Back to Rapid builds (Linux only) of a subset of BioC 3.22
Report updated every 6 hours

This page was generated on 2025-07-24 09:37 -0400 (Thu, 24 Jul 2025).

HostnameOSArch (*)R versionInstalled pkgs
teran2Linux (Ubuntu 24.04.1 LTS)x86_644.5.0 (2025-04-11) -- "How About a Twenty-Six" 914
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 18/229HostnameOS / ArchINSTALLBUILDCHECK
aroma.light 3.39.0  (landing page)
Henrik Bengtsson
Snapshot Date: 2025-07-24 06:00 -0400 (Thu, 24 Jul 2025)
git_url: https://git.bioconductor.org/packages/aroma.light
git_branch: devel
git_last_commit: c988583
git_last_commit_date: 2025-04-15 09:38:50 -0400 (Tue, 15 Apr 2025)
teran2Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  


CHECK results for aroma.light on teran2

To the developers/maintainers of the aroma.light package:
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: aroma.light
Version: 3.39.0
Command: /home/rapidbuild/bbs-3.22-bioc-rapid/R/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/home/rapidbuild/bbs-3.22-bioc-rapid/R/site-library --timings aroma.light_3.39.0.tar.gz
StartedAt: 2025-07-24 07:35:36 -0400 (Thu, 24 Jul 2025)
EndedAt: 2025-07-24 07:36:23 -0400 (Thu, 24 Jul 2025)
EllapsedTime: 47.0 seconds
RetCode: 0
Status:   OK  
CheckDir: aroma.light.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/rapidbuild/bbs-3.22-bioc-rapid/R/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/home/rapidbuild/bbs-3.22-bioc-rapid/R/site-library --timings aroma.light_3.39.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/media/volume/teran2_disk/rapidbuild/bbs-3.22-bioc-rapid/meat/aroma.light.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.2 LTS
* using session charset: UTF-8
* checking for file ‘aroma.light/DESCRIPTION’ ... OK
* this is package ‘aroma.light’ version ‘3.39.0’
* package encoding: latin1
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... NOTE
Found the following hidden files and directories:
  inst/rsp/.rspPlugins
These were most likely included in error. See section ‘Package
structure’ in the ‘Writing R Extensions’ manual.
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘aroma.light’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking examples ... OK
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘backtransformAffine.matrix.R’
  Running ‘backtransformPrincipalCurve.matrix.R’
  Running ‘callNaiveGenotypes.R’
  Running ‘distanceBetweenLines.R’
  Running ‘findPeaksAndValleys.R’
  Running ‘fitPrincipalCurve.matrix.R’
  Running ‘fitXYCurve.matrix.R’
  Running ‘iwpca.matrix.R’
  Running ‘likelihood.smooth.spline.R’
  Running ‘medianPolish.matrix.R’
  Running ‘normalizeAffine.matrix.R’
  Running ‘normalizeAverage.list.R’
  Running ‘normalizeAverage.matrix.R’
  Running ‘normalizeCurveFit.matrix.R’
  Running ‘normalizeDifferencesToAverage.R’
  Running ‘normalizeFragmentLength-ex1.R’
  Running ‘normalizeFragmentLength-ex2.R’
  Running ‘normalizeQuantileRank.list.R’
  Running ‘normalizeQuantileRank.matrix.R’
  Running ‘normalizeQuantileSpline.matrix.R’
  Running ‘normalizeTumorBoost,flavors.R’
  Running ‘normalizeTumorBoost.R’
  Running ‘robustSmoothSpline.R’
  Running ‘rowAverages.matrix.R’
  Running ‘sampleCorrelations.matrix.R’
  Running ‘sampleTuples.R’
  Running ‘wpca.matrix.R’
  Running ‘wpca2.matrix.R’
 OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/media/volume/teran2_disk/rapidbuild/bbs-3.22-bioc-rapid/meat/aroma.light.Rcheck/00check.log’
for details.


Installation output

aroma.light.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/rapidbuild/bbs-3.22-bioc-rapid/R/bin/R CMD INSTALL aroma.light
###
##############################################################################
##############################################################################


* installing to library ‘/media/volume/teran2_disk/rapidbuild/bbs-3.22-bioc-rapid/R/site-library’
* installing *source* package ‘aroma.light’ ...
** this is package ‘aroma.light’ version ‘3.39.0’
** using staged installation
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (aroma.light)

Tests output

aroma.light.Rcheck/tests/backtransformAffine.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> X <- matrix(1:8, nrow=4, ncol=2)
> X[2,2] <- NA_integer_
> 
> print(X)
     [,1] [,2]
[1,]    1    5
[2,]    2   NA
[3,]    3    7
[4,]    4    8
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=c(1,5)))
     [,1] [,2]
[1,]    0    0
[2,]    1   NA
[3,]    2    2
[4,]    3    3
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, b=c(1,1/2)))
     [,1] [,2]
[1,]    1   10
[2,]    2   NA
[3,]    3   14
[4,]    4   16
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:4,ncol=1)))
     [,1] [,2]
[1,]    0    4
[2,]    0   NA
[3,]    0    4
[4,]    0    4
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:3,ncol=1)))
     [,1] [,2]
[1,]    0    4
[2,]    0   NA
[3,]    0    4
[4,]    3    7
> 
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))
     [,1] [,2]
[1,]    0    2
[2,]    0   NA
[3,]    2    3
[4,]    2    3
> 
> # Returns a 4x1 matrix
> print(backtransformAffine(X, b=c(1,1/2), project=TRUE))
     [,1]
[1,]  2.8
[2,]  1.6
[3,]  5.2
[4,]  6.4
> 
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
> print(X)
     [,1] [,2] [,3]
[1,]    1    1    1
[2,]    2    2    2
[3,]    3    3    3
[4,]    4    4    4
> print(Y)
     [,1]
[1,]    1
[2,]    2
[3,]    3
[4,]    4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
> 
> 
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> X[,2] <- X[,2]*2; X[,3] <- X[,3]*3
> print(X)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    2    4    6
[3,]    3    6    9
[4,]    4    8   12
> Y <- backtransformAffine(X, b=c(1,2,3))
> print(Y)
     [,1] [,2] [,3]
[1,]    1    1    1
[2,]    2    2    2
[3,]    3    3    3
[4,]    4    4    4
> Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
> print(Y)
     [,1]
[1,]    1
[2,]    2
[3,]    3
[4,]    4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
> 
> proc.time()
   user  system elapsed 
  0.159   0.046   0.190 

