Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-09-22 11:42 -0400 (Mon, 22 Sep 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 (2025-06-13) -- "Great Square Root" 4827
merida1macOS 12.7.5 Montereyx86_644.5.1 RC (2025-06-05 r88288) -- "Great Square Root" 4608
kjohnson1macOS 13.6.6 Venturaarm644.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" 4549
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4581
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2013/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.18.1  (landing page)
Joshua David Campbell
Snapshot Date: 2025-09-18 13:40 -0400 (Thu, 18 Sep 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: RELEASE_3_21
git_last_commit: f519d00e
git_last_commit_date: 2025-07-01 15:40:07 -0400 (Tue, 01 Jul 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    ERROR  
merida1macOS 12.7.5 Monterey / x86_64  OK    OK    ERROR    OK  
kjohnson1macOS 13.6.6 Ventura / arm64  OK    OK    ERROR    OK  
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on kunpeng2

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: singleCellTK
Version: 2.18.1
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.18.1.tar.gz
StartedAt: 2025-09-19 14:53:04 -0000 (Fri, 19 Sep 2025)
EndedAt: 2025-09-19 15:13:01 -0000 (Fri, 19 Sep 2025)
EllapsedTime: 1196.8 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.18.1.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2025-02-19 r87757)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS-SP1)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.18.1’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 79 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
runSeuratSCTransform     44.566  0.719  45.417
plotScDblFinderResults   42.204  0.485  43.028
plotDoubletFinderResults 41.068  0.291  41.586
runDoubletFinder         37.453  0.178  37.715
runScDblFinder           29.153  0.682  29.901
importExampleData        15.084  1.180  26.404
plotBatchCorrCompare     13.425  0.216  14.020
plotScdsHybridResults    11.201  0.097  10.426
plotBcdsResults          10.298  0.181   9.549
plotDecontXResults        8.980  0.188   9.192
runUMAP                   7.643  0.117   7.905
runDecontX                7.624  0.000   7.642
plotCxdsResults           7.514  0.060   7.724
plotUMAP                  7.287  0.030   7.465
plotFindMarkerHeatmap     7.202  0.065   7.284
detectCellOutlier         6.458  0.016   6.487
plotDEGViolin             5.865  0.096   5.977
convertSCEToSeurat        5.528  0.091   5.631
plotEmptyDropsResults     5.543  0.029   5.584
plotEmptyDropsScatter     5.471  0.004   5.485
plotTSCANClusterDEG       5.138  0.124   5.276
runEmptyDrops             5.196  0.012   5.218
getEnrichRResult          0.439  0.243  20.378
runEnrichR                0.387  0.061   8.248
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.18.1’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.198   0.036   0.220 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 21 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
325.361   7.982 347.175 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.004
SEG0.0020.0000.002
calcEffectSizes0.2820.0120.293
