| Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:08:09 -0400 (Wed, 13 Apr 2022).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
| tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
| machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the HPiP package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 886/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.0.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
| tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
| machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
| Package: HPiP |
| Version: 1.0.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.0.0.tar.gz |
| StartedAt: 2022-04-12 14:19:44 -0400 (Tue, 12 Apr 2022) |
| EndedAt: 2022-04-12 14:26:25 -0400 (Tue, 12 Apr 2022) |
| EllapsedTime: 400.5 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.0.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck’
* using R version 4.1.3 (2022-03-10)
* using platform: x86_64-apple-darwin17.0 (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.0.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
corr_plot 49.134 1.012 50.264
var_imp 46.925 1.109 48.096
FSmethod 45.306 1.153 46.627
pred_ensembel 20.676 0.356 16.014
calculateTC 6.796 0.398 7.202
enrichfindP 0.577 0.044 8.846
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/Users/biocbuild/bbs-3.14-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.1/Resources/library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 98.049695
final value 93.394928
converged
Fitting Repeat 2
# weights: 103
initial value 95.317614
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 108.721031
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 99.349170
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 94.643573
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 94.639386
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 112.239534
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 129.645738
iter 10 value 94.484211
iter 10 value 94.484211
iter 10 value 94.484211
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 95.734991
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 97.586611
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 100.952028
iter 10 value 93.394097
iter 20 value 93.340415
final value 93.340410
converged
Fitting Repeat 2
# weights: 507
initial value 109.921345
iter 10 value 93.394948
final value 93.394928
converged
Fitting Repeat 3
# weights: 507
initial value 96.553710
iter 10 value 88.044279
iter 20 value 84.885081
iter 30 value 82.544520
iter 40 value 81.966833
final value 81.966832
converged
Fitting Repeat 4
# weights: 507
initial value 94.292088
iter 10 value 93.701958
iter 20 value 93.386286
iter 30 value 93.371548
final value 93.371545
converged
Fitting Repeat 5
# weights: 507
initial value 104.848591
iter 10 value 93.561431
iter 20 value 93.371978
final value 93.371545
converged
Fitting Repeat 1
# weights: 103
initial value 104.098807
iter 10 value 94.488541
iter 20 value 92.761881
iter 30 value 89.877038
iter 40 value 85.827254
iter 50 value 83.461148
iter 60 value 83.130300
iter 70 value 82.639649
iter 80 value 82.513374
final value 82.512766
converged
Fitting Repeat 2
# weights: 103
initial value 99.659663
iter 10 value 94.489805
iter 20 value 94.486731
iter 30 value 93.695854
iter 40 value 93.677741
iter 50 value 93.321915
iter 60 value 88.308007
iter 70 value 85.065134
iter 80 value 83.742609
iter 90 value 83.078770
iter 100 value 82.895674
final value 82.895674
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 110.323291
iter 10 value 94.482377
iter 20 value 92.139423
iter 30 value 91.099625
iter 40 value 90.066909
iter 50 value 81.404932
iter 60 value 80.516888
iter 70 value 80.285173
final value 80.254187
converged
Fitting Repeat 4
# weights: 103
initial value 120.033804
iter 10 value 93.235911
iter 20 value 87.083809
iter 30 value 85.886478
iter 40 value 84.667742
iter 50 value 83.819501
iter 60 value 83.718953
iter 70 value 82.914582
final value 82.894665
converged
Fitting Repeat 5
# weights: 103
initial value 98.474992
iter 10 value 94.485852
iter 20 value 92.342153
iter 30 value 87.479881
iter 40 value 82.850250
iter 50 value 81.630624
iter 60 value 81.423835
iter 70 value 80.467981
iter 80 value 80.254233
final value 80.254187
converged
Fitting Repeat 1
# weights: 305
initial value 112.777986
iter 10 value 92.972170
iter 20 value 83.037466
iter 30 value 80.175515
iter 40 value 79.004106
iter 50 value 78.064348
iter 60 value 77.292715
iter 70 value 77.209603
iter 80 value 77.134484
iter 90 value 77.117922
iter 100 value 77.116500
final value 77.116500
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.400456
iter 10 value 93.628240
iter 20 value 85.564532
iter 30 value 85.271053
iter 40 value 84.013686
iter 50 value 79.223174
iter 60 value 78.972566
iter 70 value 78.907330
iter 80 value 78.295525
iter 90 value 77.997758
iter 100 value 77.891934
final value 77.891934
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 114.124297
iter 10 value 94.050547
iter 20 value 91.870993
iter 30 value 88.402289
iter 40 value 85.772488
iter 50 value 80.831880
iter 60 value 78.738442
iter 70 value 78.591583
iter 80 value 78.550849
iter 90 value 78.529891
iter 100 value 78.527176
final value 78.527176
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.907737
iter 10 value 95.247113
iter 20 value 94.252737
iter 30 value 92.128955
iter 40 value 87.209841
iter 50 value 87.107312
iter 60 value 86.306910
iter 70 value 82.363746
iter 80 value 80.871616
iter 90 value 79.234371
iter 100 value 78.690638
final value 78.690638
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 126.352736
iter 10 value 94.555405
iter 20 value 93.919849
iter 30 value 93.609767
iter 40 value 92.710846
iter 50 value 82.712012
iter 60 value 82.277514
iter 70 value 81.824679
iter 80 value 81.145538
iter 90 value 81.078003
iter 100 value 80.963480
final value 80.963480
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.654523
iter 10 value 93.990099
iter 20 value 86.327504
iter 30 value 83.154390
iter 40 value 81.104407
iter 50 value 79.406719
iter 60 value 79.005120
iter 70 value 78.365506
iter 80 value 78.346038
iter 90 value 78.284687
iter 100 value 78.272854
final value 78.272854
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.774006
iter 10 value 93.739890
iter 20 value 93.599466
iter 30 value 89.547640
