| Back to Multiple platform build/check report for BioC 3.16: simplified long |
|
This page was generated on 2023-04-12 11:05:43 -0400 (Wed, 12 Apr 2023).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4502 |
| palomino4 | Windows Server 2022 Datacenter | x64 | 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle" | 4282 |
| lconway | macOS 12.5.1 Monterey | x86_64 | 4.2.3 (2023-03-15) -- "Shortstop Beagle" | 4310 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the netresponse package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/netresponse.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 1347/2183 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| netresponse 1.58.0 (landing page) Leo Lahti
| nebbiolo2 | Linux (Ubuntu 20.04.5 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino4 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| lconway | macOS 12.5.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| Package: netresponse |
| Version: 1.58.0 |
| Command: F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:netresponse.install-out.txt --library=F:\biocbuild\bbs-3.16-bioc\R\library --no-vignettes --timings netresponse_1.58.0.tar.gz |
| StartedAt: 2023-04-11 03:57:16 -0400 (Tue, 11 Apr 2023) |
| EndedAt: 2023-04-11 03:59:11 -0400 (Tue, 11 Apr 2023) |
| EllapsedTime: 114.8 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: netresponse.Rcheck |
| Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:netresponse.install-out.txt --library=F:\biocbuild\bbs-3.16-bioc\R\library --no-vignettes --timings netresponse_1.58.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'F:/biocbuild/bbs-3.16-bioc/meat/netresponse.Rcheck' * using R version 4.2.3 (2023-03-15 ucrt) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: UTF-8 * using option '--no-vignettes' * checking for file 'netresponse/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'netresponse' version '1.58.0' * checking package namespace information ... OK * checking package dependencies ... NOTE Depends: includes the non-default packages: 'BiocStyle', 'Rgraphviz', 'rmarkdown', 'minet', 'mclust', 'reshape2' Adding so many packages to the search path is excessive and importing selectively is preferable. * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'netresponse' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking line endings in C/C++/Fortran sources/headers ... OK * checking line endings in Makefiles ... OK * checking compilation flags in Makevars ... OK * checking for GNU extensions in Makefiles ... OK * checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK * checking use of PKG_*FLAGS in Makefiles ... OK * checking compiled code ... NOTE Note: information on .o files for x64 is not available File 'F:/biocbuild/bbs-3.16-bioc/R/library/netresponse/libs/x64/netresponse.dll': Found 'abort', possibly from 'abort' (C), 'runtime' (Fortran) Compiled code should not call entry points which might terminate R nor write to stdout/stderr instead of to the console, nor use Fortran I/O nor system RNGs. The detected symbols are linked into the code but might come from libraries and not actually be called. See 'Writing portable packages' in the 'Writing R Extensions' manual. * checking files in 'vignettes' ... OK * checking examples ... OK * checking for unstated dependencies in 'tests' ... OK * checking tests ... Running 'bicmixture.R' Running 'mixture.model.test.R' Running 'mixture.model.test.multimodal.R' Running 'mixture.model.test.singlemode.R' Running 'timing.R' Running 'toydata2.R' Running 'validate.netresponse.R' Running 'validate.pca.basis.R' Running 'vdpmixture.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See 'F:/biocbuild/bbs-3.16-bioc/meat/netresponse.Rcheck/00check.log' for details.
netresponse.Rcheck/00install.out
##############################################################################
##############################################################################
###
### Running command:
###
### F:\biocbuild\bbs-3.16-bioc\R\bin\R.exe CMD INSTALL netresponse
###
##############################################################################
##############################################################################
* installing to library 'F:/biocbuild/bbs-3.16-bioc/R/library'
* installing *source* package 'netresponse' ...
