| Back to Multiple platform build/check report for BioC 3.19: simplified long | 
 | 
This page was generated on 2024-06-11 14:44 -0400 (Tue, 11 Jun 2024).
| Hostname | OS | Arch (*) | R version | Installed pkgs | 
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4757 | 
| palomino3 | Windows Server 2022 Datacenter | x64 | 4.4.0 (2024-04-24 ucrt) -- "Puppy Cup" | 4491 | 
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4522 | 
| kjohnson3 | macOS 13.6.5 Ventura | arm64 | 4.4.0 (2024-04-24) -- "Puppy Cup" | 4468 | 
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 1992/2300 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| singleCellTK 2.14.0  (landing page) Joshua David Campbell 
 | nebbiolo1 | Linux (Ubuntu 22.04.3 LTS) / x86_64 | OK | OK | OK |  | ||||||||
| palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK |  | ||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK |  | ||||||||
| kjohnson3 | macOS 13.6.5 Ventura / arm64 | OK | OK | OK | OK |  | ||||||||
| To the developers/maintainers of the singleCellTK package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. | 
| Package: singleCellTK | 
| Version: 2.14.0 | 
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.14.0.tar.gz | 
| StartedAt: 2024-06-11 05:58:52 -0400 (Tue, 11 Jun 2024) | 
| EndedAt: 2024-06-11 06:27:39 -0400 (Tue, 11 Jun 2024) | 
| EllapsedTime: 1726.8 seconds | 
| RetCode: 0 | 
| Status: OK | 
| CheckDir: singleCellTK.Rcheck | 
| Warnings: 0 | 
##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings singleCellTK_2.14.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.19-bioc/meat/singleCellTK.Rcheck’
* using R version 4.4.0 (2024-04-24)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 12.2.0
* running under: macOS Ventura 13.6.5
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.14.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    extdata   1.5Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) dedupRowNames.Rd:10: Lost braces
    10 | \item{x}{A matrix like or /linkS4class{SingleCellExperiment} object, on which
       |                                       ^
checkRd: (-1) dedupRowNames.Rd:14: Lost braces
    14 | /linkS4class{SingleCellExperiment} object. When set to \code{TRUE}, will
       |             ^
checkRd: (-1) dedupRowNames.Rd:22: Lost braces
    22 | By default, a matrix or /linkS4class{SingleCellExperiment} object
       |                                     ^
checkRd: (-1) dedupRowNames.Rd:24: Lost braces
    24 | When \code{x} is a /linkS4class{SingleCellExperiment} and \code{as.rowData}
       |                                ^
checkRd: (-1) plotBubble.Rd:42: Lost braces
    42 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runClusterSummaryMetrics.Rd:27: Lost braces
    27 | \item{scale}{Option to scale the data. Default: /code{FALSE}. Selected assay will not be scaled.}
       |                                                      ^
checkRd: (-1) runEmptyDrops.Rd:66: Lost braces
    66 | provided \\linkS4class{SingleCellExperiment} object.
       |                       ^
checkRd: (-1) runSCMerge.Rd:44: Lost braces
    44 | construct pseudo-replicates. The length of code{kmeansK} needs to be the same
       |                                                ^
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 55.043  0.410  82.720
runDoubletFinder         50.244  0.406  75.999
plotScDblFinderResults   35.562  0.743  53.906
importExampleData        25.728  1.914  43.296
runScDblFinder           21.780  0.391  33.406
plotBatchCorrCompare     17.552  0.219  26.636
plotScdsHybridResults    13.265  0.216  21.451
plotBcdsResults          11.358  0.214  17.640
plotDecontXResults       11.474  0.097  17.280
runDecontX               11.298  0.100  16.751
runUMAP                  11.161  0.135  17.133
plotUMAP                 10.783  0.119  17.264
plotCxdsResults           9.843  0.106  14.002
detectCellOutlier         9.450  0.190  14.701
runSeuratSCTransform      8.112  0.140  12.405
plotTSCANClusterDEG       6.346  0.131   9.996
convertSCEToSeurat        5.342  0.278   8.641
plotEmptyDropsResults     5.451  0.042   8.232
plotEmptyDropsScatter     5.384  0.040   8.003
runEmptyDrops             5.133  0.037   7.739
plotFindMarkerHeatmap     5.047  0.068   7.508
plotDEGViolin             4.908  0.122   7.390
runFindMarker             4.166  0.105   6.297
getFindMarkerTopTable     4.111  0.109   6.623
plotDEGRegression         4.116  0.083   6.128
runNormalization          3.553  0.044   5.053
plotDEGHeatmap            3.360  0.140   5.081
getEnrichRResult          0.359  0.056   6.360
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 3 NOTEs
See
  ‘/Users/biocbuild/bbs-3.19-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.