iter 40 value 85.105327
iter 50 value 84.487973
iter 60 value 83.088089
iter 70 value 81.513570
iter 80 value 80.262605
iter 90 value 80.069606
iter 100 value 79.902308
final value 79.902308
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.024498
iter 10 value 94.396195
iter 20 value 87.961087
iter 30 value 85.621390
iter 40 value 81.097906
iter 50 value 79.685643
iter 60 value 78.716476
iter 70 value 78.600446
iter 80 value 78.516096
iter 90 value 78.442499
iter 100 value 78.101963
final value 78.101963
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.878009
iter 10 value 94.894299
iter 20 value 94.276020
iter 30 value 86.486845
iter 40 value 85.276105
iter 50 value 83.208172
iter 60 value 79.282890
iter 70 value 78.006179
iter 80 value 77.895360
iter 90 value 77.866017
iter 100 value 77.848599
final value 77.848599
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 127.970931
iter 10 value 96.646295
iter 20 value 96.485511
iter 30 value 88.042870
iter 40 value 82.741382
iter 50 value 81.849448
iter 60 value 79.802745
iter 70 value 79.149102
iter 80 value 78.922748
iter 90 value 78.748352
iter 100 value 78.324115
final value 78.324115
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.131243
final value 94.485881
converged
Fitting Repeat 2
# weights: 103
initial value 101.446445
final value 94.485939
converged
Fitting Repeat 3
# weights: 103
initial value 103.755221
final value 94.485769
converged
Fitting Repeat 4
# weights: 103
initial value 106.482897
final value 94.485656
converged
Fitting Repeat 5
# weights: 103
initial value 96.883415
iter 10 value 94.485720
final value 94.484281
converged
Fitting Repeat 1
# weights: 305
initial value 94.991349
iter 10 value 87.429647
iter 20 value 81.986222
iter 30 value 81.881617
iter 40 value 81.880705
iter 50 value 81.880059
iter 60 value 81.515546
iter 70 value 78.381550
iter 80 value 78.095863
iter 90 value 78.079919
iter 100 value 78.078978
final value 78.078978
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.889211
iter 10 value 94.489155
iter 20 value 94.484280
iter 30 value 93.932523
iter 40 value 85.187556
iter 50 value 84.597900
iter 60 value 83.424400
iter 70 value 82.514432
iter 80 value 80.686354
iter 90 value 80.651315
iter 100 value 80.598244
final value 80.598244
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 95.048630
iter 10 value 94.488568
final value 94.484228
converged
Fitting Repeat 4
# weights: 305
initial value 95.884443
iter 10 value 93.400593
iter 20 value 93.397421
iter 30 value 93.394401
final value 93.394225
converged
Fitting Repeat 5
# weights: 305
initial value 100.805112
iter 10 value 93.400178
iter 20 value 93.345633
iter 30 value 93.343047
iter 40 value 92.097543
iter 50 value 91.364741
iter 60 value 91.354929
iter 70 value 91.354110
iter 80 value 91.351946
final value 91.351944
converged
Fitting Repeat 1
# weights: 507
initial value 112.048480
iter 10 value 94.492667
iter 20 value 94.444104
iter 30 value 93.395660
final value 93.395653
converged
Fitting Repeat 2
# weights: 507
initial value 104.472317
iter 10 value 93.543035
iter 20 value 93.539732
iter 30 value 93.341217
final value 93.341095
converged
Fitting Repeat 3
# weights: 507
initial value 99.117647
iter 10 value 93.755549
iter 20 value 85.054029
iter 30 value 83.496520
iter 40 value 83.474025
final value 83.473906
converged
Fitting Repeat 4
# weights: 507
initial value 102.301248
iter 10 value 94.492288
iter 20 value 94.485309
iter 30 value 93.472545
iter 40 value 93.397181
iter 40 value 93.397180
iter 40 value 93.397180
final value 93.397180
converged
Fitting Repeat 5
# weights: 507
initial value 115.221883
iter 10 value 94.451225
iter 20 value 94.129305
iter 30 value 93.311735
iter 40 value 93.129588
final value 93.010154
converged
Fitting Repeat 1
# weights: 103
initial value 108.361147
iter 10 value 92.088953
final value 92.088889
converged
Fitting Repeat 2
# weights: 103
initial value 101.940629
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.152506
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 96.513312
final value 93.701657
converged
Fitting Repeat 5
# weights: 103
initial value 95.144295
final value 94.275362
converged
Fitting Repeat 1
# weights: 305
initial value 100.029001
iter 10 value 94.252911
iter 20 value 94.026501
iter 30 value 89.964372
iter 40 value 89.795818
iter 50 value 89.787551
iter 60 value 89.671407
iter 60 value 89.671407
iter 60 value 89.671407
final value 89.671407
converged
Fitting Repeat 2
# weights: 305
initial value 97.114731
final value 93.701657
converged
Fitting Repeat 3
# weights: 305
initial value 97.363159
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 121.014891
iter 10 value 94.275363
iter 10 value 94.275362
iter 10 value 94.275362
final value 94.275362
converged
Fitting Repeat 5
# weights: 305
initial value 112.677169
final value 94.275362
converged
Fitting Repeat 1
# weights: 507
initial value 119.975784
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 103.449574
iter 10 value 94.121210
iter 20 value 91.509222
iter 30 value 87.201207
iter 40 value 83.437065
iter 50 value 83.364811
iter 60 value 81.485704
iter 70 value 80.752673
iter 80 value 80.535817
iter 90 value 80.532233
final value 80.532215
converged
Fitting Repeat 3
# weights: 507
initial value 95.122723
iter 10 value 93.288347
iter 20 value 93.264624
final value 93.264615
converged
Fitting Repeat 4
# weights: 507
initial value 102.043326
iter 10 value 93.554163
iter 20 value 93.550659
iter 30 value 93.544404
final value 93.544373
converged
Fitting Repeat 5
# weights: 507
initial value 99.228939
iter 10 value 94.275367
final value 94.275362
converged
Fitting Repeat 1
# weights: 103
initial value 115.047118
iter 10 value 94.466516
iter 20 value 87.646943
iter 30 value 86.219870
iter 40 value 83.834682
iter 50 value 83.333399
iter 60 value 82.488148
iter 70 value 82.223299
iter 80 value 81.872628
iter 90 value 81.839632
iter 100 value 81.832709
final value 81.832709
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.367330
iter 10 value 94.501468
iter 20 value 94.147609
iter 30 value 90.970685
iter 40 value 90.670082
iter 50 value 90.660658
final value 90.660629
converged
Fitting Repeat 3
# weights: 103
initial value 98.508745
iter 10 value 94.489554
iter 20 value 93.892551
iter 30 value 93.814576
iter 40 value 93.696536
iter 50 value 90.517261
iter 60 value 85.099942
