [7]    79.54739    98.07215    43.79532    59.94122   134.70191    94.41281
[13]    73.98509    46.66510   101.27720   104.13787    94.25195    85.92178
[19]    78.54077    46.58135
> colSd(tmp5,na.rm=TRUE)
 [1] 127.679898   7.211999   8.119871   9.218950   7.508507   8.599913
 [7]   8.918934   9.903138   6.617804   7.742172  11.606115   9.716625
[13]   8.601458   6.831186  10.063658  10.204797   9.708344   9.269400
[19]   8.862323   6.825053
> colMax(tmp5,na.rm=TRUE)
 [1] 471.17338  78.49980  84.90630  84.85623  82.68790  89.07021  82.50129
 [8]  88.47196  76.70742  85.96325  89.70324  87.45165  79.41801  79.40738
[15]  88.41159  90.99199  84.95278  81.99966  89.69527  83.25484
> colMin(tmp5,na.rm=TRUE)
 [1] 58.92593 58.61057 60.19984 54.58324 59.04902 62.15225 56.74561 54.22504
 [9] 57.14500 61.69579 54.04226 55.18960 57.34160 55.89113 59.13932 57.07228
[17] 53.01861 54.15087 58.22978 61.18752
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 91.26596 69.26810 70.51354      NaN 73.21579 72.26069 70.69888 73.35145
 [9] 72.76487 69.00151
> rowSums(tmp5,na.rm=TRUE)
 [1] 1825.319 1385.362 1410.271    0.000 1464.316 1445.214 1413.978 1467.029
 [9] 1455.297 1380.030
> rowVars(tmp5,na.rm=TRUE)
 [1] 8051.70237   76.05436   46.25709         NA   62.61342  104.58830
 [7]   96.23290   70.93271   62.23342   65.69337
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.731279  8.720915  6.801257        NA  7.912864 10.226842  9.809837
 [8]  8.422156  7.888816  8.105145
> rowMax(tmp5,na.rm=TRUE)
 [1] 471.17338  83.87969  85.04175        NA  85.96325  89.69527  84.33865
 [8]  89.07021  88.47196  89.70324
> rowMin(tmp5,na.rm=TRUE)
 [1] 54.22504 54.58324 59.41089       NA 57.07228 54.15087 53.01861 59.40135
 [9] 60.56909 57.34160
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 113.65343  68.86170  73.85489  68.49398  71.11687  74.22511  71.50266
 [8]  72.51292  68.27075  72.86853  76.39242  74.11044  70.33452  73.54842
[15]  70.30221  68.03322  69.53509       NaN  71.52837  71.47916
> colSums(tmp5,na.rm=TRUE)
 [1] 1022.8808  619.7553  664.6940  616.4458  640.0518  668.0260  643.5239
 [8]  652.6163  614.4368  655.8168  687.5318  666.9940  633.0107  661.9357
[15]  632.7199  612.2990  625.8158    0.0000  643.7554  643.3124
> colVars(tmp5,na.rm=TRUE)
 [1] 18002.97718    58.18774    60.43382    90.09522    61.68548    82.01679
 [7]    89.01620   108.80189    49.01446    66.69178   142.89989    99.00668
[13]    77.39810    17.42301    77.04251    57.85579    90.77968          NA
[19]    68.46245    48.55687
> colSd(tmp5,na.rm=TRUE)
 [1] 134.175174   7.628089   7.773919   9.491850   7.854011   9.056312
 [7]   9.434840  10.430814   7.001033   8.166504  11.954074   9.950210
[13]   8.797619   4.174088   8.777387   7.606299   9.527837         NA
[19]   8.274204   6.968276
> colMax(tmp5,na.rm=TRUE)
 [1] 471.17338  78.49980  84.33865  84.85623  82.68790  89.07021  82.50129
 [8]  88.47196  76.70742  85.96325  89.70324  87.45165  79.41801  79.40738
[15]  84.32034  78.67521  84.95278      -Inf  89.69527  83.25484
> colMin(tmp5,na.rm=TRUE)
 [1] 63.66294 58.61057 60.19984 54.58324 59.04902 62.15225 56.74561 54.22504
 [9] 57.14500 61.69579 54.04226 55.18960 57.34160 65.28515 59.13932 57.07228
[17] 53.01861      Inf 60.56909 61.18752
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 281.1677 175.1798 144.9301 208.6503 261.0986 207.5886 238.4301 222.3116
 [9] 268.5205 387.5477
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 281.1677 175.1798 144.9301 208.6503 261.0986 207.5886 238.4301 222.3116
 [9] 268.5205 387.5477
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  2.842171e-14  5.684342e-14  0.000000e+00 -1.136868e-13  2.842171e-14
 [6]  2.842171e-14  1.136868e-13  5.684342e-14 -2.842171e-14  1.136868e-13
[11]  5.684342e-14 -5.684342e-14  1.136868e-13  4.263256e-14 -1.136868e-13
[16]  1.136868e-13  1.705303e-13  2.273737e-13  2.842171e-14 -1.705303e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
10   3 
3   1 
10   18 
6   16 
7   20 
3   17 
10   16 
8   3 
1   16 
2   5 
1   11 
4   11 
3   17 
3   14 
8   19 
8   1 
5   17 
9   14 
9   6 
1   17 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.475696
> Min(tmp)
[1] -2.76677
> mean(tmp)
[1] 0.07221454
> Sum(tmp)
[1] 7.221454
> Var(tmp)
[1] 1.137653
> 
> rowMeans(tmp)
[1] 0.07221454
> rowSums(tmp)
[1] 7.221454
> rowVars(tmp)
[1] 1.137653
> rowSd(tmp)
[1] 1.066608
> rowMax(tmp)
[1] 2.475696
> rowMin(tmp)
[1] -2.76677
> 
> colMeans(tmp)
  [1] -0.7186786495  0.6571008984  1.8549689808  1.2739440404  1.7647561272
  [6] -0.0308637091 -0.8447136898  1.8582579458  1.8524776165 -0.8941593647
