Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-09-11 11:40 -0400 (Thu, 11 Sep 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4824 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" | 4606 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4547 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.14.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz |
StartedAt: 2025-09-09 23:44:21 -0400 (Tue, 09 Sep 2025) |
EndedAt: 2025-09-09 23:51:30 -0400 (Tue, 09 Sep 2025) |
EllapsedTime: 428.9 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R version 4.5.1 Patched (2025-06-14 r88325) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 16.0.0 (clang-1600.0.26.6) GNU Fortran (GCC) 14.2.0 * running under: macOS Ventura 13.7.5 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.14.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 53.069 2.215 55.386 corr_plot 51.755 1.963 53.768 FSmethod 49.918 2.126 52.226 pred_ensembel 16.271 0.393 15.036 enrichfindP 0.481 0.077 6.571 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 110.293773 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.467635 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 101.625756 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 98.089249 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 113.530529 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 95.235320 final value 94.466823 converged Fitting Repeat 2 # weights: 305 initial value 102.970682 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.907363 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 94.804116 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 113.493362 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 105.079443 iter 10 value 93.393799 iter 20 value 93.184534 iter 30 value 93.184081 iter 30 value 93.184081 iter 30 value 93.184081 final value 93.184081 converged Fitting Repeat 2 # weights: 507 initial value 116.908621 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 102.110216 final value 94.466823 converged Fitting Repeat 4 # weights: 507 initial value 112.220853 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 112.476922 iter 10 value 85.310654 iter 20 value 83.449785 final value 83.449688 converged Fitting Repeat 1 # weights: 103 initial value 98.474029 iter 10 value 94.409995 iter 20 value 85.469941 iter 30 value 84.372768 iter 40 value 84.116593 iter 50 value 83.742072 iter 60 value 83.546924 final value 83.536421 converged Fitting Repeat 2 # weights: 103 initial value 101.262666 iter 10 value 94.876144 iter 20 value 94.489593 iter 30 value 94.082743 iter 40 value 92.116548 iter 50 value 87.032756 iter 60 value 86.059690 iter 70 value 85.040086 iter 80 value 84.775112 iter 90 value 84.737028 iter 100 value 83.851064 final value 83.851064 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 96.736821 iter 10 value 94.523730 iter 20 value 94.475223 iter 30 value 93.353262 iter 40 value 91.757528 iter 50 value 91.354861 iter 60 value 91.167389 iter 70 value 90.974473 final value 90.974454 converged Fitting Repeat 4 # weights: 103 initial value 103.709639 iter 10 value 94.490458 iter 20 value 94.482284 iter 30 value 93.429553 iter 40 value 92.331457 iter 50 value 92.052283 iter 60 value 89.390633 iter 70 value 86.115734 iter 80 value 85.613336 iter 90 value 85.247639 iter 100 value 84.192540 final value 84.192540 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 101.243347 iter 10 value 94.488567 iter 20 value 93.691494 iter 30 value 91.647590 iter 40 value 91.299117 iter 50 value 91.278284 iter 60 value 91.032839 iter 70 value 90.979374 final value 90.979324 converged Fitting Repeat 1 # weights: 305 initial value 106.862897 iter 10 value 94.275794 iter 20 value 91.291820 iter 30 value 87.409515 iter 40 value 85.320373 iter 50 value 84.726186 iter 60 value 84.398898 iter 70 value 84.278800 iter 80 value 83.377858 iter 90 value 82.556771 iter 100 value 81.874414 final value 81.874414 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.196187 iter 10 value 92.569100 iter 20 value 85.088783 iter 30 value 84.173286 iter 40 value 83.616301 iter 50 value 83.410394 iter 60 value 83.364584 iter 70 value 83.144220 iter 80 value 82.279287 iter 90 value 81.506488 iter 100 value 81.111005 final value 81.111005 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 105.037809 iter 10 value 94.705290 iter 20 value 94.500970 iter 30 value 92.191405 iter 40 value 87.550433 iter 50 value 87.080075 iter 60 value 85.723786 iter 70 value 83.143572 iter 80 value 82.705117 iter 90 value 82.112348 iter 100 value 81.907662 final value 81.907662 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.254598 iter 10 value 93.188887 iter 20 value 91.035677 iter 30 value 84.650380 iter 40 value 84.240213 iter 50 value 83.956793 iter 60 value 83.564247 iter 70 value 83.468537 iter 80 value 82.784889 iter 90 value 82.269743 iter 100 value 81.900771 final value 81.900771 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.894085 iter 10 value 94.336240 iter 20 value 89.944084 iter 30 value 88.051570 iter 40 value 85.137673 iter 50 value 83.913430 iter 60 value 82.692812 iter 70 value 82.117188 iter 80 value 81.835851 iter 90 value 81.415495 iter 100 value 81.170294 final value 81.170294 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.101761 iter 10 value 91.335753 iter 20 value 85.199584 iter 30 value 82.964917 iter 40 value 82.031200 iter 50 value 81.527333 iter 60 value 81.219276 iter 70 value 81.027869 iter 80 value 80.948684 iter 90 value 80.906589 iter 100 value 80.895197 final value 80.895197 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.412894 iter 10 value 95.828662 iter 20 value 93.239935 iter 30 value 85.569165 iter 40 value 84.954589 iter 50 value 83.649389 iter 60 value 82.707649 iter 70 value 81.655060 iter 80 value 81.413027 iter 90 value 81.092624 iter 100 value 80.930917 final value 80.930917 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.269397 iter 10 value 94.023431 iter 20 value 90.226234 iter 30 value 88.698491 iter 40 value 85.062168 iter 50 value 81.632901 iter 60 value 81.241675 iter 70 value 80.926891 iter 80 value 80.741083 iter 90 value 80.730500 iter 100 value 80.713834 final value 80.713834 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.684711 