iter 70 value 85.006584
iter 80 value 83.491725
iter 90 value 83.102891
iter 100 value 81.913874
final value 81.913874
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 102.057257
iter 10 value 94.283128
iter 20 value 93.751648
iter 30 value 93.698267
iter 40 value 90.435579
iter 50 value 87.215716
iter 60 value 87.060168
iter 70 value 85.996896
iter 80 value 84.014807
iter 90 value 83.696799
iter 100 value 83.692041
final value 83.692041
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 99.452939
iter 10 value 88.935618
iter 20 value 84.687425
iter 30 value 83.726542
iter 40 value 83.385786
iter 50 value 83.274311
final value 83.272555
converged
Fitting Repeat 1
# weights: 305
initial value 108.256646
iter 10 value 94.491426
iter 20 value 93.120091
iter 30 value 85.345941
iter 40 value 83.688851
iter 50 value 83.290454
iter 60 value 81.997108
iter 70 value 81.432185
iter 80 value 81.073442
iter 90 value 80.683539
iter 100 value 80.335529
final value 80.335529
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 121.216769
iter 10 value 94.466000
iter 20 value 90.631952
iter 30 value 86.407834
iter 40 value 84.565610
iter 50 value 83.938091
iter 60 value 83.689582
iter 70 value 83.314446
iter 80 value 82.341896
iter 90 value 81.626212
iter 100 value 80.955418
final value 80.955418
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 136.118886
iter 10 value 94.267107
iter 20 value 89.045794
iter 30 value 84.070683
iter 40 value 83.750842
iter 50 value 83.323017
iter 60 value 83.258694
iter 70 value 83.240738
iter 80 value 83.193594
iter 90 value 83.059150
iter 100 value 82.269381
final value 82.269381
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 113.320426
iter 10 value 94.469111
iter 20 value 88.013170
iter 30 value 86.357613
iter 40 value 84.554922
iter 50 value 83.788511
iter 60 value 83.748018
iter 70 value 83.505418
iter 80 value 82.284062
iter 90 value 81.894945
iter 100 value 81.422635
final value 81.422635
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 105.457978
iter 10 value 94.455604
iter 20 value 91.968309
iter 30 value 91.280186
iter 40 value 90.533833
iter 50 value 88.823317
iter 60 value 85.866854
iter 70 value 84.645297
iter 80 value 83.995915
iter 90 value 82.198076
iter 100 value 81.657720
final value 81.657720
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.393301
iter 10 value 94.524214
iter 20 value 86.454884
iter 30 value 84.631799
iter 40 value 83.589487
iter 50 value 83.284485
iter 60 value 82.742211
iter 70 value 82.196571
iter 80 value 81.792694
iter 90 value 81.425508
iter 100 value 80.857960
final value 80.857960
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.060805
iter 10 value 94.631824
iter 20 value 87.031286
iter 30 value 86.414317
iter 40 value 85.942855
iter 50 value 82.489922
iter 60 value 81.493866
iter 70 value 80.626216
iter 80 value 80.254803
iter 90 value 80.173501
iter 100 value 80.049406
final value 80.049406
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 117.992690
iter 10 value 94.578736
iter 20 value 93.906586
iter 30 value 93.306002
iter 40 value 87.571696
iter 50 value 87.312564
iter 60 value 86.983561
iter 70 value 85.887354
iter 80 value 83.981165
iter 90 value 83.040980
iter 100 value 82.415583
final value 82.415583
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 109.619381
iter 10 value 94.491099
iter 20 value 90.344002
iter 30 value 85.526546
iter 40 value 84.720157
iter 50 value 82.245922
iter 60 value 81.789366
iter 70 value 81.525485
iter 80 value 81.192717
iter 90 value 80.795229
iter 100 value 80.665167
final value 80.665167
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 123.204423
iter 10 value 94.466163
iter 20 value 92.140036
iter 30 value 84.146851
iter 40 value 83.252737
iter 50 value 82.861497
iter 60 value 82.188321
iter 70 value 81.850092
iter 80 value 81.145318
iter 90 value 80.500091
iter 100 value 80.177498
final value 80.177498
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.841486
final value 94.485774
converged
Fitting Repeat 2
# weights: 103
initial value 96.831229
final value 94.486105
converged
Fitting Repeat 3
# weights: 103
initial value 95.131790
iter 10 value 87.702698
iter 20 value 87.622384
iter 30 value 87.017018
iter 40 value 86.959339
iter 50 value 86.897617
iter 60 value 86.334161
iter 70 value 86.322262
final value 86.309475
converged
Fitting Repeat 4
# weights: 103
initial value 108.332710
final value 94.485711
converged
Fitting Repeat 5
# weights: 103
initial value 96.978328
final value 94.485967
converged
Fitting Repeat 1
# weights: 305
initial value 106.716310
iter 10 value 93.706989
iter 20 value 85.746163
iter 30 value 83.028610
final value 83.028598
converged
Fitting Repeat 2
# weights: 305
initial value 99.518009
iter 10 value 93.706428
iter 20 value 88.097221
iter 30 value 86.321367
iter 40 value 86.310174
iter 50 value 86.309859
final value 86.309775
converged
Fitting Repeat 3
# weights: 305
initial value 100.945388
iter 10 value 94.489375
iter 20 value 94.484408
iter 30 value 93.691280
final value 93.691279
converged
Fitting Repeat 4
# weights: 305
initial value 95.116034
iter 10 value 94.489055
iter 20 value 87.835417
iter 30 value 86.920731
iter 40 value 86.374275
iter 50 value 86.345376
iter 60 value 86.271208
iter 70 value 85.573598
iter 80 value 85.502026
iter 90 value 85.437340
iter 100 value 85.147975
final value 85.147975
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 131.603614
iter 10 value 94.489982
iter 20 value 94.485448
final value 94.485441
converged
Fitting Repeat 1
# weights: 507
initial value 97.084575
iter 10 value 93.639517
iter 20 value 93.499049
iter 30 value 93.498459
iter 40 value 93.485803
iter 50 value 91.311280
iter 60 value 90.070621
iter 70 value 89.923332
iter 80 value 86.936269
iter 90 value 84.114879
iter 100 value 81.762397
final value 81.762397
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 101.011025
iter 10 value 86.272162
iter 20 value 86.251831
iter 30 value 86.250258
iter 40 value 86.148137
iter 50 value 86.142987
iter 60 value 85.456728
iter 70 value 85.298565
iter 80 value 85.298188
iter 90 value 85.016128
iter 100 value 83.105948
final value 83.105948
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 137.004644
iter 10 value 94.286308
iter 20 value 91.313137
iter 30 value 82.399088
iter 40 value 82.260458
iter 50 value 82.165869
iter 60 value 82.054643
iter 70 value 81.986885