 [11]  0.3560659833 -0.4486136285 -1.1729767894  1.6411182089 -0.6863220932
 [16] -0.7864848373  0.3347728493  1.0219221729 -0.5278198130 -0.9249766546
 [21]  0.7860457394 -1.1302450803 -1.1938172798 -1.5226190121  1.8327444604
 [26]  0.1773963216 -2.1385484268  0.9875911783  1.5790917685  0.2656788673
 [31] -1.7637274083 -2.7667696953  0.3478831177  0.9280152036 -0.7636662345
 [36] -0.6925949771  0.3342807672  0.0314082666 -0.4720532626  1.0593245649
 [41]  0.0845481968  1.2314159563  0.5953809440 -1.3675992135 -0.8318739259
 [46]  0.5031599380  1.0808331571  0.8499874802 -1.1770445056  0.7154117080
 [51]  0.3433158631  2.0558856192  1.5326078634 -0.5510171536  0.9902380721
 [56]  2.4756957769  0.0003284975  0.0250786466  1.4161578230  0.7838499229
 [61]  1.7117790946 -1.1980313015  0.0244796041  0.4037408112  0.6562780053
 [66]  0.2150742082 -0.8335460777  0.2591477255 -0.7420007925  0.5856683806
 [71]  0.0129924163  1.2754269881  0.3583846379  0.1093254034  1.4191865022
 [76]  0.5996823865 -1.5960316630 -2.6380987229 -0.0652690070 -0.4339741874
 [81]  0.8972523931  0.2095116280 -0.1227745287 -1.6302083130  0.1039250436
 [86]  0.4626489309 -0.1869646120 -1.1708811977 -0.2281774333 -0.6716485167
 [91]  0.1514780994  1.1280987666 -0.7015600451 -0.9513292714 -1.2172585581
 [96] -0.2948658162 -0.5180700177  0.4243497022 -0.5328720769 -0.2749693245
> colSums(tmp)
  [1] -0.7186786495  0.6571008984  1.8549689808  1.2739440404  1.7647561272
  [6] -0.0308637091 -0.8447136898  1.8582579458  1.8524776165 -0.8941593647
 [11]  0.3560659833 -0.4486136285 -1.1729767894  1.6411182089 -0.6863220932
 [16] -0.7864848373  0.3347728493  1.0219221729 -0.5278198130 -0.9249766546
 [21]  0.7860457394 -1.1302450803 -1.1938172798 -1.5226190121  1.8327444604
 [26]  0.1773963216 -2.1385484268  0.9875911783  1.5790917685  0.2656788673
 [31] -1.7637274083 -2.7667696953  0.3478831177  0.9280152036 -0.7636662345
 [36] -0.6925949771  0.3342807672  0.0314082666 -0.4720532626  1.0593245649
 [41]  0.0845481968  1.2314159563  0.5953809440 -1.3675992135 -0.8318739259
 [46]  0.5031599380  1.0808331571  0.8499874802 -1.1770445056  0.7154117080
 [51]  0.3433158631  2.0558856192  1.5326078634 -0.5510171536  0.9902380721
 [56]  2.4756957769  0.0003284975  0.0250786466  1.4161578230  0.7838499229
 [61]  1.7117790946 -1.1980313015  0.0244796041  0.4037408112  0.6562780053
 [66]  0.2150742082 -0.8335460777  0.2591477255 -0.7420007925  0.5856683806
 [71]  0.0129924163  1.2754269881  0.3583846379  0.1093254034  1.4191865022
 [76]  0.5996823865 -1.5960316630 -2.6380987229 -0.0652690070 -0.4339741874
 [81]  0.8972523931  0.2095116280 -0.1227745287 -1.6302083130  0.1039250436
 [86]  0.4626489309 -0.1869646120 -1.1708811977 -0.2281774333 -0.6716485167
 [91]  0.1514780994  1.1280987666 -0.7015600451 -0.9513292714 -1.2172585581
 [96] -0.2948658162 -0.5180700177  0.4243497022 -0.5328720769 -0.2749693245
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.7186786495  0.6571008984  1.8549689808  1.2739440404  1.7647561272
  [6] -0.0308637091 -0.8447136898  1.8582579458  1.8524776165 -0.8941593647
 [11]  0.3560659833 -0.4486136285 -1.1729767894  1.6411182089 -0.6863220932
 [16] -0.7864848373  0.3347728493  1.0219221729 -0.5278198130 -0.9249766546
 [21]  0.7860457394 -1.1302450803 -1.1938172798 -1.5226190121  1.8327444604
 [26]  0.1773963216 -2.1385484268  0.9875911783  1.5790917685  0.2656788673
 [31] -1.7637274083 -2.7667696953  0.3478831177  0.9280152036 -0.7636662345
 [36] -0.6925949771  0.3342807672  0.0314082666 -0.4720532626  1.0593245649
 [41]  0.0845481968  1.2314159563  0.5953809440 -1.3675992135 -0.8318739259
 [46]  0.5031599380  1.0808331571  0.8499874802 -1.1770445056  0.7154117080
 [51]  0.3433158631  2.0558856192  1.5326078634 -0.5510171536  0.9902380721
 [56]  2.4756957769  0.0003284975  0.0250786466  1.4161578230  0.7838499229
 [61]  1.7117790946 -1.1980313015  0.0244796041  0.4037408112  0.6562780053
 [66]  0.2150742082 -0.8335460777  0.2591477255 -0.7420007925  0.5856683806
 [71]  0.0129924163  1.2754269881  0.3583846379  0.1093254034  1.4191865022
 [76]  0.5996823865 -1.5960316630 -2.6380987229 -0.0652690070 -0.4339741874
 [81]  0.8972523931  0.2095116280 -0.1227745287 -1.6302083130  0.1039250436
 [86]  0.4626489309 -0.1869646120 -1.1708811977 -0.2281774333 -0.6716485167
 [91]  0.1514780994  1.1280987666 -0.7015600451 -0.9513292714 -1.2172585581
 [96] -0.2948658162 -0.5180700177  0.4243497022 -0.5328720769 -0.2749693245
> colMin(tmp)
  [1] -0.7186786495  0.6571008984  1.8549689808  1.2739440404  1.7647561272
  [6] -0.0308637091 -0.8447136898  1.8582579458  1.8524776165 -0.8941593647
 [11]  0.3560659833 -0.4486136285 -1.1729767894  1.6411182089 -0.6863220932
