| Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-09-11 12:03 -0400 (Thu, 11 Sep 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" | 4539 |
| lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4474 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4519 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4544 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 990/2322 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.15.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.15.0 |
| Command: /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings HPiP_1.15.0.tar.gz |
| StartedAt: 2025-09-11 01:34:23 -0400 (Thu, 11 Sep 2025) |
| EndedAt: 2025-09-11 01:50:18 -0400 (Thu, 11 Sep 2025) |
| EllapsedTime: 955.1 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.22-bioc/R/site-library --timings HPiP_1.15.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck’
* using R version 4.5.1 Patched (2025-08-23 r88802)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.15.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... NOTE
License stub is invalid DCF.
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) getHPI.Rd:29: Lost braces
29 | then the Kronecker product is the code{(pm × qn)} block matrix
| ^
* checking Rd metadata ... OK
* checking Rd cross-references ... INFO
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 34.975 0.284 35.304
corr_plot 34.061 0.460 34.524
FSmethod 33.264 0.528 33.795
pred_ensembel 13.109 0.386 12.214
enrichfindP 0.545 0.048 8.346
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/home/biocbuild/bbs-3.22-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.22-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.22-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.15.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 94.578207
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 97.320571
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 98.320046
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 105.801428
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 95.896129
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.733990
iter 10 value 93.977034
iter 20 value 93.958070
final value 93.956926
converged
Fitting Repeat 2
# weights: 305
initial value 100.460415
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 101.528162
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 94.935279
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 104.410552
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 111.385695
iter 10 value 94.025289
iter 10 value 94.025289
iter 10 value 94.025289
final value 94.025289
converged
Fitting Repeat 2
# weights: 507
initial value 107.649181
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 100.251248
iter 10 value 92.438650
final value 91.717242
converged
Fitting Repeat 4
# weights: 507
initial value 106.411566
iter 10 value 89.964326
iter 20 value 89.870875
final value 89.870091
converged
Fitting Repeat 5
# weights: 507
initial value 99.486493
iter 10 value 84.507900
iter 20 value 83.157463
iter 30 value 82.901879
iter 40 value 82.901704
final value 82.901697
converged
Fitting Repeat 1
# weights: 103
initial value 97.552443
iter 10 value 93.821790
iter 20 value 87.469450
iter 30 value 84.363421
iter 40 value 84.165112
iter 50 value 83.523141
iter 60 value 83.244137
final value 83.243067
converged
Fitting Repeat 2
# weights: 103
initial value 105.142650
iter 10 value 93.857333
iter 20 value 87.315340
iter 30 value 85.370937
iter 40 value 85.109982
iter 50 value 84.100027
iter 60 value 84.009340
iter 70 value 83.893106
iter 80 value 83.888858
iter 90 value 83.885052
final value 83.884938
converged
Fitting Repeat 3
# weights: 103
initial value 99.790929
iter 10 value 91.460605
iter 20 value 91.188743
iter 30 value 90.201342
iter 40 value 90.158513
iter 50 value 90.138826
final value 90.138821
converged
Fitting Repeat 4
# weights: 103
initial value 103.624850
iter 10 value 93.975077
iter 20 value 87.393396
iter 30 value 86.390588
iter 40 value 85.119352
iter 50 value 84.577722
iter 60 value 84.334102
iter 70 value 84.312127
final value 84.312049
converged
Fitting Repeat 5
# weights: 103
initial value 98.232896
iter 10 value 94.059599
iter 20 value 94.010385
iter 30 value 88.521242
iter 40 value 85.985241
iter 50 value 84.977596
iter 60 value 84.014763
iter 70 value 83.856699
iter 80 value 83.847582
iter 80 value 83.847581
iter 80 value 83.847581
final value 83.847581
converged
Fitting Repeat 1
# weights: 305
initial value 97.958166
iter 10 value 89.274416
iter 20 value 87.484394
iter 30 value 83.784682
iter 40 value 82.653839
iter 50 value 82.474339
iter 60 value 82.278612
iter 70 value 81.770979
iter 80 value 81.107552
iter 90 value 80.655251
iter 100 value 80.374706
final value 80.374706
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 127.069905
iter 10 value 94.108178
iter 20 value 93.501677
iter 30 value 89.539096
iter 40 value 85.879803
iter 50 value 85.132324
iter 60 value 83.917327
iter 70 value 83.206973
iter 80 value 82.771449
iter 90 value 80.837102
iter 100 value 80.475238
final value 80.475238
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.643325
iter 10 value 92.970402
iter 20 value 85.734519
iter 30 value 84.149797
iter 40 value 83.957542
iter 50 value 83.783388
iter 60 value 83.094716
iter 70 value 81.623735
iter 80 value 81.501156
iter 90 value 81.378467
iter 100 value 80.710537
final value 80.710537
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 112.874047
iter 10 value 92.550202
iter 20 value 84.632460
iter 30 value 84.476873
iter 40 value 84.237765
iter 50 value 83.916111
iter 60 value 83.272402
iter 70 value 82.201263
iter 80 value 81.971141
iter 90 value 81.582740
iter 100 value 81.515031
final value 81.515031
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.482227
iter 10 value 94.039786
iter 20 value 90.653512
iter 30 value 89.493887
iter 40 value 83.533219
iter 50 value 82.989866
iter 60 value 81.933758
iter 70 value 81.223678
iter 80 value 81.156429
iter 90 value 80.960582
iter 100 value 80.748604
final value 80.748604
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 103.323133
iter 10 value 93.335807
iter 20 value 90.483667
iter 30 value 89.767578
iter 40 value 85.368322
iter 50 value 83.739554
iter 60 value 83.002473
iter 70 value 81.668703
iter 80 value 81.510152