iter 10 value 94.429514 iter 20 value 89.690041 iter 30 value 86.373690 iter 40 value 85.320479 iter 50 value 83.681375 iter 60 value 82.672824 iter 70 value 81.817898 iter 80 value 81.409865 iter 90 value 81.369234 iter 100 value 81.295437 final value 81.295437 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.064848 iter 10 value 94.064436 iter 20 value 86.602571 iter 30 value 84.661297 iter 40 value 84.199717 iter 50 value 84.051219 iter 60 value 83.502021 iter 70 value 82.872189 iter 80 value 81.685178 iter 90 value 81.333327 iter 100 value 81.283849 final value 81.283849 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.681665 final value 94.485698 converged Fitting Repeat 2 # weights: 103 initial value 98.886924 iter 10 value 94.485829 iter 20 value 94.206873 iter 30 value 93.175219 iter 40 value 92.276905 final value 92.276903 converged Fitting Repeat 3 # weights: 103 initial value 100.757913 final value 94.485986 converged Fitting Repeat 4 # weights: 103 initial value 96.828180 final value 94.327449 converged Fitting Repeat 5 # weights: 103 initial value 94.900292 final value 94.485900 converged Fitting Repeat 1 # weights: 305 initial value 99.349607 iter 10 value 94.489071 iter 20 value 94.336961 iter 30 value 86.745336 iter 40 value 84.795212 iter 50 value 84.469094 iter 60 value 84.465030 iter 70 value 84.398883 iter 80 value 84.398532 iter 90 value 83.120799 iter 100 value 82.383214 final value 82.383214 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 111.104261 iter 10 value 94.488819 iter 20 value 94.302612 iter 30 value 86.360584 iter 40 value 85.442017 iter 50 value 83.093100 iter 60 value 80.998964 iter 70 value 80.224465 iter 80 value 79.995507 iter 90 value 79.915357 iter 100 value 79.678565 final value 79.678565 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.960904 iter 10 value 94.489060 iter 20 value 94.208756 iter 30 value 84.791692 iter 40 value 84.030527 iter 50 value 83.965702 iter 60 value 83.965573 final value 83.965568 converged Fitting Repeat 4 # weights: 305 initial value 116.274574 iter 10 value 94.489502 iter 20 value 94.407120 iter 30 value 92.284841 iter 40 value 92.235971 iter 50 value 84.056643 iter 60 value 83.994843 iter 70 value 83.744649 iter 80 value 82.731751 iter 90 value 82.579765 final value 82.574648 converged Fitting Repeat 5 # weights: 305 initial value 127.516425 iter 10 value 94.487725 iter 20 value 94.485347 iter 30 value 86.196384 iter 40 value 84.141870 iter 50 value 84.043637 iter 60 value 84.042274 iter 70 value 84.040630 iter 80 value 83.975387 iter 90 value 82.748254 iter 100 value 81.465883 final value 81.465883 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 102.610375 iter 10 value 94.292452 iter 20 value 93.387926 iter 30 value 84.103016 iter 40 value 84.095170 iter 50 value 83.986202 iter 60 value 83.964693 final value 83.964630 converged Fitting Repeat 2 # weights: 507 initial value 115.350188 iter 10 value 94.492504 iter 20 value 94.476657 iter 30 value 94.473242 iter 40 value 92.871540 iter 50 value 89.441269 iter 60 value 88.813520 iter 70 value 88.808556 iter 80 value 86.024304 final value 86.023690 converged Fitting Repeat 3 # weights: 507 initial value 94.777096 iter 10 value 94.485118 iter 20 value 86.964675 iter 30 value 85.104770 iter 40 value 84.791945 iter 50 value 84.787327 iter 60 value 84.786144 iter 70 value 84.454793 iter 80 value 84.174670 iter 90 value 84.173518 iter 100 value 84.171414 final value 84.171414 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.074332 iter 10 value 94.492019 iter 20 value 94.484895 final value 94.484234 converged Fitting Repeat 5 # weights: 507 initial value 112.353183 iter 10 value 94.475544 iter 20 value 94.390673 iter 30 value 91.158957 iter 40 value 91.146307 iter 50 value 91.145790 final value 91.145371 converged Fitting Repeat 1 # weights: 103 initial value 92.352062 iter 10 value 85.321844 iter 20 value 85.321393 final value 85.321379 converged Fitting Repeat 2 # weights: 103 initial value 100.947073 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 97.678971 final value 93.653870 converged Fitting Repeat 4 # weights: 103 initial value 97.429688 iter 10 value 93.328330 final value 93.328261 converged Fitting Repeat 5 # weights: 103 initial value 99.081178 iter 10 value 93.328272 final value 93.328261 converged Fitting Repeat 1 # weights: 305 initial value 108.500371 iter 10 value 93.328267 final value 93.328263 converged Fitting Repeat 2 # weights: 305 initial value 94.325625 iter 10 value 92.805875 final value 92.803260 converged Fitting Repeat 3 # weights: 305 initial value 118.087939 iter 10 value 93.199102 final value 93.198901 converged Fitting Repeat 4 # weights: 305 initial value 96.522208 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 96.959117 final value 94.052908 converged Fitting Repeat 1 # weights: 507 initial value 111.172691 final value 93.328261 converged Fitting Repeat 2 # weights: 507 initial value 98.906624 final value 93.328261 converged Fitting Repeat 3 # weights: 507 initial value 96.298613 iter 10 value 93.328261 iter 10 value 93.328261 iter 10 value 93.328261 final value 93.328261 converged Fitting Repeat 4 # weights: 507 initial value 94.679586 final value 93.328261 converged Fitting Repeat 5 # weights: 507 initial value 108.984504 iter 10 value 93.745659 iter 20 value 91.169183 iter 30 value 91.083463 iter 40 value 91.079778 iter 50 value 91.057023 iter 60 value 81.281367 iter 70 value 79.004822 iter 80 value 78.755825 iter 90 value 78.512058 final value 78.511755 converged Fitting Repeat 1 # weights: 103 initial value 99.848966 iter 10 value 93.618118 iter 20 value 88.957188 iter 30 value 85.987834 iter 40 value 85.278419 iter 50 value 82.355748 iter 60 value 81.517602 iter 70 value 81.422243 final value 81.411146 converged Fitting Repeat 2 # weights: 103 initial value 102.386477 iter 10 value 94.068236 iter 20 value 94.054876 iter 30 value 93.494101 iter 40 value 93.296412 iter 50 value 93.099367 iter 60 value 83.931486 iter 70 value 81.678434 iter 80 value 81.206776 iter 90 value 79.670300 iter 100 value 78.705557 final value 78.705557 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 98.159134 iter 10 value 94.057087 iter 20 value 88.736800 iter 30 value 85.869681 