| Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:05:28 -0400 (Wed, 13 Apr 2022).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
| tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
| machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 886/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.0.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
| tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
| machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
| Package: HPiP |
| Version: 1.0.0 |
| Command: /home/biocbuild/bbs-3.14-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.14-bioc/R/library --no-vignettes --timings HPiP_1.0.0.tar.gz |
| StartedAt: 2022-04-12 07:49:04 -0400 (Tue, 12 Apr 2022) |
| EndedAt: 2022-04-12 07:53:25 -0400 (Tue, 12 Apr 2022) |
| EllapsedTime: 261.7 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.14-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.14-bioc/R/library --no-vignettes --timings HPiP_1.0.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck’
* using R version 4.1.3 (2022-03-10)
* using platform: x86_64-pc-linux-gnu (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.0.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
corr_plot 35.793 0.568 36.361
var_imp 34.596 0.760 35.357
FSmethod 31.435 0.740 32.176
pred_ensembel 14.780 0.416 11.299
enrichfindP 0.409 0.016 8.824
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/home/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.14-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.14-bioc/R/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 100.875444
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 104.549690
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 98.323700
final value 94.354396
converged
Fitting Repeat 4
# weights: 103
initial value 100.794663
final value 94.354395
converged
Fitting Repeat 5
# weights: 103
initial value 98.800979
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 109.669550
final value 94.354396
converged
Fitting Repeat 2
# weights: 305
initial value 99.164509
iter 10 value 93.927920
iter 20 value 86.248441
iter 30 value 85.667380
iter 40 value 85.666698
final value 85.666693
converged
Fitting Repeat 3
# weights: 305
initial value 106.963294
final value 94.354396
converged
Fitting Repeat 4
# weights: 305
initial value 100.344565
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 99.886728
final value 93.205814
converged
Fitting Repeat 1
# weights: 507
initial value 103.823749
final value 94.144481
converged
Fitting Repeat 2
# weights: 507
initial value 106.823953
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 106.858853
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 110.638105
final value 94.354396
converged
Fitting Repeat 5
# weights: 507
initial value 101.339581
final value 94.354396
converged
Fitting Repeat 1
# weights: 103
initial value 105.014132
iter 10 value 93.890539
iter 20 value 84.408230
iter 30 value 83.095762
iter 40 value 82.903737
iter 50 value 82.735823
iter 60 value 82.497326
final value 82.494345
converged
Fitting Repeat 2
# weights: 103
initial value 106.572234
iter 10 value 94.260480
iter 20 value 89.823094
iter 30 value 87.858810
iter 40 value 86.017059
iter 50 value 85.561571
iter 60 value 83.864026
iter 70 value 83.199472
iter 80 value 83.178862
iter 90 value 82.976811
iter 100 value 82.500816
final value 82.500816
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 106.727258
iter 10 value 94.486410
iter 20 value 89.129914
iter 30 value 86.746106
iter 40 value 86.454520
iter 50 value 86.198698
iter 60 value 83.228037
iter 70 value 83.025570
iter 80 value 83.022427
final value 83.022426
converged
Fitting Repeat 4
# weights: 103
initial value 100.753080
iter 10 value 94.461812
iter 20 value 87.595849
iter 30 value 83.608804
iter 40 value 83.448771
iter 50 value 83.291739
iter 60 value 83.106467
iter 70 value 83.022444
final value 83.022421
converged
Fitting Repeat 5
# weights: 103
initial value 98.573374
iter 10 value 94.486214
iter 20 value 93.802492
iter 30 value 93.580017
iter 40 value 92.688530
iter 50 value 88.885097
iter 60 value 86.967766
iter 70 value 84.890627
iter 80 value 84.479643
iter 90 value 84.413143
final value 84.413132
converged
Fitting Repeat 1
# weights: 305
initial value 102.502237
iter 10 value 87.828916
iter 20 value 86.263104
iter 30 value 83.271020
iter 40 value 82.790522
iter 50 value 81.791625
iter 60 value 81.536489
iter 70 value 81.069956
iter 80 value 80.219274
iter 90 value 79.974747
iter 100 value 79.863967
final value 79.863967
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.267261
iter 10 value 94.493851
iter 20 value 92.705863
iter 30 value 85.242887
iter 40 value 82.671879
iter 50 value 82.059454
iter 60 value 81.439467
iter 70 value 80.127923
iter 80 value 79.872910
iter 90 value 79.802178
iter 100 value 79.499732
final value 79.499732
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 131.473780
iter 10 value 94.543601
iter 20 value 86.701114
iter 30 value 83.526962
iter 40 value 83.099917
iter 50 value 82.792759
iter 60 value 81.815304
iter 70 value 79.752075
iter 80 value 79.448186
iter 90 value 79.402702
iter 100 value 79.337333
final value 79.337333
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.575168
iter 10 value 94.410169
iter 20 value 90.400345
iter 30 value 88.598576
iter 40 value 86.040566
iter 50 value 83.579969
iter 60 value 82.388923
iter 70 value 81.559921
iter 80 value 81.284802
iter 90 value 81.263921
iter 100 value 81.228730
final value 81.228730
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 110.021834
iter 10 value 94.579496
iter 20 value 92.882121
iter 30 value 85.542340
iter 40 value 85.169308
iter 50 value 84.318225
iter 60 value 80.736788
iter 70 value 79.709746
iter 80 value 79.416869
iter 90 value 79.359752
iter 100 value 79.186715
final value 79.186715
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 121.193468
iter 10 value 94.271099
iter 20 value 85.554686
iter 30 value 82.202702
iter 40 value 81.713573
iter 50 value 79.802472
iter 60 value 79.152969
iter 70 value 78.733915
iter 80 value 78.458082
iter 90 value 78.194140
iter 100 value 78.054101
final value 78.054101
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.943801
iter 10 value 94.619334
iter 20 value 92.823953
iter 30 value 83.964607
iter 40 value 82.206094
iter 50 value 81.331730
iter 60 value 80.718123