aroma.light.Rcheck/tests/backtransformPrincipalCurve.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Consider the case where K=4 measurements have been done
> # for the same underlying signals 'x'.  The different measurements
> # have different systematic variation
> #
> #   y_k = f(x_k) + eps_k; k = 1,...,K.
> #
> # In this example, we assume non-linear measurement functions
> #
> #   f(x) = a + b*x + x^c + eps(b*x)
> #
> # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
> # We also assume heteroscedastic zero-mean noise with standard
> # deviation proportional to the rescaled underlying signal 'x'.
> #
> # Furthermore, we assume that measurements k=2 and k=3 undergo the
> # same transformation, which may illustrate that the come from
> # the same batch. However, when *fitting* the model below we
> # will assume they are independent.
> 
> # Transforms
> a <- c(2, 15, 15,   3)
> b <- c(2,  3,  3,   4)
> c <- c(1,  2,  2, 1/2)
> K <- length(a)
> 
> # The true signal
> N <- 1000
> x <- rexp(N)
> 
> # The noise
> bX <- outer(b,x)
> E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x))
> 
> # The transformed signals with noise
> Xc <- t(sapply(c, FUN=function(c) x^c))
> Y <- a + bX + Xc + E
> Y <- t(Y)
> 
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve through Y = (y_1, y_2, ..., y_K)
> fit <- fitPrincipalCurve(Y)
> 
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, Y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+   fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
> 
> L <- ncol(fit$s)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform data according to model fit
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform toward the principal curve (the "common scale")
> YN1 <- backtransformPrincipalCurve(Y, fit=fit)
> stopifnot(ncol(YN1) == K)
> 
> 
> # Backtransform toward the first dimension
> YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
> stopifnot(ncol(YN2) == K)
> 
> 
> # Backtransform toward the last (fitted) dimension
> YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
> stopifnot(ncol(YN3) == K)
> 
> 
> # Backtransform toward the third dimension (dimension by dimension)
> # Note, this assumes that K == L.
> YN4 <- Y
> for (cc in 1:L) {
+   YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,
+                                   targetDimension=1, dimensions=cc)
+ }
> stopifnot(identical(YN4, YN2))
> 
> 
> # Backtransform a subset toward the first dimension
> # Note, this assumes that K == L.
> YN5 <- backtransformPrincipalCurve(Y, fit=fit,
+                                targetDimension=1, dimensions=2:3)
> stopifnot(identical(YN5, YN2[,2:3]))
> stopifnot(ncol(YN5) == 2)
> 
> 
> # Extract signals from measurement #2 and backtransform according
> # its model fit.  Signals are standardized to target dimension 1.
> y6 <- Y[,2,drop=FALSE]
> yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
+                                                targetDimension=1)
> stopifnot(identical(yN6, YN2[,2,drop=FALSE]))
> stopifnot(ncol(yN6) == 1)
> 
> 
> # Extract signals from measurement #2 and backtransform according
> # the the model fit of measurement #3 (because we believe these
> # two have undergone very similar transformations.
> # Signals are standardized to target dimension 1.
> y7 <- Y[,2,drop=FALSE]
> yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
+                                                targetDimension=1)
> stopifnot(ncol(yN7) == 1)
> 
> rho <- cor(yN7, yN6)
> print(rho)
          [,1]
[1,] 0.9999756
> stopifnot(rho > 0.999)
> 
> proc.time()
   user  system elapsed 
  0.544   0.082   0.613 

aroma.light.Rcheck/tests/callNaiveGenotypes.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A bimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.1)
> xBB <- rnorm(n=10000, mean=1, sd=0.1)
> x <- c(xAA,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
    type            x      density
1   peak -0.003524438 1.6961438190
2 valley  0.488477081 0.0005588976
3   peak  0.993313422 1.6773216931
> calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
Calling genotypes from allele B fractions (BAFs)...
 Fitting naive genotype model...
  Fitting naive genotype model from normal allele B fractions (BAFs)...
   Flavor: density
   Censoring BAFs...
    Before:
          Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
    -0.3999638 -0.0006382  0.4701307  0.4992424  0.9983290  1.4068658 
    [1] 20000
    After:
          Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
          -Inf -0.0006382  0.4701307             0.9983290        Inf 
    [1] 16865
   Censoring BAFs...done
   Copy number level #1 (C=1) of 1...
    Identified extreme points in density of BAF:
        type          x     density
    1   peak 0.01142573 1.644235952
    2 valley 0.49481261 0.004559546
    3   peak 0.97819948 1.633461370
    Local minimas ("valleys") in BAF:
        type         x     density
    2 valley 0.4948126 0.004559546
   Copy number level #1 (C=1) of 1...done
  Fitting naive genotype model from normal allele B fractions (BAFs)...done
  [[1]]
  [[1]]$flavor
  [1] "density"
  
  [[1]]$cn
  [1] 1
  
  [[1]]$nbrOfGenotypeGroups
  [1] 2
  
  [[1]]$tau
  [1] 0.4948126
  
  [[1]]$n
  [1] 16865
  
  [[1]]$fit
      type          x     density
  1   peak 0.01142573 1.644235952
  2 valley 0.49481261 0.004559546
  3   peak 0.97819948 1.633461370
  
  [[1]]$fitValleys
      type         x     density
  2 valley 0.4948126 0.004559546
  
  
  attr(,"class")
  [1] "NaiveGenotypeModelFit" "list"                 
 Fitting naive genotype model...done
 Copy number level #1 (C=1) of 1...
  Model fit:
  $flavor
  [1] "density"
  
  $cn
  [1] 1
  
  $nbrOfGenotypeGroups
  [1] 2
  
  $tau
  [1] 0.4948126
  
  $n
  [1] 16865
  
  $fit
      type          x     density
  1   peak 0.01142573 1.644235952
  2 valley 0.49481261 0.004559546
  3   peak 0.97819948 1.633461370
  
  $fitValleys
      type         x     density
  2 valley 0.4948126 0.004559546
  
  Genotype threshholds [1]: 0.494812606093048
  TCN=1 => BAF in {0,1}.
  Call regions: A = (-Inf,0.495], B = (0.495,+Inf)
 Copy number level #1 (C=1) of 1...done
Calling genotypes from allele B fractions (BAFs)...done
> xc <- split(x, calls)
> print(table(calls))
calls
    0     1 
10000 10000 
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
> abline(v=fit$x)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with missing values
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAB <- rnorm(n=10000, mean=1/2, sd=0.1)
> x <- c(xAA,xAB,xBB)
> x[sample(length(x), size=0.05*length(x))] <- NA_real_
> x[sample(length(x), size=0.01*length(x))] <- -Inf
> x[sample(length(x), size=0.01*length(x))] <- +Inf
> fit <- findPeaksAndValleys(x)
> print(fit)
    type            x   density
1   peak -0.003891654 1.1841499
2 valley  0.242590627 0.1846447
3   peak  0.497288983 1.1612187
4 valley  0.743771263 0.1836113
5   peak  0.990253544 1.1573364
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
   0  0.5    1 
9606 9349 9580 
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
> abline(v=fit$x)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.02)
> xAB <- rnorm(n=10000, mean=1/2, sd=0.02)
> xBB <- rnorm(n=10000, mean=1, sd=0.02)
> x <- c(xAA,xAB,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
    type            x      density
1   peak -0.002216076 2.605635e+00
2 valley  0.246337740 3.466155e-05
3   peak  0.497716032 2.607110e+00
4 valley  0.746269849 3.155116e-05
5   peak  0.997648140 2.604855e+00
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
    0   0.5     1 
10000 10000 10000 
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
> abline(v=fit$x)
> 
> proc.time()
   user  system elapsed 
  0.307   0.071   0.366 