 [16] -0.7864848373  0.3347728493  1.0219221729 -0.5278198130 -0.9249766546
 [21]  0.7860457394 -1.1302450803 -1.1938172798 -1.5226190121  1.8327444604
 [26]  0.1773963216 -2.1385484268  0.9875911783  1.5790917685  0.2656788673
 [31] -1.7637274083 -2.7667696953  0.3478831177  0.9280152036 -0.7636662345
 [36] -0.6925949771  0.3342807672  0.0314082666 -0.4720532626  1.0593245649
 [41]  0.0845481968  1.2314159563  0.5953809440 -1.3675992135 -0.8318739259
 [46]  0.5031599380  1.0808331571  0.8499874802 -1.1770445056  0.7154117080
 [51]  0.3433158631  2.0558856192  1.5326078634 -0.5510171536  0.9902380721
 [56]  2.4756957769  0.0003284975  0.0250786466  1.4161578230  0.7838499229
 [61]  1.7117790946 -1.1980313015  0.0244796041  0.4037408112  0.6562780053
 [66]  0.2150742082 -0.8335460777  0.2591477255 -0.7420007925  0.5856683806
 [71]  0.0129924163  1.2754269881  0.3583846379  0.1093254034  1.4191865022
 [76]  0.5996823865 -1.5960316630 -2.6380987229 -0.0652690070 -0.4339741874
 [81]  0.8972523931  0.2095116280 -0.1227745287 -1.6302083130  0.1039250436
 [86]  0.4626489309 -0.1869646120 -1.1708811977 -0.2281774333 -0.6716485167
 [91]  0.1514780994  1.1280987666 -0.7015600451 -0.9513292714 -1.2172585581
 [96] -0.2948658162 -0.5180700177  0.4243497022 -0.5328720769 -0.2749693245
> colMedians(tmp)
  [1] -0.7186786495  0.6571008984  1.8549689808  1.2739440404  1.7647561272
  [6] -0.0308637091 -0.8447136898  1.8582579458  1.8524776165 -0.8941593647
 [11]  0.3560659833 -0.4486136285 -1.1729767894  1.6411182089 -0.6863220932
 [16] -0.7864848373  0.3347728493  1.0219221729 -0.5278198130 -0.9249766546
 [21]  0.7860457394 -1.1302450803 -1.1938172798 -1.5226190121  1.8327444604
 [26]  0.1773963216 -2.1385484268  0.9875911783  1.5790917685  0.2656788673
 [31] -1.7637274083 -2.7667696953  0.3478831177  0.9280152036 -0.7636662345
 [36] -0.6925949771  0.3342807672  0.0314082666 -0.4720532626  1.0593245649
 [41]  0.0845481968  1.2314159563  0.5953809440 -1.3675992135 -0.8318739259
 [46]  0.5031599380  1.0808331571  0.8499874802 -1.1770445056  0.7154117080
 [51]  0.3433158631  2.0558856192  1.5326078634 -0.5510171536  0.9902380721
 [56]  2.4756957769  0.0003284975  0.0250786466  1.4161578230  0.7838499229
 [61]  1.7117790946 -1.1980313015  0.0244796041  0.4037408112  0.6562780053
 [66]  0.2150742082 -0.8335460777  0.2591477255 -0.7420007925  0.5856683806
 [71]  0.0129924163  1.2754269881  0.3583846379  0.1093254034  1.4191865022
 [76]  0.5996823865 -1.5960316630 -2.6380987229 -0.0652690070 -0.4339741874
 [81]  0.8972523931  0.2095116280 -0.1227745287 -1.6302083130  0.1039250436
 [86]  0.4626489309 -0.1869646120 -1.1708811977 -0.2281774333 -0.6716485167
 [91]  0.1514780994  1.1280987666 -0.7015600451 -0.9513292714 -1.2172585581
 [96] -0.2948658162 -0.5180700177  0.4243497022 -0.5328720769 -0.2749693245
> colRanges(tmp)
           [,1]      [,2]     [,3]     [,4]     [,5]        [,6]       [,7]
[1,] -0.7186786 0.6571009 1.854969 1.273944 1.764756 -0.03086371 -0.8447137
[2,] -0.7186786 0.6571009 1.854969 1.273944 1.764756 -0.03086371 -0.8447137
         [,8]     [,9]      [,10]    [,11]      [,12]     [,13]    [,14]
[1,] 1.858258 1.852478 -0.8941594 0.356066 -0.4486136 -1.172977 1.641118
[2,] 1.858258 1.852478 -0.8941594 0.356066 -0.4486136 -1.172977 1.641118
          [,15]      [,16]     [,17]    [,18]      [,19]      [,20]     [,21]
[1,] -0.6863221 -0.7864848 0.3347728 1.021922 -0.5278198 -0.9249767 0.7860457
[2,] -0.6863221 -0.7864848 0.3347728 1.021922 -0.5278198 -0.9249767 0.7860457
         [,22]     [,23]     [,24]    [,25]     [,26]     [,27]     [,28]
[1,] -1.130245 -1.193817 -1.522619 1.832744 0.1773963 -2.138548 0.9875912
[2,] -1.130245 -1.193817 -1.522619 1.832744 0.1773963 -2.138548 0.9875912
        [,29]     [,30]     [,31]    [,32]     [,33]     [,34]      [,35]
[1,] 1.579092 0.2656789 -1.763727 -2.76677 0.3478831 0.9280152 -0.7636662
[2,] 1.579092 0.2656789 -1.763727 -2.76677 0.3478831 0.9280152 -0.7636662
         [,36]     [,37]      [,38]      [,39]    [,40]     [,41]    [,42]
[1,] -0.692595 0.3342808 0.03140827 -0.4720533 1.059325 0.0845482 1.231416
[2,] -0.692595 0.3342808 0.03140827 -0.4720533 1.059325 0.0845482 1.231416
         [,43]     [,44]      [,45]     [,46]    [,47]     [,48]     [,49]
[1,] 0.5953809 -1.367599 -0.8318739 0.5031599 1.080833 0.8499875 -1.177045
[2,] 0.5953809 -1.367599 -0.8318739 0.5031599 1.080833 0.8499875 -1.177045
         [,50]     [,51]    [,52]    [,53]      [,54]     [,55]    [,56]
[1,] 0.7154117 0.3433159 2.055886 1.532608 -0.5510172 0.9902381 2.475696
[2,] 0.7154117 0.3433159 2.055886 1.532608 -0.5510172 0.9902381 2.475696