combineSCE1.1400.0081.150
computeZScore0.2930.0040.298
convertSCEToSeurat5.5280.0915.631
convertSeuratToSCE0.4700.0040.475
dedupRowNames0.0750.0000.075
detectCellOutlier6.4580.0166.487
diffAbundanceFET0.0660.0000.066
discreteColorPalette0.0070.0000.007
distinctColors0.0030.0000.003
downSampleCells0.7340.0440.779
downSampleDepth0.6260.0080.636
expData-ANY-character-method0.1630.0040.168
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.2130.0000.214
expData-set0.2080.0000.209
expData0.1690.0000.171
expDataNames-ANY-method0.1610.0000.162
expDataNames0.1570.0000.158
expDeleteDataTag0.0380.0040.042
expSetDataTag0.0320.0000.032
expTaggedData0.0330.0000.033
exportSCE0.0280.0000.028
exportSCEtoAnnData0.0790.0000.079
exportSCEtoFlatFile0.0720.0080.080
featureIndex0.0480.0000.049
generateSimulatedData0.0680.0000.069
getBiomarker0.0760.0000.075
getDEGTopTable0.9560.0360.994
getDiffAbundanceResults0.0580.0000.058
getEnrichRResult 0.439 0.24320.378
getFindMarkerTopTable2.1390.6512.797
getMSigDBTable0.0000.0040.004
getPathwayResultNames0.030.000.03
getSampleSummaryStatsTable0.2810.0040.286
getSoupX000
getTSCANResults1.4530.1911.649
getTopHVG1.1860.0601.249
importAnnData0.0000.0020.001
importBUStools0.2300.0040.237
importCellRanger1.0880.0441.139
importCellRangerV2Sample0.2180.0040.223
importCellRangerV3Sample0.3980.0320.431
importDropEst0.3450.0040.352
importExampleData15.084 1.18026.404
importGeneSetsFromCollection2.2660.0472.319
importGeneSetsFromGMT0.0830.0000.084
importGeneSetsFromList0.170.000.17
importGeneSetsFromMSigDB1.3930.1161.519
importMitoGeneSet0.0660.0120.078
importOptimus0.0010.0000.001
importSEQC0.2020.0390.243
importSTARsolo0.2670.0330.303
iterateSimulations0.2490.0000.250
listSampleSummaryStatsTables0.3320.0030.336
mergeSCEColData0.4830.0120.497
mouseBrainSubsetSCE0.0430.0000.043
msigdb_table0.0020.0000.001
plotBarcodeRankDropsResults0.8230.0160.841
plotBarcodeRankScatter0.9990.0121.014
plotBatchCorrCompare13.425 0.21614.020
plotBatchVariance0.4520.0040.457
plotBcdsResults10.298 0.181 9.549
plotBubble0.9700.0240.996
plotClusterAbundance1.2280.0161.247
plotCxdsResults7.5140.0607.724
plotDEGHeatmap3.0210.0293.057
plotDEGRegression4.8260.0334.871
plotDEGViolin5.8650.0965.977
plotDEGVolcano1.1110.0001.115
plotDecontXResults8.9800.1889.192
plotDimRed0.2650.0000.266
plotDoubletFinderResults41.068 0.29141.586
plotEmptyDropsResults5.5430.0295.584
plotEmptyDropsScatter5.4710.0045.485
plotFindMarkerHeatmap7.2020.0657.284
plotMASTThresholdGenes1.8830.0601.947
plotPCA0.4400.0040.445
plotPathway0.7780.0000.782
plotRunPerCellQCResults2.8820.0082.898
plotSCEBarAssayData0.2680.0000.269
plotSCEBarColData0.2500.0000.251
plotSCEBatchFeatureMean0.3350.0000.335
plotSCEDensity0.3060.0000.307
plotSCEDensityAssayData0.2480.0120.261
plotSCEDensityColData0.3020.0000.302
plotSCEDimReduceColData0.7060.0160.724
plotSCEDimReduceFeatures0.3970.0200.419
plotSCEHeatmap0.6130.0360.651
plotSCEScatter0.3690.0000.370
plotSCEViolin0.3530.0040.358
plotSCEViolinAssayData0.3810.0000.382
plotSCEViolinColData0.3520.0040.357
plotScDblFinderResults42.204 0.48543.028
plotScanpyDotPlot0.0270.0040.029
plotScanpyEmbedding0.0280.0000.029
plotScanpyHVG0.0230.0080.031
plotScanpyHeatmap0.0310.0000.031