iter 40 value 84.310522 iter 50 value 83.138225 final value 83.132768 converged Fitting Repeat 4 # weights: 103 initial value 97.520671 iter 10 value 94.024525 iter 20 value 93.720253 iter 30 value 93.669344 iter 40 value 90.830019 iter 50 value 89.476306 iter 60 value 85.556135 iter 70 value 85.472413 iter 80 value 82.903735 iter 90 value 82.702171 final value 82.701762 converged Fitting Repeat 5 # weights: 103 initial value 104.272217 iter 10 value 93.573653 iter 20 value 93.379237 iter 30 value 84.860115 iter 40 value 83.918452 iter 50 value 83.557861 iter 60 value 83.313680 iter 70 value 83.158937 iter 80 value 83.132769 iter 80 value 83.132768 iter 80 value 83.132768 final value 83.132768 converged Fitting Repeat 1 # weights: 305 initial value 100.852176 iter 10 value 94.024763 iter 20 value 86.294196 iter 30 value 85.317085 iter 40 value 83.501412 iter 50 value 82.902369 iter 60 value 82.679121 iter 70 value 82.319574 iter 80 value 80.061482 iter 90 value 79.506134 iter 100 value 79.327463 final value 79.327463 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 101.071824 iter 10 value 94.700338 iter 20 value 84.109174 iter 30 value 82.717074 iter 40 value 81.535831 iter 50 value 80.803727 iter 60 value 79.084866 iter 70 value 78.899962 iter 80 value 78.833808 iter 90 value 78.394901 iter 100 value 77.872638 final value 77.872638 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 110.091000 iter 10 value 94.047610 iter 20 value 87.703648 iter 30 value 86.041991 iter 40 value 81.907448 iter 50 value 80.857049 iter 60 value 80.185266 iter 70 value 78.085531 iter 80 value 77.752265 iter 90 value 77.107535 iter 100 value 76.842712 final value 76.842712 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 114.007224 iter 10 value 94.445854 iter 20 value 93.597594 iter 30 value 92.199938 iter 40 value 84.534257 iter 50 value 81.497439 iter 60 value 79.316721 iter 70 value 78.958267 iter 80 value 78.444837 iter 90 value 77.576981 iter 100 value 77.279475 final value 77.279475 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 122.596653 iter 10 value 94.092945 iter 20 value 93.956515 iter 30 value 93.500172 iter 40 value 82.822394 iter 50 value 82.154438 iter 60 value 80.782087 iter 70 value 79.642727 iter 80 value 78.492638 iter 90 value 77.874010 iter 100 value 77.600668 final value 77.600668 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.893906 iter 10 value 93.682207 iter 20 value 82.527227 iter 30 value 80.258471 iter 40 value 79.250694 iter 50 value 78.806285 iter 60 value 78.672875 iter 70 value 78.519787 iter 80 value 78.486856 iter 90 value 78.423943 iter 100 value 78.036548 final value 78.036548 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 108.854228 iter 10 value 94.097736 iter 20 value 91.860681 iter 30 value 91.616767 iter 40 value 87.795437 iter 50 value 81.378064 iter 60 value 79.220877 iter 70 value 78.189196 iter 80 value 77.416693 iter 90 value 77.364957 iter 100 value 77.359695 final value 77.359695 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 117.533749 iter 10 value 94.011881 iter 20 value 91.675191 iter 30 value 83.240286 iter 40 value 81.158637 iter 50 value 78.748012 iter 60 value 77.747772 iter 70 value 77.519080 iter 80 value 77.152662 iter 90 value 76.948006 iter 100 value 76.858470 final value 76.858470 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 104.728028 iter 10 value 95.865299 iter 20 value 85.878875 iter 30 value 85.252882 iter 40 value 84.087903 iter 50 value 82.288146 iter 60 value 78.293916 iter 70 value 77.864560 iter 80 value 77.556619 iter 90 value 77.132408 iter 100 value 76.932480 final value 76.932480 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 121.840343 iter 10 value 93.686971 iter 20 value 90.641267 iter 30 value 86.193045 iter 40 value 85.489656 iter 50 value 84.939732 iter 60 value 81.413394 iter 70 value 78.338210 iter 80 value 77.643650 iter 90 value 77.078034 iter 100 value 76.899966 final value 76.899966 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.140957 iter 10 value 93.222642 iter 20 value 93.211439 final value 93.209713 converged Fitting Repeat 2 # weights: 103 initial value 95.645321 final value 94.054687 converged Fitting Repeat 3 # weights: 103 initial value 98.378151 final value 94.054648 converged Fitting Repeat 4 # weights: 103 initial value 94.700136 iter 10 value 93.750763 iter 20 value 88.167150 iter 30 value 87.711001 iter 40 value 87.472612 iter 50 value 87.471359 iter 60 value 85.400503 iter 70 value 85.102795 final value 85.100457 converged Fitting Repeat 5 # weights: 103 initial value 97.001290 iter 10 value 94.054713 iter 20 value 94.052908 iter 30 value 84.482188 iter 40 value 83.319183 final value 83.318296 converged Fitting Repeat 1 # weights: 305 initial value 109.769738 iter 10 value 94.057959 iter 20 value 94.052932 iter 30 value 93.648166 iter 40 value 93.521142 final value 93.521099 converged Fitting Repeat 2 # weights: 305 initial value 101.420291 iter 10 value 93.544115 iter 20 value 93.522779 iter 30 value 93.499612 iter 40 value 93.496579 iter 50 value 93.486692 iter 60 value 84.816496 iter 70 value 84.348198 final value 84.348173 converged Fitting Repeat 3 # weights: 305 initial value 96.239228 iter 10 value 94.057246 iter 20 value 94.006231 iter 30 value 92.129269 iter 40 value 84.656213 iter 50 value 84.403262 iter 60 value 84.401727 final value 84.401699 converged Fitting Repeat 4 # weights: 305 initial value 98.157942 iter 10 value 94.057568 iter 20 value 94.017798 iter 30 value 94.011592 iter 40 value 93.945058 iter 50 value 93.330206 iter 60 value 93.236491 final value 93.210177 converged Fitting Repeat 5 # weights: 305 initial value 97.854501 iter 10 value 93.333384 iter 20 value 93.327836 iter 30 value 86.236206 iter 40 value 85.173823 final value 85.170900 converged Fitting Repeat 1 # weights: 507 initial value 108.811956 iter 10 value 94.061136 iter 20 value 94.050928 iter 30 value 85.206443 iter 40 value 83.545624 iter 50 value 79.415532 iter 60 value 78.048148 iter 70 value 77.459908 iter 80 value 77.240928 iter 90 value 77.238379 iter 100 value 77.053521 final value 77.053521 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 97.296607 iter 10 value 93.276982 iter 20 value 93.151794 iter 30 value 93.147044 