iter 80 value 81.971760
iter 90 value 81.953746
iter 100 value 81.953103
final value 81.953103
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 99.157738
iter 10 value 88.727558
iter 20 value 88.718910
iter 30 value 86.187518
iter 40 value 84.693078
iter 50 value 82.915702
iter 60 value 81.710464
iter 70 value 81.535283
iter 80 value 81.478777
iter 90 value 80.972173
iter 100 value 80.650751
final value 80.650751
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.270918
iter 10 value 94.492422
iter 20 value 94.445500
iter 30 value 86.136496
iter 40 value 82.933488
iter 50 value 82.826575
iter 60 value 82.822523
iter 70 value 82.802519
final value 82.801706
converged
Fitting Repeat 1
# weights: 103
initial value 100.842163
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 102.035769
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.586710
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 99.504982
final value 94.038251
converged
Fitting Repeat 5
# weights: 103
initial value 94.424600
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 103.107745
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 112.459454
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 96.789866
iter 10 value 93.592761
iter 20 value 93.165079
final value 93.164741
converged
Fitting Repeat 4
# weights: 305
initial value 101.515847
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 100.180276
iter 10 value 93.366128
iter 20 value 92.794746
iter 30 value 92.757627
final value 92.757313
converged
Fitting Repeat 1
# weights: 507
initial value 104.168810
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 100.084404
iter 10 value 92.893511
final value 92.892737
converged
Fitting Repeat 3
# weights: 507
initial value 109.912741
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 97.736728
final value 92.864740
converged
Fitting Repeat 5
# weights: 507
initial value 114.846265
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 98.568274
iter 10 value 94.056506
iter 20 value 93.802776
iter 30 value 88.091905
iter 40 value 85.675629
iter 50 value 80.918305
iter 60 value 80.400694
iter 70 value 80.204752
final value 80.202200
converged
Fitting Repeat 2
# weights: 103
initial value 96.966194
iter 10 value 92.681037
iter 20 value 85.672313
iter 30 value 84.977821
iter 40 value 82.541734
iter 50 value 80.247522
iter 60 value 80.211315
iter 70 value 80.203819
iter 80 value 80.202709
final value 80.202200
converged
Fitting Repeat 3
# weights: 103
initial value 99.281770
iter 10 value 94.027704
iter 20 value 91.408812
iter 30 value 87.075316
iter 40 value 84.572264
iter 50 value 83.565967
iter 60 value 82.968756
iter 70 value 82.167538
iter 80 value 82.081818
final value 82.081786
converged
Fitting Repeat 4
# weights: 103
initial value 102.527526
iter 10 value 94.056760
iter 20 value 93.615675
iter 30 value 88.521745
iter 40 value 84.345944
iter 50 value 83.314121
iter 60 value 81.589814
iter 70 value 80.293072
iter 80 value 80.126104
iter 90 value 80.073440
iter 100 value 79.888775
final value 79.888775
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 95.844476
iter 10 value 94.059248
iter 20 value 93.897110
iter 30 value 89.464186
iter 40 value 88.877630
iter 50 value 84.915588
iter 60 value 82.628214
iter 70 value 82.072969
iter 80 value 81.895986
iter 90 value 81.745919
iter 100 value 81.741296
final value 81.741296
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 102.018908
iter 10 value 94.253653
iter 20 value 92.557405
iter 30 value 88.456088
iter 40 value 83.755150
iter 50 value 81.445801
iter 60 value 80.761509
iter 70 value 79.548076
iter 80 value 79.393950
iter 90 value 79.306184
iter 100 value 78.991756
final value 78.991756
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 98.636781
iter 10 value 84.822624
iter 20 value 82.328173
iter 30 value 81.405131
iter 40 value 80.504652
iter 50 value 79.961257
iter 60 value 79.856249
iter 70 value 79.243425
iter 80 value 78.714722
iter 90 value 78.472882
iter 100 value 78.199874
final value 78.199874
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.790909
iter 10 value 94.110953
iter 20 value 83.972862
iter 30 value 82.518689
iter 40 value 81.897916
iter 50 value 81.312301
iter 60 value 80.129789
iter 70 value 80.066735
iter 80 value 79.460161
iter 90 value 78.505576
iter 100 value 78.082408
final value 78.082408
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 108.786752
iter 10 value 94.098515
iter 20 value 84.634898
iter 30 value 82.834803
iter 40 value 82.042651
iter 50 value 81.208888
iter 60 value 80.746427
iter 70 value 79.688795
iter 80 value 79.130014
iter 90 value 78.379092
iter 100 value 78.138312
final value 78.138312
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 117.346691
iter 10 value 94.084183
iter 20 value 93.798212
iter 30 value 86.717584
iter 40 value 86.276023
iter 50 value 85.481182
iter 60 value 85.042465
iter 70 value 83.903092
iter 80 value 81.119723
iter 90 value 80.743805
iter 100 value 80.475449
final value 80.475449
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.566902
iter 10 value 92.704861
iter 20 value 88.689561
iter 30 value 85.381582
iter 40 value 84.814958
iter 50 value 80.919166
iter 60 value 80.476458
iter 70 value 79.976850
iter 80 value 79.821061
iter 90 value 79.779187
iter 100 value 79.767087
final value 79.767087
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.738910
iter 10 value 94.568944
iter 20 value 89.964442
iter 30 value 82.478175
iter 40 value 81.644695
iter 50 value 80.977948
iter 60 value 80.496925
iter 70 value 80.418872
iter 80 value 80.343323
iter 90 value 79.114847
iter 100 value 78.579662
final value 78.579662
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.657242
iter 10 value 94.270311
iter 20 value 91.339989
iter 30 value 83.733880
iter 40 value 81.198800
iter 50 value 78.380731
iter 60 value 77.892291
iter 70 value 77.694472
iter 80 value 77.608133
iter 90 value 77.531871
iter 100 value 77.480504
final value 77.480504
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 110.422027
iter 10 value 94.162623
iter 20 value 92.020385
iter 30 value 82.469331
iter 40 value 80.836321
iter 50 value 79.761648
iter 60 value 78.904968
iter 70 value 78.705277
iter 80 value 78.561451
iter 90 value 78.497384
iter 100 value 78.200343
final value 78.200343
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 103.158750