iter 90 value 81.160318
iter 100 value 80.902961
final value 80.902961
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.339205
iter 10 value 94.050605
iter 20 value 85.734948
iter 30 value 84.725719
iter 40 value 84.404404
iter 50 value 83.936337
iter 60 value 82.134120
iter 70 value 81.657119
iter 80 value 81.585172
iter 90 value 81.526271
iter 100 value 81.500441
final value 81.500441
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.258375
iter 10 value 93.862906
iter 20 value 90.818072
iter 30 value 89.659785
iter 40 value 87.501929
iter 50 value 83.915709
iter 60 value 81.935661
iter 70 value 81.701383
iter 80 value 81.211798
iter 90 value 80.739492
iter 100 value 80.476183
final value 80.476183
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 108.310505
iter 10 value 93.998398
iter 20 value 90.156895
iter 30 value 89.705858
iter 40 value 87.552605
iter 50 value 84.111420
iter 60 value 83.537805
iter 70 value 82.275960
iter 80 value 81.270161
iter 90 value 80.972199
iter 100 value 80.145875
final value 80.145875
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.373708
iter 10 value 94.113915
iter 20 value 92.875689
iter 30 value 90.418787
iter 40 value 85.910015
iter 50 value 85.106867
iter 60 value 83.713595
iter 70 value 82.831333
iter 80 value 81.338280
iter 90 value 80.233567
iter 100 value 79.688359
final value 79.688359
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.027183
final value 94.054528
converged
Fitting Repeat 2
# weights: 103
initial value 106.229519
final value 94.054546
converged
Fitting Repeat 3
# weights: 103
initial value 101.559254
iter 10 value 94.010354
iter 20 value 94.008977
iter 30 value 93.965839
final value 93.956956
converged
Fitting Repeat 4
# weights: 103
initial value 99.807624
final value 94.054781
converged
Fitting Repeat 5
# weights: 103
initial value 102.700451
final value 94.054410
converged
Fitting Repeat 1
# weights: 305
initial value 95.938597
iter 10 value 94.057054
iter 20 value 93.981262
iter 30 value 85.272388
final value 85.218340
converged
Fitting Repeat 2
# weights: 305
initial value 94.182388
iter 10 value 94.046687
iter 20 value 92.621414
iter 30 value 90.928445
iter 40 value 90.571211
iter 50 value 90.569344
iter 60 value 90.555267
iter 70 value 90.554880
iter 80 value 90.518087
iter 90 value 90.447714
iter 100 value 90.447653
final value 90.447653
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 96.442924
iter 10 value 94.014080
iter 20 value 93.886791
iter 30 value 90.159239
iter 40 value 81.846824
iter 50 value 81.832266
iter 60 value 81.815800
iter 70 value 81.809673
final value 81.809367
converged
Fitting Repeat 4
# weights: 305
initial value 99.068239
iter 10 value 89.481304
iter 20 value 82.415057
iter 30 value 82.238920
iter 30 value 82.238919
final value 82.238919
converged
Fitting Repeat 5
# weights: 305
initial value 104.489982
iter 10 value 85.974502
iter 20 value 83.734875
iter 30 value 83.733137
iter 40 value 83.729604
iter 50 value 83.648129
iter 60 value 83.544831
iter 70 value 82.969042
final value 82.905558
converged
Fitting Repeat 1
# weights: 507
initial value 108.438562
iter 10 value 94.061385
iter 20 value 93.597306
iter 30 value 85.247391
iter 40 value 85.223268
iter 50 value 85.221424
iter 60 value 85.219963
iter 70 value 85.101555
iter 80 value 85.100185
iter 90 value 84.963527
iter 100 value 82.902029
final value 82.902029
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 111.968191
iter 10 value 94.064046
iter 20 value 94.061705
iter 30 value 94.058340
iter 40 value 94.052823
iter 50 value 94.030854
iter 60 value 93.823553
iter 70 value 85.869193
iter 80 value 84.616224
final value 84.616163
converged
Fitting Repeat 3
# weights: 507
initial value 99.444440
iter 10 value 94.017394
iter 20 value 94.008914
iter 30 value 93.696103
iter 40 value 87.891179
iter 50 value 85.039085
iter 60 value 83.289668
iter 70 value 81.895694
iter 80 value 81.894642
final value 81.879207
converged
Fitting Repeat 4
# weights: 507
initial value 99.536240
iter 10 value 93.559964
iter 20 value 93.553597
final value 93.552440
converged
Fitting Repeat 5
# weights: 507
initial value 107.559845
iter 10 value 94.061064
iter 20 value 93.939213
iter 30 value 86.814616
iter 40 value 86.697185
iter 50 value 86.695984
iter 60 value 85.279114
iter 70 value 84.858311
iter 80 value 81.345260
iter 90 value 80.797955
iter 100 value 80.791118
final value 80.791118
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.893015
final value 94.312038
converged
Fitting Repeat 2
# weights: 103
initial value 100.556961
iter 10 value 94.165247
final value 93.345953
converged
Fitting Repeat 3
# weights: 103
initial value 95.465427
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.494776
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 97.953443
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 111.499295
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 101.906319
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 100.801471
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 98.116716
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 103.348525
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 100.761414
iter 10 value 93.809664
final value 93.792430
converged
Fitting Repeat 2
# weights: 507
initial value 129.828197
final value 93.809646
converged
Fitting Repeat 3
# weights: 507
initial value 137.115466
iter 10 value 94.466832
final value 94.466823
converged
Fitting Repeat 4
# weights: 507
initial value 97.406749
final value 94.484210
converged
Fitting Repeat 5
# weights: 507
initial value 104.831726
final value 94.484211
converged
Fitting Repeat 1
# weights: 103
initial value 99.067763
iter 10 value 94.488634
iter 20 value 94.027117
iter 30 value 87.092351
iter 40 value 86.043802
iter 50 value 85.878337
iter 60 value 85.194211
iter 70 value 85.135303
final value 85.135267
converged
Fitting Repeat 2
# weights: 103
initial value 101.605148
iter 10 value 94.432455
iter 20 value 88.628456
iter 30 value 82.925601
iter 40 value 82.767575
iter 50 value 81.912041
iter 60 value 80.807286
iter 70 value 80.665645
final value 80.644385
converged
Fitting Repeat 3
# weights: 103
initial value 100.020867
iter 10 value 94.447811
iter 20 value 87.972345
iter 30 value 86.141835
iter 40 value 85.925767
iter 50 value 85.819918
iter 60 value 85.189335