iter 70 value 79.796032
iter 80 value 78.755256
iter 90 value 78.369115
iter 100 value 78.298822
final value 78.298822
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 124.098440
iter 10 value 95.106308
iter 20 value 94.745669
iter 30 value 92.307514
iter 40 value 83.856862
iter 50 value 83.237075
iter 60 value 83.060832
iter 70 value 81.340411
iter 80 value 81.055013
iter 90 value 80.151731
iter 100 value 79.848849
final value 79.848849
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.218908
iter 10 value 94.740251
iter 20 value 92.633874
iter 30 value 89.568306
iter 40 value 83.814826
iter 50 value 82.764133
iter 60 value 80.654791
iter 70 value 79.858429
iter 80 value 79.360193
iter 90 value 78.682855
iter 100 value 78.319002
final value 78.319002
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 131.795801
iter 10 value 95.916128
iter 20 value 85.589212
iter 30 value 83.402001
iter 40 value 82.679867
iter 50 value 81.008202
iter 60 value 79.734183
iter 70 value 79.682702
iter 80 value 78.727664
iter 90 value 78.414514
iter 100 value 78.237009
final value 78.237009
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 93.042711
iter 10 value 89.276173
iter 20 value 88.468486
iter 30 value 88.006137
iter 40 value 87.963761
final value 87.963757
converged
Fitting Repeat 2
# weights: 103
initial value 104.128585
iter 10 value 94.485856
iter 20 value 94.484182
iter 30 value 92.434640
iter 40 value 90.883585
iter 50 value 90.882674
iter 50 value 90.882674
iter 50 value 90.882674
final value 90.882674
converged
Fitting Repeat 3
# weights: 103
initial value 98.956572
final value 94.486141
converged
Fitting Repeat 4
# weights: 103
initial value 96.441153
iter 10 value 94.485765
iter 20 value 94.420400
iter 30 value 84.634061
iter 40 value 84.402492
final value 84.387964
converged
Fitting Repeat 5
# weights: 103
initial value 98.626953
iter 10 value 94.147009
iter 20 value 93.779012
iter 30 value 93.746706
iter 40 value 93.620183
iter 50 value 93.615587
iter 60 value 90.225428
iter 70 value 85.877746
iter 80 value 84.198046
iter 90 value 84.130836
iter 100 value 84.130165
final value 84.130165
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 96.580601
iter 10 value 94.489441
final value 94.484682
converged
Fitting Repeat 2
# weights: 305
initial value 99.605517
iter 10 value 94.488669
iter 20 value 94.382171
final value 93.300498
converged
Fitting Repeat 3
# weights: 305
initial value 121.561987
iter 10 value 85.419906
iter 20 value 85.180791
iter 30 value 85.170659
iter 40 value 85.015022
iter 50 value 85.014289
iter 60 value 85.002439
iter 70 value 84.375895
iter 80 value 83.974063
iter 90 value 83.970884
iter 100 value 83.968932
final value 83.968932
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 95.325866
iter 10 value 94.358677
iter 20 value 94.354943
iter 30 value 94.131447
iter 40 value 94.131049
iter 50 value 93.720434
final value 93.720353
converged
Fitting Repeat 5
# weights: 305
initial value 104.577149
iter 10 value 94.489273
iter 20 value 92.326454
iter 30 value 84.679259
iter 40 value 84.632492
iter 50 value 84.632138
iter 60 value 84.632009
iter 70 value 84.540835
final value 84.388589
converged
Fitting Repeat 1
# weights: 507
initial value 141.125234
iter 10 value 94.492805
iter 20 value 94.486103
iter 30 value 93.749727
final value 93.746268
converged
Fitting Repeat 2
# weights: 507
initial value 105.643112
iter 10 value 94.492431
iter 20 value 94.413021
iter 30 value 90.421360
iter 40 value 82.825039
iter 50 value 82.637195
iter 60 value 82.335753
iter 70 value 82.168836
iter 80 value 81.675492
iter 90 value 80.584312
iter 100 value 80.529734
final value 80.529734
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 129.747275
iter 10 value 94.586024
iter 20 value 94.515930
iter 30 value 93.811517
iter 40 value 93.095838
iter 50 value 92.926187
iter 60 value 92.758769
iter 70 value 92.731459
iter 80 value 92.709437
iter 90 value 89.247300
iter 100 value 88.707539
final value 88.707539
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 94.080159
iter 10 value 91.149911
iter 20 value 89.555458
iter 30 value 87.277837
iter 40 value 81.768602
iter 50 value 81.374486
iter 60 value 81.001747
iter 70 value 80.810620
iter 80 value 80.806263
iter 90 value 80.798836
iter 100 value 80.796416
final value 80.796416
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 95.185999
iter 10 value 86.954257
iter 20 value 82.173132
iter 30 value 82.168518
iter 40 value 82.166742
iter 50 value 82.165432
iter 60 value 82.163683
iter 70 value 82.161737
iter 80 value 81.937935
iter 90 value 81.935681
iter 100 value 81.934925
final value 81.934925
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.418653
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 107.362574
iter 10 value 94.038536
iter 20 value 94.035099
iter 30 value 93.582421
final value 93.582418
converged
Fitting Repeat 3
# weights: 103
initial value 95.859455
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 102.994600
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 100.276701
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 107.166916
final value 93.582418
converged
Fitting Repeat 2
# weights: 305
initial value 94.387598
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 113.662194
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 117.360615
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 99.320076
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 114.236367
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 101.119875
final value 93.582418
converged
Fitting Repeat 3
# weights: 507
initial value 99.790973
iter 10 value 93.178579
iter 10 value 93.178579
final value 93.178572
converged
Fitting Repeat 4
# weights: 507
initial value 99.471502
final value 93.582418
converged
Fitting Repeat 5
# weights: 507
initial value 113.070778
final value 93.582418
converged
Fitting Repeat 1
# weights: 103
initial value 99.835798
iter 10 value 94.034539
iter 20 value 90.756084
iter 30 value 87.503235
iter 40 value 82.659402
iter 50 value 82.559463
iter 60 value 82.533037
iter 70 value 82.392552
iter 80 value 82.269390
iter 90 value 80.494278
iter 100 value 79.434651
final value 79.434651
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.532995
iter 10 value 85.967488
iter 20 value 85.624655
iter 30 value 85.538096
iter 40 value 83.148797
iter 50 value 82.285305