            [,57]      [,58]    [,59]     [,60]    [,61]     [,62]     [,63]
[1,] 0.0003284975 0.02507865 1.416158 0.7838499 1.711779 -1.198031 0.0244796
[2,] 0.0003284975 0.02507865 1.416158 0.7838499 1.711779 -1.198031 0.0244796
         [,64]    [,65]     [,66]      [,67]     [,68]      [,69]     [,70]
[1,] 0.4037408 0.656278 0.2150742 -0.8335461 0.2591477 -0.7420008 0.5856684
[2,] 0.4037408 0.656278 0.2150742 -0.8335461 0.2591477 -0.7420008 0.5856684
          [,71]    [,72]     [,73]     [,74]    [,75]     [,76]     [,77]
[1,] 0.01299242 1.275427 0.3583846 0.1093254 1.419187 0.5996824 -1.596032
[2,] 0.01299242 1.275427 0.3583846 0.1093254 1.419187 0.5996824 -1.596032
         [,78]       [,79]      [,80]     [,81]     [,82]      [,83]     [,84]
[1,] -2.638099 -0.06526901 -0.4339742 0.8972524 0.2095116 -0.1227745 -1.630208
[2,] -2.638099 -0.06526901 -0.4339742 0.8972524 0.2095116 -0.1227745 -1.630208
        [,85]     [,86]      [,87]     [,88]      [,89]      [,90]     [,91]
[1,] 0.103925 0.4626489 -0.1869646 -1.170881 -0.2281774 -0.6716485 0.1514781
[2,] 0.103925 0.4626489 -0.1869646 -1.170881 -0.2281774 -0.6716485 0.1514781
        [,92]    [,93]      [,94]     [,95]      [,96]    [,97]     [,98]
[1,] 1.128099 -0.70156 -0.9513293 -1.217259 -0.2948658 -0.51807 0.4243497
[2,] 1.128099 -0.70156 -0.9513293 -1.217259 -0.2948658 -0.51807 0.4243497
          [,99]     [,100]
[1,] -0.5328721 -0.2749693
[2,] -0.5328721 -0.2749693
> 
> 
> Max(tmp2)
[1] 2.585726
> Min(tmp2)
[1] -2.430283
> mean(tmp2)
[1] -0.1262115
> Sum(tmp2)
[1] -12.62115
> Var(tmp2)
[1] 0.7176159
> 
> rowMeans(tmp2)
  [1]  0.29185707  0.98568828 -0.92589268 -0.41895182 -0.99705961  0.98005282
  [7]  0.20758981  0.16599684  0.43884529  0.15323493  0.16548632 -0.32278347
 [13]  0.81198349  0.38719486 -0.36210115 -0.89385491  0.13830728 -0.16726199
 [19] -0.24547067 -1.11035717  0.31553461 -0.68208638 -1.69727992 -1.27235202
 [25] -2.43028317 -0.48677758  0.36075241 -0.41388595  0.17621466 -1.07022057
 [31]  1.07974728  0.42025218  2.58572558 -0.71614025 -1.28809451 -0.33867231
 [37] -0.48529808  0.77597313  0.18276702 -0.15976933  0.56361693  0.83185879
 [43] -0.55193574  0.16981375  0.89083627  1.46739713  0.35713302 -0.32338246
 [49] -1.86786855 -0.36755426 -0.23411299 -1.17628043  0.88396207 -1.26122309
 [55] -0.26124380  0.46899903  0.69586066 -0.20755653 -0.64650169 -0.92170916
 [61]  0.73328239  0.05998919  0.48017809 -1.74292856 -0.20570618 -0.64123565
 [67]  0.35834995 -0.94939047  1.29838119 -0.84385055  0.94260958  0.39037214
 [73] -1.22328731 -0.79707958 -0.73769251  1.68080407 -0.44035866 -0.34547383
 [79]  1.29827274 -0.77131218 -0.61720238 -0.67788872 -0.50676449  0.85960412
 [85] -0.46121220 -0.32868127 -0.02106217 -0.52469615 -1.47974667  0.48670247
 [91]  0.30900490 -0.01794023 -0.03010401 -0.32582260  1.50983045  0.36677173
 [97] -0.94582952  0.22371815 -1.35385693 -0.27861349
> rowSums(tmp2)
  [1]  0.29185707  0.98568828 -0.92589268 -0.41895182 -0.99705961  0.98005282
  [7]  0.20758981  0.16599684  0.43884529  0.15323493  0.16548632 -0.32278347
 [13]  0.81198349  0.38719486 -0.36210115 -0.89385491  0.13830728 -0.16726199
 [19] -0.24547067 -1.11035717  0.31553461 -0.68208638 -1.69727992 -1.27235202
 [25] -2.43028317 -0.48677758  0.36075241 -0.41388595  0.17621466 -1.07022057
 [31]  1.07974728  0.42025218  2.58572558 -0.71614025 -1.28809451 -0.33867231
 [37] -0.48529808  0.77597313  0.18276702 -0.15976933  0.56361693  0.83185879
 [43] -0.55193574  0.16981375  0.89083627  1.46739713  0.35713302 -0.32338246
 [49] -1.86786855 -0.36755426 -0.23411299 -1.17628043  0.88396207 -1.26122309
 [55] -0.26124380  0.46899903  0.69586066 -0.20755653 -0.64650169 -0.92170916
 [61]  0.73328239  0.05998919  0.48017809 -1.74292856 -0.20570618 -0.64123565
 [67]  0.35834995 -0.94939047  1.29838119 -0.84385055  0.94260958  0.39037214
 [73] -1.22328731 -0.79707958 -0.73769251  1.68080407 -0.44035866 -0.34547383
 [79]  1.29827274 -0.77131218 -0.61720238 -0.67788872 -0.50676449  0.85960412
 [85] -0.46121220 -0.32868127 -0.02106217 -0.52469615 -1.47974667  0.48670247
 [91]  0.30900490 -0.01794023 -0.03010401 -0.32582260  1.50983045  0.36677173
 [97] -0.94582952  0.22371815 -1.35385693 -0.27861349
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  0.29185707  0.98568828 -0.92589268 -0.41895182 -0.99705961  0.98005282
  [7]  0.20758981  0.16599684  0.43884529  0.15323493  0.16548632 -0.32278347
 [13]  0.81198349  0.38719486 -0.36210115 -0.89385491  0.13830728 -0.16726199
 [19] -0.24547067 -1.11035717  0.31553461 -0.68208638 -1.69727992 -1.27235202
 [25] -2.43028317 -0.48677758  0.36075241 -0.41388595  0.17621466 -1.07022057