** using staged installation
** libs
gcc -I"F:/biocbuild/bbs-3.16-bioc/R/include" -DNDEBUG -I"C:/rtools42/x86_64-w64-mingw32.static.posix/include" -O2 -Wall -std=gnu99 -mfpmath=sse -msse2 -mstackrealign -c netresponse.c -o netresponse.o
netresponse.c: In function 'mHPpost':
netresponse.c:264:15: warning: unused variable 'prior_fields' [-Wunused-variable]
264 | const char *prior_fields[]={"Mumu","S2mu",
| ^~~~~~~~~~~~
netresponse.c: In function 'mLogLambda':
netresponse.c:713:3: warning: 'U_p' may be used uninitialized in this function [-Wmaybe-uninitialized]
713 | vdp_mk_log_lambda(Mumu, S2mu, Mubar, Mutilde,
| ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
714 | AlphaKsi, BetaKsi, KsiAlpha, KsiBeta,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
715 | post_gamma, log_lambda, prior_alpha,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
716 | U_p, U_hat,
| ~~~~~~~~~~~
717 | datalen, dim1, dim2, data1, data2,
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
718 | Ns, ncentroids, implicitnoisevar);
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
netresponse.c:713:3: warning: 'KsiBeta' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'KsiAlpha' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'BetaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'AlphaKsi' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'Mutilde' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'Mubar' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'S2mu' may be used uninitialized in this function [-Wmaybe-uninitialized]
netresponse.c:713:3: warning: 'Mumu' may be used uninitialized in this function [-Wmaybe-uninitialized]
gcc -shared -s -static-libgcc -o netresponse.dll tmp.def netresponse.o -LC:/rtools42/x86_64-w64-mingw32.static.posix/lib/x64 -LC:/rtools42/x86_64-w64-mingw32.static.posix/lib -LF:/biocbuild/bbs-3.16-bioc/R/bin/x64 -lR
installing to F:/biocbuild/bbs-3.16-bioc/R/library/00LOCK-netresponse/00new/netresponse/libs/x64
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (netresponse)
netresponse.Rcheck/tests/bicmixture.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla
> # -> ainakin nopea check
>
> #######################################################################
>
> # Generate random data from five Gaussians.
> # Detect modes with vdp-gm.
> # Plot data points and detected clusters with variance ellipses
>
> #######################################################################
>
> library(netresponse)
Loading required package: BiocStyle
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Loading required package: grid
Loading required package: rmarkdown
Attaching package: 'rmarkdown'
The following objects are masked from 'package:BiocStyle':
html_document, md_document, pdf_document
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 6.0.0
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2
netresponse (C) 2008-2022 Leo Lahti et al.
https://github.com/antagomir/netresponse
> #source("~/Rpackages/netresponse/netresponse/R/detect.responses.R")
> #source("~/Rpackages/netresponse/netresponse/R/internals.R")
> #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R")
> #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so")
>
> ######### Generate DATA #############################################
>
> # Generate Nc components from normal-inverseGamma prior
>
> set.seed(12346)
>
> dd <- 3 # Dimensionality of data
> Nc <- 5 # Number of components
> Ns <- 200 # Number of data points
> sd0 <- 3 # component spread
> rgam.shape = 2 # parameters for Gamma distribution
> rgam.scale = 2 # parameters for Gamma distribution to define precisions
>
>
> # Generate means and variances (covariance diagonals) for the components
> component.means <- matrix(rnorm(Nc*dd, mean = 0, sd = sd0), nrow = Nc, ncol = dd)
> component.vars <- matrix(1/rgamma(Nc*dd, shape = rgam.shape, scale = rgam.scale),
+ nrow = Nc, ncol = dd)
> component.sds <- sqrt(component.vars)
>
>
> # Size for each component -> sample randomly for each data point from uniform distr.