iter 40 value 93.135107 iter 50 value 89.604452 iter 60 value 81.581657 iter 70 value 81.291719 iter 80 value 81.248820 iter 90 value 81.224531 iter 100 value 80.562556 final value 80.562556 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 95.036488 iter 10 value 94.060680 iter 20 value 83.098092 iter 30 value 82.558612 iter 40 value 82.555896 iter 50 value 82.554295 iter 60 value 82.304789 final value 82.299153 converged Fitting Repeat 4 # weights: 507 initial value 114.175628 iter 10 value 93.349193 iter 20 value 93.336652 iter 30 value 93.144848 iter 40 value 82.526588 iter 50 value 81.799292 final value 81.788298 converged Fitting Repeat 5 # weights: 507 initial value 97.134147 iter 10 value 93.284090 iter 20 value 93.116923 iter 30 value 92.070597 iter 40 value 82.721907 iter 50 value 82.009290 iter 60 value 78.850324 iter 70 value 78.471799 iter 80 value 78.450610 final value 78.450556 converged Fitting Repeat 1 # weights: 103 initial value 99.933376 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 99.932251 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 98.488213 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 106.932863 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 96.297329 final value 94.430233 converged Fitting Repeat 1 # weights: 305 initial value 100.130516 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.030211 final value 94.057229 converged Fitting Repeat 3 # weights: 305 initial value 95.167209 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 96.609898 final value 94.354396 converged Fitting Repeat 5 # weights: 305 initial value 107.711779 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 102.498537 final value 94.354396 converged Fitting Repeat 2 # weights: 507 initial value 100.856012 iter 10 value 94.240912 iter 20 value 94.199646 iter 30 value 94.196991 final value 94.196989 converged Fitting Repeat 3 # weights: 507 initial value 101.882973 iter 10 value 94.331125 iter 20 value 94.325916 iter 30 value 94.311428 final value 94.311251 converged Fitting Repeat 4 # weights: 507 initial value 96.694509 iter 10 value 89.883315 iter 20 value 82.478741 iter 30 value 82.440663 final value 82.440657 converged Fitting Repeat 5 # weights: 507 initial value 106.753826 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 94.437055 iter 10 value 88.062880 iter 20 value 84.582103 iter 30 value 82.920794 iter 40 value 82.873188 iter 50 value 82.698537 iter 60 value 82.371345 iter 70 value 82.178710 iter 80 value 82.116391 final value 82.116323 converged Fitting Repeat 2 # weights: 103 initial value 98.584534 iter 10 value 94.571807 iter 20 value 94.488274 iter 30 value 94.097897 iter 40 value 94.062839 iter 50 value 88.186880 iter 60 value 87.573312 iter 70 value 85.874708 iter 80 value 83.924995 iter 90 value 83.887081 iter 100 value 83.876361 final value 83.876361 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 97.235831 iter 10 value 94.284705 iter 20 value 93.040046 iter 30 value 91.261788 iter 40 value 90.904905 iter 50 value 90.888696 final value 90.888691 converged Fitting Repeat 4 # weights: 103 initial value 98.486803 iter 10 value 94.571344 iter 20 value 94.185549 iter 30 value 88.116462 iter 40 value 85.999950 iter 50 value 84.089511 iter 60 value 83.243374 iter 70 value 83.120717 iter 80 value 83.091689 final value 83.091673 converged Fitting Repeat 5 # weights: 103 initial value 101.615335 iter 10 value 94.489909 iter 20 value 94.427471 iter 30 value 94.135158 iter 40 value 94.129934 iter 50 value 93.640257 iter 60 value 91.389513 iter 70 value 90.293205 iter 80 value 87.220257 iter 90 value 87.010661 iter 100 value 86.957745 final value 86.957745 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 102.596913 iter 10 value 94.451940 iter 20 value 92.883626 iter 30 value 89.119027 iter 40 value 85.629624 iter 50 value 83.523339 iter 60 value 82.781602 iter 70 value 81.667669 iter 80 value 80.720764 iter 90 value 80.323568 iter 100 value 79.938409 final value 79.938409 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.860293 iter 10 value 94.349328 iter 20 value 94.100908 iter 30 value 94.002019 iter 40 value 86.216850 iter 50 value 85.641089 iter 60 value 84.100095 iter 70 value 82.467237 iter 80 value 81.606719 iter 90 value 80.688925 iter 100 value 80.451425 final value 80.451425 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.307387 iter 10 value 94.506860 iter 20 value 87.363735 iter 30 value 85.503597 iter 40 value 84.831017 iter 50 value 84.359111 iter 60 value 83.045809 iter 70 value 81.401893 iter 80 value 81.130159 iter 90 value 80.561143 iter 100 value 80.051899 final value 80.051899 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 103.763534 iter 10 value 94.519683 iter 20 value 91.267467 iter 30 value 87.146987 iter 40 value 87.100791 iter 50 value 85.788437 iter 60 value 84.159199 iter 70 value 80.494369 iter 80 value 79.876674 iter 90 value 79.820715 iter 100 value 79.766467 final value 79.766467 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 114.701200 iter 10 value 93.961489 iter 20 value 89.097334 iter 30 value 87.852386 iter 40 value 85.088145 iter 50 value 83.746737 iter 60 value 83.104203 iter 70 value 81.811981 iter 80 value 81.747654 iter 90 value 81.196332 iter 100 value 80.297900 final value 80.297900 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 125.636990 iter 10 value 94.766612 iter 20 value 88.449973 iter 30 value 87.959452 iter 40 value 87.784450 iter 50 value 86.460437 iter 60 value 83.000358 iter 70 value 80.373593 iter 80 value 79.761931 iter 90 value 79.537804 iter 100 value 79.356391 final value 79.356391 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.051309 iter 10 value 94.587796 iter 20 value 94.493379 iter 30 value 93.925380 iter 40 value 88.569699 iter 50 value 80.730526 iter 60 value 79.947482 iter 70 value 79.751587 iter 80 value 79.431660 iter 90 value 79.166961 iter 100 value 79.081083 final value 79.081083 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 113.986320 iter 10 value 94.547246 iter 20 value 93.859622 iter 30 value 88.681358 iter 40 value 87.272717 iter 50 value 87.078939 iter 60 value 83.978665 iter 70 value 81.704706 iter 80 value 80.624022 iter 90 value 80.156493 iter 100 value 79.821697 final