aroma.light.Rcheck/tests/distanceBetweenLines.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> for (zzz in 0) {
+ 
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+ 
+ layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))
+ 
+ ############################################################
+ # Lines in two-dimensions
+ ############################################################
+ x <- list(a=c(1,0), b=c(1,2))
+ y <- list(a=c(0,2), b=c(1,1))
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+ 
+ xlim <- ylim <- c(-1,8)
+ plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)
+ 
+ # Highlight the offset coordinates for both lines
+ points(t(x$a), pch="+", col="red")
+ text(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points(t(y$a), pch="+", col="blue")
+ text(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+ 
+ v <- c(-1,1)*10
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v)
+ 
+ lines(xv, col="red")
+ lines(yv, col="blue")
+ 
+ points(t(fit$xs), cex=2.0, col="red")
+ text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points(t(fit$yt), cex=1.5, col="blue")
+ text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ print(fit)
+ 
+ 
+ ############################################################
+ # Lines in three-dimensions
+ ############################################################
+ x <- list(a=c(0,0,0), b=c(1,1,1))  # The 'diagonal'
+ y <- list(a=c(2,1,2), b=c(2,1,3))  # A 'fitted' line
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+ 
+ xlim <- ylim <- zlim <- c(-1,3)
+ dummy <- t(c(1,1,1))*100
+ 
+ # Coordinates for the lines in 3d
+ v <- seq(-10,10, by=1)
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)
+ 
+ for (theta in seq(30,140,length.out=3)) {
+   plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
+                              xlim=ylim, ylim=ylim, zlim=zlim)
+ 
+   # Highlight the offset coordinates for both lines
+   points3d(t(x$a), pch="+", col="red")
+   text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+   points3d(t(y$a), pch="+", col="blue")
+   text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+ 
+   # Draw the lines
+   lines3d(xv, col="red")
+   lines3d(yv, col="blue")
+ 
+   # Draw the two points that are closest to each other
+   points3d(t(fit$xs), cex=2.0, col="red")
+   text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+   points3d(t(fit$yt), cex=1.5, col="blue")
+   text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ 
+   # Draw the distance between the two points
+   lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2)
+ }
+ 
+ print(fit)
+ 
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'R.basic'
> rm(zzz)
> 
> proc.time()
   user  system elapsed 
  0.202   0.061   0.249 

aroma.light.Rcheck/tests/findPeaksAndValleys.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A unimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1 <- rnorm(n=10000, mean=0, sd=1)
> x <- x1
> fit <- findPeaksAndValleys(x)
> print(fit)
  type           x   density
1 peak 0.002683671 0.4040339
> plot(density(x), lwd=2, main="x1")
> abline(v=fit$x)
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x2 <- rnorm(n=10000, mean=4, sd=1)
> x3 <- rnorm(n=10000, mean=8, sd=1)
> x <- c(x1,x2,x3)
> fit <- findPeaksAndValleys(x)
> print(fit)
    type           x    density
1   peak -0.03800297 0.12436815
2 valley  1.97475063 0.04310631
3   peak  3.91688130 0.12226729
4 valley  5.96494637 0.04419810
5   peak  7.94238851 0.12316227
> plot(density(x), lwd=2, main="c(x1,x2,x3)")
> abline(v=fit$x)
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1b <- rnorm(n=10000, mean=0, sd=0.1)
> x2b <- rnorm(n=10000, mean=4, sd=0.1)
> x3b <- rnorm(n=10000, mean=8, sd=0.1)
> x <- c(x1b,x2b,x3b)
> 
> # Illustrating explicit usage of density()
> d <- density(x)
> fit <- findPeaksAndValleys(d, tol=0)
> print(fit)
    type           x      density
1   peak -0.02906297 3.420130e-01
2 valley  1.97297427 1.195316e-06
3   peak  3.97501151 3.426409e-01
4 valley  5.97704875 1.169423e-06
5   peak  7.97908599 3.424749e-01
> plot(d, lwd=2, main="c(x1b,x2b,x3b)")
> abline(v=fit$x)
> 
> proc.time()
   user  system elapsed 
  0.190   0.058   0.236 

aroma.light.Rcheck/tests/fitPrincipalCurve.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> J <- 1000
> x <- rexp(J)
> a <- c(2,15,3)
> b <- c(2,3,4)
> c <- c(1,2,1/2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
> y <- a + bx + xc + eps
> y <- t(y)
> 
> # Fit principal curve through (y_1, y_2, y_3)
> fit <- fitPrincipalCurve(y, verbose=TRUE)
Fitting principal curve...
 Data size: 1000x3
 Identifying missing values...
 Identifying missing values...done
 Data size after removing non-finite data points: 1000x3
 Calling principal_curve()...
Starting curve---distance^2: 1810474
Iteration 1---distance^2: 360.2141
Iteration 2---distance^2: 359.9183
  Converged: TRUE
  Number of iterations: 2
  Processing time/iteration: 0.1s (0.0s/iteration)
 Calling principal_curve()...done
Fitting principal curve...done
> 
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+   fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
> 
> 
> # Backtransform (y_1, y_2, y_3) to be proportional to each other
> yN <- backtransformPrincipalCurve(y, fit=fit)
> 
> # Same backtransformation dimension by dimension
> yN2 <- y
> for (cc in 1:ncol(y)) {
+   yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)
+ }
> stopifnot(identical(yN2, yN))
> 
> 
> xlim <- c(0, 1.04*max(x))
> ylim <- range(c(y,yN), na.rm=TRUE)
> 
> 
> # Pairwise signals vs x before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (cc in 1:3) {
+   ylab <- substitute(y[c], env=list(c=cc))
+   plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
+   abline(h=a[cc], lty=3)
+   mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]),
+         cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
+   points(x, y[,cc])
+   points(x, yN[,cc], col="tomato")
+   legend("topleft", col=c("black", "tomato"), pch=19,
+                     c("orignal", "transformed"), bty="n")
+ }
> title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2)
> 
> 
> # Pairwise signals before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (rr in 3:2) {
+   ylab <- substitute(y[c], env=list(c=rr))
+   for (cc in 1:2) {
+     if (cc == rr) {
+       plot.new()
+       next
+     }
+     xlab <- substitute(y[c], env=list(c=cc))
+     plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
+     abline(a=0, b=1, lty=2)
+     points(y[,c(cc,rr)])
+     points(yN[,c(cc,rr)], col="tomato")
+     legend("topleft", col=c("black", "tomato"), pch=19,
+                       c("orignal", "transformed"), bty="n")
+   }
+ }
> title(main="Pairwise signals before and after transform", outer=TRUE, line=-2)
> 
> proc.time()
   user  system elapsed 
  0.616   0.075   0.677 