> # i.e. cluster assignments
> sample2comp <- sample.int(Nc, Ns, replace = TRUE)
>
> D <- array(NA, dim = c(Ns, dd))
> for (i in 1:Ns) {
+ # component identity of this sample
+ ci <- sample2comp[[i]]
+ cm <- component.means[ci,]
+ csd <- component.sds[ci,]
+ D[i,] <- rnorm(dd, mean = cm, sd = csd)
+ }
>
>
> ######################################################################
>
> # Fit mixture model
> out <- mixture.model(D, mixture.method = "bic")
>
> # FIXME rowmeans(qofz) is constant but not 1
> #qofz <- P.r.s(t(D), list(mu = out$mu, sd = out$sd, w = out$w), log = FALSE)
>
> ############################################################
>
> # Compare input data and results
>
> ord.out <- order(out$mu[,1])
> ord.in <- order(component.means[,1])
>
> means.out <- out$mu[ord.out,]
> means.in <- component.means[ord.in,]
>
> # Cluster stds and variances
> sds.out <- out$sd[ord.out,]
> sds.in <- sqrt(component.vars[ord.in,])
>
> # -----------------------------------------------------------
>
> vars.out <- sds.out^2
> vars.in <- sds.in^2
>
> # Check correspondence between input and output
> if (length(means.in) == length(means.out)) {
+ cm <- cor(as.vector(means.in), as.vector(means.out))
+ csd <- cor(as.vector(sds.in), as.vector(sds.out))
+ }
>
> # Plot results (assuming 2D)
>
> ran <- range(c(as.vector(means.in - 2*vars.in),
+ as.vector(means.in + 2*vars.in),
+ as.vector(means.out + 2*vars.out),
+ as.vector(means.out - 2*vars.out)))
>
> plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran)
> #for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") }
> #for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") }
>
> ######################################################
>
> #for (ci in 1:nrow(means.out)) {
> # points(means.out[ci,1], means.out[ci,2], col = "red", pch = 19)
> # el <- ellipse(matrix(c(vars.out[ci,1],0,0,vars.out[ci,2]),2), centre = means.out[ci,])
> # lines(el, col = "red")
> #}
>
> #for (ci in 1:nrow(means.in)) {
> # points(means.in[ci,1], means.in[ci,2], col = "blue", pch = 19)
> # el <- ellipse(matrix(c(vars.in[ci,1],0,0,vars.in[ci,2]),2), centre = means.in[ci,])
> # lines(el, col = "blue")
> #}
>
>
>
>
>
>
> proc.time()
user system elapsed
2.15 0.23 2.45
netresponse.Rcheck/tests/mixture.model.test.multimodal.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library(netresponse)
Loading required package: BiocStyle
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Loading required package: grid
Loading required package: rmarkdown
Attaching package: 'rmarkdown'
The following objects are masked from 'package:BiocStyle':
html_document, md_document, pdf_document
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 6.0.0
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2
netresponse (C) 2008-2022 Leo Lahti et al.
https://github.com/antagomir/netresponse
>
> # Three MODES
>
> # set.seed(34884)
> set.seed(3488400)
>
> Ns <- 200
> Nd <- 2
>
> D3 <- rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd),
+ matrix(rnorm(Ns*Nd, mean = 3), ncol = Nd),
+ cbind(rnorm(Ns, mean = -3), rnorm(Ns, mean = 3))
+ )
>
> #X11()
> par(mfrow = c(2,2))
> for (mm in c("vdp", "bic")) {
+ for (pp in c(FALSE, TRUE)) {
+
+ # Fit nonparametric Gaussian mixture model
+ out <- mixture.model(D3, mixture.method = mm, pca.basis = pp)
+ plot(D3, col = apply(out$qofz, 1, which.max), main = paste(mm, "/ pca:", pp))
+
+ }
+ }
>
> # VDP is less sensitive than BIC in detecting Gaussian modes (more
> # separation between the clusters needed)
>
> # pca.basis option is less important for sensitive detection but
> # it will help to avoid overfitting to unimodal features that
> # are not parallel to the axes (unimodal distribution often becomes
> # splitted in two or more clusters in these cases)
>
>
> proc.time()
user system elapsed
3.93 0.28 4.20
netresponse.Rcheck/tests/mixture.model.test.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> # Validate mixture models
>
> # Generate random data from five Gaussians.
> # Detect modes
> # Plot data points and detected clusters
>
> library(netresponse)
Loading required package: BiocStyle
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Loading required package: grid
Loading required package: rmarkdown
Attaching package: 'rmarkdown'
The following objects are masked from 'package:BiocStyle':
html_document, md_document, pdf_document
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 6.0.0
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2
netresponse (C) 2008-2022 Leo Lahti et al.