iter 70 value 85.135616
iter 80 value 85.135286
final value 85.135267
converged
Fitting Repeat 4
# weights: 103
initial value 98.387985
iter 10 value 94.476575
iter 20 value 94.194765
iter 30 value 93.724135
iter 40 value 91.755633
iter 50 value 88.372528
iter 60 value 86.841914
iter 70 value 85.290221
iter 80 value 83.246645
iter 90 value 82.669897
iter 100 value 82.444424
final value 82.444424
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 100.211910
iter 10 value 94.488320
iter 20 value 93.866628
iter 30 value 93.705208
iter 40 value 87.388063
iter 50 value 85.681765
iter 60 value 85.317313
iter 70 value 85.175829
iter 80 value 85.135279
final value 85.135267
converged
Fitting Repeat 1
# weights: 305
initial value 100.798485
iter 10 value 93.745788
iter 20 value 85.349522
iter 30 value 83.284841
iter 40 value 82.737328
iter 50 value 81.464621
iter 60 value 81.356539
iter 70 value 81.130795
iter 80 value 80.585087
iter 90 value 79.992265
iter 100 value 79.926377
final value 79.926377
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.001238
iter 10 value 92.628712
iter 20 value 90.816104
iter 30 value 89.547360
iter 40 value 89.261724
iter 50 value 89.150979
iter 60 value 87.851055
iter 70 value 87.106162
iter 80 value 86.995195
iter 90 value 86.636946
iter 100 value 84.608138
final value 84.608138
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 106.224110
iter 10 value 94.714756
iter 20 value 93.913894
iter 30 value 86.212003
iter 40 value 82.669376
iter 50 value 82.371285
iter 60 value 81.856628
iter 70 value 81.035149
iter 80 value 80.767010
iter 90 value 80.231666
iter 100 value 79.854636
final value 79.854636
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 118.522492
iter 10 value 94.455113
iter 20 value 93.754798
iter 30 value 93.592165
iter 40 value 91.407931
iter 50 value 85.746519
iter 60 value 84.765645
iter 70 value 81.667605
iter 80 value 81.241250
iter 90 value 80.722085
iter 100 value 79.858354
final value 79.858354
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 109.098735
iter 10 value 94.487192
iter 20 value 86.188314
iter 30 value 86.067941
iter 40 value 85.230351
iter 50 value 84.775714
iter 60 value 84.705032
iter 70 value 84.373724
iter 80 value 83.087137
iter 90 value 81.504377
iter 100 value 80.930839
final value 80.930839
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 147.224298
iter 10 value 94.522290
iter 20 value 87.731291
iter 30 value 87.369880
iter 40 value 87.129440
iter 50 value 84.592454
iter 60 value 82.931447
iter 70 value 82.213855
iter 80 value 81.441272
iter 90 value 80.312020
iter 100 value 79.972084
final value 79.972084
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.849842
iter 10 value 94.321940
iter 20 value 86.855003
iter 30 value 86.018632
iter 40 value 84.846830
iter 50 value 83.377096
iter 60 value 82.550537
iter 70 value 82.075224
iter 80 value 81.691056
iter 90 value 81.384132
iter 100 value 81.250375
final value 81.250375
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.101814
iter 10 value 96.225124
iter 20 value 87.770927
iter 30 value 87.506840
iter 40 value 87.300210
iter 50 value 86.198699
iter 60 value 84.330849
iter 70 value 83.925363
iter 80 value 83.510824
iter 90 value 82.246319
iter 100 value 81.805242
final value 81.805242
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.495352
iter 10 value 94.590763
iter 20 value 94.388531
iter 30 value 92.596184
iter 40 value 90.748167
iter 50 value 89.686355
iter 60 value 86.158920
iter 70 value 83.415617
iter 80 value 81.052860
iter 90 value 80.527792
iter 100 value 79.950017
final value 79.950017
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 126.501445
iter 10 value 94.422785
iter 20 value 93.716315
iter 30 value 92.667641
iter 40 value 88.772770
iter 50 value 84.344614
iter 60 value 82.094022
iter 70 value 81.144069
iter 80 value 80.762437
iter 90 value 80.182300
iter 100 value 80.076335
final value 80.076335
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 95.598419
iter 10 value 94.486108
final value 94.484217
converged
Fitting Repeat 2
# weights: 103
initial value 97.172929
iter 10 value 94.484421
iter 20 value 93.663061
final value 93.660217
converged
Fitting Repeat 3
# weights: 103
initial value 97.087937
iter 10 value 94.468440
iter 20 value 94.457073
iter 30 value 89.430311
iter 40 value 89.414719
iter 50 value 89.373217
final value 89.364685
converged
Fitting Repeat 4
# weights: 103
initial value 95.240418
iter 10 value 94.485862
iter 20 value 94.478156
iter 30 value 93.659765
final value 93.659565
converged
Fitting Repeat 5
# weights: 103
initial value 108.052610
iter 10 value 94.485938
iter 20 value 94.484269
final value 94.484217
converged
Fitting Repeat 1
# weights: 305
initial value 96.959282
iter 10 value 94.471307
iter 20 value 94.449302
iter 30 value 90.425904
iter 40 value 90.306852
iter 50 value 90.059145
iter 60 value 83.016391
iter 70 value 81.265316
iter 80 value 79.854988
iter 90 value 79.205672
iter 100 value 78.413545
final value 78.413545
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.931133
iter 10 value 94.471354
iter 20 value 94.124189
iter 30 value 87.652263
iter 40 value 87.604880
final value 87.604846
converged
Fitting Repeat 3
# weights: 305
initial value 99.899756
iter 10 value 94.489005
iter 20 value 94.427992
iter 30 value 88.051120
iter 40 value 86.169890
iter 50 value 86.158438
iter 60 value 86.156450
iter 70 value 83.849118
iter 80 value 82.370602
iter 90 value 80.859763
iter 100 value 80.701711
final value 80.701711
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 110.869341
iter 10 value 94.471344
iter 20 value 91.958781
iter 30 value 87.288890
iter 40 value 87.017030
iter 50 value 86.925444
iter 60 value 86.925350
final value 86.925347
converged
Fitting Repeat 5
# weights: 305
initial value 97.622781
iter 10 value 94.489493
iter 20 value 94.473297
iter 30 value 94.143859
iter 40 value 92.740288
iter 50 value 83.244806
iter 60 value 83.209653
iter 70 value 83.209594
final value 83.209580
converged
Fitting Repeat 1
# weights: 507
initial value 100.778927
iter 10 value 94.474966
iter 20 value 94.428290
iter 30 value 89.061960
iter 40 value 87.315793
iter 50 value 87.315597
iter 60 value 86.989553
iter 70 value 86.988022
final value 86.987978
converged
Fitting Repeat 2
# weights: 507
initial value 115.156471