 [31]  1.07974728  0.42025218  2.58572558 -0.71614025 -1.28809451 -0.33867231
 [37] -0.48529808  0.77597313  0.18276702 -0.15976933  0.56361693  0.83185879
 [43] -0.55193574  0.16981375  0.89083627  1.46739713  0.35713302 -0.32338246
 [49] -1.86786855 -0.36755426 -0.23411299 -1.17628043  0.88396207 -1.26122309
 [55] -0.26124380  0.46899903  0.69586066 -0.20755653 -0.64650169 -0.92170916
 [61]  0.73328239  0.05998919  0.48017809 -1.74292856 -0.20570618 -0.64123565
 [67]  0.35834995 -0.94939047  1.29838119 -0.84385055  0.94260958  0.39037214
 [73] -1.22328731 -0.79707958 -0.73769251  1.68080407 -0.44035866 -0.34547383
 [79]  1.29827274 -0.77131218 -0.61720238 -0.67788872 -0.50676449  0.85960412
 [85] -0.46121220 -0.32868127 -0.02106217 -0.52469615 -1.47974667  0.48670247
 [91]  0.30900490 -0.01794023 -0.03010401 -0.32582260  1.50983045  0.36677173
 [97] -0.94582952  0.22371815 -1.35385693 -0.27861349
> rowMin(tmp2)
  [1]  0.29185707  0.98568828 -0.92589268 -0.41895182 -0.99705961  0.98005282
  [7]  0.20758981  0.16599684  0.43884529  0.15323493  0.16548632 -0.32278347
 [13]  0.81198349  0.38719486 -0.36210115 -0.89385491  0.13830728 -0.16726199
 [19] -0.24547067 -1.11035717  0.31553461 -0.68208638 -1.69727992 -1.27235202
 [25] -2.43028317 -0.48677758  0.36075241 -0.41388595  0.17621466 -1.07022057
 [31]  1.07974728  0.42025218  2.58572558 -0.71614025 -1.28809451 -0.33867231
 [37] -0.48529808  0.77597313  0.18276702 -0.15976933  0.56361693  0.83185879
 [43] -0.55193574  0.16981375  0.89083627  1.46739713  0.35713302 -0.32338246
 [49] -1.86786855 -0.36755426 -0.23411299 -1.17628043  0.88396207 -1.26122309
 [55] -0.26124380  0.46899903  0.69586066 -0.20755653 -0.64650169 -0.92170916
 [61]  0.73328239  0.05998919  0.48017809 -1.74292856 -0.20570618 -0.64123565
 [67]  0.35834995 -0.94939047  1.29838119 -0.84385055  0.94260958  0.39037214
 [73] -1.22328731 -0.79707958 -0.73769251  1.68080407 -0.44035866 -0.34547383
 [79]  1.29827274 -0.77131218 -0.61720238 -0.67788872 -0.50676449  0.85960412
 [85] -0.46121220 -0.32868127 -0.02106217 -0.52469615 -1.47974667  0.48670247
 [91]  0.30900490 -0.01794023 -0.03010401 -0.32582260  1.50983045  0.36677173
 [97] -0.94582952  0.22371815 -1.35385693 -0.27861349
> 
> colMeans(tmp2)
[1] -0.1262115
> colSums(tmp2)
[1] -12.62115
> colVars(tmp2)
[1] 0.7176159
> colSd(tmp2)
[1] 0.8471221
> colMax(tmp2)
[1] 2.585726
> colMin(tmp2)
[1] -2.430283
> colMedians(tmp2)
[1] -0.2208348
> colRanges(tmp2)
          [,1]
[1,] -2.430283
[2,]  2.585726
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.3270542 -5.1413521  1.7867789 -0.1246876 -0.3846304  3.0389011
 [7]  4.3621105 -1.1053729 -7.1558243  0.2187384
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.65689514
[2,] -0.51084772
[3,] -0.08179719
[4,]  0.69484812
[5,]  0.86719285
> 
> rowApply(tmp,sum)
 [1] -0.5830489 -1.1425044 -1.9225960  2.4439441  5.5683411  1.9674200
 [7] -1.8175645 -3.3522432 -4.1545274 -1.8396135
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    6    6    4    1    6    7    9    9    2     5
 [2,]    9   10    1    6    4    2    4    4    5     1
 [3,]    2    9    3    8    1    9    7    6   10     4
 [4,]    3    1    9    5   10    5    5    5    3     6
 [5,]    8    5    2    4    7    4    6    8    4     8
 [6,]   10    3    5   10    2    1   10    7    9     9
 [7,]    5    2    7    9    8   10    3   10    6    10
 [8,]    4    4    8    2    5    8    8    2    7     3
 [9,]    1    8    6    7    9    3    2    3    1     2
[10,]    7    7   10    3    3    6    1    1    8     7
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1]  0.311753708 -4.333133506 -0.193766762 -0.435974243 -0.715582687
 [6]  4.060671078 -0.531957464 -1.909238428  0.565436834 -0.748645109
[11] -0.861716195  2.717534108 -1.381585105 -2.657247415  4.300826370
[16] -2.027055737  2.140582240 -0.008085392 -0.651486772 -1.026336487
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.4072824
[2,] -0.5631689
[3,]  0.3571976
[4,]  0.7568219
[5,]  1.1681855
> 
> rowApply(tmp,sum)
[1] -2.2572746  4.0057260  0.9072381 -6.8745258  0.8338294
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    2    2   19   15   13
[2,]   13    1    1   19    2
[3,]    5    5   17    8   15
[4,]   11    4    3   11   17
[5,]    3    9    9   13    7
> 
> 
> as.matrix(tmp)
           [,1]       [,2]       [,3]       [,4]       [,5]      [,6]
[1,] -1.4072824  0.2493135 -0.7602833  0.1275383 -0.9953195 0.5737919
[2,] -0.5631689 -2.7678654 -0.3098972 -0.4051155  0.1838583 0.9540743
[3,]  1.1681855 -1.5608027  0.9443960 -0.9150152  0.1297454 0.2198724