https://github.com/antagomir/netresponse
>
> #fs <- list.files("~/Rpackages/netresponse/netresponse/R/", full.names = TRUE); for (f in fs) {source(f)}; dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so")
>
> ######### Generate DATA #######################
>
> res <- generate.toydata()
> D <- res$data
> component.means <- res$means
> component.sds <- res$sds
> sample2comp <- res$sample2comp
>
> ######################################################################
>
> par(mfrow = c(2,1))
>
> for (mm in c("vdp", "bic")) {
+
+ # Fit nonparametric Gaussian mixture model
+ #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R")
+ out <- mixture.model(D, mixture.method = mm, max.responses = 10, pca.basis = FALSE)
+
+ ############################################################
+
+ # Compare input data and results
+
+ ord.out <- order(out$mu[,1])
+ ord.in <- order(component.means[,1])
+
+ means.out <- out$mu[ord.out,]
+ means.in <- component.means[ord.in,]
+
+ # Cluster stds and variances
+ sds.out <- out$sd[ord.out,]
+ vars.out <- sds.out^2
+
+ sds.in <- component.sds[ord.in,]
+ vars.in <- sds.in^2
+
+ # Check correspondence between input and output
+ if (length(means.in) == length(means.out)) {
+ cm <- cor(as.vector(means.in), as.vector(means.out))
+ csd <- cor(as.vector(sds.in), as.vector(sds.out))
+ }
+
+ # Plot results (assuming 2D)
+ ran <- range(c(as.vector(means.in - 2*vars.in),
+ as.vector(means.in + 2*vars.in),
+ as.vector(means.out + 2*vars.out),
+ as.vector(means.out - 2*vars.out)))
+
+ real.modes <- sample2comp
+ obs.modes <- apply(out$qofz, 1, which.max)
+
+ # plot(D, pch = 20, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran)
+
+ # plot(D, pch = real.modes, col = obs.modes, main = paste(mm, "/ cor.means:", round(cm,6), "/ Cor.sds:", round(csd,6)), xlim = ran, ylim = ran)
+
+ # for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") }
+ # for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") }
+
+ }
>
>
> proc.time()
user system elapsed
2.07 0.29 2.29
netresponse.Rcheck/tests/mixture.model.test.singlemode.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
>
> skip <- FALSE
>
> if (!skip) {
+
+ library(netresponse)
+
+ # SINGLE MODE
+
+ # Produce test data that has full covariance
+ # It is expected that
+ # pca.basis = FALSE splits Gaussian with full covariance into two modes
+ # pca.basis = TRUE should detect just a single mode
+
+ Ns <- 200
+ Nd <- 2
+ k <- 1.5
+
+ D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,k), c(k,1))
+
+ par(mfrow = c(2,2))
+ for (mm in c("vdp", "bic")) {
+ for (pp in c(FALSE, TRUE)) {
+
+ # Fit nonparametric Gaussian mixture model
+ out <- mixture.model(D2, mixture.method = mm, pca.basis = pp)
+ plot(D2, col = apply(out$qofz, 1, which.max), main = paste("mm:" , mm, "/ pp:", pp))
+
+ }
+ }
+
+ }
Loading required package: BiocStyle
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Loading required package: grid
Loading required package: rmarkdown
Attaching package: 'rmarkdown'
The following objects are masked from 'package:BiocStyle':
html_document, md_document, pdf_document
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 6.0.0
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2
netresponse (C) 2008-2022 Leo Lahti et al.