iter 60 value 81.950561
iter 70 value 81.829542
iter 80 value 79.662146
iter 90 value 78.832679
iter 100 value 78.668408
final value 78.668408
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 96.705429
iter 10 value 93.044766
iter 20 value 92.503386
iter 30 value 85.601524
iter 40 value 85.173695
iter 50 value 83.103110
iter 60 value 82.215940
iter 70 value 80.265733
iter 80 value 79.466443
iter 90 value 79.278947
iter 100 value 78.875627
final value 78.875627
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 102.616327
iter 10 value 93.823625
iter 20 value 83.833531
iter 30 value 83.142259
iter 40 value 82.643935
iter 50 value 82.408408
iter 60 value 82.285804
iter 70 value 82.244258
iter 80 value 80.141052
iter 90 value 79.393527
iter 100 value 78.909394
final value 78.909394
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.493481
iter 10 value 94.045243
iter 20 value 93.892107
iter 30 value 85.394755
iter 40 value 83.803926
iter 50 value 82.843879
iter 60 value 80.375464
iter 70 value 80.074563
iter 80 value 79.880270
iter 90 value 79.748297
iter 100 value 79.299095
final value 79.299095
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 113.908729
iter 10 value 93.242495
iter 20 value 92.423399
iter 30 value 92.309515
iter 40 value 89.064859
iter 50 value 86.837618
iter 60 value 86.318965
iter 70 value 85.177612
iter 80 value 84.736515
iter 90 value 81.695141
iter 100 value 80.214585
final value 80.214585
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 105.883192
iter 10 value 93.140186
iter 20 value 87.490379
iter 30 value 86.159018
iter 40 value 85.855495
iter 50 value 83.328723
iter 60 value 79.885144
iter 70 value 78.936738
iter 80 value 78.131645
iter 90 value 77.711082
iter 100 value 77.313799
final value 77.313799
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.626696
iter 10 value 94.013158
iter 20 value 83.462591
iter 30 value 82.493124
iter 40 value 80.408737
iter 50 value 79.963643
iter 60 value 79.140242
iter 70 value 78.750747
iter 80 value 78.587741
iter 90 value 78.558493
iter 100 value 78.530017
final value 78.530017
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.495007
iter 10 value 94.056206
iter 20 value 93.691238
iter 30 value 89.418840
iter 40 value 86.534060
iter 50 value 83.068847
iter 60 value 81.589069
iter 70 value 80.907629
iter 80 value 79.624597
iter 90 value 78.971609
iter 100 value 78.390644
final value 78.390644
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 148.133838
iter 10 value 93.945200
iter 20 value 86.769825
iter 30 value 83.166120
iter 40 value 82.491890
iter 50 value 80.581108
iter 60 value 80.170992
iter 70 value 80.043614
iter 80 value 79.973422
iter 90 value 79.693546
iter 100 value 78.301902
final value 78.301902
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 126.913745
iter 10 value 94.122145
iter 20 value 91.216479
iter 30 value 82.569148
iter 40 value 81.722004
iter 50 value 81.303886
iter 60 value 81.126898
iter 70 value 80.517935
iter 80 value 79.063930
iter 90 value 77.585296
iter 100 value 76.843985
final value 76.843985
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.633816
iter 10 value 93.842021
iter 20 value 87.417778
iter 30 value 84.320692
iter 40 value 80.793980
iter 50 value 77.851790
iter 60 value 77.688355
iter 70 value 77.608904
iter 80 value 77.371871
iter 90 value 77.288059
iter 100 value 77.208912
final value 77.208912
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.548564
iter 10 value 93.883583
iter 20 value 92.515518
iter 30 value 92.372955
iter 40 value 89.179394
iter 50 value 85.096080
iter 60 value 82.049145
iter 70 value 80.926440
iter 80 value 79.522788
iter 90 value 78.873775
iter 100 value 78.208124
final value 78.208124
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 115.904200
iter 10 value 93.808811
iter 20 value 91.964384
iter 30 value 90.555007
iter 40 value 85.304114
iter 50 value 84.223492
iter 60 value 82.413077
iter 70 value 81.572987
iter 80 value 80.550950
iter 90 value 80.153938
iter 100 value 79.210305
final value 79.210305
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.635019
iter 10 value 94.020768
iter 20 value 92.636926
iter 30 value 90.406267
iter 40 value 82.939005
iter 50 value 81.868726
iter 60 value 80.434843
iter 70 value 78.130722
iter 80 value 77.550426
iter 90 value 77.174096
iter 100 value 76.887734
final value 76.887734
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.248307
final value 94.054597
converged
Fitting Repeat 2
# weights: 103
initial value 100.437051
final value 94.054532
converged
Fitting Repeat 3
# weights: 103
initial value 95.462232
final value 93.583989
converged
Fitting Repeat 4
# weights: 103
initial value 100.114578
final value 94.054794
converged
Fitting Repeat 5
# weights: 103
initial value 95.799913
final value 94.054513
converged
Fitting Repeat 1
# weights: 305
initial value 97.024724
iter 10 value 89.628033
iter 20 value 89.626795
iter 30 value 89.622065
iter 40 value 89.433510
iter 50 value 88.319014
iter 60 value 85.881979
iter 70 value 81.326872
iter 80 value 79.337182
iter 90 value 79.137551
iter 100 value 79.130782
final value 79.130782
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.515864
iter 10 value 94.057656
iter 20 value 94.053291
iter 30 value 88.388430
iter 40 value 81.144193
iter 50 value 80.918733
iter 60 value 80.770122
final value 80.767754
converged
Fitting Repeat 3
# weights: 305
initial value 97.363014
iter 10 value 93.587629
iter 20 value 93.129537
iter 30 value 92.239083
iter 40 value 92.238629
iter 50 value 92.208162
iter 60 value 92.150641
iter 70 value 92.149821
iter 80 value 92.147277
final value 92.147251
converged
Fitting Repeat 4
# weights: 305
initial value 101.582842
iter 10 value 94.057505
iter 20 value 93.858599
iter 30 value 93.241560
iter 40 value 93.226625
iter 50 value 93.194406
final value 93.179139
converged
Fitting Repeat 5
# weights: 305
initial value 103.061509
iter 10 value 94.058234
iter 20 value 93.455575
iter 30 value 85.105054
iter 40 value 84.730772
iter 50 value 84.730202
iter 60 value 84.354474
iter 70 value 84.334264
iter 80 value 83.619734
iter 90 value 78.470006
iter 100 value 78.384677
final value 78.384677
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 102.145863
iter 10 value 92.260995
iter 20 value 90.660169
iter 30 value 90.580773
iter 40 value 90.289362
iter 50 value 90.288214