iter 10 value 93.922156
iter 20 value 90.140486
iter 30 value 86.744778
iter 40 value 81.557795
iter 50 value 79.364201
iter 60 value 78.979799
iter 70 value 78.153821
iter 80 value 77.805033
iter 90 value 77.645485
iter 100 value 77.570641
final value 77.570641
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 99.976132
final value 94.054741
converged
Fitting Repeat 2
# weights: 103
initial value 94.332627
final value 94.054619
converged
Fitting Repeat 3
# weights: 103
initial value 99.471340
final value 94.054403
converged
Fitting Repeat 4
# weights: 103
initial value 102.074912
final value 94.054393
converged
Fitting Repeat 5
# weights: 103
initial value 94.662009
final value 94.040037
converged
Fitting Repeat 1
# weights: 305
initial value 95.558915
iter 10 value 94.057769
iter 20 value 94.031537
iter 30 value 84.384044
iter 40 value 82.032566
iter 50 value 80.569948
iter 60 value 80.473777
iter 70 value 80.469054
final value 80.469049
converged
Fitting Repeat 2
# weights: 305
initial value 126.138011
iter 10 value 94.058002
iter 20 value 94.053311
final value 94.038307
converged
Fitting Repeat 3
# weights: 305
initial value 117.733771
iter 10 value 94.058252
iter 20 value 94.027047
iter 30 value 90.665152
iter 40 value 84.249810
iter 50 value 84.214956
iter 60 value 84.212807
iter 70 value 84.210088
iter 80 value 81.599072
iter 90 value 80.850813
iter 100 value 80.847323
final value 80.847323
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.609998
iter 10 value 94.057708
final value 94.052928
converged
Fitting Repeat 5
# weights: 305
initial value 113.634586
iter 10 value 94.058062
iter 20 value 94.053206
iter 30 value 90.736430
iter 40 value 90.668212
iter 50 value 84.690560
iter 60 value 83.909336
final value 83.909274
converged
Fitting Repeat 1
# weights: 507
initial value 111.229108
iter 10 value 93.979408
iter 20 value 93.870417
iter 30 value 93.865786
iter 40 value 90.577382
iter 50 value 84.666002
iter 60 value 84.660906
iter 70 value 84.658389
iter 80 value 84.656730
final value 84.656641
converged
Fitting Repeat 2
# weights: 507
initial value 110.693711
iter 10 value 93.173145
iter 20 value 92.873621
iter 30 value 92.869634
iter 40 value 86.201588
iter 50 value 81.341863
iter 60 value 81.232794
final value 81.232674
converged
Fitting Repeat 3
# weights: 507
initial value 96.766827
iter 10 value 94.046746
iter 20 value 94.046230
iter 30 value 92.938325
iter 40 value 85.243440
iter 50 value 85.232798
iter 60 value 85.210019
iter 70 value 82.237073
iter 80 value 82.236432
iter 90 value 80.987833
iter 100 value 80.069895
final value 80.069895
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.770384
iter 10 value 94.060730
iter 20 value 93.967766
iter 30 value 84.303147
iter 40 value 80.561746
iter 50 value 79.246210
iter 60 value 79.220642
iter 70 value 79.220222
final value 79.218476
converged
Fitting Repeat 5
# weights: 507
initial value 102.582070
iter 10 value 94.046046
iter 20 value 82.206847
iter 30 value 82.073504
iter 40 value 82.066890
iter 50 value 81.142172
iter 60 value 79.072915
iter 70 value 78.813886
iter 80 value 78.341312
iter 90 value 77.380387
iter 100 value 76.926245
final value 76.926245
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 96.216339
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 116.537122
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 96.882809
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 94.953525
iter 10 value 93.474338
final value 93.473918
converged
Fitting Repeat 5
# weights: 103
initial value 107.929020
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 96.187863
final value 94.038252
converged
Fitting Repeat 2
# weights: 305
initial value 106.276393
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 108.362852
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 97.849219
iter 10 value 93.093560
iter 20 value 92.831473
iter 30 value 92.830052
iter 40 value 92.829819
iter 50 value 92.764553
final value 92.763916
converged
Fitting Repeat 5
# weights: 305
initial value 109.684527
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 107.085855
iter 10 value 94.613334
final value 91.944444
converged
Fitting Repeat 2
# weights: 507
initial value 96.324104
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 101.963327
iter 10 value 94.038010
iter 10 value 94.038009
iter 10 value 94.038009
final value 94.038009
converged
Fitting Repeat 4
# weights: 507
initial value 98.499611
final value 94.038009
converged
Fitting Repeat 5
# weights: 507
initial value 105.149816
iter 10 value 94.044348
final value 94.038251
converged
Fitting Repeat 1
# weights: 103
initial value 96.954295
iter 10 value 94.056967
iter 20 value 94.056364
iter 30 value 93.912436
iter 40 value 87.578678
iter 50 value 87.236258
iter 60 value 86.752443
iter 70 value 86.006372
iter 80 value 85.405673
final value 85.395052
converged
Fitting Repeat 2
# weights: 103
initial value 97.857140
iter 10 value 93.943641
iter 20 value 88.941051
iter 30 value 86.806058
iter 40 value 85.793591
iter 50 value 85.593837
iter 60 value 85.591445
iter 60 value 85.591445
iter 60 value 85.591445
final value 85.591445
converged
Fitting Repeat 3
# weights: 103
initial value 98.858506
iter 10 value 94.066856
iter 20 value 94.055899
iter 30 value 90.282417
iter 40 value 89.114506
iter 50 value 87.353457
iter 60 value 85.835002
iter 70 value 85.773674
iter 80 value 85.631318
iter 90 value 84.566423
iter 100 value 83.628530
final value 83.628530
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 97.465388
iter 10 value 92.699526
iter 20 value 87.238678
iter 30 value 86.252824
iter 40 value 85.928344
iter 50 value 85.898035
iter 60 value 85.684791
iter 70 value 85.402572
iter 80 value 85.291692
iter 90 value 85.236075
iter 100 value 85.212018
final value 85.212018
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 105.662352
iter 10 value 93.951026
iter 20 value 88.910551
iter 30 value 87.745226
iter 40 value 86.910998
iter 50 value 86.742469
iter 60 value 86.169998
iter 70 value 85.516120
iter 80 value 84.384552
iter 90 value 83.420137
iter 100 value 83.392947
final value 83.392947
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 105.634387
iter 10 value 93.828231
iter 20 value 87.291533
iter 30 value 87.094801
iter 40 value 86.270077
iter 50 value 85.657121
iter 60 value 84.217428
iter 70 value 83.514027
iter 80 value 83.315543