aroma.light.Rcheck/tests/fitXYCurve.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> x <- rexp(1000)
> a <- c(2,15)
> b <- c(2,1)
> c <- c(1,2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
> Y <- a + bx + xc + eps
> Y <- t(Y)
> 
> lim <- c(0,70)
> plot(Y, xlim=lim, ylim=lim)
> 
> # Fit principal curve through a subset of (y_1, y_2)
> subset <- sample(nrow(Y), size=0.3*nrow(Y))
> fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
> 
> lines(fit, col="red", lwd=2)
> 
> # Backtransform (y_1, y_2) keeping y_1 unchanged
> YN <- backtransformXYCurve(Y, fit=fit)
> points(YN, col="blue")
> abline(a=0, b=1, col="red", lwd=2)
> 
> proc.time()
   user  system elapsed 
  0.222   0.054   0.262 

aroma.light.Rcheck/tests/iwpca.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> for (zzz in 0) {
+ 
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+ 
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,4)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+ 
+ # Add some outliers by permuting the dimensions for 1/10 of the observations
+ idx <- sample(1:nrow(y), size=1/10*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+ 
+ # Plot the data with fitted lines at four different view points
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ N <- 4
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ theta <- seq(0,270,length.out=N)
+ phi <- rep(20, length.out=N)
+ xlim <- ylim <- zlim <- c(0,45)
+ persp <- list()
+ for (kk in seq_along(theta)) {
+   # Plot the data
+   persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)
+ }
+ 
+ # Weights on the observations
+ # Example a: Equal weights
+ w <- NULL
+ # Example b: More weight on the outliers (uncomment to test)
+ w <- rep(1, length(x)); w[idx] <- 0.8
+ 
+ # ...and show all iterations too with different colors.
+ maxIter <- c(seq(1,20,length.out=10),Inf)
+ col <- topo.colors(length(maxIter))
+ # Show the fitted value for every iteration
+ for (ii in seq_along(maxIter)) {
+   # Fit a line using IWPCA through data
+   fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)
+ 
+   ymid <- fit$xMean
+   d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+   d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+   b <- fit$vt[1,]
+   y0 <- -b * max(abs(d0))
+   y1 <-  b * max(abs(d1))
+   yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+   yline <- yline + ymid
+ 
+   for (kk in seq_along(theta)) {
+     # Set pane to draw in
+     par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1)
+     # Set the viewpoint of the pane
+     options(persp.matrix=persp[[kk]])
+ 
+     # Get the first principal component
+     points3d(t(ymid), col=col[ii])
+     lines3d(t(yline), col=col[ii])
+ 
+     # Highlight the last one
+     if (ii == length(maxIter))
+       lines3d(t(yline), col="red", lwd=3)
+   }
+ }
+ 
+ par(opar)
+ 
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'R.basic'
> rm(zzz)
> 
> proc.time()
   user  system elapsed 
  0.193   0.059   0.240 

aroma.light.Rcheck/tests/likelihood.smooth.spline.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Define f(x)
> f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x))
> 
> # Simulate data from this function in the range [a,b]
> a <- -2; b <- 5
> x <- seq(a, b, length.out=3000)
> y <- eval(f)
> 
> # Add some noise to the data
> y <- y + rnorm(length(y), 0, 10)
> 
> # Plot the function and its second derivative
> plot(x,y, type="l", lwd=4)
> 
> # Fit a cubic smoothing spline and plot it
> g <- smooth.spline(x,y, df=16)
> lines(g, col="yellow", lwd=2, lty=2)
> 
> # Calculating the (log) likelihood of the fitted spline
> l <- likelihood(g)
> 
> cat("Log likelihood with unique x values:\n")
Log likelihood with unique x values:
> print(l)
Likelihood of smoothing spline: -315741.2 
 Log base: 2.718282 
 Weighted residuals sum of square: 315741.3 
 Penalty: -0.1176538 
 Smoothing parameter lambda: 0.0009257147 
 Roughness score: 127.0951 
> 
> # Note that this is not the same as the log likelihood of the
> # data on the fitted spline iff the x values are non-unique
> x[1:5] <- x[1]  # Non-unique x values
> g <- smooth.spline(x,y, df=16)
> l <- likelihood(g)
> 
> cat("\nLog likelihood of the *spline* data set:\n")

Log likelihood of the *spline* data set:
> print(l)
Likelihood of smoothing spline: -314354.6 
 Log base: 2.718282 
 Weighted residuals sum of square: 314354.8 
 Penalty: -0.1178095 
 Smoothing parameter lambda: 0.0009261969 
 Roughness score: 127.197 
> 
> # In cases with non unique x values one has to proceed as
> # below if one want to get the log likelihood for the original
> # data.
> l <- likelihood(g, x=x, y=y)
> cat("\nLog likelihood of the *original* data set:\n")

Log likelihood of the *original* data set:
> print(l)
Likelihood of smoothing spline: -315735.7 
 Log base: 2.718282 
 Weighted residuals sum of square: 315735.8 
 Penalty: -0.1178094 
 Smoothing parameter lambda: 0.0009261969 
 Roughness score: 127.1969 
> 
> 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
  0.219   0.063   0.269 

aroma.light.Rcheck/tests/medianPolish.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Deaths from sport parachuting;  from ABC of EDA, p.224:
> deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
> rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
> colnames(deaths) <- 1973:1975
> 
> print(deaths)
       1973 1974 1975
1-24     14   15   14
25-74     7    4    7
75-199    8    2   10
200++    15    9   10
NA        0    2    0
> 
> mp <- medianPolish(deaths)
> mp1 <- medpolish(deaths, trace=FALSE)
> print(mp)

Median Polish Results (Dataset: "deaths")

Overall: 8

Row Effects:
  1-24  25-74 75-199  200++     NA 
     6     -1      0      2     -8 

Column Effects:
1973 1974 1975 
   0   -1    0 

Residuals:
       1973 1974 1975
1-24      0    2    0
25-74     0   -2    0
75-199    0   -5    2
200++     5    0    0
NA        0    3    0

> 
> ff <- c("overall", "row", "col", "residuals")
> stopifnot(all.equal(mp[ff], mp1[ff]))
> 
> # Validate decomposition:
> stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid))
> 
> proc.time()
   user  system elapsed 
  0.156   0.050   0.192 

aroma.light.Rcheck/tests/normalizeAffine.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
> 
> rg <- as.list(rg)
> for (field in c("R", "G"))
+   rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
> 
> rgC <- rg
> 
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
> 
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   channelColor <- switch(channel, R="red", G="green")
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The raw data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   plotMvsAPairs(rg, channel=channel)
+   title(main=paste("Observed", channel))
+   box(col=channelColor)
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The calibrated data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+ 
+   plotMvsAPairs(rgC, channel=channel)
+   title(main=paste("Calibrated", channel))
+   box(col=channelColor)
+ } # for (channel ...)
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
> colnames(rgCA) <- c("R", "G")
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
+ }
> 
> plotMvsA(rgCA)
> title(main="Average calibrated")
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The affine normalized average calibrated data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Create a matrix where the columns represent the channels
> # to be normalized.
> rgCAN <- rgCA
> # Affine normalization of channels
> rgCAN <- normalizeAffine(rgCAN)
> 
> plotMvsA(rgCAN)
> title(main="Affine normalized A.C.")
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCAN <- rgCAN * 2^5
> plotMvsA(rgCAN)
> title(main="Rescaled normalized")
> 
> 
> 
> proc.time()
   user  system elapsed 
  1.127   0.090   1.204 

