Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-11-12 11:58 -0500 (Wed, 12 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4902
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4668
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 165/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
benchdamic 1.16.0  (landing page)
Matteo Calgaro
Snapshot Date: 2025-11-11 13:45 -0500 (Tue, 11 Nov 2025)
git_url: https://git.bioconductor.org/packages/benchdamic
git_branch: RELEASE_3_22
git_last_commit: fcdab2a
git_last_commit_date: 2025-10-29 11:13:16 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  NO, package depends on 'Maaslin2' which is not available
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    ERROR  


CHECK results for benchdamic on taishan

To the developers/maintainers of the benchdamic package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/benchdamic.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: benchdamic
Version: 1.16.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:benchdamic.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings benchdamic_1.16.0.tar.gz
StartedAt: 2025-11-11 07:20:46 -0000 (Tue, 11 Nov 2025)
EndedAt: 2025-11-11 07:38:18 -0000 (Tue, 11 Nov 2025)
EllapsedTime: 1051.6 seconds
RetCode: 1
Status:   ERROR  
CheckDir: benchdamic.Rcheck
Warnings: NA

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:benchdamic.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings benchdamic_1.16.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/benchdamic.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘benchdamic/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘benchdamic’ version ‘1.16.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 32 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘benchdamic’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... NOTE
Namespace in Imports field not imported from: ‘microbiome’
  All declared Imports should be used.
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Non-topic package-anchored link(s) in Rd file 'norm_DESeq2.Rd':
  ‘[DESeq2]{estimateSizeFactors}’

See section 'Cross-references' in the 'Writing R Extensions' manual.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking LazyData ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... ERROR
Running examples in ‘benchdamic-Ex.R’ failed
The error most likely occurred in:

> base::assign(".ptime", proc.time(), pos = "CheckExEnv")
> ### Name: plotLogP
> ### Title: plotLogP
> ### Aliases: plotLogP
> 
> ### ** Examples
> 
> # Load some data
> data(ps_stool_16S)
> 
> # Generate the patterns for 10 mock comparison for an experiment
> # (N = 1000 is suggested)
> mocks <- createMocks(nsamples = phyloseq::nsamples(ps_stool_16S), N = 10)
> head(mocks)
            [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]  
Comparison1 "grp2" "grp2" "grp1" "grp2" "grp1" "grp1" "grp2" "grp1" "grp1"
Comparison2 "grp2" "grp2" "grp2" "grp1" "grp2" "grp2" "grp1" "grp1" "grp2"
Comparison3 "grp1" "grp1" "grp1" "grp1" "grp1" "grp2" "grp2" "grp2" "grp1"
Comparison4 "grp2" "grp2" "grp1" "grp1" "grp1" "grp2" "grp1" "grp2" "grp1"
Comparison5 "grp2" "grp1" "grp1" "grp2" "grp1" "grp1" "grp2" "grp2" "grp1"
Comparison6 "grp1" "grp2" "grp1" "grp1" "grp1" "grp2" "grp2" "grp1" "grp2"
            [,10]  [,11]  [,12]  [,13]  [,14]  [,15]  [,16]  [,17]  [,18] 
Comparison1 "grp2" "grp2" "grp1" "grp1" "grp2" "grp1" "grp1" "grp1" "grp2"
Comparison2 "grp2" "grp1" "grp2" "grp1" "grp2" "grp2" "grp1" "grp1" "grp1"
Comparison3 "grp2" "grp1" "grp2" "grp1" "grp1" "grp2" "grp1" "grp1" "grp1"
Comparison4 "grp1" "grp1" "grp2" "grp2" "grp2" "grp1" "grp1" "grp1" "grp2"
Comparison5 "grp1" "grp2" "grp2" "grp2" "grp2" "grp1" "grp2" "grp2" "grp1"
Comparison6 "grp2" "grp2" "grp1" "grp2" "grp1" "grp1" "grp2" "grp2" "grp2"
            [,19]  [,20]  [,21]  [,22]  [,23]  [,24]  [,25]  [,26]  [,27] 
Comparison1 "grp2" "grp2" "grp2" "grp1" "grp2" "grp1" "grp2" "grp1" "grp1"
Comparison2 "grp1" "grp1" "grp2" "grp1" "grp1" "grp1" "grp2" "grp1" "grp2"
Comparison3 "grp1" "grp2" "grp1" "grp1" "grp2" "grp2" "grp2" "grp2" "grp2"
Comparison4 "grp2" "grp2" "grp2" "grp2" "grp2" "grp2" "grp2" "grp1" "grp1"
Comparison5 "grp1" "grp2" "grp1" "grp1" "grp2" "grp1" "grp2" "grp2" "grp1"
Comparison6 "grp2" "grp2" "grp2" "grp2" "grp2" "grp1" "grp1" "grp1" "grp2"
            [,28]  [,29]  [,30]  [,31]  [,32] 
Comparison1 "grp1" "grp2" "grp2" "grp1" "grp2"
Comparison2 "grp1" "grp2" "grp1" "grp2" "grp2"
Comparison3 "grp2" "grp1" "grp2" "grp2" "grp2"
Comparison4 "grp1" "grp1" "grp1" "grp2" "grp1"
Comparison5 "grp2" "grp1" "grp1" "grp1" "grp2"
Comparison6 "grp1" "grp1" "grp1" "grp1" "grp1"
> 
> # Add some normalization/scaling factors to the phyloseq object
> my_norm <- setNormalizations(fun = c("norm_edgeR", "norm_CSS"),
+     method = c("TMM", "CSS"))
> ps_stool_16S <- runNormalizations(normalization_list = my_norm,
+     object = ps_stool_16S)
      + Running now:norm_edgeR