https://github.com/antagomir/netresponse
>
> proc.time()
user system elapsed
2.25 0.37 2.60
netresponse.Rcheck/tests/timing.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
>
> # Play with different options and check their effect on running times for bic and vdp
>
> skip <- TRUE
>
> if (!skip) {
+
+ Ns <- 100
+ Nd <- 2
+
+ set.seed(3488400)
+
+ D <- cbind(
+
+ rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd),
+ matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd),
+ cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3))
+ ),
+
+ rbind(matrix(rnorm(Ns*Nd, mean = 0), ncol = Nd),
+ matrix(rnorm(Ns*Nd, mean = 2), ncol = Nd),
+ cbind(rnorm(Ns, mean = -1), rnorm(Ns, mean = 3))
+ )
+ )
+
+ rownames(D) <- paste("R", 1:nrow(D), sep = "-")
+ colnames(D) <- paste("C", 1:ncol(D), sep = "-")
+
+ ts <- c()
+ for (mm in c("bic", "vdp")) {
+
+
+ # NOTE: no PCA basis needed with mixture.method = "bic"
+ tt <- system.time(detect.responses(D, verbose = TRUE, max.responses = 5,
+ mixture.method = mm, information.criterion = "BIC",
+ merging.threshold = 0, bic.threshold = 0, pca.basis = TRUE))
+
+ print(paste(mm, ":", round(tt[["elapsed"]], 3)))
+ ts[[mm]] <- tt[["elapsed"]]
+ }
+
+ print(paste(names(ts)[[1]], "/", names(ts)[[2]], ": ", round(ts[[1]]/ts[[2]], 3)))
+
+ }
>
> # -> VDP is much faster when sample sizes increase
> # 1000 samples -> 25-fold speedup with VDP
>
>
>
> proc.time()
user system elapsed
0.21 0.09 0.23
netresponse.Rcheck/tests/toydata2.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> # Generate Nc components from normal-inverseGamma prior
>
> set.seed(12346)
>
> Ns <- 300
> Nd <- 2
>
> # Isotropic cloud
> D1 <- matrix(rnorm(Ns*Nd), ncol = Nd)
>
> # Single diagonal mode
> D2 <- matrix(rnorm(Ns*Nd), ncol = Nd) %*% rbind(c(1,2), c(2,1))
>
> # Two isotropic modes
> D3 <- rbind(matrix(rnorm(Ns/2*Nd), ncol = Nd), matrix(rnorm(Ns/2*Nd, mean = 3), ncol = Nd))
> D <- cbind(D1, D2, D3)
>
> colnames(D) <- paste("Feature-", 1:ncol(D), sep = "")
> rownames(D) <- paste("Sample-", 1:nrow(D), sep = "")
>
>
> proc.time()
user system elapsed
0.17 0.10 0.20
netresponse.Rcheck/tests/validate.netresponse.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
>
> skip <- TRUE
>
> if (!skip) {
+
+ # 2. netresponse test
+ # test later with varying parameters
+
+ # Load the package
+ library(netresponse)
+ #load("../data/toydata.rda")
+ fs <- list.files("../R/", full.names = TRUE); for (f in fs) {source(f)};
+
+ data(toydata)
+
+ D <- toydata$emat
+ netw <- toydata$netw
+
+ # The toy data is random data with 10 features (genes).
+ # The features
+ rf <- c(4, 5, 6)
+ #form a subnetwork with coherent responses
+ # with means
+ r1 <- c(0, 3, 0)
+ r2 <- c(-5, 0, 2)
+ r3 <- c(5, -3, -3)
+ mu.real <- rbind(r1, r2, r3)
+ # real weights
+ w.real <- c(70, 70, 60)/200
+ # and unit variances
+ rv <- 1
+
+ # Fit the model
+ #res <- detect.responses(D, netw, verbose = TRUE, mc.cores = 2)
+ #res <- detect.responses(D, netw, verbose = TRUE, max.responses = 4)
+
+ res <- detect.responses(D, netw, verbose = TRUE, max.responses = 3, mixture.method = "bic", information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE)
+
+ print("OK")
+
+ # Subnets (each is a list of nodes)
+ subnets <- get.subnets(res)
+
+ # the correct subnet is retrieved in subnet number 2:
+ #> subnet[[2]]
+ #[1] "feat4" "feat5" "feat6"
+
+ # how about responses
+ # Retrieve model for the subnetwork with lowest cost function value
+ # means, standard devations and weights for the components
+ if (!is.null(subnets)) {
+ m <- get.model.parameters(res, subnet.id = "Subnet-2")
+
+ # order retrieved and real response means by the first feature
+ # (to ensure responses are listed in the same order)
+ # and compare deviation from correct solution
+ ord.obs <- order(m$mu[,1])
+ ord.real <- order(mu.real[,1])
+
+ print(paste("Correlation between real and observed responses:", cor(as.vector(m$mu[ord.obs,]), as.vector(mu.real[ord.real,]))))
+
+ # all real variances are 1, compare to observed ones
+ print(paste("Maximum deviation from real variances: ", max(abs(rv - range(m$sd))/rv)))