[4,]  0.7568219  1.0580669 -0.6925175 -0.1597292  0.4637544 0.8616904
[5,]  0.3571976 -1.3118458  0.6245353  0.9163473 -0.4976212 1.4512421
           [,7]        [,8]       [,9]      [,10]      [,11]      [,12]
[1,]  0.4558034 -0.01239682 -1.7590566  0.8607997  0.4174246 -0.8487797
[2,]  0.2730016 -0.09368094  1.2697839  1.6492682  0.3606738  0.3261037
[3,]  0.2642445  1.51190223  0.4588558 -0.7746662  0.2089366  0.7870415
[4,] -0.5740516 -2.49737192  0.3294979 -1.8054666 -1.6265991  0.9170060
[5,] -0.9509554 -0.81769099  0.2663558 -0.6785802 -0.2221521  1.5361626
          [,13]       [,14]      [,15]      [,16]      [,17]       [,18]
[1,] -0.3947668  0.04631331  0.5668696  0.6526808  0.1876025  0.48027019
[2,]  0.5406221 -0.24040349  2.1373642  0.3473121 -0.4707004 -0.08578476
[3,]  0.2437159 -1.42542127 -0.5256623 -0.6341971  1.0703072 -0.42447789
[4,] -0.2363764 -2.65061271  1.7943696 -1.1615704  0.9713106  0.48031267
[5,] -1.5347799  1.61287675  0.3278853 -1.2312811  0.3820623 -0.45840560
          [,19]      [,20]
[1,] -0.4527349 -0.2450621
[2,]  0.6763019  0.2239784
[3,] -0.3312258  0.4915033
[4,] -0.8876763 -2.2153844
[5,]  0.3438484  0.7186282
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  649  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  561  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1     col2       col3       col4      col5      col6       col7
row1 0.9524966 2.354533 -0.5966017 -0.6844931 0.3663167 0.8655113 -0.6303836
          col8      col9      col10      col11     col12     col13    col14
row1 0.1323559 -0.811748 0.01917195 -0.5932799 -1.598263 0.9581417 1.726677
           col15    col16     col17     col18    col19   col20
row1 -0.08190864 1.858407 0.3673549 -1.038262 1.147848 1.28013
> tmp[,"col10"]
          col10
row1 0.01917195
row2 0.53412686
row3 0.62718824
row4 0.02601851
row5 0.57425336
> tmp[c("row1","row5"),]
          col1       col2       col3       col4      col5       col6
row1 0.9524966  2.3545328 -0.5966017 -0.6844931 0.3663167  0.8655113
row5 0.1806628 -0.5016617 -1.9334720 -0.3046881 1.5680160 -1.4375239
             col7      col8       col9      col10       col11      col12
row1 -0.630383591 0.1323559 -0.8117480 0.01917195 -0.59327987 -1.5982634
row5  0.002580298 0.1112544  0.4802835 0.57425336 -0.03998636  0.8462266
         col13     col14       col15    col16      col17      col18     col19
row1 0.9581417 1.7266774 -0.08190864 1.858407  0.3673549 -1.0382620 1.1478484
row5 2.3350037 0.2897089  0.64860247 1.045279 -0.2624507  0.2493451 0.8996008
          col20
row1  1.2801297
row5 -0.3553657
> tmp[,c("col6","col20")]
           col6      col20
row1  0.8655113  1.2801297
row2  0.8263195  1.0059273
row3 -0.8531428  0.3510912
row4  1.3286668 -0.4256662
row5 -1.4375239 -0.3553657
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1  0.8655113  1.2801297
row5 -1.4375239 -0.3553657
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.19731 49.48106 48.47476 49.60468 50.93817 106.3773 49.65438 50.49017
         col9    col10    col11    col12    col13    col14    col15   col16
row1 50.45697 50.51166 48.34516 49.44438 51.01314 51.26108 51.70908 50.6821
        col17   col18    col19    col20
row1 50.09469 50.0322 48.49024 107.3527
> tmp[,"col10"]
        col10
row1 50.51166
row2 29.25722
row3 31.57684
row4 29.63433
row5 51.34223
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 51.19731 49.48106 48.47476 49.60468 50.93817 106.3773 49.65438 50.49017
row5 50.01066 51.92563 50.61478 48.98386 50.62354 105.4618 49.75440 50.15453
         col9    col10    col11    col12    col13    col14    col15    col16
row1 50.45697 50.51166 48.34516 49.44438 51.01314 51.26108 51.70908 50.68210
row5 48.32894 51.34223 50.19373 49.98252 49.79442 50.13641 51.26854 50.80496
        col17    col18    col19    col20
row1 50.09469 50.03220 48.49024 107.3527
row5 50.87226 50.15728 49.10571 102.4396
> tmp[,c("col6","col20")]
          col6     col20
row1 106.37728 107.35266
row2  76.69336  75.13849
row3  74.55176  75.78547
row4  75.46218  74.20743
row5 105.46184 102.43958
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 106.3773 107.3527
row5 105.4618 102.4396
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 106.3773 107.3527
row5 105.4618 102.4396
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,] -0.30410873
[2,]  0.09926168
[3,]  0.08674541
[4,] -0.32582688
[5,]  1.13970275
> tmp[,c("col17","col7")]
         col17       col7
[1,] -0.402557  1.4025484
[2,] -1.889569  0.7918462
[3,] -1.417124 -1.3021935
[4,] -1.240618 -1.7072413
[5,] -0.646380 -0.8086136
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6        col20