        Parameters:method=TMM

NF.TMM column has been added.
      + Running now:norm_CSS

        Parameters:method=CSS

Default value being used.
NF.CSS column has been added.
> 
> # Initialize some limma based methods
> my_limma <- set_limma(design = ~ group, coef = 2,
+     norm = c("TMM", "CSS"))
Warning in set_limma(design = ~group, coef = 2, norm = c("TMM", "CSS")) :
  DA_limma
One or more elements into 'norm' are not native to edgeR.
> 
> # Run methods on mock datasets
> results <- runMocks(mocks = mocks, method_list = my_limma,
+     object = ps_stool_16S)
  - Comparison1

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
  - Comparison2

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
  - Comparison3

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
  - Comparison4

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
  - Comparison5

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
  - Comparison6

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
  - Comparison7

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
  - Comparison8

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
  - Comparison9

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
  - Comparison10

      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=CSS, weights=FALSE

Warning in DA_limma(object = new("phyloseq", otu_table = new("otu_table",  :
  DA_limma
CSS normalization is not a native edgeR normalization. Make sure you know what you are doing, otherwise choose between 'TMM', 'TMMwsp', 'RLE', 'upperquartile', 'posupperquartile', or 'none'.
Automatically converting NF.CSS scaling/size factors to normalization factors.
Differential abundance on CSS normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
      * Running now:DA_limma

        Parameters:assay_name=counts, pseudo_count=FALSE, design=~group, coef=2, norm=TMM, weights=FALSE

Differential abundance on TMM normalized data
Estimating Differential Abundance without weighting
Extracting results for groupgrp2 coefficient
> 
> # Prepare results for Type I Error Control
> TIEC_summary <- createTIEC(results)
1. Extracting statistics
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
Using Method as id variables
2. Counting p-values lower than some thresholds
3. Counting adjusted p-values lower than some thresholds
4. Computing KS statistics
5. Ordering quantiles
> 
> # Plot the results
> plotFPR(df_FPR = TIEC_summary$df_FPR)
Using Comparison, Method as id variables
Examples with CPU (user + system) or elapsed time > 5s
                   user system elapsed
plotKS            4.586  3.908  20.645
plotConcordance   7.067  0.078   8.040
createConcordance 6.687  0.080   6.781
DA_ALDEx2         6.076  0.223   6.313
areaCAT           5.632  0.108   5.753
plotFPR           4.109  0.091   7.118
fitModels         3.538  0.040   6.270
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 ERROR, 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/benchdamic.Rcheck/00check.log’
for details.