+
+ # weights deviate somewhat, this is likely due to relatively small sample size
+ #print("Maximum deviation from real weights: ")
+ #print( (w.real[ord.real] - m$w[ord.obs])/w.real[ord.real])
+
+ print("estimated and real mean matrices")
+ print(m$mu[ord.obs,])
+ print(mu.real[ord.real,])
+
+ }
+
+ }
>
> proc.time()
user system elapsed
0.14 0.04 0.20
netresponse.Rcheck/tests/validate.pca.basis.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
>
> skip <- FALSE
>
> if (!skip) {
+ # Visualization
+
+ library(netresponse)
+
+ #fs <- list.files("~/Rpackages/netresponse/netresponse/R/", full.names = T); for (f in fs) {source(f)}
+
+ source("toydata2.R")
+
+ # --------------------------------------------------------------------
+
+ set.seed(4243)
+ mixture.method <- "bic"
+
+ # --------------------------------------------------------------------
+
+ res <- detect.responses(D, verbose = TRUE, max.responses = 10,
+ mixture.method = mixture.method, information.criterion = "BIC",
+ merging.threshold = 1, bic.threshold = 10, pca.basis = FALSE)
+
+ res.pca <- detect.responses(D, verbose = TRUE, max.responses = 10, mixture.method = mixture.method, information.criterion = "BIC", merging.threshold = 1, bic.threshold = 10, pca.basis = TRUE)
+
+ # --------------------------------------------------------------------
+
+ k <- 1
+
+ # Incorrect VDP: two modes detected
+ # Correct BIC: single mode detected
+ subnet.id <- names(get.subnets(res))[[k]]
+
+ # Correct: single mode detected (VDP & BIC)
+ subnet.id.pca <- names(get.subnets(res.pca))[[k]]
+
+ # --------------------------------------------------------------------------------------------------
+
+ vis1 <- plot_responses(res, subnet.id, plot_mode = "pca", main = paste("NoPCA; NoDM"))
+ vis2 <- plot_responses(res, subnet.id, plot_mode = "pca", datamatrix = D, main = "NoPCA, DM")
+ vis3 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", main = "PCA, NoDM")
+ vis4 <- plot_responses(res.pca, subnet.id.pca, plot_mode = "pca", datamatrix = D, main = "PCA, DM")
+
+ # With original data: VDP overlearns; BIC works; with full covariance data
+ # With PCA basis: modes detected ok with both VDP and BIC.
+
+ # ------------------------------------------------------------------------
+
+ # TODO
+ # pca.plot(res, subnet.id)
+ # plot_subnet(res, subnet.id)
+ }
Loading required package: BiocStyle
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Loading required package: grid
Loading required package: rmarkdown
Attaching package: 'rmarkdown'
The following objects are masked from 'package:BiocStyle':
html_document, md_document, pdf_document
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 6.0.0
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2
netresponse (C) 2008-2022 Leo Lahti et al.
https://github.com/antagomir/netresponse
No network provided in function call: assuming fully connected nodes.
convert the network into edge matrix
removing self-links
matching the features between network and datamatrix
Filter the network to only keep the edges with highest mutual information
1 / 5
2 / 5
3 / 5
4 / 5
5 / 5
Compute cost for each variable
Computing model for node 1 / 6
Computing model for node 2 / 6
Computing model for node 3 / 6
Computing model for node 4 / 6
Computing model for node 5 / 6
Computing model for node 6 / 6
independent models done
Computing delta values for edge 1 / 15
Computing delta values for edge 2 / 15
Computing delta values for edge 3 / 15
Computing delta values for edge 4 / 15
Computing delta values for edge 5 / 15
Computing delta values for edge 6 / 15
Computing delta values for edge 7 / 15
Computing delta values for edge 8 / 15
Computing delta values for edge 9 / 15
Computing delta values for edge 10 / 15
Computing delta values for edge 11 / 15
Computing delta values for edge 12 / 15
Computing delta values for edge 13 / 15
Computing delta values for edge 14 / 15
Computing delta values for edge 15 / 15
Combining groups, 6 group(s) left...
Combining groups, 5 group(s) left...
Combining groups, 4 group(s) left...
Combining groups, 3 group(s) left...