[1,] -0.2013286 -0.820842365
[2,]  0.2957847  0.269385579
[3,] -1.3491035  0.557269862
[4,]  1.9432838 -0.725129891
[5,] -0.9092212  0.008406881
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.2013286
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.2013286
[2,]  0.2957847
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]       [,4]      [,5]       [,6]
row3  0.7700135 -0.9018162  0.1129367  0.5246728 0.4579720  0.9836735
row1 -1.1031808  0.8324796 -0.1388911 -0.4630840 0.6951174 -0.7191245
           [,7]       [,8]       [,9]      [,10]      [,11]       [,12]
row3  0.5348100 -0.6276562  1.5280990 -0.7247414 -1.3340219 -0.09889066
row1 -0.7303406 -0.9628189 -0.5619066  2.2759883  0.3877305 -0.19947192
           [,13]      [,14]       [,15]       [,16]      [,17]      [,18]
row3 -0.51806371 -0.1133175 -0.15762461 -0.04886387 -0.6577715  0.1802669
row1  0.05691091 -2.8502140  0.05498807 -1.06444041 -0.6267734 -0.6593543
          [,19]     [,20]
row3 -0.1504696 -1.542319
row1 -0.7659267  2.155572
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]       [,2]      [,3]     [,4]      [,5]     [,6]      [,7]
row2 0.1462006 -0.7345084 0.9033938 1.248258 -1.457148 -1.43937 0.7157811
           [,8]      [,9]       [,10]
row2 -0.7834083 -0.652693 -0.03245555
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]      [,2]      [,3]       [,4]        [,5]       [,6]       [,7]
row5 -1.350233 0.4982582 0.1634914 -0.3929543 -0.09526947 -0.5797241 -0.6052024
          [,8]     [,9]     [,10]     [,11]      [,12]     [,13]     [,14]
row5 -0.406221 1.502802 0.1634317 0.6723075 -0.2426857 -1.212004 -1.000433
        [,15]    [,16]     [,17]    [,18]      [,19]      [,20]
row5 1.159273 1.175807 -1.327689 1.375835 -0.1855706 -0.5005296
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x65513ef7aea0>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM482664324b0b8"
 [2] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM4826628dd885" 
 [3] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM4826614d9d5a" 
 [4] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM48266620a4729"
 [5] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM482667abda6cd"
 [6] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM48266458e8711"
 [7] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM4826610e7b06c"
 [8] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM48266ccfa556" 
 [9] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM482667fdbd7c" 
[10] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM482664e963768"
[11] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM4826686a4c23" 
[12] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM4826677b1ae64"
[13] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM482664d04078a"
[14] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM482663faacd17"
[15] "/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests/BM4826613e12f72"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x65513ed004d0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x65513ed004d0>
Warning message:
In dir.create(new.directory) :
  '/home/biocbuild/bbs-3.23-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x65513ed004d0>
> rowMedians(tmp)
  [1]  0.193435187 -0.045035766 -0.218760349 -0.167609604  0.070483173
  [6]  0.160378295 -0.512300385 -0.130320331  0.071700470  0.062701324
 [11] -0.095275294 -0.150439384 -0.294611832  0.781984133  0.086502814
 [16] -0.128947772 -0.248955916  0.078518843 -0.386056472  0.127798147
 [21]  0.259533344 -0.263207312  0.065275780  0.456511176 -0.015854438
 [26] -0.389374017 -0.376896669 -0.261465291  0.025083344 -0.003353163
 [31] -0.269534705  0.133557966 -0.094270872  0.258839503 -0.275035922
 [36] -0.114723234  0.344956651  0.055470821 -0.185401062  0.143866580
 [41] -0.101044128  0.239106339 -0.441256591 -0.038648827 -0.273836715
 [46] -0.211824560 -0.085537487  0.063257523 -0.404956652  0.235713053
 [51]  0.146237744 -0.155691825 -0.042103886  0.120756803 -0.339526903
 [56] -0.121149942 -0.422015469 -0.264802153  0.377124968 -0.073063800
 [61]  0.133834513  0.102881637 -0.360842721 -0.037264011  0.261455995
 [66] -0.115174034  0.792883952  0.376683815  0.560839941 -0.134754973
 [71]  0.117290493 -0.404712459 -0.011499438  0.299320191 -0.583108144
 [76]  0.382788773  0.142042211  0.635376614  0.019862282 -0.594766040
 [81]  0.015262416 -0.101041187  0.052501981  0.151916354  0.349004635
 [86]  0.163967515  0.028275729 -0.033120488 -0.455554464  0.212825276
 [91]  0.145495665 -0.418154693  0.633963237  0.245327667  0.212577293
 [96]  0.296187155 -0.113532014 -0.324186427  0.017293581  0.672426818