iter 90 value 82.931979
iter 100 value 82.237653
final value 82.237653
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 111.525455
iter 10 value 94.044547
iter 20 value 87.422451
iter 30 value 87.009471
iter 40 value 86.460009
iter 50 value 86.099861
iter 60 value 85.639259
iter 70 value 83.931701
iter 80 value 82.602470
iter 90 value 82.521957
iter 100 value 82.101147
final value 82.101147
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.028518
iter 10 value 94.081669
iter 20 value 93.010390
iter 30 value 89.498429
iter 40 value 85.324799
iter 50 value 84.005885
iter 60 value 83.724868
iter 70 value 83.589128
iter 80 value 83.379379
iter 90 value 83.243936
iter 100 value 82.834053
final value 82.834053
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.051555
iter 10 value 94.002201
iter 20 value 89.149305
iter 30 value 87.753249
iter 40 value 87.152723
iter 50 value 86.720379
iter 60 value 86.033248
iter 70 value 85.357822
iter 80 value 85.091932
iter 90 value 84.036823
iter 100 value 83.676997
final value 83.676997
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.632731
iter 10 value 93.935572
iter 20 value 90.120692
iter 30 value 87.067798
iter 40 value 84.480219
iter 50 value 83.612892
iter 60 value 83.231958
iter 70 value 83.124458
iter 80 value 82.496194
iter 90 value 82.460366
iter 100 value 82.355864
final value 82.355864
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.864993
iter 10 value 94.793238
iter 20 value 92.909960
iter 30 value 91.857711
iter 40 value 90.789021
iter 50 value 89.510651
iter 60 value 88.730927
iter 70 value 88.616011
iter 80 value 88.331798
iter 90 value 84.849302
iter 100 value 83.475503
final value 83.475503
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 115.374739
iter 10 value 94.722079
iter 20 value 87.858082
iter 30 value 86.025204
iter 40 value 85.799391
iter 50 value 85.673727
iter 60 value 85.264470
iter 70 value 84.134721
iter 80 value 83.280730
iter 90 value 82.684072
iter 100 value 82.658597
final value 82.658597
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.090838
iter 10 value 94.297322
iter 20 value 88.676142
iter 30 value 86.477393
iter 40 value 84.138893
iter 50 value 83.598825
iter 60 value 83.253312
iter 70 value 82.721033
iter 80 value 82.150376
iter 90 value 81.919035
iter 100 value 81.866238
final value 81.866238
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 102.546008
iter 10 value 95.150536
iter 20 value 93.600587
iter 30 value 91.800339
iter 40 value 88.446811
iter 50 value 85.818862
iter 60 value 85.542055
iter 70 value 84.957787
iter 80 value 84.534946
iter 90 value 83.942187
iter 100 value 83.020876
final value 83.020876
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 104.702801
iter 10 value 95.395471
iter 20 value 94.087147
iter 30 value 94.046020
iter 40 value 92.944719
iter 50 value 86.546967
iter 60 value 85.310246
iter 70 value 85.052607
iter 80 value 84.879483
iter 90 value 84.341517
iter 100 value 84.168342
final value 84.168342
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.762323
final value 94.054533
converged
Fitting Repeat 2
# weights: 103
initial value 101.376196
final value 94.054764
converged
Fitting Repeat 3
# weights: 103
initial value 98.627329
iter 10 value 94.054669
iter 20 value 89.223969
iter 30 value 88.550040
final value 88.549202
converged
Fitting Repeat 4
# weights: 103
initial value 96.466569
iter 10 value 93.674899
iter 20 value 93.674356
iter 30 value 91.151171
iter 40 value 84.750524
iter 50 value 83.541911
iter 60 value 83.093770
iter 70 value 82.977105
final value 82.977080
converged
Fitting Repeat 5
# weights: 103
initial value 95.506231
final value 94.054249
converged
Fitting Repeat 1
# weights: 305
initial value 101.387133
iter 10 value 94.043001
iter 20 value 94.024740
iter 30 value 89.707782
iter 40 value 85.808124
iter 50 value 83.452504
iter 60 value 82.084960
iter 70 value 81.677939
iter 80 value 81.647729
final value 81.632905
converged
Fitting Repeat 2
# weights: 305
initial value 96.017718
iter 10 value 91.332841
iter 20 value 88.654117
iter 30 value 88.128876
iter 40 value 88.002389
iter 50 value 87.794517
iter 60 value 87.792118
iter 70 value 87.779815
iter 80 value 87.138313
iter 90 value 85.467686
iter 100 value 84.853934
final value 84.853934
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 98.321479
iter 10 value 94.057673
iter 20 value 94.043428
iter 30 value 93.690908
iter 40 value 88.191801
iter 50 value 87.411799
iter 60 value 85.594325
iter 70 value 84.649867
iter 80 value 84.647117
iter 90 value 84.464325
iter 100 value 84.340266
final value 84.340266
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 96.347669
iter 10 value 94.057331
iter 20 value 94.015284
iter 30 value 88.752956
iter 40 value 88.490065
iter 50 value 88.487736
iter 60 value 88.452174
iter 70 value 88.378284
iter 80 value 88.378063
iter 80 value 88.378063
iter 80 value 88.378063
final value 88.378063
converged
Fitting Repeat 5
# weights: 305
initial value 96.312034
iter 10 value 94.057258
iter 20 value 94.053025
iter 30 value 94.051532
iter 40 value 90.565671
iter 50 value 87.920097
iter 60 value 86.849859
iter 70 value 86.303832
iter 80 value 85.983173
iter 90 value 85.757499
iter 100 value 85.756855
final value 85.756855
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 98.963545
iter 10 value 94.046039
iter 20 value 94.038657
iter 30 value 93.853603
iter 40 value 91.451782
iter 50 value 85.783480
iter 60 value 85.652364
iter 70 value 84.864042
final value 84.820580
converged
Fitting Repeat 2
# weights: 507
initial value 95.884842
iter 10 value 94.060296
iter 20 value 94.045381
iter 30 value 91.619021
final value 91.618862
converged
Fitting Repeat 3
# weights: 507
initial value 103.363679
iter 10 value 93.891955
iter 20 value 93.598436
iter 30 value 93.591047
iter 40 value 93.523312
iter 50 value 93.480876
iter 60 value 93.479710
iter 70 value 92.219899
iter 80 value 88.258971
iter 90 value 88.075154
iter 100 value 88.074118
final value 88.074118
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 98.656858
iter 10 value 94.060714
iter 20 value 92.263828
iter 30 value 87.017582
iter 40 value 86.998046
iter 50 value 86.981689
final value 86.981461
converged
Fitting Repeat 5
# weights: 507
initial value 95.665390
iter 10 value 94.058182
iter 20 value 93.804973
iter 30 value 90.098344
iter 40 value 89.875342
iter 50 value 89.875042