singleCellTK.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL singleCellTK ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/library’ * installing *source* package ‘singleCellTK’ ... ** using staged installation ** R ** data ** exec ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (singleCellTK)
singleCellTK.Rcheck/tests/spelling.Rout
R version 4.4.0 (2024-04-24) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.186   0.077   0.376 
singleCellTK.Rcheck/tests/testthat.Rout
R version 4.4.0 (2024-04-24) -- "Puppy Cup"
Copyright (C) 2024 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats
Attaching package: 'MatrixGenerics'
The following objects are masked from 'package:matrixStats':
    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars
Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, table, tapply,
    union, unique, unsplit, which.max, which.min
Loading required package: S4Vectors
Attaching package: 'S4Vectors'
The following object is masked from 'package:utils':
    findMatches
The following objects are masked from 'package:base':
    I, expand.grid, unname
Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor
    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Attaching package: 'Biobase'
The following object is masked from 'package:MatrixGenerics':
    rowMedians
The following objects are masked from 'package:matrixStats':
    anyMissing, rowMedians
Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix
Attaching package: 'Matrix'
The following object is masked from 'package:S4Vectors':
    expand
Loading required package: S4Arrays
Loading required package: abind
Attaching package: 'S4Arrays'
The following object is masked from 'package:abind':
    abind
The following object is masked from 'package:base':
    rowsum
Loading required package: SparseArray
Attaching package: 'DelayedArray'
The following objects are masked from 'package:base':
    apply, scale, sweep
Attaching package: 'singleCellTK'
The following object is masked from 'package:BiocGenerics':
    plotPCA
> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%
No annotation package name available in the input data object.
Attempting to directly match identifiers in data to gene sets.
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck
Number of nodes: 390
Number of edges: 9849
Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 224 ]
> 
> proc.time()
   user  system elapsed 
345.914   7.640 522.572 
singleCellTK.Rcheck/singleCellTK-Ex.timings
| name | user | system | elapsed | |
| MitoGenes | 0.003 | 0.003 | 0.005 | |
| SEG | 0.003 | 0.003 | 0.012 | |
| calcEffectSizes | 0.214 | 0.020 | 0.353 | |
| combineSCE | 1.616 | 0.066 | 2.563 | |
| computeZScore | 0.261 | 0.011 | 0.406 | |
| convertSCEToSeurat | 5.342 | 0.278 | 8.641 | |
| convertSeuratToSCE | 0.544 | 0.015 | 0.818 | |
| dedupRowNames | 0.068 | 0.004 | 0.100 | |
| detectCellOutlier | 9.450 | 0.190 | 14.701 | |
| diffAbundanceFET | 0.065 | 0.005 | 0.107 | |
| discreteColorPalette | 0.008 | 0.002 | 0.017 | |
| distinctColors | 0.003 | 0.001 | 0.007 | |