value 79.821697 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 116.097414 iter 10 value 94.504063 iter 20 value 93.947624 iter 30 value 92.077933 iter 40 value 90.750180 iter 50 value 87.774029 iter 60 value 84.568985 iter 70 value 83.030855 iter 80 value 82.802107 iter 90 value 82.694709 iter 100 value 82.654063 final value 82.654063 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.214854 iter 10 value 94.344039 iter 20 value 87.167606 iter 30 value 85.464565 iter 40 value 82.486883 iter 50 value 81.616881 iter 60 value 80.648088 iter 70 value 79.465712 iter 80 value 79.331018 iter 90 value 79.272600 iter 100 value 79.263500 final value 79.263500 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.063368 iter 10 value 94.485942 iter 20 value 94.483506 iter 30 value 90.701928 iter 40 value 87.460619 final value 87.284851 converged Fitting Repeat 2 # weights: 103 initial value 103.876122 iter 10 value 94.059121 iter 20 value 94.058627 iter 30 value 94.050034 final value 94.049793 converged Fitting Repeat 3 # weights: 103 initial value 96.429301 final value 94.355757 converged Fitting Repeat 4 # weights: 103 initial value 95.157490 final value 94.485676 converged Fitting Repeat 5 # weights: 103 initial value 97.217032 final value 94.487003 converged Fitting Repeat 1 # weights: 305 initial value 98.046207 iter 10 value 94.489099 iter 20 value 94.484353 iter 30 value 94.046709 iter 40 value 88.003319 iter 50 value 87.074444 iter 50 value 87.074444 final value 87.074444 converged Fitting Repeat 2 # weights: 305 initial value 97.321503 iter 10 value 93.767308 iter 20 value 87.687843 iter 30 value 87.341000 iter 40 value 87.307026 iter 50 value 83.984402 iter 60 value 81.762519 iter 70 value 81.761870 iter 80 value 81.752775 iter 90 value 81.698080 iter 100 value 81.494116 final value 81.494116 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 96.115517 iter 10 value 94.489139 final value 94.485469 converged Fitting Repeat 4 # weights: 305 initial value 95.691185 iter 10 value 94.106047 iter 20 value 94.062075 iter 30 value 94.054862 iter 40 value 86.684478 iter 50 value 85.894353 iter 60 value 85.871646 iter 70 value 85.870020 iter 80 value 85.869915 iter 90 value 82.767086 iter 100 value 81.548299 final value 81.548299 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.040514 iter 10 value 94.525106 iter 20 value 94.382496 iter 30 value 94.081592 iter 40 value 94.077683 iter 50 value 94.070738 iter 60 value 94.051444 iter 70 value 93.984936 iter 80 value 90.724459 iter 90 value 90.526363 iter 100 value 89.726324 final value 89.726324 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 98.194213 iter 10 value 94.492237 iter 20 value 94.382522 iter 30 value 84.740764 iter 40 value 83.390843 iter 50 value 83.379354 iter 60 value 83.379181 iter 70 value 83.362229 iter 80 value 81.246474 iter 90 value 80.550214 iter 100 value 80.539523 final value 80.539523 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 132.161264 iter 10 value 94.362639 iter 20 value 92.988813 iter 30 value 83.028010 final value 83.027982 converged Fitting Repeat 3 # weights: 507 initial value 137.806601 iter 10 value 94.362381 iter 20 value 94.355032 iter 30 value 87.606449 iter 40 value 85.156368 iter 50 value 85.143794 iter 60 value 85.126371 iter 70 value 85.126007 iter 80 value 85.125911 final value 85.125905 converged Fitting Repeat 4 # weights: 507 initial value 120.931964 iter 10 value 94.058432 iter 20 value 94.056045 iter 30 value 94.051346 iter 40 value 94.050861 iter 50 value 94.048412 iter 60 value 93.886870 iter 70 value 90.739606 iter 80 value 88.468689 iter 90 value 83.078769 iter 100 value 82.654065 final value 82.654065 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 117.929333 iter 10 value 94.363347 iter 20 value 94.354683 final value 94.354595 converged Fitting Repeat 1 # weights: 103 initial value 104.304098 iter 10 value 94.052920 final value 94.052911 converged Fitting Repeat 2 # weights: 103 initial value 97.249173 iter 10 value 93.836067 final value 93.836066 converged Fitting Repeat 3 # weights: 103 initial value 103.175629 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 102.242694 final value 93.836066 converged Fitting Repeat 5 # weights: 103 initial value 95.791356 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 120.792497 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 96.539965 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 120.767860 final value 93.988095 converged Fitting Repeat 4 # weights: 305 initial value 109.853434 final value 93.836066 converged Fitting Repeat 5 # weights: 305 initial value 99.648168 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 133.722361 iter 10 value 93.836062 final value 93.835715 converged Fitting Repeat 2 # weights: 507 initial value 97.136694 iter 10 value 93.759127 final value 93.745930 converged Fitting Repeat 3 # weights: 507 initial value 99.098347 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 100.463481 iter 10 value 88.816841 iter 20 value 85.153623 final value 85.046177 converged Fitting Repeat 5 # weights: 507 initial value 110.963047 iter 10 value 94.011548 iter 20 value 93.973817 iter 30 value 93.969054 final value 93.969041 converged Fitting Repeat 1 # weights: 103 initial value 96.461432 iter 10 value 94.073675 iter 20 value 94.028699 iter 30 value 93.756840 iter 40 value 90.067859 iter 50 value 87.370837 iter 60 value 86.251122 iter 70 value 85.030897 final value 85.027874 converged Fitting Repeat 2 # weights: 103 initial value 100.408433 iter 10 value 93.695384 iter 20 value 88.254820 iter 30 value 86.654725 iter 40 value 86.413336 iter 50 value 86.268782 iter 60 value 86.229293 iter 70 value 86.114696 final value 86.112439 converged Fitting Repeat 3 # weights: 103 initial value 98.308323 iter 10 value 94.055628 iter 20 value 93.335728 iter 30 value 89.388247 iter 40 value 87.663215 iter 50 value 87.102754 iter 60 value 86.680208 iter 70 value 86.447459 iter 80 value 85.668660 iter 90 value 85.060359 iter 100 value 85.028452 final value 85.028452 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.173489 iter 10 value 94.057033 iter 20 value 91.258059 iter 30 value 89.732590 iter 40 value 89.070134 iter 50 value 87.523710 iter 60 value 87.036099 iter 70 