aroma.light.Rcheck/tests/normalizeAverage.list.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+   rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+   size <- runif(1, min=0.3, max=1)
+   a <- rgamma(1, shape=20, rate=10)
+   b <- rgamma(1, shape=10, rate=10)
+   values <- rfcn(size*N, a, b)
+ 
+   # "Censor" values
+   values[values < 0 | values > 8] <- NA_real_
+ 
+   X[[kk]] <- values
+ }
> 
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+   x[sample(length(x), size=0.20*length(x))] <- NA_real_
+   x
+ })
> 
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE))
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
> 
> proc.time()
   user  system elapsed 
  0.216   0.063   0.265 

aroma.light.Rcheck/tests/normalizeAverage.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+            rnorm(N, mean=4, sd=2),
+            rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
> 
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE))
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> 
> proc.time()
   user  system elapsed 
  0.186   0.061   0.233 

aroma.light.Rcheck/tests/normalizeCurveFit.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
> 
> rg <- as.list(rg)
> for (field in c("R", "G"))
+   rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
> 
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
> 
> rgC <- rg
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   channelColor <- switch(channel, R="red", G="green")
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The raw data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   plotMvsAPairs(rg[,sidx])
+   title(main=paste("Observed", channel))
+   box(col=channelColor)
+ 
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   # The calibrated data
+   # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+   rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+ 
+   plotMvsAPairs(rgC[,sidx])
+   title(main=paste("Calibrated", channel))
+   box(col=channelColor)
+ } # for (channel ...)
> 
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- rg
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
+ }
> 
> rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
> colnames(rgCAavg) <- c("R", "G")
> for (channel in c("R", "G")) {
+   sidx <- which(colnames(rg) == channel)
+   rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
+ }
> 
> # Add some "fake" outliers
> outliers <- 1:600
> rgCAavg[outliers,"G"] <- 50000
> 
> plotMvsA(rgCAavg)
> title(main="Average calibrated (AC)")
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Normalize data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Weight-down outliers when normalizing
> weights <- rep(1, nrow(rgCAavg))
> weights[outliers] <- 0.001
> 
> # Affine normalization of channels
> rgCANa <- normalizeAffine(rgCAavg, weights=weights)
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> rgCANa <- rgCANa *2^1.4
> plotMvsA(rgCANa)
> title(main="Normalized AC")
> 
> # Curve-fit (lowess) normalization
> rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
Warning message:
In normalizeCurveFit.matrix(X, method = "lowess", ...) :
  Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights.
> plotMvsA(rgCANlw, col="orange", add=TRUE)
> 
> # Curve-fit (loess) normalization
> rgCANl <- normalizeLoess(rgCAavg, weights=weights)
> plotMvsA(rgCANl, col="red", add=TRUE)
> 
> # Curve-fit (robust spline) normalization
> rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
> plotMvsA(rgCANrs, col="blue", add=TRUE)
> 
> legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
+        col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
> 
> 
> plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
> title(main="Normalized AC")
> plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
> plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
> abline(a=0, b=1, lty=2)
> legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
+        col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
> 
> 
> proc.time()
   user  system elapsed 
  4.266   0.094   4.347 

aroma.light.Rcheck/tests/normalizeDifferencesToAverage.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Simulate three shifted tracks of different lengths with same profiles
> ns <- c(A=2, B=1, C=0.25)*1000
> xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
> zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n))
> 
> yy <- list(
+   A = rnorm(ns["A"], mean=0, sd=0.5),
+   B = rnorm(ns["B"], mean=5, sd=0.4),
+   C = rnorm(ns["C"], mean=-5, sd=1.1)
+ )
> yy <- lapply(yy, FUN=function(y) {
+   n <- length(y)
+   y[1:(n/2)] <- y[1:(n/2)] + 2
+   y[1:(n/4)] <- y[1:(n/4)] - 4
+   y
+ })
> 
> # Shift all tracks toward the first track
> yyN <- normalizeDifferencesToAverage(yy, baseline=1)
> 
> # The baseline channel is not changed
> stopifnot(identical(yy[[1]], yyN[[1]]))
> 
> # Get the estimated parameters
> fit <- attr(yyN, "fit")
> 
> # Plot the tracks
> layout(matrix(1:2, ncol=1))
> x <- unlist(xx)
> col <- unlist(zz)
> y <- unlist(yy)
> yN <- unlist(yyN)
> plot(x, y, col=col, ylim=c(-10,10))
> plot(x, yN, col=col, ylim=c(-10,10))
> 
> proc.time()
   user  system elapsed 
  0.251   0.059   0.295 