final value 90.287585
converged
Fitting Repeat 2
# weights: 507
initial value 102.989117
iter 10 value 90.562716
iter 20 value 78.845140
iter 30 value 78.273100
iter 40 value 78.133774
iter 50 value 78.131890
iter 60 value 77.927105
iter 70 value 77.921252
iter 80 value 77.780663
iter 90 value 77.579743
iter 100 value 77.574998
final value 77.574998
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.019043
iter 10 value 94.061228
iter 20 value 94.051153
iter 30 value 91.928788
iter 40 value 84.634261
iter 50 value 84.467227
iter 60 value 84.466996
iter 70 value 84.465865
iter 80 value 84.167176
iter 90 value 82.926591
iter 100 value 80.244345
final value 80.244345
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 113.246748
iter 10 value 91.020000
iter 20 value 89.441361
iter 30 value 89.411760
final value 89.407961
converged
Fitting Repeat 5
# weights: 507
initial value 96.162357
iter 10 value 94.054993
iter 20 value 93.860581
iter 30 value 86.717083
iter 40 value 80.180290
iter 50 value 80.155649
iter 60 value 80.134152
iter 70 value 80.125415
iter 80 value 80.099076
iter 90 value 79.569446
iter 100 value 77.405738
final value 77.405738
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.551362
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.877413
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 97.136869
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 102.687132
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 104.972772
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.067235
final value 94.466823
converged
Fitting Repeat 2
# weights: 305
initial value 102.718147
final value 94.466823
converged
Fitting Repeat 3
# weights: 305
initial value 97.725793
final value 94.443182
converged
Fitting Repeat 4
# weights: 305
initial value 96.682194
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 97.407633
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 116.325606
final value 94.476190
converged
Fitting Repeat 2
# weights: 507
initial value 98.768244
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 97.803344
iter 10 value 94.304608
iter 10 value 94.304608
iter 10 value 94.304608
final value 94.304608
converged
Fitting Repeat 4
# weights: 507
initial value 99.517179
iter 10 value 94.457469
final value 94.457409
converged
Fitting Repeat 5
# weights: 507
initial value 95.685286
final value 94.466823
converged
Fitting Repeat 1
# weights: 103
initial value 97.855328
iter 10 value 92.410553
iter 20 value 86.233185
iter 30 value 85.917070
iter 40 value 85.767926
iter 50 value 85.354496
iter 60 value 84.846167
iter 70 value 84.679215
iter 80 value 84.551975
iter 90 value 84.504874
final value 84.504493
converged
Fitting Repeat 2
# weights: 103
initial value 102.324434
iter 10 value 93.912552
iter 20 value 86.010611
iter 30 value 85.714343
iter 40 value 85.474251
iter 50 value 85.117161
iter 60 value 84.771868
iter 70 value 84.678971
iter 80 value 84.667067
iter 90 value 84.542477
iter 100 value 84.504493
final value 84.504493
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.155940
iter 10 value 94.487710
iter 20 value 86.704579
iter 30 value 85.863733
iter 40 value 85.576464
iter 50 value 85.162262
iter 60 value 84.714873
iter 70 value 84.665796
iter 80 value 84.527627
final value 84.504493
converged
Fitting Repeat 4
# weights: 103
initial value 96.867752
iter 10 value 89.826276
iter 20 value 85.522827
iter 30 value 84.732127
iter 40 value 83.965030
iter 50 value 83.558626
iter 60 value 83.195137
iter 70 value 83.157947
final value 83.157299
converged
Fitting Repeat 5
# weights: 103
initial value 109.041114
iter 10 value 92.375611
iter 20 value 87.782808
iter 30 value 86.274753
iter 40 value 86.255430
iter 50 value 85.982689
iter 60 value 85.887893
final value 85.887890
converged
Fitting Repeat 1
# weights: 305
initial value 116.313567
iter 10 value 94.318542
iter 20 value 86.940891
iter 30 value 86.020961
iter 40 value 85.572325
iter 50 value 84.438552
iter 60 value 83.267267
iter 70 value 82.828662
iter 80 value 82.532770
iter 90 value 82.464751
iter 100 value 82.405587
final value 82.405587
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.031766
iter 10 value 94.537351
iter 20 value 91.272294
iter 30 value 85.989707
iter 40 value 85.515210
iter 50 value 84.315479
iter 60 value 82.849254
iter 70 value 82.561545
iter 80 value 82.283202
iter 90 value 82.201552
iter 100 value 82.098277
final value 82.098277
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 131.987270
iter 10 value 94.501003
iter 20 value 89.517038
iter 30 value 86.743546
iter 40 value 84.648939
iter 50 value 83.340896
iter 60 value 83.099509
iter 70 value 83.009603
iter 80 value 82.828901
iter 90 value 82.613609
iter 100 value 82.474183
final value 82.474183
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.115821
iter 10 value 94.950045
iter 20 value 94.196289
iter 30 value 86.943956
iter 40 value 86.481945
iter 50 value 84.482416
iter 60 value 83.889433
iter 70 value 83.458889
iter 80 value 82.934449
iter 90 value 82.212110
iter 100 value 82.163659
final value 82.163659
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 115.084281
iter 10 value 94.481232
iter 20 value 93.926283
iter 30 value 92.402483
iter 40 value 91.600645
iter 50 value 87.752051
iter 60 value 87.444219
iter 70 value 86.890959
iter 80 value 86.767100
iter 90 value 86.151108
iter 100 value 85.846538
final value 85.846538
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 115.451018
iter 10 value 94.494189
iter 20 value 93.092028
iter 30 value 87.124762
iter 40 value 85.234986
iter 50 value 84.336646
iter 60 value 82.665854
iter 70 value 82.388325
iter 80 value 82.157381
iter 90 value 82.053684
iter 100 value 82.048191
final value 82.048191
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 129.489856
iter 10 value 95.322625
iter 20 value 91.445997
iter 30 value 86.435703
iter 40 value 85.602648
iter 50 value 85.372104
iter 60 value 85.276471
iter 70 value 84.815401
iter 80 value 84.062548
iter 90 value 82.466710
iter 100 value 82.199772
final value 82.199772
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.372137
iter 10 value 91.400135
iter 20 value 86.488558
iter 30 value 86.074889
iter 40 value 85.440933
iter 50 value 83.684666
iter 60 value 82.866725
iter 70 value 82.412836
iter 80 value 82.052495
iter 90 value 81.845329
iter 100 value 81.764124
final value 81.764124