value 87.028403 iter 70 value 87.028402 iter 70 value 87.028402 final value 87.028402 converged Fitting Repeat 5 # weights: 103 initial value 98.007915 iter 10 value 94.045891 iter 20 value 93.914415 iter 30 value 92.727165 iter 40 value 88.847867 iter 50 value 88.571591 iter 60 value 87.657184 iter 70 value 87.075073 final value 87.069553 converged Fitting Repeat 1 # weights: 305 initial value 103.921781 iter 10 value 94.120002 iter 20 value 91.961493 iter 30 value 89.789605 iter 40 value 88.209886 iter 50 value 84.339175 iter 60 value 84.009299 iter 70 value 83.724788 iter 80 value 83.647992 iter 90 value 83.631649 iter 100 value 83.629804 final value 83.629804 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.152533 iter 10 value 94.030225 iter 20 value 89.149259 iter 30 value 88.064986 iter 40 value 87.493163 iter 50 value 85.835238 iter 60 value 85.786313 iter 70 value 85.719731 iter 80 value 84.944328 iter 90 value 83.869343 iter 100 value 83.435163 final value 83.435163 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 107.568938 iter 10 value 95.170486 iter 20 value 94.682099 iter 30 value 94.331487 iter 40 value 92.223784 iter 50 value 88.889646 iter 60 value 88.647892 iter 70 value 88.422132 iter 80 value 86.227245 iter 90 value 85.696327 iter 100 value 85.427960 final value 85.427960 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.765504 iter 10 value 94.036012 iter 20 value 90.812722 iter 30 value 89.138304 iter 40 value 86.708354 iter 50 value 86.206806 iter 60 value 85.750498 iter 70 value 84.243335 iter 80 value 83.778820 iter 90 value 83.517932 iter 100 value 83.422494 final value 83.422494 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 104.428120 iter 10 value 93.120643 iter 20 value 91.877466 iter 30 value 91.308089 iter 40 value 87.510930 iter 50 value 86.833266 iter 60 value 86.333015 iter 70 value 86.051899 iter 80 value 85.833259 iter 90 value 85.048195 iter 100 value 83.784935 final value 83.784935 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 103.104430 iter 10 value 93.842650 iter 20 value 87.658957 iter 30 value 87.443434 iter 40 value 87.062453 iter 50 value 85.997166 iter 60 value 85.875216 iter 70 value 85.669265 iter 80 value 84.743500 iter 90 value 84.272769 iter 100 value 83.905462 final value 83.905462 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.695038 iter 10 value 94.033657 iter 20 value 87.792413 iter 30 value 87.154133 iter 40 value 86.982499 iter 50 value 85.880212 iter 60 value 84.406513 iter 70 value 84.026954 iter 80 value 83.704103 iter 90 value 83.583326 iter 100 value 83.512213 final value 83.512213 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.007272 iter 10 value 93.992029 iter 20 value 89.884770 iter 30 value 86.576827 iter 40 value 85.827743 iter 50 value 85.502452 iter 60 value 84.842235 iter 70 value 84.449686 iter 80 value 83.797548 iter 90 value 83.414188 iter 100 value 83.222597 final value 83.222597 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 138.575164 iter 10 value 96.200115 iter 20 value 92.266487 iter 30 value 88.851427 iter 40 value 88.274919 iter 50 value 85.927897 iter 60 value 85.318329 iter 70 value 84.344452 iter 80 value 84.008412 iter 90 value 83.916282 iter 100 value 83.888070 final value 83.888070 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 124.567432 iter 10 value 94.105999 iter 20 value 93.219541 iter 30 value 90.776149 iter 40 value 90.372542 iter 50 value 87.534843 iter 60 value 86.419982 iter 70 value 84.699591 iter 80 value 83.889126 iter 90 value 83.652930 iter 100 value 83.600736 final value 83.600736 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.587524 final value 94.054301 converged Fitting Repeat 2 # weights: 103 initial value 96.386326 iter 10 value 93.787453 iter 20 value 93.785367 iter 30 value 88.841927 iter 40 value 86.993400 iter 50 value 86.992954 iter 50 value 86.992953 iter 50 value 86.992953 final value 86.992953 converged Fitting Repeat 3 # weights: 103 initial value 97.564638 final value 94.054554 converged Fitting Repeat 4 # weights: 103 initial value 95.565327 iter 10 value 85.758160 iter 20 value 84.730922 iter 30 value 84.368249 iter 40 value 84.367888 final value 84.367455 converged Fitting Repeat 5 # weights: 103 initial value 94.638701 final value 94.054737 converged Fitting Repeat 1 # weights: 305 initial value 99.844017 iter 10 value 94.056791 iter 20 value 92.925796 iter 30 value 87.042526 iter 40 value 86.991929 final value 86.991845 converged Fitting Repeat 2 # weights: 305 initial value 103.548640 iter 10 value 94.057722 iter 20 value 94.056927 iter 30 value 94.039021 iter 40 value 93.083146 iter 50 value 93.005171 iter 60 value 93.002178 final value 93.002099 converged Fitting Repeat 3 # weights: 305 initial value 103.985059 iter 10 value 94.057628 iter 20 value 93.909186 iter 30 value 92.412820 iter 40 value 89.387516 iter 50 value 89.188116 iter 60 value 89.146279 iter 70 value 89.060898 iter 80 value 89.059354 iter 90 value 89.058312 iter 100 value 89.057635 final value 89.057635 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 120.137435 iter 10 value 94.057361 iter 20 value 94.025747 iter 30 value 92.707871 iter 40 value 88.430752 iter 50 value 88.234157 iter 60 value 85.435907 iter 70 value 84.448399 final value 84.271950 converged Fitting Repeat 5 # weights: 305 initial value 114.809344 iter 10 value 94.058122 iter 20 value 94.053116 final value 94.052930 converged Fitting Repeat 1 # weights: 507 initial value 107.555653 iter 10 value 93.952282 iter 20 value 93.801293 iter 30 value 88.795917 iter 40 value 87.250001 iter 50 value 85.358462 iter 60 value 84.492700 iter 70 value 83.879607 iter 80 value 83.833965 iter 90 value 83.833213 final value 83.833204 converged Fitting Repeat 2 # weights: 507 initial value 99.742693 iter 10 value 93.826810 iter 20 value 93.820573 iter 30 value 92.977842 iter 40 value 88.364409 iter 50 value 86.076445 iter 60 value 84.021883 iter 70 value 83.832063 iter 80 value 83.814042 iter 90 value 83.810408 iter 100 value 83.808679 final value 83.808679 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 109.561312 iter 10 value 94.061675 iter 20 value 94.053170 final value 94.053057 converged Fitting Repeat 4 # weights: 507 initial value 107.211197 