iter 10 value 94.492227
iter 20 value 94.180764
iter 30 value 89.458810
iter 40 value 89.458535
iter 50 value 88.817477
final value 88.556755
converged
Fitting Repeat 3
# weights: 507
initial value 98.355097
iter 10 value 94.492512
iter 20 value 94.477432
iter 30 value 94.474740
iter 40 value 94.392037
iter 50 value 87.731852
iter 60 value 87.097547
iter 70 value 86.267725
iter 80 value 80.956981
iter 90 value 80.341127
iter 100 value 79.044032
final value 79.044032
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 104.563778
iter 10 value 93.576334
iter 20 value 93.569045
iter 30 value 93.530977
iter 40 value 93.525869
iter 50 value 93.509636
iter 60 value 93.498571
iter 70 value 93.497979
iter 70 value 93.497978
iter 70 value 93.497978
final value 93.497978
converged
Fitting Repeat 5
# weights: 507
initial value 109.727303
iter 10 value 94.475002
iter 20 value 94.467811
iter 30 value 94.117194
iter 40 value 93.230823
iter 50 value 85.860357
iter 60 value 84.855295
iter 70 value 84.695441
iter 80 value 84.443671
iter 90 value 84.430519
iter 100 value 84.166132
final value 84.166132
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 103.278927
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.980681
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 101.439884
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 97.078297
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 102.738989
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.333056
iter 10 value 93.102865
final value 93.102857
converged
Fitting Repeat 2
# weights: 305
initial value 103.848456
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 102.332108
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 95.023060
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 107.378031
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 105.836149
iter 10 value 94.339035
iter 20 value 85.696099
iter 30 value 84.863506
final value 84.863492
converged
Fitting Repeat 2
# weights: 507
initial value 95.720230
final value 94.354285
converged
Fitting Repeat 3
# weights: 507
initial value 97.050217
iter 10 value 88.627358
iter 20 value 87.845115
iter 30 value 87.645837
iter 40 value 87.623477
iter 50 value 87.607681
iter 60 value 87.568930
final value 87.568894
converged
Fitting Repeat 4
# weights: 507
initial value 103.808222
iter 10 value 94.484863
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 97.148493
iter 10 value 94.467136
final value 94.466824
converged
Fitting Repeat 1
# weights: 103
initial value 96.860943
iter 10 value 94.472859
iter 20 value 92.776884
iter 30 value 90.268266
iter 40 value 86.757029
iter 50 value 83.415256
iter 60 value 83.228550
iter 70 value 83.117250
final value 83.116834
converged
Fitting Repeat 2
# weights: 103
initial value 96.270208
iter 10 value 94.488547
iter 20 value 94.367609
iter 30 value 94.319180
iter 40 value 93.466572
iter 50 value 83.451535
iter 60 value 83.123021
iter 70 value 82.733218
iter 80 value 81.866308
iter 90 value 81.482849
iter 100 value 81.363006
final value 81.363006
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 98.965434
iter 10 value 94.488459
iter 20 value 87.860849
iter 30 value 86.539313
iter 40 value 83.603883
iter 50 value 83.153162
iter 60 value 83.122776
iter 70 value 83.110800
final value 83.110798
converged
Fitting Repeat 4
# weights: 103
initial value 105.998140
iter 10 value 93.548659
iter 20 value 87.492729
iter 30 value 86.570213
iter 40 value 84.089157
iter 50 value 81.651636
iter 60 value 81.169840
iter 70 value 80.983008
final value 80.981893
converged
Fitting Repeat 5
# weights: 103
initial value 110.295608
iter 10 value 94.446033
iter 20 value 88.744938
iter 30 value 84.430884
iter 40 value 83.788897
iter 50 value 83.316402
iter 60 value 83.168790
final value 83.168722
converged
Fitting Repeat 1
# weights: 305
initial value 102.654309
iter 10 value 90.866609
iter 20 value 87.106909
iter 30 value 85.810555
iter 40 value 85.454916
iter 50 value 85.019464
iter 60 value 84.550595
iter 70 value 84.366579
iter 80 value 82.129964
iter 90 value 80.681281
iter 100 value 79.665823
final value 79.665823
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 112.307739
iter 10 value 94.420197
iter 20 value 86.458387
iter 30 value 86.080768
iter 40 value 83.854779
iter 50 value 83.557478
iter 60 value 83.231810
iter 70 value 81.838510
iter 80 value 81.001314
iter 90 value 80.860809
iter 100 value 80.770755
final value 80.770755
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.531606
iter 10 value 87.904047
iter 20 value 84.776895
iter 30 value 84.122369
iter 40 value 83.751903
iter 50 value 82.154141
iter 60 value 81.589471
iter 70 value 81.322325
iter 80 value 80.576307
iter 90 value 80.283259
iter 100 value 79.948789
final value 79.948789
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.728058
iter 10 value 94.356338
iter 20 value 87.304877
iter 30 value 83.876675
iter 40 value 82.939306
iter 50 value 82.752907
iter 60 value 82.624550
iter 70 value 82.447497
iter 80 value 82.417450
iter 90 value 82.334428
iter 100 value 81.775394
final value 81.775394
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 99.925042
iter 10 value 94.324042
iter 20 value 87.413123
iter 30 value 80.844015
iter 40 value 80.158749
iter 50 value 80.021882
iter 60 value 79.841651
iter 70 value 79.799610
iter 80 value 79.729252
iter 90 value 79.600102
iter 100 value 79.476667
final value 79.476667
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 109.846938
iter 10 value 94.747374
iter 20 value 90.840921
iter 30 value 89.140615
iter 40 value 87.415098
iter 50 value 85.067695
iter 60 value 82.825595
iter 70 value 81.849599
iter 80 value 81.456442
iter 90 value 80.322229
iter 100 value 80.152980
final value 80.152980
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 109.222548
iter 10 value 94.722889
iter 20 value 93.950949
iter 30 value 87.090767
iter 40 value 83.697851
iter 50 value 83.352498
iter 60 value 82.731852
iter 70 value 82.409929
iter 80 value 82.171688
iter 90 value 80.869570
iter 100 value 80.297949
final value 80.297949
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 110.104703
iter 10 value 94.733284
iter 20 value 88.449261
iter 30 value 85.417065
iter 40 value 83.131810
iter 50 value 81.381710
iter 60 value 80.599015
iter 70 value 80.350221
iter 80 value 79.975239