No network provided in function call: assuming fully connected nodes.
convert the network into edge matrix
removing self-links
matching the features between network and datamatrix
Filter the network to only keep the edges with highest mutual information
1 / 5
2 / 5
3 / 5
4 / 5
5 / 5
Compute cost for each variable
Computing model for node 1 / 6
Computing model for node 2 / 6
Computing model for node 3 / 6
Computing model for node 4 / 6
Computing model for node 5 / 6
Computing model for node 6 / 6
independent models done
Computing delta values for edge 1 / 15
Computing delta values for edge 2 / 15
Computing delta values for edge 3 / 15
Computing delta values for edge 4 / 15
Computing delta values for edge 5 / 15
Computing delta values for edge 6 / 15
Computing delta values for edge 7 / 15
Computing delta values for edge 8 / 15
Computing delta values for edge 9 / 15
Computing delta values for edge 10 / 15
Computing delta values for edge 11 / 15
Computing delta values for edge 12 / 15
Computing delta values for edge 13 / 15
Computing delta values for edge 14 / 15
Computing delta values for edge 15 / 15
Combining groups, 6 group(s) left...
Combining groups, 5 group(s) left...
Combining groups, 4 group(s) left...
Combining groups, 3 group(s) left...
Warning messages:
1: In xtfrm.data.frame(x) : cannot xtfrm data frames
2: In xtfrm.data.frame(x) : cannot xtfrm data frames
3: In xtfrm.data.frame(x) : cannot xtfrm data frames
4: In xtfrm.data.frame(x) : cannot xtfrm data frames
5: In xtfrm.data.frame(x) : cannot xtfrm data frames
6: In xtfrm.data.frame(x) : cannot xtfrm data frames
7: In xtfrm.data.frame(x) : cannot xtfrm data frames
8: In xtfrm.data.frame(x) : cannot xtfrm data frames
9: In xtfrm.data.frame(x) : cannot xtfrm data frames
10: In xtfrm.data.frame(x) : cannot xtfrm data frames
>
> proc.time()
user system elapsed
18.59 0.51 19.09
netresponse.Rcheck/tests/vdpmixture.Rout
R version 4.2.3 (2023-03-15 ucrt) -- "Shortstop Beagle"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
>
> # 1. vdp.mixt: moodien loytyminen eri dimensiolla, naytemaarilla ja komponenteilla
> # -> ainakin nopea check
>
> #######################################################################
>
> # Generate random data from five Gaussians.
> # Detect modes with vdp-gm.
> # Plot data points and detected clusters with variance ellipses
>
> #######################################################################
>
> library(netresponse)
Loading required package: BiocStyle
Loading required package: Rgraphviz
Loading required package: graph
Loading required package: BiocGenerics
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Loading required package: grid
Loading required package: rmarkdown
Attaching package: 'rmarkdown'
The following objects are masked from 'package:BiocStyle':
html_document, md_document, pdf_document
Loading required package: minet
Loading required package: mclust
Package 'mclust' version 6.0.0
Type 'citation("mclust")' for citing this R package in publications.
Loading required package: reshape2
netresponse (C) 2008-2022 Leo Lahti et al.
https://github.com/antagomir/netresponse
> #source("~/Rpackages/netresponse/netresponse/R/detect.responses.R")
> #source("~/Rpackages/netresponse/netresponse/R/internals.R")
> #source("~/Rpackages/netresponse/netresponse/R/vdp.mixt.R")
> #dyn.load("/home/tuli/Rpackages/netresponse/netresponse/src/netresponse.so")
>
>
> ######### Generate DATA #############################################
>
> res <- generate.toydata()
> D <- res$data
> component.means <- res$means
> component.sds <- res$sds