iter 10 value 93.829373 iter 20 value 93.759986 iter 30 value 90.190920 iter 40 value 89.186514 iter 50 value 85.763379 iter 60 value 83.478998 iter 70 value 83.285080 iter 80 value 83.087797 iter 90 value 83.083858 iter 100 value 83.083222 final value 83.083222 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.420904 iter 10 value 94.060960 iter 20 value 94.054066 final value 94.053794 converged Fitting Repeat 1 # weights: 103 initial value 95.354730 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.126617 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 109.678218 iter 10 value 93.567527 final value 93.567525 converged Fitting Repeat 4 # weights: 103 initial value 98.369212 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 94.921455 iter 10 value 93.772981 final value 93.772976 converged Fitting Repeat 1 # weights: 305 initial value 117.873466 final value 94.252920 converged Fitting Repeat 2 # weights: 305 initial value 94.515267 iter 10 value 86.408098 iter 20 value 86.054679 iter 30 value 85.563580 iter 40 value 85.562872 iter 40 value 85.562871 iter 40 value 85.562871 final value 85.562871 converged Fitting Repeat 3 # weights: 305 initial value 94.859389 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 101.308370 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 101.111903 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 107.900823 iter 10 value 92.783002 iter 20 value 90.324480 iter 30 value 90.306393 iter 40 value 90.025643 iter 50 value 89.996759 final value 89.996747 converged Fitting Repeat 2 # weights: 507 initial value 96.411102 iter 10 value 94.467391 iter 10 value 94.467391 iter 10 value 94.467391 final value 94.467391 converged Fitting Repeat 3 # weights: 507 initial value 100.286420 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 105.345688 iter 10 value 94.465747 iter 20 value 94.418981 iter 30 value 94.416674 iter 30 value 94.416673 iter 30 value 94.416673 final value 94.416673 converged Fitting Repeat 5 # weights: 507 initial value 103.184424 iter 10 value 94.421976 iter 20 value 94.420728 iter 30 value 93.803770 iter 40 value 93.763129 final value 93.762185 converged Fitting Repeat 1 # weights: 103 initial value 102.067031 iter 10 value 94.419008 iter 20 value 87.049987 iter 30 value 85.522361 iter 40 value 85.070318 iter 50 value 84.939190 iter 60 value 82.634834 iter 70 value 82.528362 final value 82.458355 converged Fitting Repeat 2 # weights: 103 initial value 104.889721 iter 10 value 94.433807 iter 20 value 86.801098 iter 30 value 85.019495 iter 40 value 83.816764 iter 50 value 83.122220 iter 60 value 83.016727 final value 82.978387 converged Fitting Repeat 3 # weights: 103 initial value 97.381594 iter 10 value 94.486952 iter 20 value 93.771419 iter 30 value 87.441467 iter 40 value 85.072182 iter 50 value 84.393135 iter 60 value 84.100664 iter 70 value 83.928343 iter 80 value 83.680675 iter 90 value 80.839367 iter 100 value 80.312047 final value 80.312047 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.985225 iter 10 value 94.477779 iter 20 value 91.956999 iter 30 value 89.223917 iter 40 value 86.760374 iter 50 value 83.679552 iter 60 value 83.392746 iter 70 value 83.269111 iter 80 value 83.000414 final value 82.978350 converged Fitting Repeat 5 # weights: 103 initial value 115.555031 iter 10 value 88.766597 iter 20 value 84.879119 iter 30 value 84.843452 iter 40 value 83.456913 iter 50 value 82.981193 iter 60 value 82.978364 final value 82.978350 converged Fitting Repeat 1 # weights: 305 initial value 102.253400 iter 10 value 94.280102 iter 20 value 93.871449 iter 30 value 93.792350 iter 40 value 88.212582 iter 50 value 85.521174 iter 60 value 84.729854 iter 70 value 82.251594 iter 80 value 80.984446 iter 90 value 79.979552 iter 100 value 79.570438 final value 79.570438 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 110.883463 iter 10 value 94.346980 iter 20 value 85.951271 iter 30 value 83.248448 iter 40 value 82.197778 iter 50 value 81.326598 iter 60 value 80.826940 iter 70 value 80.018613 iter 80 value 79.822734 iter 90 value 79.077748 iter 100 value 78.502901 final value 78.502901 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 111.636335 iter 10 value 94.570091 iter 20 value 94.503479 iter 30 value 93.994432 iter 40 value 86.288844 iter 50 value 85.465368 iter 60 value 82.526550 iter 70 value 81.016355 iter 80 value 80.019832 iter 90 value 78.682118 iter 100 value 78.547576 final value 78.547576 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 100.416681 iter 10 value 96.461550 iter 20 value 86.142371 iter 30 value 83.956377 iter 40 value 80.939441 iter 50 value 79.776664 iter 60 value 79.353787 iter 70 value 79.300001 iter 80 value 79.232756 iter 90 value 78.811090 iter 100 value 78.319595 final value 78.319595 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 115.776611 iter 10 value 94.000594 iter 20 value 83.811122 iter 30 value 82.371898 iter 40 value 80.993369 iter 50 value 80.379831 iter 60 value 79.606921 iter 70 value 78.932196 iter 80 value 78.413218 iter 90 value 78.245467 iter 100 value 78.166168 final value 78.166168 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.138920 iter 10 value 96.459939 iter 20 value 86.133552 iter 30 value 81.634400 iter 40 value 79.660239 iter 50 value 79.089143 iter 60 value 78.299688 iter 70 value 77.985486 iter 80 value 77.887644 iter 90 value 77.851799 iter 100 value 77.675631 final value 77.675631 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 116.696672 iter 10 value 94.983714 iter 20 value 94.569477 iter 30 value 87.317676 iter 40 value 85.153983 iter 50 value 83.033101 iter 60 value 80.723459 iter 70 value 79.671197 iter 80 value 79.485859 iter 90 value 79.281546 iter 100 value 79.204195 final value 79.204195 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.015764 iter 10 value 94.500580 iter 20 value 88.127523 iter 30 value 86.197367 iter 40 value 81.704185 iter 50 value 79.983578 iter 60 value 78.740300 iter 70 value 78.308321 iter 80 value 78.144177 iter 90 value 78.112068 iter 100 value 78.004204 final value 78.004204 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 103.377221 iter 10 value 93.796866 iter 20 value 91.107322 iter 30 value 90.884903 iter 40 value 85.738302 iter 50 value 84.492473 