iter 60 value 88.996204
iter 70 value 87.531950
iter 80 value 85.249615
final value 85.249348
converged
Fitting Repeat 1
# weights: 103
initial value 101.687078
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 108.707574
final value 94.112570
converged
Fitting Repeat 3
# weights: 103
initial value 106.740689
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 100.657380
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 98.328295
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 97.155159
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 94.569203
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 107.482049
iter 10 value 94.112775
iter 20 value 93.805428
iter 30 value 93.804881
final value 93.804879
converged
Fitting Repeat 4
# weights: 305
initial value 97.661765
iter 10 value 94.328618
iter 20 value 94.308198
final value 94.308193
converged
Fitting Repeat 5
# weights: 305
initial value 111.903585
iter 10 value 94.475592
iter 20 value 93.853295
iter 30 value 93.376203
iter 40 value 93.253185
final value 93.244978
converged
Fitting Repeat 1
# weights: 507
initial value 102.068995
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 97.642999
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 121.776969
final value 94.354396
converged
Fitting Repeat 4
# weights: 507
initial value 117.576612
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 104.117463
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 100.964045
iter 10 value 94.419519
iter 20 value 92.696485
iter 30 value 86.873140
iter 40 value 86.605405
iter 50 value 86.332782
iter 60 value 85.486643
iter 70 value 85.391006
iter 80 value 85.227570
iter 90 value 84.949224
iter 100 value 84.936057
final value 84.936057
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 112.678906
iter 10 value 94.430645
iter 20 value 93.927815
iter 30 value 93.896682
iter 40 value 93.875538
iter 50 value 91.138110
iter 60 value 87.184793
iter 70 value 86.506152
iter 80 value 85.546385
iter 90 value 85.463068
iter 100 value 85.169120
final value 85.169120
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 101.171639
iter 10 value 94.486298
iter 20 value 94.182197
iter 30 value 94.100201
iter 40 value 93.757046
iter 50 value 91.896531
iter 60 value 91.808399
iter 70 value 90.663031
iter 80 value 85.346058
iter 90 value 84.800957
iter 100 value 84.346920
final value 84.346920
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 116.150396
iter 10 value 98.786953
iter 20 value 94.487148
iter 30 value 94.486536
iter 40 value 94.424438
iter 50 value 93.947051
iter 60 value 93.246666
iter 70 value 87.740037
iter 80 value 85.198715
iter 90 value 85.137692
iter 100 value 84.933232
final value 84.933232
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 104.021094
iter 10 value 93.689371
iter 20 value 85.386923
iter 30 value 84.970160
iter 40 value 84.415919
iter 50 value 84.357453
final value 84.357366
converged
Fitting Repeat 1
# weights: 305
initial value 106.061122
iter 10 value 94.240948
iter 20 value 87.080337
iter 30 value 86.680026
iter 40 value 85.183009
iter 50 value 83.677319
iter 60 value 83.217154
iter 70 value 82.576203
iter 80 value 82.269655
iter 90 value 81.607622
iter 100 value 81.423262
final value 81.423262
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 123.132039
iter 10 value 95.561045
iter 20 value 92.634303
iter 30 value 86.550114
iter 40 value 82.726533
iter 50 value 82.049957
iter 60 value 81.465513
iter 70 value 81.362391
iter 80 value 81.250932
iter 90 value 80.843208
iter 100 value 80.611391
final value 80.611391
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.429721
iter 10 value 94.457555
iter 20 value 87.324087
iter 30 value 85.434046
iter 40 value 85.100294
iter 50 value 84.321768
iter 60 value 83.267584
iter 70 value 82.155356
iter 80 value 81.418879
iter 90 value 81.203228
iter 100 value 80.561446
final value 80.561446
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 109.712207
iter 10 value 95.266887
iter 20 value 93.465902
iter 30 value 88.936326
iter 40 value 85.421061
iter 50 value 83.879593
iter 60 value 83.300238
iter 70 value 83.136516
iter 80 value 82.982179
iter 90 value 82.863784
iter 100 value 82.620079
final value 82.620079
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 107.909646
iter 10 value 94.461079
iter 20 value 89.513601
iter 30 value 87.205567
iter 40 value 86.555294
iter 50 value 86.393950
iter 60 value 86.304249
iter 70 value 86.250143
iter 80 value 84.394356
iter 90 value 82.791511
iter 100 value 82.603960
final value 82.603960
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 135.238682
iter 10 value 94.727475
iter 20 value 91.621586
iter 30 value 86.615660
iter 40 value 84.673349
iter 50 value 83.484886
iter 60 value 82.476148
iter 70 value 81.766581
iter 80 value 81.491164
iter 90 value 81.205507
iter 100 value 80.625279
final value 80.625279
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 118.791557
iter 10 value 94.485076
iter 20 value 89.871748
iter 30 value 87.843741
iter 40 value 84.529114
iter 50 value 83.240658
iter 60 value 81.701270
iter 70 value 81.374406
iter 80 value 81.021770
iter 90 value 80.982195
iter 100 value 80.932015
final value 80.932015
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.092086
iter 10 value 91.562785
iter 20 value 85.684444
iter 30 value 85.206401
iter 40 value 84.679505
iter 50 value 82.939684
iter 60 value 81.577384
iter 70 value 81.241292
iter 80 value 81.126596
iter 90 value 81.022595
iter 100 value 80.905926
final value 80.905926
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.762544
iter 10 value 94.707225
iter 20 value 92.553163
iter 30 value 87.731154
iter 40 value 85.892901
iter 50 value 83.683174
iter 60 value 83.089112
iter 70 value 82.213200
iter 80 value 81.380628
iter 90 value 81.076320
iter 100 value 80.952259
final value 80.952259
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.829523
iter 10 value 95.559372
iter 20 value 94.294909
iter 30 value 93.724958
iter 40 value 86.965749
iter 50 value 85.713275
iter 60 value 84.937062
iter 70 value 82.689574
iter 80 value 82.193794
iter 90 value 81.609717
iter 100 value 81.112058
final value 81.112058
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 105.586323
final value 94.486032
converged
Fitting Repeat 2
# weights: 103
initial value 100.911124
final value 94.485904
converged
Fitting Repeat 3