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.825309
iter 10 value 94.464515
iter 20 value 86.623505
iter 30 value 85.626101
iter 40 value 85.220128
iter 50 value 84.978138
iter 60 value 84.847741
iter 70 value 84.701702
iter 80 value 84.084673
iter 90 value 83.523267
iter 100 value 83.353210
final value 83.353210
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.932233
iter 10 value 94.547122
iter 20 value 92.373459
iter 30 value 91.107146
iter 40 value 89.665111
iter 50 value 88.897807
iter 60 value 86.250427
iter 70 value 83.142237
iter 80 value 82.493759
iter 90 value 82.439851
iter 100 value 82.086750
final value 82.086750
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.726049
final value 94.485929
converged
Fitting Repeat 2
# weights: 103
initial value 94.996892
final value 94.485877
converged
Fitting Repeat 3
# weights: 103
initial value 97.638337
final value 94.485844
converged
Fitting Repeat 4
# weights: 103
initial value 110.410357
final value 94.485871
converged
Fitting Repeat 5
# weights: 103
initial value 96.755599
final value 94.485641
converged
Fitting Repeat 1
# weights: 305
initial value 95.289937
iter 10 value 94.488880
iter 20 value 94.028282
iter 30 value 87.821216
iter 40 value 87.738449
iter 50 value 87.283885
iter 60 value 85.198068
iter 70 value 85.057009
iter 80 value 85.053051
iter 90 value 85.052428
iter 100 value 84.891828
final value 84.891828
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.689457
iter 10 value 94.489271
iter 20 value 87.607472
final value 86.940863
converged
Fitting Repeat 3
# weights: 305
initial value 130.226603
iter 10 value 94.487836
iter 20 value 94.466862
iter 30 value 85.352254
iter 40 value 84.993763
iter 50 value 84.991645
iter 60 value 84.910302
iter 70 value 84.861013
iter 80 value 83.805409
iter 90 value 83.585419
iter 100 value 83.583341
final value 83.583341
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 96.468029
iter 10 value 94.471660
iter 20 value 94.329030
iter 30 value 87.539975
iter 40 value 87.538775
iter 50 value 87.524540
iter 60 value 87.081670
iter 70 value 87.070712
final value 87.070675
converged
Fitting Repeat 5
# weights: 305
initial value 102.605863
iter 10 value 94.484852
iter 20 value 94.362889
iter 30 value 91.173851
iter 40 value 91.172500
iter 50 value 90.421070
iter 60 value 85.372030
iter 70 value 83.558019
iter 80 value 83.468357
iter 90 value 83.467095
iter 100 value 83.466358
final value 83.466358
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 100.543709
iter 10 value 91.699416
iter 20 value 90.746524
iter 30 value 87.977727
iter 40 value 85.004923
iter 50 value 84.755591
iter 60 value 84.734663
iter 70 value 84.412453
iter 80 value 84.128653
iter 90 value 84.126213
iter 100 value 84.055413
final value 84.055413
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.870995
iter 10 value 94.492152
iter 20 value 94.476716
iter 30 value 94.473060
iter 40 value 94.461719
iter 50 value 90.851757
iter 60 value 85.680812
iter 70 value 85.095473
iter 80 value 84.977720
iter 90 value 84.860913
iter 100 value 84.806644
final value 84.806644
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.668922
iter 10 value 94.274345
iter 20 value 94.260936
iter 30 value 94.255071
iter 40 value 94.254500
iter 50 value 94.253702
iter 50 value 94.253701
final value 94.253701
converged
Fitting Repeat 4
# weights: 507
initial value 99.917104
iter 10 value 94.492320
iter 20 value 94.484399
iter 30 value 93.719880
iter 40 value 91.426638
iter 50 value 91.357944
iter 60 value 86.579030
iter 70 value 85.706059
iter 80 value 85.085226
iter 90 value 85.053288
iter 100 value 84.995750
final value 84.995750
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.864735
iter 10 value 94.492312
iter 20 value 94.289838
iter 30 value 89.617550
iter 40 value 87.703702
iter 50 value 87.195060
iter 60 value 87.131025
iter 70 value 87.128781
iter 80 value 87.127958
iter 90 value 87.127409
iter 100 value 87.117661
final value 87.117661
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.846626
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 99.728391
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.596589
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.464835
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.704167
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 94.767060
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 102.785706
final value 94.484210
converged
Fitting Repeat 3
# weights: 305
initial value 97.324571
final value 94.114232
converged
Fitting Repeat 4
# weights: 305
initial value 109.925194
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 116.765904
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 98.673454
final value 94.114232
converged
Fitting Repeat 2
# weights: 507
initial value 112.551726
iter 10 value 94.473131
final value 94.473118
converged
Fitting Repeat 3
# weights: 507
initial value 112.643717
final value 94.473118
converged
Fitting Repeat 4
# weights: 507
initial value 99.341095
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 109.995870
iter 10 value 94.473775
iter 20 value 94.473130
final value 94.473119
converged
Fitting Repeat 1
# weights: 103
initial value 107.174224
iter 10 value 94.523300
iter 20 value 94.488596
iter 30 value 94.438957
iter 40 value 84.979583
iter 50 value 84.059097
iter 60 value 83.215766
iter 70 value 82.585261
iter 80 value 82.517749
iter 90 value 82.507040
iter 90 value 82.507040
iter 90 value 82.507040
final value 82.507040
converged
Fitting Repeat 2
# weights: 103
initial value 99.750186
iter 10 value 94.286401
iter 20 value 94.122077
iter 30 value 92.637217
iter 40 value 86.857754
iter 50 value 83.224690
iter 60 value 82.893909
iter 70 value 82.689877
iter 80 value 82.003320
iter 90 value 81.478882
iter 100 value 81.401544
final value 81.401544
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 101.135932
iter 10 value 94.414691
iter 20 value 91.961642
iter 30 value 88.291607
iter 40 value 84.582420
iter 50 value 83.525233
iter 60 value 83.382210
final value 83.376742
converged
Fitting Repeat 4
# weights: 103
initial value 115.443801
iter 10 value 94.414768
iter 20 value 91.536592
iter 30 value 83.787845
iter 40 value 82.980962
iter 50 value 82.862036
iter 60 value 81.956073
iter 70 value 81.488678
final value 81.484066
converged
Fitting Repeat 5
# weights: 103
initial value 99.068949
iter 10 value 94.501795