iter 60 value 82.216276 iter 70 value 80.416924 iter 80 value 78.811069 iter 90 value 78.070925 iter 100 value 77.870432 final value 77.870432 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.055764 iter 10 value 93.190123 iter 20 value 84.763615 iter 30 value 82.976526 iter 40 value 82.633953 iter 50 value 81.357737 iter 60 value 80.077162 iter 70 value 78.943378 iter 80 value 78.239488 iter 90 value 78.106441 iter 100 value 78.031840 final value 78.031840 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.488639 final value 94.485818 converged Fitting Repeat 2 # weights: 103 initial value 99.109788 final value 94.485694 converged Fitting Repeat 3 # weights: 103 initial value 105.529813 final value 94.485819 converged Fitting Repeat 4 # weights: 103 initial value 106.881078 final value 94.485844 converged Fitting Repeat 5 # weights: 103 initial value 104.028945 final value 94.486263 converged Fitting Repeat 1 # weights: 305 initial value 98.080025 iter 10 value 94.489152 iter 20 value 94.454203 iter 30 value 92.145597 iter 40 value 92.107738 final value 92.107724 converged Fitting Repeat 2 # weights: 305 initial value 107.924971 iter 10 value 94.489375 iter 20 value 94.445784 iter 30 value 94.322643 iter 40 value 83.047604 iter 50 value 81.703615 iter 60 value 81.303196 iter 70 value 80.893994 iter 80 value 80.677672 final value 80.677665 converged Fitting Repeat 3 # weights: 305 initial value 110.212577 iter 10 value 94.390500 iter 20 value 93.751477 iter 30 value 84.703849 iter 40 value 83.764992 iter 50 value 83.709565 iter 60 value 83.617636 iter 70 value 83.607255 final value 83.607228 converged Fitting Repeat 4 # weights: 305 initial value 104.807719 iter 10 value 94.486569 iter 20 value 93.951372 iter 30 value 93.684984 iter 30 value 93.684984 iter 30 value 93.684984 final value 93.684984 converged Fitting Repeat 5 # weights: 305 initial value 97.853935 iter 10 value 94.472317 iter 20 value 94.467715 iter 30 value 94.355888 iter 40 value 83.944042 iter 50 value 81.986385 iter 60 value 81.877613 iter 70 value 81.672232 iter 80 value 81.668183 iter 90 value 81.151821 iter 100 value 80.192124 final value 80.192124 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 96.794564 iter 10 value 94.260936 iter 20 value 94.256725 final value 94.256674 converged Fitting Repeat 2 # weights: 507 initial value 98.172507 iter 10 value 89.036974 iter 20 value 86.063853 iter 30 value 84.715698 iter 40 value 83.821268 iter 50 value 83.819546 iter 60 value 83.719775 iter 70 value 83.536924 iter 80 value 82.657084 iter 90 value 82.220427 iter 100 value 82.061280 final value 82.061280 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.456884 iter 10 value 92.017030 iter 20 value 90.597255 iter 30 value 90.505267 iter 40 value 90.501646 iter 50 value 90.493292 iter 60 value 90.488005 iter 70 value 90.457445 iter 80 value 90.395431 final value 90.394742 converged Fitting Repeat 4 # weights: 507 initial value 103.661258 iter 10 value 94.476079 iter 20 value 94.469209 iter 30 value 91.441002 final value 90.948162 converged Fitting Repeat 5 # weights: 507 initial value 103.419012 iter 10 value 94.489768 iter 20 value 94.475580 iter 30 value 94.472928 iter 40 value 92.356537 iter 50 value 90.641548 iter 60 value 90.548984 final value 90.548488 converged Fitting Repeat 1 # weights: 507 initial value 127.964277 iter 10 value 118.059175 iter 20 value 107.276020 iter 30 value 106.025505 iter 40 value 104.066143 iter 50 value 103.134957 iter 60 value 102.922470 iter 70 value 102.545624 iter 80 value 101.923888 iter 90 value 101.349948 iter 100 value 101.239345 final value 101.239345 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 131.632243 iter 10 value 118.125823 iter 20 value 109.786451 iter 30 value 106.205068 iter 40 value 105.694099 iter 50 value 105.208589 iter 60 value 105.158532 iter 70 value 105.046741 iter 80 value 105.009850 iter 90 value 104.933647 iter 100 value 103.629390 final value 103.629390 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 150.509651 iter 10 value 118.071706 iter 20 value 117.823518 iter 30 value 117.127998 iter 40 value 108.198043 iter 50 value 104.071284 iter 60 value 103.328199 iter 70 value 102.830748 iter 80 value 102.696646 iter 90 value 102.511169 iter 100 value 102.083936 final value 102.083936 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 142.591625 iter 10 value 117.257431 iter 20 value 115.549547 iter 30 value 115.006874 iter 40 value 114.465459 iter 50 value 110.615541 iter 60 value 107.027843 iter 70 value 106.164062 iter 80 value 105.263954 iter 90 value 104.126737 iter 100 value 103.439866 final value 103.439866 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 144.601276 iter 10 value 117.931648 iter 20 value 116.394149 iter 30 value 112.795082 iter 40 value 110.300765 iter 50 value 106.844287 iter 60 value 104.615775 iter 70 value 103.787074 iter 80 value 102.942107 iter 90 value 102.673646 iter 100 value 102.272392 final value 102.272392 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Sep 9 23:51:20 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 55.723 1.769 141.583
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 49.918 | 2.126 | 52.226 | |
FreqInteractors | 0.230 | 0.013 | 0.243 | |
calculateAAC | 0.039 | 0.007 | 0.046 | |
calculateAutocor | 0.383 | 0.082 | 0.468 | |
calculateCTDC | 0.081 | 0.011 | 0.104 | |
calculateCTDD | 0.571 | 0.042 | 0.615 | |
calculateCTDT | 0.249 | 0.025 | 0.275 | |
calculateCTriad | 0.471 | 0.058 | 0.531 | |
calculateDC | 0.095 | 0.010 | 0.106 | |
calculateF | 0.320 | 0.021 | 0.341 | |
calculateKSAAP | 0.096 | 0.012 | 0.108 | |
calculateQD_Sm | 1.835 | 0.254 | 2.093 | |
calculateTC | 1.723 | 0.178 | 1.902 | |
calculateTC_Sm | 0.279 | 0.033 | 0.313 | |
corr_plot | 51.755 | 1.963 | 53.768 | |
enrichfindP | 0.481 | 0.077 | 6.571 | |
enrichfind_hp | 0.064 | 0.021 | 0.694 | |
enrichplot | 0.373 | 0.008 | 0.381 | |
filter_missing_values | 0.001 | 0.000 | 0.002 | |
getFASTA | 0.086 | 0.013 | 0.841 | |
getHPI | 0.001 | 0.001 | 0.001 | |
get_negativePPI | 0.002 | 0.000 | 0.002 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.002 | 0.000 | 0.001 | |
plotPPI | 0.072 | 0.006 | 0.078 | |
pred_ensembel | 16.271 | 0.393 | 15.036 | |
var_imp | 53.069 | 2.215 | 55.386 | |