aroma.light.Rcheck/tests/normalizeFragmentLength-ex1.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 1: Single-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Number samples
> I <- 9
> 
> # Number of loci
> J <- 1000
> 
> # Fragment lengths
> fl <- seq(from=100, to=1000, length.out=J)
> 
> # Simulate data points with unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=50)
> fl[hasUnknownFL] <- NA_real_
> 
> # Simulate data
> y <- matrix(0, nrow=J, ncol=I)
> maxY <- 12
> for (kk in 1:I) {
+   k <- runif(n=1, min=3, max=5)
+   mu <- function(fl) {
+     mu <- rep(maxY, length(fl))
+     ok <- !is.na(fl)
+     mu[ok] <- mu[ok] - fl[ok]^{1/k}
+     mu
+   }
+   eps <- rnorm(J, mean=0, sd=1)
+   y[,kk] <- mu(fl) + eps
+ }
> 
> # Normalize data (to a zero baseline)
> yN <- apply(y, MARGIN=2, FUN=function(y) {
+   normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
+ })
> 
> # The correction factors
> rho <- y-yN
> print(summary(rho))
       V1              V2              V3              V4       
 Min.   :4.574   Min.   :4.651   Min.   :7.908   Min.   :6.406  
 1st Qu.:5.240   1st Qu.:5.282   1st Qu.:7.987   1st Qu.:6.845  
 Median :5.938   Median :5.976   Median :8.202   Median :7.279  
 Mean   :6.079   Mean   :6.095   Mean   :8.361   Mean   :7.364  
 3rd Qu.:6.862   3rd Qu.:6.858   3rd Qu.:8.689   3rd Qu.:7.867  
 Max.   :8.095   Max.   :7.976   Max.   :9.318   Max.   :8.596  
       V5              V6              V7              V8       
 Min.   :7.055   Min.   :6.888   Min.   :2.461   Min.   :7.879  
 1st Qu.:7.486   1st Qu.:7.407   1st Qu.:3.302   1st Qu.:8.095  
 Median :7.856   Median :7.825   Median :4.233   Median :8.343  
 Mean   :7.927   Mean   :7.892   Mean   :4.439   Mean   :8.435  
 3rd Qu.:8.356   3rd Qu.:8.362   3rd Qu.:5.484   3rd Qu.:8.753  
 Max.   :8.999   Max.   :9.108   Max.   :7.195   Max.   :9.293  
       V9       
 Min.   :5.667  
 1st Qu.:6.183  
 Median :6.748  
 Mean   :6.838  
 3rd Qu.:7.461  
 Max.   :8.327  
> # The correction for units with unknown fragment lengths
> # equals the median correction factor of all other units
> print(summary(rho[hasUnknownFL,]))
       V1              V2              V3              V4       
 Min.   :5.938   Min.   :5.976   Min.   :8.202   Min.   :7.279  
 1st Qu.:5.938   1st Qu.:5.976   1st Qu.:8.202   1st Qu.:7.279  
 Median :5.938   Median :5.976   Median :8.202   Median :7.279  
 Mean   :5.938   Mean   :5.976   Mean   :8.202   Mean   :7.279  
 3rd Qu.:5.938   3rd Qu.:5.976   3rd Qu.:8.202   3rd Qu.:7.279  
 Max.   :5.938   Max.   :5.976   Max.   :8.202   Max.   :7.279  
       V5              V6              V7              V8       
 Min.   :7.856   Min.   :7.825   Min.   :4.233   Min.   :8.343  
 1st Qu.:7.856   1st Qu.:7.825   1st Qu.:4.233   1st Qu.:8.343  
 Median :7.856   Median :7.825   Median :4.233   Median :8.343  
 Mean   :7.856   Mean   :7.825   Mean   :4.233   Mean   :8.343  
 3rd Qu.:7.856   3rd Qu.:7.825   3rd Qu.:4.233   3rd Qu.:8.343  
 Max.   :7.856   Max.   :7.825   Max.   :4.233   Max.   :8.343  
       V9       
 Min.   :6.748  
 1st Qu.:6.748  
 Median :6.748  
 Mean   :6.748  
 3rd Qu.:6.748  
 Max.   :6.748  
> 
> # Plot raw data
> layout(matrix(1:9, ncol=3))
> xlim <- c(0,max(fl, na.rm=TRUE))
> ylim <- c(0,max(y, na.rm=TRUE))
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> for (kk in 1:I) {
+   plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+   ok <- (is.finite(fl) & is.finite(y[,kk]))
+   lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
+ }
> 
> # Plot normalized data
> layout(matrix(1:9, ncol=3))
> ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
> for (kk in 1:I) {
+   plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+   ok <- (is.finite(fl) & is.finite(y[,kk]))
+   lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
+ }
> 
> proc.time()
   user  system elapsed 
  0.539   0.069   0.595 

aroma.light.Rcheck/tests/normalizeFragmentLength-ex2.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 2: Two-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> set.seed(0xbeef)
> 
> # Number samples
> I <- 5
> 
> # Number of loci
> J <- 3000
> 
> # Fragment lengths (two enzymes)
> fl <- matrix(0, nrow=J, ncol=2)
> fl[,1] <- seq(from=100, to=1000, length.out=J)
> fl[,2] <- seq(from=1000, to=100, length.out=J)
> 
> # Let 1/2 of the units be on both enzymes
> fl[seq(from=1, to=J, by=4),1] <- NA_real_
> fl[seq(from=2, to=J, by=4),2] <- NA_real_
> 
> # Let some have unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=15)
> fl[hasUnknownFL,] <- NA_real_
> 
> # Sty/Nsp mixing proportions:
> rho <- rep(1, I)
> rho[1] <- 1/3;  # Less Sty in 1st sample
> rho[3] <- 3/2;  # More Sty in 3rd sample
> 
> 
> # Simulate data
> z <- array(0, dim=c(J,2,I))
> maxLog2Theta <- 12
> for (ii in 1:I) {
+   # Common effect for both enzymes
+   mu <- function(fl) {
+     k <- runif(n=1, min=3, max=5)
+     mu <- rep(maxLog2Theta, length(fl))
+     ok <- is.finite(fl)
+     mu[ok] <- mu[ok] - fl[ok]^{1/k}
+     mu
+   }
+ 
+   # Calculate the effect for each data point
+   for (ee in 1:2) {
+     z[,ee,ii] <- mu(fl[,ee])
+   }
+ 
+   # Update the Sty/Nsp mixing proportions
+   ee <- 2
+   z[,ee,ii] <- rho[ii]*z[,ee,ii]
+ 
+   # Add random errors
+   for (ee in 1:2) {
+     eps <- rnorm(J, mean=0, sd=1/sqrt(2))
+     z[,ee,ii] <- z[,ee,ii] + eps
+   }
+ }
> 
> 
> hasFl <- is.finite(fl)
> 
> unitSets <- list(
+   nsp  = which( hasFl[,1] & !hasFl[,2]),
+   sty  = which(!hasFl[,1] &  hasFl[,2]),
+   both = which( hasFl[,1] &  hasFl[,2]),
+   none = which(!hasFl[,1] & !hasFl[,2])
+ )
> 
> # The observed data is a mix of two enzymes
> theta <- matrix(NA_real_, nrow=J, ncol=I)
> 
> # Single-enzyme units
> for (ee in 1:2) {
+   uu <- unitSets[[ee]]
+   theta[uu,] <- 2^z[uu,ee,]
+ }
> 
> # Both-enzyme units (sum on intensity scale)
> uu <- unitSets$both
> theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
> 
> # Missing units (sample from the others)
> uu <- unitSets$none
> theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
> 
> # Calculate target array
> thetaT <- rowMeans(theta, na.rm=TRUE)
> targetFcns <- list()
> for (ee in 1:2) {
+   uu <- unitSets[[ee]]
+   fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
+   class(fit) <- "lowess"
+   targetFcns[[ee]] <- function(fl, ...) {
+     predict(fit, newdata=fl)
+   }
+ }
> 
> 
> # Fit model only to a subset of the data
> subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
> 
> # Normalize data (to a target baseline)
> thetaN <- matrix(NA_real_, nrow=J, ncol=I)
> fits <- vector("list", I)
> for (ii in 1:I) {
+   lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
+                      fragmentLengths=fl, onMissing="median",
+                      subsetToFit=subsetToFit, .returnFit=TRUE)
+   fits[[ii]] <- attr(lthetaNi, "modelFit")
+   thetaN[,ii] <- 2^lthetaNi
+ }
> 
> 
> # Plot raw data
> xlim <- c(0, max(fl, na.rm=TRUE))
> ylim <- c(0, max(log2(theta), na.rm=TRUE))
> Mlim <- c(-1,1)*4
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> Mlab <- expression(M==log[2](theta/theta[R]))
> 
> layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
> for (ii in 1:I) {
+   plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
+ 
+   # Single-enzyme units
+   for (ee in 1:2) {
+     # The raw data
+     uu <- unitSets[[ee]]
+     points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
+   }
+ 
+   # Both-enzyme units (use fragment-length for enzyme #1)
+   uu <- unitSets$both
+   points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
+ 
+   for (ee in 1:2) {
+     # The true effects
+     uu <- unitSets[[ee]]
+     lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
+ 
+     # The estimated effects
+     fit <- fits[[ii]][[ee]]$fit
+     lines(fit, col="orange", lwd=3)
+ 
+     muT <- targetFcns[[ee]](fl[uu,ee])
+     lines(fl[uu,ee], muT, col="cyan", lwd=1)
+   }
+ }
> 
> # Calculate log-ratios
> thetaR <- rowMeans(thetaN, na.rm=TRUE)
> M <- log2(thetaN/thetaR)
> 
> # Plot normalized data
> for (ii in 1:I) {
+   plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
+   # Single-enzyme units
+   for (ee in 1:2) {
+     # The normalized data
+     uu <- unitSets[[ee]]
+     points(fl[uu,ee], M[uu,ii], col=ee+1)
+   }
+   # Both-enzyme units (use fragment-length for enzyme #1)
+   uu <- unitSets$both
+   points(fl[uu,1], M[uu,ii], col=3+1)
+ }
> 
> ylim <- c(0,1.5)
> for (ii in 1:I) {
+   data <- list()
+   for (ee in 1:2) {
+     # The normalized data
+     uu <- unitSets[[ee]]
+     data[[ee]] <- M[uu,ii]
+   }
+   uu <- unitSets$both
+   if (length(uu) > 0)
+     data[[3]] <- M[uu,ii]
+ 
+   uu <- unitSets$none
+   if (length(uu) > 0)
+     data[[4]] <- M[uu,ii]
+ 
+   cols <- seq_along(data)+1
+   plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
+ 
+   abline(v=0, lty=2)
+ }
> 
> 
> proc.time()
   user  system elapsed 
  0.467   0.072   0.526 