iter 20 value 93.020427
iter 30 value 89.491135
iter 40 value 88.765677
iter 50 value 83.519518
iter 60 value 83.229295
iter 70 value 82.764656
iter 80 value 81.828804
iter 90 value 81.352471
iter 100 value 80.845914
final value 80.845914
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 102.691664
iter 10 value 94.496928
iter 20 value 94.291373
iter 30 value 92.011185
iter 40 value 91.337565
iter 50 value 91.050327
iter 60 value 90.876098
iter 70 value 90.831252
iter 80 value 85.031218
iter 90 value 83.681506
iter 100 value 82.433196
final value 82.433196
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 134.590505
iter 10 value 94.487195
iter 20 value 90.891555
iter 30 value 86.266107
iter 40 value 84.308742
iter 50 value 82.771160
iter 60 value 81.401838
iter 70 value 80.502138
iter 80 value 79.739009
iter 90 value 79.675370
iter 100 value 79.573497
final value 79.573497
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 121.321189
iter 10 value 94.481089
iter 20 value 86.437683
iter 30 value 83.967509
iter 40 value 82.375306
iter 50 value 81.899867
iter 60 value 80.707048
iter 70 value 80.438179
iter 80 value 80.347587
iter 90 value 80.161737
iter 100 value 79.750189
final value 79.750189
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 105.422120
iter 10 value 94.478450
iter 20 value 87.251162
iter 30 value 85.443473
iter 40 value 84.792450
iter 50 value 84.271346
iter 60 value 82.999523
iter 70 value 82.519131
iter 80 value 82.258597
iter 90 value 82.137214
iter 100 value 81.321756
final value 81.321756
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.672872
iter 10 value 88.084755
iter 20 value 83.538106
iter 30 value 82.962084
iter 40 value 82.881426
iter 50 value 82.674093
iter 60 value 81.692227
iter 70 value 81.283386
iter 80 value 80.452497
iter 90 value 79.715927
iter 100 value 79.427752
final value 79.427752
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 112.903849
iter 10 value 98.422635
iter 20 value 92.708038
iter 30 value 91.725659
iter 40 value 90.981876
iter 50 value 90.516296
iter 60 value 83.313149
iter 70 value 82.076227
iter 80 value 80.801258
iter 90 value 80.645746
iter 100 value 80.417035
final value 80.417035
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.775071
iter 10 value 95.202846
iter 20 value 94.499990
iter 30 value 92.306907
iter 40 value 83.254535
iter 50 value 82.611251
iter 60 value 82.139894
iter 70 value 81.635236
iter 80 value 81.352524
iter 90 value 80.926584
iter 100 value 80.101636
final value 80.101636
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 104.937910
iter 10 value 94.599802
iter 20 value 91.314985
iter 30 value 88.964728
iter 40 value 86.448273
iter 50 value 85.831078
iter 60 value 85.739013
iter 70 value 83.040983
iter 80 value 82.642309
iter 90 value 82.583855
iter 100 value 82.549054
final value 82.549054
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.773061
iter 10 value 92.770578
iter 20 value 85.743745
iter 30 value 85.357949
iter 40 value 83.614771
iter 50 value 81.698860
iter 60 value 81.478128
iter 70 value 81.279288
iter 80 value 80.831427
iter 90 value 79.948604
iter 100 value 79.394237
final value 79.394237
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 111.203648
iter 10 value 94.393869
iter 20 value 91.992034
iter 30 value 85.796882
iter 40 value 83.932385
iter 50 value 83.117666
iter 60 value 82.592791
iter 70 value 81.077539
iter 80 value 79.588119
iter 90 value 79.287542
iter 100 value 79.156792
final value 79.156792
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.650019
iter 10 value 93.346112
iter 20 value 92.990111
iter 30 value 91.796853
iter 40 value 91.791471
iter 50 value 91.436342
final value 91.089332
converged
Fitting Repeat 2
# weights: 103
initial value 98.875876
final value 94.485928
converged
Fitting Repeat 3
# weights: 103
initial value 95.589482
final value 94.485726
converged
Fitting Repeat 4
# weights: 103
initial value 95.959754
final value 94.485795
converged
Fitting Repeat 5
# weights: 103
initial value 95.579160
final value 94.485896
converged
Fitting Repeat 1
# weights: 305
initial value 106.927027
iter 10 value 94.447254
iter 20 value 91.825588
iter 30 value 91.694517
iter 40 value 91.277763
iter 50 value 91.257387
iter 60 value 91.255695
iter 70 value 90.590318
iter 80 value 90.502951
iter 90 value 90.486083
final value 90.486078
converged
Fitting Repeat 2
# weights: 305
initial value 94.731322
iter 10 value 94.487238
iter 20 value 94.484234
iter 30 value 93.087546
iter 40 value 88.193976
iter 50 value 84.353874
final value 84.231333
converged
Fitting Repeat 3
# weights: 305
initial value 99.830642
iter 10 value 94.490599
iter 20 value 94.472820
iter 30 value 84.866557
iter 40 value 84.837517
iter 50 value 84.832208
iter 60 value 83.099596
iter 70 value 80.368650
iter 80 value 80.009056
iter 90 value 79.352340
iter 100 value 79.352166
final value 79.352166
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.622676
iter 10 value 94.488975
iter 20 value 94.283470
iter 30 value 90.973771
iter 40 value 84.286969
iter 50 value 84.232010
iter 60 value 82.276053
iter 70 value 82.181673
final value 82.173972
converged
Fitting Repeat 5
# weights: 305
initial value 105.894531
iter 10 value 94.477892
iter 20 value 94.470224
iter 30 value 93.663776
iter 40 value 93.377616
iter 50 value 91.810487
iter 60 value 91.266661
iter 70 value 91.262455
iter 80 value 91.259099
iter 90 value 91.248460
iter 100 value 91.062706
final value 91.062706
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 97.032021
iter 10 value 94.461042
iter 20 value 94.451778
final value 94.450953
converged
Fitting Repeat 2
# weights: 507
initial value 100.545732
iter 10 value 94.440912
iter 20 value 94.433729
iter 30 value 93.128797
iter 40 value 87.474365
iter 50 value 83.214154
iter 60 value 82.577548
iter 70 value 81.961691
iter 80 value 81.947820
iter 90 value 81.947176
final value 81.946993
converged
Fitting Repeat 3
# weights: 507
initial value 111.974152
iter 10 value 94.491778
iter 20 value 94.343850
iter 30 value 91.146251
iter 40 value 84.504067
iter 50 value 84.052674
iter 60 value 83.943492
iter 70 value 83.941496
iter 80 value 83.806512
iter 90 value 81.130529
iter 100 value 79.483024
final value 79.483024
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 95.997717
iter 10 value 94.042214
iter 20 value 94.039562
iter 30 value 94.032595