iter 90 value 79.543628
iter 100 value 79.401411
final value 79.401411
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 117.686396
iter 10 value 95.104567
iter 20 value 87.974957
iter 30 value 86.448784
iter 40 value 84.515653
iter 50 value 82.780589
iter 60 value 81.829281
iter 70 value 81.381744
iter 80 value 80.998023
iter 90 value 80.557883
iter 100 value 79.815630
final value 79.815630
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 108.901290
iter 10 value 95.007108
iter 20 value 88.574528
iter 30 value 83.965943
iter 40 value 81.770453
iter 50 value 81.031213
iter 60 value 80.480815
iter 70 value 80.226609
iter 80 value 80.117105
iter 90 value 79.980522
iter 100 value 79.745378
final value 79.745378
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.658064
final value 94.468429
converged
Fitting Repeat 2
# weights: 103
initial value 101.374285
iter 10 value 94.485823
iter 20 value 94.484220
final value 94.484215
converged
Fitting Repeat 3
# weights: 103
initial value 98.134801
final value 94.485855
converged
Fitting Repeat 4
# weights: 103
initial value 102.038747
final value 94.486081
converged
Fitting Repeat 5
# weights: 103
initial value 99.703195
iter 10 value 94.486000
iter 20 value 94.484224
final value 94.484213
converged
Fitting Repeat 1
# weights: 305
initial value 98.948591
iter 10 value 94.488485
iter 20 value 88.459430
iter 30 value 87.656771
iter 40 value 87.464269
iter 50 value 85.274891
iter 60 value 85.272187
iter 60 value 85.272186
iter 60 value 85.272186
final value 85.272186
converged
Fitting Repeat 2
# weights: 305
initial value 107.548192
iter 10 value 94.489628
iter 20 value 94.459165
iter 30 value 88.514724
iter 40 value 87.035750
iter 50 value 85.120784
iter 60 value 84.245229
iter 70 value 79.670202
iter 80 value 79.557331
iter 90 value 79.537981
iter 100 value 79.518958
final value 79.518958
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 101.854284
iter 10 value 94.485080
iter 20 value 83.732966
iter 30 value 82.935107
iter 40 value 81.802435
iter 50 value 81.088156
iter 60 value 80.938070
iter 70 value 80.937474
iter 80 value 80.934859
iter 90 value 80.934421
final value 80.934213
converged
Fitting Repeat 4
# weights: 305
initial value 115.932386
iter 10 value 94.488930
iter 20 value 86.601464
final value 86.564633
converged
Fitting Repeat 5
# weights: 305
initial value 95.420202
iter 10 value 92.943489
iter 20 value 92.902120
iter 30 value 92.901082
iter 40 value 92.889857
iter 50 value 92.859991
iter 60 value 92.858803
iter 70 value 92.822353
iter 80 value 92.821596
iter 90 value 92.746904
iter 100 value 92.745347
final value 92.745347
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 108.732063
iter 10 value 94.492960
iter 20 value 94.487925
iter 30 value 94.046517
iter 40 value 86.830355
iter 50 value 86.655747
final value 86.655441
converged
Fitting Repeat 2
# weights: 507
initial value 96.954360
iter 10 value 94.491519
iter 20 value 94.346100
iter 30 value 94.319931
iter 40 value 89.212768
iter 50 value 85.650560
iter 60 value 85.548602
iter 70 value 82.590417
iter 80 value 82.515206
iter 90 value 82.511664
final value 82.511376
converged
Fitting Repeat 3
# weights: 507
initial value 99.659156
iter 10 value 92.499043
iter 20 value 83.675349
iter 30 value 83.646985
iter 40 value 83.549845
iter 50 value 83.077348
iter 60 value 83.046412
iter 70 value 83.041671
iter 80 value 83.018609
iter 90 value 82.983529
iter 100 value 82.983067
final value 82.983067
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 101.393261
iter 10 value 92.228905
iter 20 value 88.814932
iter 30 value 84.751806
iter 40 value 84.527213
iter 50 value 84.521886
iter 60 value 84.456818
iter 70 value 83.910472
iter 80 value 83.578910
iter 90 value 83.194844
iter 100 value 83.194601
final value 83.194601
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.843964
iter 10 value 83.498354
iter 20 value 82.747230
iter 30 value 82.651608
iter 40 value 82.649441
iter 50 value 82.645898
iter 60 value 82.220504
iter 70 value 82.095790
iter 80 value 81.531672
final value 81.531627
converged
Fitting Repeat 1
# weights: 103
initial value 94.206455
iter 10 value 92.971267
final value 92.971247
converged
Fitting Repeat 2
# weights: 103
initial value 99.621685
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 102.355160
iter 10 value 93.672975
final value 93.672973
converged
Fitting Repeat 4
# weights: 103
initial value 95.188349
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 96.010546
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 103.011140
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 95.346389
final value 93.915746
converged
Fitting Repeat 3
# weights: 305
initial value 105.127014
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 94.816080
iter 10 value 93.604547
final value 93.604521
converged
Fitting Repeat 5
# weights: 305
initial value 103.632979
final value 93.604520
converged
Fitting Repeat 1
# weights: 507
initial value 111.616430
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 98.599592
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 96.653869
final value 94.050155
converged
Fitting Repeat 4
# weights: 507
initial value 96.350490
iter 10 value 93.712587
iter 20 value 86.629372
iter 30 value 86.025525
final value 86.013413
converged
Fitting Repeat 5
# weights: 507
initial value 103.367978
iter 10 value 93.915746
iter 10 value 93.915746
iter 10 value 93.915746
final value 93.915746
converged
Fitting Repeat 1
# weights: 103
initial value 100.874436
iter 10 value 94.072200
iter 20 value 94.056725
iter 30 value 93.890864
iter 40 value 92.839557
iter 50 value 92.756022
iter 60 value 92.572164
iter 70 value 86.098559
iter 80 value 84.503743
iter 90 value 82.734641
iter 100 value 82.476009
final value 82.476009
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.607038
iter 10 value 94.064445
iter 20 value 94.022625
iter 30 value 88.790151
iter 40 value 87.944814
iter 50 value 85.578746
iter 60 value 84.011311
iter 70 value 83.849482
iter 80 value 83.848061
iter 90 value 83.845653
iter 90 value 83.845653
iter 90 value 83.845653
final value 83.845653
converged
Fitting Repeat 3
# weights: 103
initial value 110.373193
iter 10 value 93.833226
iter 20 value 87.639512
iter 30 value 87.223420
iter 40 value 86.513183
iter 50 value 84.951980
iter 60 value 84.817403
iter 70 value 84.804033