> sample2comp <- res$sample2comp
>
> ######################################################################
>
> # Fit nonparametric Gaussian mixture model
> out <- vdp.mixt(D)
> # out <- vdp.mixt(D, c.max = 3) # try with limited number of components -> OK
>
> ############################################################
>
> # Compare input data and results
>
> ord.out <- order(out$posterior$centroids[,1])
> ord.in <- order(component.means[,1])
>
> means.out <- out$posterior$centroids[ord.out,]
> means.in <- component.means[ord.in,]
>
> # Cluster stds and variances
> sds.out <- out$posterior$sds[ord.out,]
> sds.in <- component.sds[ord.in,]
> vars.out <- sds.out^2
> vars.in <- sds.in^2
>
> # Check correspondence between input and output
> if (length(means.in) == length(means.out)) {
+ cm <- cor(as.vector(means.in), as.vector(means.out))
+ csd <- cor(as.vector(sds.in), as.vector(sds.out))
+ }
>
> # Plot results (assuming 2D)
>
> ran <- range(c(as.vector(means.in - 2*vars.in),
+ as.vector(means.in + 2*vars.in),
+ as.vector(means.out + 2*vars.out),
+ as.vector(means.out - 2*vars.out)))
>
> #plot(D, pch = 20, main = paste("Cor.means:", round(cm,3), "/ Cor.sds:", round(csd,3)), xlim = ran, ylim = ran)
> #for (ci in 1:nrow(means.out)) { add.ellipse(centroid = means.out[ci,], covmat = diag(vars.out[ci,]), col = "red") }
> #for (ci in 1:nrow(means.in)) { add.ellipse(centroid = means.in[ci,], covmat = diag(vars.in[ci,]), col = "blue") }
>
>
>
> proc.time()
user system elapsed
1.75 0.34 2.07
netresponse.Rcheck/netresponse-Ex.timings
| name | user | system | elapsed | |
| NetResponseModel-class | 0 | 0 | 0 | |
| PlotMixture | 0 | 0 | 0 | |
| PlotMixtureBivariate | 0 | 0 | 0 | |
| PlotMixtureMultivariate | 0 | 0 | 0 | |
| PlotMixtureUnivariate | 0 | 0 | 0 | |
| centerData | 0 | 0 | 0 | |
| check.matrix | 0 | 0 | 0 | |
| check.network | 0 | 0 | 0 | |
| continuous.responses | 0 | 0 | 0 | |
| detect.responses | 0.00 | 0.01 | 0.02 | |
| dna | 0.02 | 0.00 | 0.01 | |
| enrichment.list.factor | 0 | 0 | 0 | |
| enrichment.list.factor.minimal | 0 | 0 | 0 | |
| factor.responses | 0 | 0 | 0 | |
| factor.responses.minimal | 0 | 0 | 0 | |
| filter.network | 0 | 0 | 0 | |
| find.similar.features | 0 | 0 | 0 | |
| generate.toydata | 0 | 0 | 0 | |
| get.dat-NetResponseModel-method | 0 | 0 | 0 | |
| get.model.parameters | 0.01 | 0.00 | 0.01 | |
| get.subnets-NetResponseModel-method | 0 | 0 | 0 | |
| getqofz-NetResponseModel-method | 0 | 0 | 0 | |
| independent.models | 0 | 0 | 0 | |
| list.responses.continuous.multi | 0 | 0 | 0 | |
| list.responses.continuous.single | 0 | 0 | 0 | |
| list.significant.responses | 0 | 0 | 0 | |
| listify.groupings | 0.00 | 0.02 | 0.02 | |
| mixture.model | 0 | 0 | 0 | |
| model.stats | 0 | 0 | 0 | |
| netresponse-package | 2.20 | 0.04 | 2.25 | |
| order.responses | 0 | 0 | 0 | |
| osmo | 0.04 | 0.00 | 0.03 | |
| pick.model.pairs | 0 | 0 | 0 | |
| pick.model.parameters | 0 | 0 | 0 | |
| plotPCA | 0 | 0 | 0 | |
| plot_associations | 0 | 0 | 0 | |
| plot_data | 0 | 0 | 0 | |
| plot_expression | 0 | 0 | 0 | |
| plot_matrix | 0.02 | 0.00 | 0.02 | |
| plot_response | 0 | 0 | 0 | |
| plot_responses | 0 | 0 | 0 | |
| plot_scale | 0 | 0 | 0 | |
| plot_subnet | 0 | 0 | 0 | |
| read.sif | 0 | 0 | 0 | |
| remove.negative.edges | 0 | 0 | 0 | |
| response.enrichment | 0 | 0 | 0 | |
| response2sample | 0 | 0 | 0 | |
| sample2response | 3.47 | 0.02 | 3.48 | |
| set.breaks | 0 | 0 | 0 | |
| toydata | 0 | 0 | 0 | |
| update.model.pair | 0 | 0 | 0 | |
| vdp.mixt | 0.03 | 0.00 | 0.03 | |
| vectorize.groupings | 0 | 0 | 0 | |