iter 40 value 94.032230
iter 50 value 94.031734
final value 94.031296
converged
Fitting Repeat 5
# weights: 507
initial value 103.668619
iter 10 value 94.492415
iter 20 value 94.448048
iter 30 value 90.794034
iter 40 value 84.873312
iter 50 value 83.462997
iter 60 value 82.552864
iter 70 value 81.385289
iter 80 value 79.731209
iter 90 value 79.228889
iter 100 value 79.201536
final value 79.201536
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.420312
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 96.808597
final value 93.836066
converged
Fitting Repeat 3
# weights: 103
initial value 102.237205
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 97.244167
iter 10 value 93.861027
final value 93.860355
converged
Fitting Repeat 5
# weights: 103
initial value 103.890467
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 113.918588
iter 10 value 93.836073
final value 93.836066
converged
Fitting Repeat 2
# weights: 305
initial value 110.226185
final value 94.052874
converged
Fitting Repeat 3
# weights: 305
initial value 103.094533
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 96.978746
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 100.348874
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 97.877681
final value 93.836066
converged
Fitting Repeat 2
# weights: 507
initial value 102.552274
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 99.934649
iter 10 value 88.237116
iter 20 value 85.969460
iter 30 value 85.873446
iter 40 value 85.852396
final value 85.852310
converged
Fitting Repeat 4
# weights: 507
initial value 100.905644
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 97.336614
final value 93.836066
converged
Fitting Repeat 1
# weights: 103
initial value 98.232147
iter 10 value 92.951014
iter 20 value 86.020932
iter 30 value 85.242654
iter 40 value 84.585555
iter 50 value 84.344626
iter 60 value 84.151231
iter 70 value 84.079852
iter 80 value 84.061258
iter 80 value 84.061258
iter 80 value 84.061258
final value 84.061258
converged
Fitting Repeat 2
# weights: 103
initial value 100.947458
iter 10 value 94.043293
iter 20 value 90.501590
iter 30 value 86.487814
iter 40 value 85.096993
iter 50 value 84.671298
iter 60 value 84.593325
iter 70 value 84.507621
iter 80 value 84.446100
iter 90 value 84.441427
final value 84.441399
converged
Fitting Repeat 3
# weights: 103
initial value 97.419076
iter 10 value 94.056797
iter 20 value 93.894240
iter 30 value 93.891300
iter 40 value 93.646433
iter 50 value 91.234593
iter 60 value 90.101196
iter 70 value 87.919361
iter 80 value 85.636813
iter 90 value 84.886702
iter 100 value 84.483326
final value 84.483326
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.375795
iter 10 value 94.052509
iter 20 value 88.216205
iter 30 value 85.508021
iter 40 value 85.289401
iter 50 value 85.026507
iter 60 value 84.520116
iter 70 value 84.442103
final value 84.441400
converged
Fitting Repeat 5
# weights: 103
initial value 97.691445
iter 10 value 94.055156
iter 20 value 90.946611
iter 30 value 85.948047
iter 40 value 84.099218
iter 50 value 83.903987
iter 60 value 83.844486
iter 70 value 83.706221
iter 80 value 83.690197
final value 83.680567
converged
Fitting Repeat 1
# weights: 305
initial value 102.907820
iter 10 value 94.306130
iter 20 value 89.227004
iter 30 value 84.149445
iter 40 value 83.065592
iter 50 value 82.059571
iter 60 value 81.901524
iter 70 value 81.803176
iter 80 value 81.771231
iter 90 value 81.758189
iter 100 value 81.747556
final value 81.747556
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 113.327922
iter 10 value 94.290691
iter 20 value 88.658017
iter 30 value 87.832285
iter 40 value 86.447911
iter 50 value 85.898695
iter 60 value 85.382088
iter 70 value 84.450986
iter 80 value 83.533453
iter 90 value 83.182167
iter 100 value 83.176831
final value 83.176831
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 108.221646
iter 10 value 94.129788
iter 20 value 93.976091
iter 30 value 87.283657
iter 40 value 85.981869
iter 50 value 85.788100
iter 60 value 85.077348
iter 70 value 84.865322
iter 80 value 84.738859
iter 90 value 84.127818
iter 100 value 84.043117
final value 84.043117
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.033871
iter 10 value 94.044777
iter 20 value 86.966096
iter 30 value 86.106635
iter 40 value 84.742818
iter 50 value 84.541045
iter 60 value 84.302634
iter 70 value 84.168686
iter 80 value 84.154785
iter 90 value 84.141501
iter 100 value 84.033238
final value 84.033238
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.857525
iter 10 value 94.011331
iter 20 value 93.863224
iter 30 value 93.228851
iter 40 value 87.536289
iter 50 value 85.520306
iter 60 value 84.685076
iter 70 value 83.482593
iter 80 value 82.785535
iter 90 value 82.590920
iter 100 value 82.003761
final value 82.003761
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.209098
iter 10 value 95.449987
iter 20 value 89.882201
iter 30 value 86.751963
iter 40 value 85.434013
iter 50 value 84.077381
iter 60 value 83.220417
iter 70 value 82.409324
iter 80 value 81.935632
iter 90 value 81.879772
iter 100 value 81.814390
final value 81.814390
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 114.819754
iter 10 value 94.002883
iter 20 value 87.333025
iter 30 value 85.891184
iter 40 value 84.523596
iter 50 value 84.125012
iter 60 value 83.674491
iter 70 value 82.784771
iter 80 value 82.314262
iter 90 value 82.281890
iter 100 value 82.233435
final value 82.233435
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.345908
iter 10 value 97.451815
iter 20 value 89.702390
iter 30 value 86.005124
iter 40 value 84.745786
iter 50 value 83.114886
iter 60 value 82.686254
iter 70 value 82.438709
iter 80 value 82.152699
iter 90 value 82.062066
iter 100 value 82.051673
final value 82.051673
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.521285
iter 10 value 94.696331
iter 20 value 94.055492
iter 30 value 92.817088
iter 40 value 92.651772
iter 50 value 87.515527
iter 60 value 86.387755
iter 70 value 83.449681
iter 80 value 82.601806
iter 90 value 82.184216
iter 100 value 82.113342
final value 82.113342
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.946189
iter 10 value 94.035503
iter 20 value 90.545077
iter 30 value 85.676055
iter 40 value 84.597900
iter 50 value 83.780212
iter 60 value 82.982563
iter 70 value 82.433529
iter 80 value 82.310821
iter 90 value 82.170117