[101]  0.446260925  0.227211287 -0.242429810 -0.357951604 -0.392366541
[106]  0.044194677 -0.142614316 -0.265793243  0.070249356  0.695395633
[111]  0.093505803  0.220879821 -0.212562768 -0.275108619 -0.440892511
[116] -0.296200791  0.064962934 -0.368612737  0.321126883  0.033502890
[121]  0.305258601 -0.148311657 -0.077239622  0.409511274 -0.595327511
[126]  0.024753793 -0.124047317  0.143046413 -0.217444350  0.252776679
[131] -0.307035877 -0.318842498 -0.071781538 -0.307781975  0.330082902
[136] -0.208154812  0.531718037  0.106310095  0.230405829 -0.060736003
[141] -0.162678958  0.216888792  0.143848634  0.158065095 -0.512011957
[146]  0.045371674  0.289991765  0.332450854 -0.331992579 -0.111738157
[151] -0.506360365 -0.450524623 -0.170580579  0.042740778 -0.211038567
[156] -0.030969538  0.728444669  0.261490548 -0.149745253  0.035502164
[161]  0.212381611 -0.008079527 -0.072290900 -0.640175979 -0.464940906
[166]  0.432909558  0.006410891  0.183466799 -0.536189051  0.016337099
[171] -0.046693304  0.366178457  0.210090037  0.203019898 -0.228581812
[176]  0.278773615  0.115189603 -0.157947474 -0.003758869  0.176078811
[181] -0.077543111 -0.004420341 -0.745762080  0.122251686  0.112715462
[186]  0.403367342 -0.467762422  0.227420722 -0.012818897 -0.058953482
[191] -0.405132118  0.018309615  0.088034788 -0.638913244 -0.304806322
[196]  0.038260084  0.331959282 -0.422018782  0.346102116  0.198298221
[201]  0.167605924  0.608757789 -0.019793077  0.280593832  0.679702609
[206]  0.121252055 -0.351155845 -0.045418826  0.239775693 -0.164178485
[211]  0.094624605  0.061210303 -0.105868242  0.064721032  0.534891159
[216]  0.368981919  0.099144318  0.545904522 -0.179122311  0.411892046
[221]  0.387178197  0.059942582  0.065015599 -0.249877374  0.066649232
[226] -0.310572680 -0.265414240 -0.782687607  0.305409911 -0.521324202
> 
> proc.time()
   user  system elapsed 
  1.301   1.445   2.736 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x62c4688cdc10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x62c4688cdc10>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x62c4688cdc10>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x62c4688cdc10>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x62c4695902d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c4695902d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x62c4695902d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c4695902d0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x62c4695902d0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c469c65d70>
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c469c65d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x62c469c65d70>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x62c469c65d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x62c469c65d70>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x62c469c65d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x62c469c65d70>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x62c469c65d70>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x62c469c65d70>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c4697d9370>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x62c4697d9370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c4697d9370>
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c4697d9370>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile482b22df3a661" "BufferedMatrixFile482b2e1ceb4e" 
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFile482b22df3a661" "BufferedMatrixFile482b2e1ceb4e" 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c469724ff0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c469724ff0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x62c469724ff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x62c469724ff0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x62c469724ff0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x62c469724ff0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c4699073d0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x62c4699073d0>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x62c4699073d0>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x62c4699073d0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x62c46b0b8fb0>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x62c46b0b8fb0>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.245   0.055   0.286 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R Under development (unstable) (2026-01-15 r89304) -- "Unsuffered Consequences"
Copyright (C) 2026 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.243   0.046   0.278 

Example timings