| downSampleCells | 0.740 | 0.080 | 1.265 | |
| downSampleDepth | 0.649 | 0.040 | 1.064 | |
| expData-ANY-character-method | 0.339 | 0.011 | 0.539 | |
| expData-set-ANY-character-CharacterOrNullOrMissing-logical-method | 0.384 | 0.012 | 0.584 | |
| expData-set | 0.355 | 0.011 | 0.522 | |
| expData | 0.352 | 0.032 | 0.590 | |
| expDataNames-ANY-method | 0.381 | 0.032 | 0.593 | |
| expDataNames | 0.316 | 0.012 | 0.451 | |
| expDeleteDataTag | 0.040 | 0.003 | 0.061 | |
| expSetDataTag | 0.027 | 0.003 | 0.050 | |
| expTaggedData | 0.028 | 0.003 | 0.042 | |
| exportSCE | 0.021 | 0.004 | 0.034 | |
| exportSCEtoAnnData | 0.086 | 0.004 | 0.146 | |
| exportSCEtoFlatFile | 0.081 | 0.004 | 0.115 | |
| featureIndex | 0.043 | 0.006 | 0.083 | |
| generateSimulatedData | 0.058 | 0.005 | 0.097 | |
| getBiomarker | 0.068 | 0.006 | 0.112 | |
| getDEGTopTable | 0.940 | 0.050 | 1.431 | |
| getDiffAbundanceResults | 0.055 | 0.004 | 0.128 | |
| getEnrichRResult | 0.359 | 0.056 | 6.360 | |
| getFindMarkerTopTable | 4.111 | 0.109 | 6.623 | |
| getMSigDBTable | 0.005 | 0.004 | 0.017 | |
| getPathwayResultNames | 0.027 | 0.005 | 0.045 | |
| getSampleSummaryStatsTable | 0.372 | 0.010 | 0.515 | |
| getSoupX | 0.001 | 0.000 | 0.000 | |
| getTSCANResults | 2.212 | 0.079 | 3.534 | |
| getTopHVG | 1.502 | 0.035 | 2.357 | |
| importAnnData | 0.002 | 0.001 | 0.006 | |
| importBUStools | 0.291 | 0.008 | 0.427 | |
| importCellRanger | 1.458 | 0.068 | 2.274 | |
| importCellRangerV2Sample | 0.308 | 0.006 | 0.476 | |
| importCellRangerV3Sample | 0.503 | 0.026 | 0.805 | |
| importDropEst | 0.355 | 0.007 | 0.518 | |
| importExampleData | 25.728 | 1.914 | 43.296 | |
| importGeneSetsFromCollection | 0.824 | 0.122 | 1.441 | |
| importGeneSetsFromGMT | 0.082 | 0.009 | 0.124 | |
| importGeneSetsFromList | 0.146 | 0.010 | 0.211 | |
| importGeneSetsFromMSigDB | 2.730 | 0.087 | 4.199 | |
| importMitoGeneSet | 0.061 | 0.010 | 0.123 | |
| importOptimus | 0.002 | 0.000 | 0.002 | |
| importSEQC | 0.371 | 0.010 | 0.523 | |
| importSTARsolo | 0.284 | 0.008 | 0.428 | |
| iterateSimulations | 0.397 | 0.013 | 0.588 | |
| listSampleSummaryStatsTables | 0.524 | 0.011 | 0.751 | |
| mergeSCEColData | 0.533 | 0.029 | 0.854 | |
| mouseBrainSubsetSCE | 0.039 | 0.005 | 0.065 | |
| msigdb_table | 0.001 | 0.003 | 0.005 | |
| plotBarcodeRankDropsResults | 1.043 | 0.025 | 1.591 | |
| plotBarcodeRankScatter | 1.006 | 0.017 | 1.563 | |
| plotBatchCorrCompare | 17.552 | 0.219 | 26.636 | |
| plotBatchVariance | 0.326 | 0.026 | 0.627 | |
| plotBcdsResults | 11.358 | 0.214 | 17.640 | |
| plotBubble | 1.209 | 0.036 | 1.844 | |
| plotClusterAbundance | 0.909 | 0.014 | 1.415 | |
| plotCxdsResults | 9.843 | 0.106 | 14.002 | |
| plotDEGHeatmap | 3.360 | 0.140 | 5.081 | |
| plotDEGRegression | 4.116 | 0.083 | 6.128 | |
| plotDEGViolin | 4.908 | 0.122 | 7.390 | |
| plotDEGVolcano | 1.199 | 0.022 | 1.755 | |
| plotDecontXResults | 11.474 | 0.097 | 17.280 | |
| plotDimRed | 0.301 | 0.010 | 0.444 | |
| plotDoubletFinderResults | 55.043 | 0.410 | 82.720 | |