iter 80 value 84.801413
final value 84.801410
converged
Fitting Repeat 4
# weights: 103
initial value 97.746486
iter 10 value 94.056711
iter 20 value 93.991055
iter 30 value 91.965775
iter 40 value 91.394526
iter 50 value 90.897120
iter 60 value 86.367915
iter 70 value 84.459507
iter 80 value 83.397039
iter 90 value 83.170785
iter 100 value 82.833339
final value 82.833339
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 110.795985
iter 10 value 94.036064
iter 20 value 93.240494
iter 30 value 93.209924
iter 40 value 92.819724
iter 50 value 87.897415
iter 60 value 86.748375
iter 70 value 84.597580
iter 80 value 84.279405
iter 90 value 83.628177
iter 100 value 83.445767
final value 83.445767
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 129.977301
iter 10 value 94.111883
iter 20 value 86.968685
iter 30 value 85.690435
iter 40 value 85.376492
iter 50 value 84.928932
iter 60 value 83.530564
iter 70 value 82.446140
iter 80 value 81.782575
iter 90 value 81.494536
iter 100 value 81.345675
final value 81.345675
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.434591
iter 10 value 93.831021
iter 20 value 87.228089
iter 30 value 85.567654
iter 40 value 85.235557
iter 50 value 85.022572
iter 60 value 84.249246
iter 70 value 84.208970
iter 80 value 83.891457
iter 90 value 82.925243
iter 100 value 82.507987
final value 82.507987
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 104.962320
iter 10 value 93.818077
iter 20 value 93.494426
iter 30 value 87.957140
iter 40 value 84.773656
iter 50 value 83.186218
iter 60 value 82.811460
iter 70 value 82.560015
iter 80 value 81.967709
iter 90 value 81.587059
iter 100 value 81.080466
final value 81.080466
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.603282
iter 10 value 93.871456
iter 20 value 87.823895
iter 30 value 85.503816
iter 40 value 83.743086
iter 50 value 82.995928
iter 60 value 82.359534
iter 70 value 81.952387
iter 80 value 81.661707
iter 90 value 81.562198
iter 100 value 81.538893
final value 81.538893
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.206610
iter 10 value 94.166224
iter 20 value 91.572506
iter 30 value 88.720377
iter 40 value 86.062682
iter 50 value 85.795651
iter 60 value 83.553560
iter 70 value 82.956151
iter 80 value 81.465600
iter 90 value 81.294868
iter 100 value 81.279134
final value 81.279134
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 110.458523
iter 10 value 93.988613
iter 20 value 93.194937
iter 30 value 91.227364
iter 40 value 90.527226
iter 50 value 87.679374
iter 60 value 86.445834
iter 70 value 84.978692
iter 80 value 83.357574
iter 90 value 82.309730
iter 100 value 81.363416
final value 81.363416
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 113.235318
iter 10 value 94.404686
iter 20 value 94.062017
iter 30 value 89.907521
iter 40 value 86.646988
iter 50 value 86.366870
iter 60 value 85.773679
iter 70 value 83.974186
iter 80 value 83.068351
iter 90 value 82.222167
iter 100 value 81.527197
final value 81.527197
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.140190
iter 10 value 93.940873
iter 20 value 90.392930
iter 30 value 86.438758
iter 40 value 83.579666
iter 50 value 82.576156
iter 60 value 82.033927
iter 70 value 81.821875
iter 80 value 81.388226
iter 90 value 81.115266
iter 100 value 81.029221
final value 81.029221
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.259354
iter 10 value 94.248849
iter 20 value 86.996356
iter 30 value 86.636046
iter 40 value 86.437541
iter 50 value 85.666826
iter 60 value 85.265769
iter 70 value 84.033949
iter 80 value 82.990707
iter 90 value 81.908936
iter 100 value 81.472498
final value 81.472498
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.136209
iter 10 value 93.856591
iter 20 value 88.232869
iter 30 value 86.923470
iter 40 value 85.981480
iter 50 value 85.821812
iter 60 value 85.379037
iter 70 value 84.739375
iter 80 value 83.179120
iter 90 value 81.917414
iter 100 value 81.431937
final value 81.431937
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 102.866539
final value 94.054569
converged
Fitting Repeat 2
# weights: 103
initial value 95.146007
iter 10 value 94.054691
iter 20 value 94.044892
iter 30 value 90.545399
final value 90.459627
converged
Fitting Repeat 3
# weights: 103
initial value 95.558451
final value 94.054642
converged
Fitting Repeat 4
# weights: 103
initial value 103.933510
final value 94.054467
converged
Fitting Repeat 5
# weights: 103
initial value 95.811994
final value 94.054752
converged
Fitting Repeat 1
# weights: 305
initial value 97.128904
iter 10 value 94.057721
iter 20 value 94.052782
iter 30 value 86.246768
iter 40 value 85.460344
iter 50 value 85.451696
iter 60 value 85.322765
iter 70 value 85.316103
iter 80 value 83.321676
iter 90 value 82.090998
iter 100 value 81.935483
final value 81.935483
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.862715
iter 10 value 94.057976
iter 20 value 94.053199
final value 94.053100
converged
Fitting Repeat 3
# weights: 305
initial value 106.896401
iter 10 value 94.057945
iter 20 value 93.920402
iter 30 value 90.192157
iter 40 value 87.877980
final value 87.877977
converged
Fitting Repeat 4
# weights: 305
initial value 103.484463
iter 10 value 93.920640
iter 20 value 93.744901
iter 30 value 90.623660
iter 40 value 90.543961
iter 50 value 90.149408
iter 60 value 90.144001
iter 60 value 90.144001
final value 90.144001
converged
Fitting Repeat 5
# weights: 305
initial value 96.450056
iter 10 value 93.920533
iter 20 value 93.915942
iter 30 value 91.956845
iter 40 value 84.184836
iter 50 value 83.461725
iter 60 value 83.388299
iter 70 value 83.372685
iter 70 value 83.372685
iter 70 value 83.372684
final value 83.372684
converged
Fitting Repeat 1
# weights: 507
initial value 94.713206
iter 10 value 93.912401
iter 20 value 85.818479
iter 30 value 85.182343
iter 40 value 85.174725
iter 40 value 85.174725
final value 85.174725
converged
Fitting Repeat 2
# weights: 507
initial value 108.379774
iter 10 value 93.396968
iter 20 value 92.883352
iter 30 value 92.882188
iter 40 value 92.881055
iter 50 value 92.820951
iter 60 value 86.977279
iter 70 value 84.570531
iter 80 value 83.823558
iter 90 value 83.480133
iter 100 value 83.477773
final value 83.477773
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 101.630010
iter 10 value 93.925828
iter 20 value 93.696209
iter 30 value 86.792653