plotScanpyMarkerGenes0.030.000.03
plotScanpyMarkerGenesDotPlot0.0310.0000.031
plotScanpyMarkerGenesHeatmap0.030.000.03
plotScanpyMarkerGenesMatrixPlot0.0290.0000.030
plotScanpyMarkerGenesViolin0.0320.0000.031
plotScanpyMatrixPlot0.0310.0000.031
plotScanpyPCA0.0260.0040.031
plotScanpyPCAGeneRanking0.0300.0000.031
plotScanpyPCAVariance0.0310.0000.031
plotScanpyViolin0.0270.0000.026
plotScdsHybridResults11.201 0.09710.426
plotScrubletResults0.0250.0000.025
plotSeuratElbow0.0200.0030.024
plotSeuratHVG0.0240.0000.024
plotSeuratJackStraw0.0240.0000.025
plotSeuratReduction0.0250.0000.025
plotSoupXResults000
plotTSCANClusterDEG5.1380.1245.276
plotTSCANClusterPseudo1.6650.0121.681
plotTSCANDimReduceFeatures1.7240.0081.737
plotTSCANPseudotimeGenes1.9780.0041.988
plotTSCANPseudotimeHeatmap1.9030.0361.944
plotTSCANResults1.6450.0161.665
plotTSNE0.4260.0080.435
plotTopHVG0.7250.0080.735
plotUMAP7.2870.0307.465
readSingleCellMatrix0.0070.0000.006
reportCellQC0.1010.0040.105
reportDropletQC0.0240.0000.024
reportQCTool0.1050.0000.105
retrieveSCEIndex0.0320.0000.032
runBBKNN000
runBarcodeRankDrops0.2830.0000.285
runBcds3.0430.0321.987
runCellQC0.110.000.11
runClusterSummaryMetrics0.4950.0080.505
runComBatSeq0.6500.0040.656
runCxds0.4030.0040.408
runCxdsBcdsHybrid2.9320.0481.931
runDEAnalysis0.5340.0000.536
runDecontX7.6240.0007.642
runDimReduce0.3870.0040.392
runDoubletFinder37.453 0.17837.715
runDropletQC0.0260.0000.026
runEmptyDrops5.1960.0125.218
runEnrichR0.3870.0618.248
runFastMNN2.3580.2222.591
runFeatureSelection0.3190.0000.320
runFindMarker2.0720.1632.242
runGSVA1.1870.1631.354
runHarmony0.0620.0000.061
runKMeans0.2350.0190.256
runLimmaBC0.1160.0080.124
runMNNCorrect0.5780.0560.636
runModelGeneVar0.4240.0520.477
runNormalization2.7060.3703.083
runPerCellQC0.4740.0080.483
runSCANORAMA000
runSCMerge0.0050.0000.004
runScDblFinder29.153 0.68229.901
runScanpyFindClusters0.0250.0000.024
runScanpyFindHVG0.0250.0000.024
runScanpyFindMarkers0.0240.0000.024
runScanpyNormalizeData0.1270.0000.128
runScanpyPCA0.0240.0000.024
runScanpyScaleData0.0230.0000.023
runScanpyTSNE0.0240.0000.024
runScanpyUMAP0.0230.0000.024
runScranSNN0.3850.0000.386
runScrublet0.0240.0000.025
runSeuratFindClusters0.0240.0000.024
runSeuratFindHVG0.6300.0040.636
runSeuratHeatmap0.0260.0000.027
runSeuratICA0.0260.0000.026
runSeuratJackStraw0.0230.0040.026
runSeuratNormalizeData0.0280.0000.027
runSeuratPCA0.0260.0000.026
runSeuratSCTransform44.566 0.71945.417
runSeuratScaleData0.0240.0000.025
runSeuratUMAP0.0260.0080.034
runSingleR0.0510.0000.050
runSoupX000
runTSCAN0.9020.0160.920
runTSCANClusterDEAnalysis0.9740.0281.004
runTSCANDEG0.9500.0080.961
runTSNE1.0390.0161.058
runUMAP7.6430.1177.905
runVAM0.4160.0000.417
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.2220.0000.223
scaterCPM0.1340.0080.143
scaterPCA0.6600.0000.662
scaterlogNormCounts0.2920.0040.297
sce0.0250.0000.025
sctkListGeneSetCollections0.0900.0120.102
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.1140.0000.114
setSCTKDisplayRow0.4130.0160.430
singleCellTK000
subDiffEx0.4340.0000.436
subsetSCECols0.1070.0040.112
subsetSCERows0.3600.0040.364
summarizeSCE0.0860.0000.086
trimCounts0.2430.0000.243