| plotEmptyDropsResults | 5.451 | 0.042 | 8.232 | |
| plotEmptyDropsScatter | 5.384 | 0.040 | 8.003 | |
| plotFindMarkerHeatmap | 5.047 | 0.068 | 7.508 | |
| plotMASTThresholdGenes | 1.660 | 0.049 | 2.903 | |
| plotPCA | 0.541 | 0.016 | 0.832 | |
| plotPathway | 0.996 | 0.023 | 1.516 | |
| plotRunPerCellQCResults | 2.455 | 0.039 | 4.196 | |
| plotSCEBarAssayData | 0.221 | 0.011 | 0.364 | |
| plotSCEBarColData | 0.169 | 0.009 | 0.315 | |
| plotSCEBatchFeatureMean | 0.243 | 0.006 | 0.389 | |
| plotSCEDensity | 0.348 | 0.012 | 0.588 | |
| plotSCEDensityAssayData | 0.195 | 0.009 | 0.329 | |
| plotSCEDensityColData | 0.235 | 0.012 | 0.363 | |
| plotSCEDimReduceColData | 0.785 | 0.022 | 1.215 | |
| plotSCEDimReduceFeatures | 0.501 | 0.014 | 0.757 | |
| plotSCEHeatmap | 0.772 | 0.018 | 1.248 | |
| plotSCEScatter | 0.415 | 0.014 | 0.635 | |
| plotSCEViolin | 0.270 | 0.008 | 0.405 | |
| plotSCEViolinAssayData | 0.384 | 0.010 | 0.546 | |
| plotSCEViolinColData | 0.266 | 0.009 | 0.392 | |
| plotScDblFinderResults | 35.562 | 0.743 | 53.906 | |
| plotScanpyDotPlot | 0.024 | 0.004 | 0.032 | |
| plotScanpyEmbedding | 0.023 | 0.005 | 0.033 | |
| plotScanpyHVG | 0.019 | 0.004 | 0.024 | |
| plotScanpyHeatmap | 0.019 | 0.004 | 0.024 | |
| plotScanpyMarkerGenes | 0.025 | 0.003 | 0.044 | |
| plotScanpyMarkerGenesDotPlot | 0.024 | 0.006 | 0.044 | |
| plotScanpyMarkerGenesHeatmap | 0.026 | 0.003 | 0.049 | |
| plotScanpyMarkerGenesMatrixPlot | 0.024 | 0.003 | 0.050 | |
| plotScanpyMarkerGenesViolin | 0.021 | 0.003 | 0.035 | |
| plotScanpyMatrixPlot | 0.023 | 0.002 | 0.027 | |
| plotScanpyPCA | 0.024 | 0.003 | 0.041 | |
| plotScanpyPCAGeneRanking | 0.025 | 0.003 | 0.038 | |
| plotScanpyPCAVariance | 0.024 | 0.003 | 0.046 | |
| plotScanpyViolin | 0.022 | 0.002 | 0.025 | |
| plotScdsHybridResults | 13.265 | 0.216 | 21.451 | |
| plotScrubletResults | 0.027 | 0.007 | 0.055 | |
| plotSeuratElbow | 0.030 | 0.007 | 0.057 | |
| plotSeuratHVG | 0.038 | 0.005 | 0.080 | |
| plotSeuratJackStraw | 0.030 | 0.005 | 0.062 | |
| plotSeuratReduction | 0.023 | 0.003 | 0.039 | |
| plotSoupXResults | 0 | 0 | 0 | |
| plotTSCANClusterDEG | 6.346 | 0.131 | 9.996 | |
| plotTSCANClusterPseudo | 2.725 | 0.054 | 4.508 | |
| plotTSCANDimReduceFeatures | 2.767 | 0.061 | 4.557 | |
| plotTSCANPseudotimeGenes | 2.580 | 0.051 | 4.190 | |
| plotTSCANPseudotimeHeatmap | 2.831 | 0.061 | 4.604 | |
| plotTSCANResults | 2.505 | 0.051 | 4.210 | |
| plotTSNE | 0.668 | 0.021 | 0.952 | |
| plotTopHVG | 0.588 | 0.018 | 1.001 | |
| plotUMAP | 10.783 | 0.119 | 17.264 | |
| readSingleCellMatrix | 0.007 | 0.001 | 0.013 | |
| reportCellQC | 0.217 | 0.008 | 0.358 | |
| reportDropletQC | 0.025 | 0.009 | 0.044 | |
| reportQCTool | 0.199 | 0.012 | 0.322 | |
| retrieveSCEIndex | 0.031 | 0.004 | 0.043 | |
| runBBKNN | 0 | 0 | 0 | |
| runBarcodeRankDrops | 0.487 | 0.015 | 0.922 | |
| runBcds | 1.892 | 0.072 | 2.909 | |
| runCellQC | 0.178 | 0.010 | 0.188 | |
| runClusterSummaryMetrics | 0.849 | 0.062 | 1.139 | |
| runComBatSeq | 0.537 | 0.027 | 0.914 | |
| runCxds | 0.567 | 0.018 | 0.964 | |