iter 40 value 85.928323
iter 50 value 83.857905
iter 60 value 83.657243
iter 70 value 83.649370
iter 80 value 83.648146
iter 90 value 83.646518
iter 100 value 82.925531
final value 82.925531
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 99.930569
iter 10 value 93.923521
iter 20 value 93.731037
iter 30 value 85.045096
iter 40 value 82.335935
iter 50 value 82.176747
final value 82.175712
converged
Fitting Repeat 5
# weights: 507
initial value 116.447747
iter 10 value 94.064671
iter 20 value 93.815083
iter 30 value 87.314826
iter 40 value 82.534334
iter 50 value 82.486342
iter 60 value 82.473808
iter 70 value 82.469122
iter 80 value 82.468048
iter 90 value 82.467396
iter 100 value 82.466930
final value 82.466930
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 101.300086
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 103.614879
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 101.584660
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 100.592699
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 96.707182
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 101.380926
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 98.034007
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 102.161717
iter 10 value 93.494014
final value 93.485037
converged
Fitting Repeat 4
# weights: 305
initial value 96.260449
iter 10 value 93.772980
final value 93.772973
converged
Fitting Repeat 5
# weights: 305
initial value 99.928157
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 101.667999
iter 10 value 93.772978
final value 93.772973
converged
Fitting Repeat 2
# weights: 507
initial value 97.096702
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 114.575964
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 97.709916
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 102.844663
final value 94.409357
converged
Fitting Repeat 1
# weights: 103
initial value 99.918738
iter 10 value 94.475861
iter 20 value 94.142035
iter 30 value 94.008314
iter 40 value 93.997230
iter 50 value 93.982057
iter 60 value 93.453573
iter 70 value 89.066437
iter 80 value 85.524704
iter 90 value 83.958282
iter 100 value 82.752220
final value 82.752220
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 101.732106
iter 10 value 93.997851
iter 20 value 93.117665
iter 30 value 90.472204
iter 40 value 86.347998
iter 50 value 85.549269
iter 60 value 84.504323
iter 70 value 83.314957
iter 80 value 83.227969
iter 90 value 83.217475
iter 100 value 83.199949
final value 83.199949
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 105.375819
iter 10 value 94.451755
iter 20 value 91.618767
iter 30 value 90.333167
iter 40 value 86.648213
iter 50 value 84.595708
iter 60 value 83.323973
iter 70 value 82.618920
iter 80 value 82.403895
iter 90 value 82.403617
final value 82.403592
converged
Fitting Repeat 4
# weights: 103
initial value 97.344583
iter 10 value 94.467291
iter 20 value 93.768664
iter 30 value 93.751587
iter 40 value 93.749696
iter 50 value 93.287881
iter 60 value 90.398175
iter 70 value 85.759000
iter 80 value 83.683494
iter 90 value 83.371543
iter 100 value 83.050294
final value 83.050294
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.668973
iter 10 value 94.475498
iter 20 value 94.029372
iter 30 value 93.991866
iter 40 value 93.980468
iter 50 value 93.044731
iter 60 value 87.771674
iter 70 value 84.600793
iter 80 value 84.280878
iter 90 value 83.492558
iter 100 value 83.215411
final value 83.215411
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 116.544539
iter 10 value 94.738282
iter 20 value 93.980652
iter 30 value 93.943050
iter 40 value 87.831951
iter 50 value 85.972527
iter 60 value 85.162526
iter 70 value 82.883366
iter 80 value 82.223272
iter 90 value 81.848732
iter 100 value 81.653198
final value 81.653198
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 110.464031
iter 10 value 94.461313
iter 20 value 88.393379
iter 30 value 87.941631
iter 40 value 87.233912
iter 50 value 86.869909
iter 60 value 86.675825
iter 70 value 84.388034
iter 80 value 82.773501
iter 90 value 81.725987
iter 100 value 81.413176
final value 81.413176
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 128.302751
iter 10 value 94.924682
iter 20 value 90.675216
iter 30 value 87.266723
iter 40 value 85.695028
iter 50 value 84.961059
iter 60 value 84.264392
iter 70 value 83.873528
iter 80 value 83.011151
iter 90 value 82.590800
iter 100 value 82.554585
final value 82.554585
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 101.401682
iter 10 value 93.954934
iter 20 value 88.870682
iter 30 value 88.279703
iter 40 value 85.665521
iter 50 value 83.957783
iter 60 value 83.887934
iter 70 value 83.822705
iter 80 value 83.763544
iter 90 value 83.147315
iter 100 value 82.085156
final value 82.085156
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 111.353578
iter 10 value 94.438615
iter 20 value 87.713433
iter 30 value 86.495346
iter 40 value 84.608544
iter 50 value 81.908083
iter 60 value 81.511977
iter 70 value 81.392271
iter 80 value 81.348921
iter 90 value 81.317088
iter 100 value 81.271500
final value 81.271500
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.524918
iter 10 value 94.698386
iter 20 value 93.840607
iter 30 value 90.710750
iter 40 value 85.692513
iter 50 value 82.980271
iter 60 value 82.469408
iter 70 value 81.781258
iter 80 value 81.265212
iter 90 value 81.132735
iter 100 value 80.800924
final value 80.800924
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 104.782255
iter 10 value 94.570652
iter 20 value 89.448185
iter 30 value 87.799922
iter 40 value 85.374998
iter 50 value 84.845912
iter 60 value 84.370401
iter 70 value 84.003291
iter 80 value 83.544084
iter 90 value 83.083825
iter 100 value 81.911364
final value 81.911364
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 116.592913
iter 10 value 94.584681
iter 20 value 88.919294
iter 30 value 86.164436
iter 40 value 85.450053
iter 50 value 84.762137
iter 60 value 84.237024
iter 70 value 83.489048
iter 80 value 82.931313
iter 90 value 82.270814
iter 100 value 81.433129
final value 81.433129
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.008464
iter 10 value 94.163881
iter 20 value 90.725733
iter 30 value 88.750609
iter 40 value 86.188327
iter 50 value 82.660284
iter 60 value 81.677770
iter 70 value 81.459586
iter 80 value 81.182434