aroma.light.Rcheck/tests/normalizeQuantileRank.list.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+   rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+   size <- runif(1, min=0.3, max=1)
+   a <- rgamma(1, shape=20, rate=10)
+   b <- rgamma(1, shape=10, rate=10)
+   values <- rfcn(size*N, a, b)
+ 
+   # "Censor" values
+   values[values < 0 | values > 8] <- NA_real_
+ 
+   X[[kk]] <- values
+ }
> 
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+   x[sample(length(x), size=0.20*length(x))] <- NA_real_
+   x
+ })
> 
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
> 
> proc.time()
   user  system elapsed 
  0.229   0.066   0.283 

aroma.light.Rcheck/tests/normalizeQuantileRank.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+            rnorm(N, mean=4, sd=2),
+            rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
> 
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
> 
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> 
> proc.time()
   user  system elapsed 
  0.189   0.064   0.239 

aroma.light.Rcheck/tests/normalizeQuantileSpline.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+            rnorm(N, mean=4, sd=2),
+            rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
> 
> # Plot the data
> layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> 
> Xn <- normalizeQuantile(X)
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions")
> 
> Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
> plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions")
> 
> proc.time()
   user  system elapsed 
  0.611   0.076   0.675 

aroma.light.Rcheck/tests/normalizeTumorBoost,flavors.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.27.1 (2025-05-02 21:00:05 UTC) successfully loaded. See ?R.oo for help.

Attaching package: 'R.oo'

The following object is masked from 'package:R.methodsS3':

    throw

The following objects are masked from 'package:methods':

    getClasses, getMethods

The following objects are masked from 'package:base':

    attach, detach, load, save

R.utils v2.13.0 (2025-02-24 21:20:02 UTC) successfully loaded. See ?R.utils for help.

Attaching package: 'R.utils'

The following object is masked from 'package:utils':

    timestamp

The following objects are masked from 'package:base':

    cat, commandArgs, getOption, isOpen, nullfile, parse, use, warnings

> 
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> 
> # Drop loci with missing values
> data <- na.omit(data)
> 
> attachLocally(data)
> pos <- position/1e6
> 
> # Call naive genotypes
> muN <- callNaiveGenotypes(betaN)
> 
> # Genotype classes
> isAA <- (muN == 0)
> isAB <- (muN == 1/2)
> isBB <- (muN == 1)
> 
> # Sanity checks
> stopifnot(all(muN[isAA] == 0))
> stopifnot(all(muN[isAB] == 1/2))
> stopifnot(all(muN[isBB] == 1))
> 
> # TumorBoost normalization with different flavors
> betaTNs <- list()
> for (flavor in c("v1", "v2", "v3", "v4")) {
+   betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor)
+ 
+   # Assert that no non-finite values are introduced
+   stopifnot(all(is.finite(betaTN)))
+ 
+   # Assert that nothing is flipped
+   stopifnot(all(betaTN[isAA] < 1/2))
+   stopifnot(all(betaTN[isBB] > 1/2))
+ 
+   betaTNs[[flavor]] <- betaTN
+ }
> 
> # Plot
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> for (flavor in names(betaTNs)) {
+   betaTN <- betaTNs[[flavor]]
+   ylab <- sprintf("betaTN[%s]", flavor)
+   plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab)
+ }
> 
> proc.time()
   user  system elapsed 
  0.321   0.077   0.385 

aroma.light.Rcheck/tests/normalizeTumorBoost.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.27.1 (2025-05-02 21:00:05 UTC) successfully loaded. See ?R.oo for help.

Attaching package: 'R.oo'

The following object is masked from 'package:R.methodsS3':

    throw

The following objects are masked from 'package:methods':

    getClasses, getMethods

The following objects are masked from 'package:base':

    attach, detach, load, save

R.utils v2.13.0 (2025-02-24 21:20:02 UTC) successfully loaded. See ?R.utils for help.

Attaching package: 'R.utils'

The following object is masked from 'package:utils':

    timestamp

The following objects are masked from 'package:base':

    cat, commandArgs, getOption, isOpen, nullfile, parse, use, warnings

> 
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> attachLocally(data)
> pos <- position/1e6
> muN <- genotypeN
> 
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> 
> # Allele B fractions for the normal sample
> plot(pos, betaN, col=col, ylim=ylim)
> 
> # Allele B fractions for the tumor sample
> plot(pos, betaT, col=col, ylim=ylim)
> 
> # TumorBoost w/ naive genotype calls
> betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
> plot(pos, betaTN, col=col, ylim=ylim)
> 
> # TumorBoost w/ external multi-sample genotype calls
> betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
> plot(pos, betaTNx, col=col, ylim=ylim)
> 
> proc.time()
   user  system elapsed 
  0.303   0.063   0.353 