| runCxdsBcdsHybrid | 1.878 | 0.081 | 3.084 | |
| runDEAnalysis | 0.945 | 0.028 | 1.560 | |
| runDecontX | 11.298 | 0.100 | 16.751 | |
| runDimReduce | 0.576 | 0.022 | 0.928 | |
| runDoubletFinder | 50.244 | 0.406 | 75.999 | |
| runDropletQC | 0.027 | 0.009 | 0.052 | |
| runEmptyDrops | 5.133 | 0.037 | 7.739 | |
| runEnrichR | 0.342 | 0.041 | 2.592 | |
| runFastMNN | 1.938 | 0.052 | 2.658 | |
| runFeatureSelection | 0.235 | 0.010 | 0.306 | |
| runFindMarker | 4.166 | 0.105 | 6.297 | |
| runGSVA | 0.949 | 0.054 | 1.513 | |
| runHarmony | 0.038 | 0.002 | 0.044 | |
| runKMeans | 0.518 | 0.020 | 0.783 | |
| runLimmaBC | 0.090 | 0.003 | 0.159 | |
| runMNNCorrect | 0.774 | 0.020 | 1.191 | |
| runModelGeneVar | 0.536 | 0.017 | 0.872 | |
| runNormalization | 3.553 | 0.044 | 5.053 | |
| runPerCellQC | 0.583 | 0.016 | 0.853 | |
| runSCANORAMA | 0.000 | 0.000 | 0.003 | |
| runSCMerge | 0.004 | 0.002 | 0.010 | |
| runScDblFinder | 21.780 | 0.391 | 33.406 | |
| runScanpyFindClusters | 0.024 | 0.003 | 0.032 | |
| runScanpyFindHVG | 0.027 | 0.004 | 0.048 | |
| runScanpyFindMarkers | 0.028 | 0.003 | 0.049 | |
| runScanpyNormalizeData | 0.222 | 0.008 | 0.348 | |
| runScanpyPCA | 0.030 | 0.003 | 0.053 | |
| runScanpyScaleData | 0.028 | 0.003 | 0.041 | |
| runScanpyTSNE | 0.026 | 0.003 | 0.048 | |
| runScanpyUMAP | 0.023 | 0.004 | 0.039 | |
| runScranSNN | 0.920 | 0.030 | 1.455 | |
| runScrublet | 0.027 | 0.004 | 0.052 | |
| runSeuratFindClusters | 0.027 | 0.004 | 0.045 | |
| runSeuratFindHVG | 1.017 | 0.080 | 1.634 | |
| runSeuratHeatmap | 0.030 | 0.003 | 0.059 | |
| runSeuratICA | 0.028 | 0.016 | 0.068 | |
| runSeuratJackStraw | 0.028 | 0.005 | 0.052 | |
| runSeuratNormalizeData | 0.026 | 0.006 | 0.049 | |
| runSeuratPCA | 0.025 | 0.007 | 0.047 | |
| runSeuratSCTransform | 8.112 | 0.140 | 12.405 | |
| runSeuratScaleData | 0.027 | 0.007 | 0.056 | |
| runSeuratUMAP | 0.026 | 0.007 | 0.043 | |
| runSingleR | 0.041 | 0.003 | 0.052 | |
| runSoupX | 0 | 0 | 0 | |
| runTSCAN | 1.908 | 0.047 | 2.845 | |
| runTSCANClusterDEAnalysis | 1.935 | 0.063 | 2.932 | |
| runTSCANDEG | 1.914 | 0.044 | 2.949 | |
| runTSNE | 0.861 | 0.030 | 1.333 | |
| runUMAP | 11.161 | 0.135 | 17.133 | |
| runVAM | 0.624 | 0.019 | 0.977 | |
| runZINBWaVE | 0.004 | 0.001 | 0.005 | |
| sampleSummaryStats | 0.341 | 0.013 | 0.547 | |
| scaterCPM | 0.134 | 0.006 | 0.204 | |
| scaterPCA | 0.826 | 0.018 | 1.285 | |
| scaterlogNormCounts | 0.278 | 0.009 | 0.455 | |
| sce | 0.027 | 0.010 | 0.058 | |
| sctkListGeneSetCollections | 0.101 | 0.014 | 0.169 | |
| sctkPythonInstallConda | 0 | 0 | 0 | |
| sctkPythonInstallVirtualEnv | 0.000 | 0.000 | 0.001 | |
| selectSCTKConda | 0.000 | 0.000 | 0.001 | |
| selectSCTKVirtualEnvironment | 0 | 0 | 0 | |
| setRowNames | 0.256 | 0.022 | 0.441 | |
| setSCTKDisplayRow | 0.461 | 0.017 | 0.723 | |
| singleCellTK | 0.000 | 0.001 | 0.004 | |
| subDiffEx | 0.595 | 0.044 | 0.967 | |
| subsetSCECols | 0.204 | 0.013 | 0.363 | |
| subsetSCERows | 0.469 | 0.018 | 0.682 | |
| summarizeSCE | 0.083 | 0.009 | 0.127 | |
| trimCounts | 0.272 | 0.024 | 0.409 | |