Installation output

benchdamic.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL benchdamic
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.5.0/site-library’
* installing *source* package ‘benchdamic’ ...
** this is package ‘benchdamic’ version ‘1.16.0’
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** inst
** byte-compile and prepare package for lazy loading
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by ‘spam’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by ‘spam’
** testing if installed package can be loaded from final location
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by ‘spam’
** testing if installed package keeps a record of temporary installation path
* DONE (benchdamic)

Tests output

benchdamic.Rcheck/tests/testthat.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(benchdamic)
Found more than one class "dist" in cache; using the first, from namespace 'BiocGenerics'
Also defined by 'spam'
> 
> test_check("benchdamic")
|------------(25%)----------(50%)----------(75%)----------|
|------------(25%)----------(50%)----------(75%)----------|
|------------(25%)----------(50%)----------(75%)----------|
|------------(25%)----------(50%)----------(75%)----------|
|------------(25%)----------(50%)----------(75%)----------|
[ FAIL 0 | WARN 0 | SKIP 0 | PASS 334 ]
> 
> proc.time()
   user  system elapsed 
 95.263 134.246 402.012 

Example timings

benchdamic.Rcheck/benchdamic-Ex.timings

nameusersystemelapsed
CAT0.0050.0000.004
DA_ALDEx26.0760.2236.313
DA_ANCOM1.1780.0521.233
DA_DESeq23.8380.0363.884
DA_MAST1.8780.0201.903
DA_Maaslin20.3070.0120.336
DA_NOISeq1.4150.0361.456
DA_Seurat2.0320.0362.081
DA_ZicoSeq0.9780.0070.988
DA_basic0.0420.0010.043
DA_corncob0.8840.0160.938
DA_dearseq0.0690.0040.074
DA_edgeR0.2330.0030.237
DA_limma0.0960.0010.096
DA_linda0.0660.0000.066
DA_maaslin30.7880.0160.811
DA_metagenomeSeq0.3400.0030.344
DA_mixMC0.8960.0160.915
RMSE0.0010.0000.001
addKnowledge0.2840.0080.292
areaCAT5.6320.1085.753
checkNormalization000
createColors0.0050.0000.005
createConcordance6.6870.0806.781
createEnrichment0.3350.0000.336
createMocks0.0030.0000.003
createPositives1.3310.0081.342
createSplits0.0430.0000.044
createTIEC4.3620.0324.405
enrichmentTest0.1520.0040.156
extractDA0.2420.0000.243
extractStatistics0.2350.0000.235
fitDM0.0420.0000.042
fitHURDLE0.9230.0040.930
fitModels3.5380.0406.270
fitNB0.0660.0000.130
fitZIG0.0800.0000.161
fitZINB0.6540.0051.322
getDA0.1080.0040.224
getPositives0.1150.0000.232
getStatistics0.0970.0040.201
get_counts_metadata0.1620.0000.325
iterative_ordering0.0120.0000.025
meanDifferences0.0030.0000.003
norm_CSS0.1010.0000.207
norm_DESeq20.6670.0001.337
norm_TSS0.0490.0000.101
norm_edgeR0.0530.0000.103
plotConcordance7.0670.0788.040
plotContingency2.0580.0202.115
plotEnrichment2.1830.0192.334
plotFDR3.6510.0314.124
plotFPR4.1090.0917.118
plotKS 4.586 3.90820.645