iter 90 value 81.134822
iter 100 value 81.104432
final value 81.104432
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.572681
iter 10 value 95.409142
iter 20 value 89.223209
iter 30 value 85.863280
iter 40 value 85.202034
iter 50 value 83.373814
iter 60 value 82.261418
iter 70 value 81.983140
iter 80 value 81.638296
iter 90 value 81.528913
iter 100 value 81.237667
final value 81.237667
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.886343
final value 94.485652
converged
Fitting Repeat 2
# weights: 103
initial value 100.727520
final value 94.485661
converged
Fitting Repeat 3
# weights: 103
initial value 99.671085
iter 10 value 87.037515
iter 20 value 84.758935
iter 30 value 84.739933
iter 40 value 84.739685
iter 50 value 84.738177
iter 60 value 84.486632
iter 70 value 84.465964
final value 84.465642
converged
Fitting Repeat 4
# weights: 103
initial value 98.539138
final value 94.486025
converged
Fitting Repeat 5
# weights: 103
initial value 97.511199
iter 10 value 93.774827
iter 20 value 93.773856
iter 30 value 93.568485
iter 40 value 89.253486
final value 89.165851
converged
Fitting Repeat 1
# weights: 305
initial value 97.193021
iter 10 value 93.778005
iter 20 value 93.776674
iter 30 value 93.666346
iter 40 value 92.585315
iter 50 value 90.553567
iter 60 value 90.540168
iter 70 value 90.457696
iter 80 value 89.989590
iter 90 value 89.874296
iter 100 value 89.874187
final value 89.874187
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 109.090525
iter 10 value 94.280513
iter 20 value 94.276705
iter 30 value 94.276466
iter 40 value 93.739926
iter 50 value 93.637988
iter 60 value 93.551572
final value 93.541163
converged
Fitting Repeat 3
# weights: 305
initial value 94.534149
iter 10 value 94.488413
iter 20 value 94.275878
iter 30 value 93.541812
final value 93.541803
converged
Fitting Repeat 4
# weights: 305
initial value 100.709018
iter 10 value 94.489157
iter 20 value 94.484882
iter 30 value 93.811946
final value 93.773419
converged
Fitting Repeat 5
# weights: 305
initial value 109.955147
iter 10 value 94.488898
iter 20 value 94.484235
iter 20 value 94.484235
iter 30 value 89.671108
iter 40 value 85.694788
final value 85.694688
converged
Fitting Repeat 1
# weights: 507
initial value 103.327435
iter 10 value 93.782020
iter 20 value 93.774658
iter 30 value 88.965115
iter 40 value 87.000647
iter 50 value 85.896497
iter 60 value 84.783002
iter 70 value 82.258187
iter 80 value 81.755225
iter 90 value 81.576072
iter 100 value 81.265897
final value 81.265897
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 110.290511
iter 10 value 94.490454
iter 20 value 94.167900
iter 30 value 94.166812
iter 40 value 93.639068
final value 93.639038
converged
Fitting Repeat 3
# weights: 507
initial value 99.376709
iter 10 value 94.491730
final value 94.484865
converged
Fitting Repeat 4
# weights: 507
initial value 99.003937
iter 10 value 93.754889
iter 20 value 93.749391
iter 30 value 93.696455
iter 40 value 91.907283
final value 91.889233
converged
Fitting Repeat 5
# weights: 507
initial value 100.729790
iter 10 value 93.781812
iter 20 value 93.775161
iter 30 value 93.555843
iter 40 value 91.843508
iter 50 value 91.670935
iter 60 value 91.449632
iter 70 value 90.296614
iter 80 value 90.293097
iter 90 value 87.359871
iter 100 value 87.335861
final value 87.335861
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 163.293327
iter 10 value 117.961057
iter 20 value 114.125194
iter 30 value 105.363858
iter 40 value 104.371406
iter 50 value 102.492957
iter 60 value 101.714780
iter 70 value 101.212558
iter 80 value 101.005547
iter 90 value 100.974316
iter 100 value 100.830676
final value 100.830676
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 141.748171
iter 10 value 116.853608
iter 20 value 110.857185
iter 30 value 109.249451
iter 40 value 108.330681
iter 50 value 103.531903
iter 60 value 101.924597
iter 70 value 101.461156
iter 80 value 101.343725
iter 90 value 101.308248
iter 100 value 101.043472
final value 101.043472
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 140.282548
iter 10 value 118.148816
iter 20 value 108.318204
iter 30 value 107.339594
iter 40 value 106.851947
iter 50 value 103.009711
iter 60 value 101.856365
iter 70 value 101.396744
iter 80 value 101.251679
iter 90 value 101.180921
iter 100 value 101.143034
final value 101.143034
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 135.312353
iter 10 value 117.879154
iter 20 value 117.507370
iter 30 value 107.712063
iter 40 value 104.260194
iter 50 value 104.089663
iter 60 value 103.158818
iter 70 value 101.978376
iter 80 value 101.709165
iter 90 value 101.363703
iter 100 value 101.235204
final value 101.235204
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 150.686970
iter 10 value 118.336102
iter 20 value 114.785915
iter 30 value 114.626292
iter 40 value 110.058850
iter 50 value 106.839732
iter 60 value 105.204406
iter 70 value 104.795057
iter 80 value 103.899906
iter 90 value 102.646657
iter 100 value 102.517104
final value 102.517104
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Thu Sep 11 01:40:30 2025
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
40.889 1.134 153.993
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 33.264 | 0.528 | 33.795 | |
| FreqInteractors | 0.209 | 0.009 | 0.218 | |
| calculateAAC | 0.033 | 0.005 | 0.038 | |
| calculateAutocor | 0.286 | 0.015 | 0.302 | |
| calculateCTDC | 0.075 | 0.001 | 0.076 | |
| calculateCTDD | 0.512 | 0.000 | 0.512 | |
| calculateCTDT | 0.179 | 0.011 | 0.189 | |
| calculateCTriad | 0.387 | 0.015 | 0.402 | |
| calculateDC | 0.085 | 0.000 | 0.086 | |
| calculateF | 0.298 | 0.003 | 0.302 | |
| calculateKSAAP | 0.086 | 0.003 | 0.089 | |
| calculateQD_Sm | 1.676 | 0.024 | 1.700 | |
| calculateTC | 1.462 | 0.038 | 1.501 | |
| calculateTC_Sm | 0.252 | 0.001 | 0.253 | |
| corr_plot | 34.061 | 0.460 | 34.524 | |
| enrichfindP | 0.545 | 0.048 | 8.346 | |
| enrichfind_hp | 0.102 | 0.005 | 0.926 | |
| enrichplot | 0.375 | 0.046 | 0.420 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.443 | 0.047 | 3.631 | |
| getHPI | 0.001 | 0.000 | 0.000 | |
| get_negativePPI | 0.002 | 0.001 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.002 | 0.000 | 0.002 | |
| plotPPI | 0.074 | 0.002 | 0.076 | |
| pred_ensembel | 13.109 | 0.386 | 12.214 | |
| var_imp | 34.975 | 0.284 | 35.304 | |