iter 100 value 82.160464
final value 82.160464
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.487273
final value 94.054755
converged
Fitting Repeat 2
# weights: 103
initial value 100.273378
iter 10 value 93.862196
iter 20 value 93.837259
iter 30 value 93.784990
iter 30 value 93.784990
iter 30 value 93.784990
final value 93.784990
converged
Fitting Repeat 3
# weights: 103
initial value 104.818726
final value 94.054814
converged
Fitting Repeat 4
# weights: 103
initial value 100.801479
iter 10 value 94.054824
iter 20 value 93.999342
iter 30 value 90.121146
iter 40 value 85.994840
iter 50 value 85.989798
iter 60 value 85.779066
iter 70 value 85.696339
iter 80 value 85.695811
final value 85.695795
converged
Fitting Repeat 5
# weights: 103
initial value 101.305341
iter 10 value 93.837721
iter 20 value 93.836708
iter 30 value 93.836245
final value 93.836242
converged
Fitting Repeat 1
# weights: 305
initial value 110.662952
iter 10 value 94.016165
iter 20 value 94.015130
iter 30 value 94.011431
iter 40 value 93.815472
iter 50 value 87.089422
iter 60 value 86.203309
iter 70 value 85.811890
iter 80 value 84.021486
iter 90 value 83.107311
iter 100 value 82.757452
final value 82.757452
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.248496
iter 10 value 89.924484
iter 20 value 89.024203
iter 30 value 87.881274
iter 40 value 86.228048
iter 50 value 86.027152
iter 60 value 85.636771
iter 70 value 85.636260
iter 80 value 85.635295
iter 90 value 85.631725
iter 100 value 85.512275
final value 85.512275
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.773219
iter 10 value 94.058137
iter 20 value 94.036950
iter 30 value 85.909837
final value 85.672434
converged
Fitting Repeat 4
# weights: 305
initial value 103.088784
iter 10 value 94.057904
iter 20 value 94.052949
iter 30 value 94.038928
iter 40 value 93.504486
iter 50 value 89.844730
iter 60 value 89.779148
iter 70 value 89.763717
iter 80 value 89.763279
iter 80 value 89.763278
iter 80 value 89.763278
final value 89.763278
converged
Fitting Repeat 5
# weights: 305
initial value 100.934154
iter 10 value 94.057918
iter 20 value 93.995078
iter 30 value 86.202919
final value 86.202873
converged
Fitting Repeat 1
# weights: 507
initial value 104.664319
iter 10 value 91.809353
iter 20 value 90.336454
iter 30 value 90.332519
iter 40 value 90.262161
iter 50 value 90.257279
iter 60 value 89.397089
iter 70 value 89.280205
iter 80 value 89.279972
final value 89.279311
converged
Fitting Repeat 2
# weights: 507
initial value 92.945246
iter 10 value 89.069357
iter 20 value 87.651495
iter 30 value 87.615023
iter 40 value 87.517333
iter 50 value 86.366878
iter 60 value 84.563230
iter 70 value 82.952737
iter 80 value 82.948790
iter 90 value 82.947956
iter 100 value 82.946285
final value 82.946285
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.941550
iter 10 value 94.061598
iter 20 value 93.908280
iter 30 value 93.265806
iter 40 value 89.514568
iter 50 value 88.285116
iter 60 value 88.250386
iter 70 value 88.173885
iter 80 value 87.829507
iter 90 value 87.670124
final value 87.667200
converged
Fitting Repeat 4
# weights: 507
initial value 102.685229
iter 10 value 88.267387
iter 20 value 84.654242
iter 30 value 84.185551
final value 84.185310
converged
Fitting Repeat 5
# weights: 507
initial value 108.649530
iter 10 value 94.021251
iter 20 value 94.015611
iter 30 value 94.012368
iter 40 value 90.040103
iter 50 value 88.121426
iter 60 value 87.951006
iter 70 value 86.561649
iter 80 value 86.518795
iter 90 value 86.517189
iter 100 value 84.168816
final value 84.168816
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 138.667411
iter 10 value 117.763739
iter 20 value 117.728301
iter 30 value 113.117167
iter 40 value 112.787434
iter 50 value 112.786313
iter 60 value 112.778764
final value 112.778419
converged
Fitting Repeat 2
# weights: 305
initial value 141.920115
iter 10 value 117.895008
iter 20 value 117.869437
iter 30 value 117.604630
iter 40 value 117.511541
final value 117.511389
converged
Fitting Repeat 3
# weights: 305
initial value 120.742695
iter 10 value 117.764347
iter 20 value 117.737611
iter 30 value 116.230649
iter 40 value 108.479041
iter 50 value 106.258454
iter 60 value 106.224114
iter 70 value 106.220718
iter 80 value 106.219414
final value 106.216898
converged
Fitting Repeat 4
# weights: 305
initial value 119.366651
iter 10 value 117.894504
iter 20 value 112.407813
iter 30 value 107.645752
iter 40 value 104.262163
iter 50 value 102.503821
iter 60 value 101.285140
iter 70 value 101.221991
iter 80 value 101.219597
final value 101.217794
converged
Fitting Repeat 5
# weights: 305
initial value 123.534199
iter 10 value 117.210957
iter 20 value 117.207000
final value 117.206757
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Apr 12 07:53:22 2022
***********************************************
Number of test functions: 8
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8
Number of errors: 0
Number of failures: 0
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0.
Use `.name_repair = "minimal"`.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
2: `repeats` has no meaning for this resampling method.
3: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
42.028 1.702 50.196
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 31.435 | 0.740 | 32.176 | |
| FreqInteractors | 0.165 | 0.004 | 0.169 | |
| calculateAAC | 0.050 | 0.008 | 0.059 | |
| calculateAutocor | 0.297 | 0.004 | 0.302 | |
| calculateBE | 0.075 | 0.000 | 0.075 | |
| calculateCTDC | 0.082 | 0.000 | 0.082 | |
| calculateCTDD | 0.686 | 0.008 | 0.695 | |
| calculateCTDT | 0.222 | 0.000 | 0.222 | |
| calculateCTriad | 0.314 | 0.004 | 0.318 | |
| calculateDC | 0.112 | 0.000 | 0.112 | |
| calculateF | 0.294 | 0.000 | 0.294 | |
| calculateKSAAP | 0.084 | 0.004 | 0.088 | |
| calculateQD_Sm | 1.774 | 0.048 | 1.823 | |
| calculateTC | 2.971 | 0.036 | 3.007 | |
| calculateTC_Sm | 0.233 | 0.004 | 0.236 | |
| corr_plot | 35.793 | 0.568 | 36.361 | |
| enrichfindP | 0.409 | 0.016 | 8.824 | |
| enrichplot | 0.235 | 0.004 | 0.239 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.070 | 0.000 | 2.576 | |
| getHPI | 0.001 | 0.000 | 0.001 | |
| get_negativePPI | 0.002 | 0.000 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.003 | 0.000 | 0.002 | |
| plotPPI | 0.101 | 0.004 | 0.105 | |
| pred_ensembel | 14.780 | 0.416 | 11.299 | |
| var_imp | 34.596 | 0.760 | 35.357 | |