# weights: 103
initial value 109.740730
final value 94.485573
converged
Fitting Repeat 4
# weights: 103
initial value 96.564136
final value 94.485997
converged
Fitting Repeat 5
# weights: 103
initial value 101.776085
iter 10 value 86.545837
iter 20 value 86.311846
iter 30 value 86.203212
iter 40 value 85.230610
final value 85.223080
converged
Fitting Repeat 1
# weights: 305
initial value 97.680816
iter 10 value 94.486254
iter 20 value 93.934007
iter 30 value 85.508611
iter 40 value 85.461867
iter 50 value 84.429297
iter 60 value 84.381253
iter 70 value 84.352652
final value 84.350373
converged
Fitting Repeat 2
# weights: 305
initial value 98.737893
iter 10 value 94.358791
iter 20 value 93.845753
iter 30 value 90.997278
final value 90.993470
converged
Fitting Repeat 3
# weights: 305
initial value 107.646056
iter 10 value 94.488910
iter 20 value 93.986923
iter 30 value 88.004766
iter 40 value 84.461766
iter 50 value 84.017988
iter 60 value 83.966014
iter 70 value 83.955577
iter 80 value 83.955470
iter 90 value 83.955332
iter 100 value 83.955220
final value 83.955220
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.150587
iter 10 value 94.491689
iter 20 value 94.486694
iter 30 value 94.321881
iter 40 value 93.510710
iter 50 value 93.504526
final value 93.496687
converged
Fitting Repeat 5
# weights: 305
initial value 121.855998
iter 10 value 94.489215
iter 20 value 94.484266
iter 30 value 94.354553
final value 94.354443
converged
Fitting Repeat 1
# weights: 507
initial value 97.365168
iter 10 value 94.362789
iter 20 value 94.358025
iter 30 value 90.329979
iter 40 value 86.295408
iter 50 value 86.287426
iter 60 value 86.112352
iter 70 value 84.995826
iter 80 value 83.398039
iter 90 value 81.891684
iter 100 value 81.306082
final value 81.306082
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 118.935893
iter 10 value 94.362746
iter 20 value 94.357936
iter 30 value 94.199766
iter 40 value 85.122834
iter 50 value 84.246472
iter 60 value 84.134006
iter 70 value 84.133882
final value 84.133353
converged
Fitting Repeat 3
# weights: 507
initial value 104.419125
iter 10 value 94.363596
iter 20 value 94.360509
iter 30 value 94.359874
iter 40 value 91.847588
iter 50 value 87.060380
iter 60 value 86.795081
iter 70 value 86.774590
iter 80 value 86.015747
iter 90 value 85.781688
iter 100 value 85.580306
final value 85.580306
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 97.265800
iter 10 value 94.365917
iter 20 value 94.361121
iter 30 value 94.360028
iter 40 value 94.356988
iter 50 value 94.356333
iter 60 value 94.355621
iter 70 value 94.353902
iter 80 value 93.811258
iter 90 value 93.805400
iter 100 value 93.804047
final value 93.804047
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 96.433897
iter 10 value 94.491099
iter 20 value 94.107768
iter 30 value 83.695796
iter 40 value 82.644152
iter 50 value 82.435846
final value 82.435570
converged
Fitting Repeat 1
# weights: 507
initial value 148.096614
iter 10 value 118.448029
iter 20 value 116.588413
iter 30 value 111.605757
iter 40 value 109.291386
iter 50 value 108.262096
iter 60 value 105.160841
iter 70 value 104.924356
iter 80 value 104.758860
iter 90 value 103.495890
iter 100 value 102.242558
final value 102.242558
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 137.212873
iter 10 value 117.994905
iter 20 value 107.216880
iter 30 value 105.974944
iter 40 value 105.789203
iter 50 value 103.637376
iter 60 value 103.143854
iter 70 value 102.701145
iter 80 value 102.131509
iter 90 value 101.451408
iter 100 value 100.916157
final value 100.916157
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 135.570581
iter 10 value 118.996430
iter 20 value 112.292282
iter 30 value 106.594487
iter 40 value 105.823384
iter 50 value 103.281108
iter 60 value 102.746846
iter 70 value 102.423963
iter 80 value 101.799174
iter 90 value 101.132829
iter 100 value 100.651855
final value 100.651855
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 130.267900
iter 10 value 118.430656
iter 20 value 112.286632
iter 30 value 108.627610
iter 40 value 107.957178
iter 50 value 106.899675
iter 60 value 103.992848
iter 70 value 101.534431
iter 80 value 101.350305
iter 90 value 101.043569
iter 100 value 100.831069
final value 100.831069
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 127.785625
iter 10 value 117.870469
iter 20 value 117.241482
iter 30 value 114.040013
iter 40 value 110.322306
iter 50 value 105.761746
iter 60 value 104.387973
iter 70 value 103.706308
iter 80 value 102.186380
iter 90 value 101.250332
iter 100 value 101.070522
final value 101.070522
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue Apr 12 14:26:13 2022
***********************************************
Number of test functions: 8
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8
Number of errors: 0
Number of failures: 0
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble 3.0.0.
Use `.name_repair = "minimal"`.
This warning is displayed once every 8 hours.
Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
2: `repeats` has no meaning for this resampling method.
3: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
60.466 1.559 57.101
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 45.306 | 1.153 | 46.627 | |
| FreqInteractors | 0.337 | 0.006 | 0.345 | |
| calculateAAC | 0.106 | 0.011 | 0.117 | |
| calculateAutocor | 0.602 | 0.071 | 0.675 | |
| calculateBE | 0.160 | 0.030 | 0.191 | |
| calculateCTDC | 0.152 | 0.008 | 0.159 | |
| calculateCTDD | 1.292 | 0.038 | 1.330 | |
| calculateCTDT | 0.402 | 0.014 | 0.416 | |
| calculateCTriad | 0.630 | 0.029 | 0.659 | |
| calculateDC | 0.166 | 0.018 | 0.185 | |
| calculateF | 0.546 | 0.011 | 0.557 | |
| calculateKSAAP | 0.228 | 0.017 | 0.245 | |
| calculateQD_Sm | 2.944 | 0.139 | 3.085 | |
| calculateTC | 6.796 | 0.398 | 7.202 | |
| calculateTC_Sm | 0.485 | 0.012 | 0.497 | |
| corr_plot | 49.134 | 1.012 | 50.264 | |
| enrichfindP | 0.577 | 0.044 | 8.846 | |
| enrichplot | 0.376 | 0.006 | 0.383 | |
| filter_missing_values | 0.001 | 0.001 | 0.002 | |
| getFASTA | 0.082 | 0.007 | 1.895 | |
| getHPI | 0.001 | 0.001 | 0.001 | |
| get_negativePPI | 0.003 | 0.001 | 0.003 | |
| get_positivePPI | 0.000 | 0.000 | 0.001 | |
| impute_missing_data | 0.002 | 0.001 | 0.003 | |
| plotPPI | 0.116 | 0.001 | 0.118 | |
| pred_ensembel | 20.676 | 0.356 | 16.014 | |
| var_imp | 46.925 | 1.109 | 48.096 | |