aroma.light.Rcheck/tests/robustSmoothSpline.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars)  &  robust smoothing splines")
> 
> # Fit a smoothing spline using L_2 norm
> cars.spl <- smooth.spline(speed, dist)
> lines(cars.spl, col = "blue")
> 
> # Fit a smoothing spline using L_1 norm
> cars.rspl <- robustSmoothSpline(speed, dist)
> lines(cars.rspl, col = "red")
> 
> # Fit a smoothing spline using L_2 norm with 10 degrees of freedom
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue")
> 
> # Fit a smoothing spline using L_1 norm with 10 degrees of freedom
> lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red")
> 
> # Fit a smoothing spline using Tukey's biweight norm
> cars.rspl <- robustSmoothSpline(speed, dist, method = "symmetric")
> lines(cars.rspl, col = "purple")
> 
> legend(5,120, c(
+       paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
+       paste("robustSmoothSpline L1 [C.V.] => df =",round(cars.rspl$df,1)),
+       paste("robustSmoothSpline symmetric [C.V.] => df =",round(cars.rspl$df,1)),
+       "standard with s( * , df = 10)", "robust with s( * , df = 10)"
+     ),
+     col = c("blue","red","purple","blue","red"), lty = c(1,1,1,2,2),
+     bg='bisque')
> 
> proc.time()
   user  system elapsed 
  0.218   0.045   0.251 

aroma.light.Rcheck/tests/rowAverages.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> X <- matrix(1:30, nrow=5L, ncol=6L)
> mu <- rowMeans(X)
> sd <- apply(X, MARGIN=1L, FUN=sd)
> 
> y <- rowAverages(X)
> stopifnot(all(y == mu))
> stopifnot(all(attr(y,"deviance") == sd))
> stopifnot(all(attr(y,"df") == ncol(X)))
> 
> proc.time()
   user  system elapsed 
  0.140   0.053   0.184 

aroma.light.Rcheck/tests/sampleCorrelations.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # Simulate 20000 genes with 10 observations each
> X <- matrix(rnorm(n=20000), ncol=10)
> 
> # Calculate the correlation for 5000 random gene pairs
> cor <- sampleCorrelations(X, npairs=5000)
> print(summary(cor))
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-0.897243 -0.230535  0.001963  0.006071  0.242350  0.911595 
> 
> 
> proc.time()
   user  system elapsed 
  0.284   0.069   0.339 

aroma.light.Rcheck/tests/sampleTuples.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> pairs <- sampleTuples(1:10, size=5, length=2)
> print(pairs)
     [,1] [,2]
[1,]    5    7
[2,]    7   10
[3,]   10    1
[4,]    7    6
[5,]    3    9
> 
> triples <- sampleTuples(1:10, size=5, length=3)
> print(triples)
     [,1] [,2] [,3]
[1,]    9    7    2
[2,]    6   10    1
[3,]    1    8    9
[4,]    5   10    1
[5,]    6    3    2
> 
> # Allow tuples with repeated elements
> quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
> print(quadruples)
     [,1] [,2] [,3] [,4]
[1,]    3    1    3    3
[2,]    2    1    2    2
[3,]    2    3    3    1
[4,]    2    2    1    1
[5,]    1    1    2    3
> 
> proc.time()
   user  system elapsed 
  0.158   0.041   0.187 

aroma.light.Rcheck/tests/wpca.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> for (zzz in 0) {
+ 
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+ 
+ # -------------------------------------------------------------
+ # A first example
+ # -------------------------------------------------------------
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,15)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+ 
+ # Add some outliers by permuting the dimensions for 1/3 of the observations
+ idx <- sample(1:nrow(y), size=1/3*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+ 
+ # Down-weight the outliers W times to demonstrate how weights are used
+ W <- 10
+ 
+ # Plot the data with fitted lines at four different view points
+ N <- 4
+ theta <- seq(0,180,length.out=N)
+ phi <- rep(30, length.out=N)
+ 
+ # Use a different color for each set of weights
+ col <- topo.colors(W)
+ 
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ for (kk in seq(theta)) {
+   # Plot the data
+   plot3d(y, theta=theta[kk], phi=phi[kk])
+ 
+   # First, same weights for all observations
+   w <- rep(1, length=nrow(y))
+ 
+   for (ww in 1:W) {
+     # Fit a line using IWPCA through data
+     fit <- wpca(y, w=w, swapDirections=TRUE)
+ 
+     # Get the first principal component
+     ymid <- fit$xMean
+     d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+     d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+     b <- fit$vt[1,]
+     y0 <- -b * max(abs(d0))
+     y1 <-  b * max(abs(d1))
+     yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+     yline <- yline + ymid
+ 
+     points3d(t(ymid), col=col)
+     lines3d(t(yline), col=col)
+ 
+     # Down-weight outliers only, because here we know which they are.
+     w[idx] <- w[idx]/2
+   }
+ 
+   # Highlight the last one
+   lines3d(t(yline), col="red", lwd=3)
+ }
+ 
+ par(opar)
+ 
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE,  :
  there is no package called 'R.basic'
> rm(zzz)
> 
> proc.time()
   user  system elapsed 
  0.178   0.059   0.224 

aroma.light.Rcheck/tests/wpca2.matrix.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library("aroma.light")
aroma.light v3.39.0 (2025-07-24) successfully loaded. See ?aroma.light for help.
> 
> # -------------------------------------------------------------
> # A second example
> # -------------------------------------------------------------
> # Data
> x <- c(1,2,3,4,5)
> y <- c(2,4,3,3,6)
> 
> opar <- par(bty="L")
> opalette <- palette(c("blue", "red", "black"))
> xlim <- ylim <- c(0,6)
> 
> # Plot the data and the center mass
> plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
> points(mean(x), mean(y), cex=2, lwd=2, col="blue")
> 
> 
> # Linear regression y ~ x
> fit <- lm(y ~ x)
> abline(fit, lty=1, col=1)
> 
> # Linear regression y ~ x through without intercept
> fit <- lm(y ~ x - 1)
> abline(fit, lty=2, col=1)
> 
> 
> # Linear regression x ~ y
> fit <- lm(x ~ y)
> c <- coefficients(fit)
> b <- 1/c[2]
> a <- -b*c[1]
> abline(a=a, b=b, lty=1, col=2)
> 
> # Linear regression x ~ y through without intercept
> fit <- lm(x ~ y - 1)
> b <- 1/coefficients(fit)
> abline(a=0, b=b, lty=2, col=2)
> 
> 
> # Orthogonal linear "regression"
> fit <- wpca(cbind(x,y))
> 
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lwd=2, col=3)
> 
> # Orthogonal linear "regression" without intercept
> fit <- wpca(cbind(x,y), center=FALSE)
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lty=2, lwd=2, col=3)
> 
> legend(xlim[1],ylim[2], legend=c("lm(y~x)", "lm(y~x-1)", "lm(x~y)",
+           "lm(x~y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3),
+                      lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))
> 
> palette(opalette)
> par(opar)
> 
> proc.time()
   user  system elapsed 
  0.180   0.056   0.223 

Example timings

aroma.light.Rcheck/aroma.light-Ex.timings

nameusersystemelapsed
backtransformAffine0.0000.0010.002
backtransformPrincipalCurve0.3850.0220.409
calibrateMultiscan000
callNaiveGenotypes0.1400.0110.152
distanceBetweenLines0.0530.0030.057
findPeaksAndValleys0.0210.0010.022
fitPrincipalCurve0.4190.0030.422
fitXYCurve0.1390.0010.140
iwpca0.0360.0000.036
likelihood.smooth.spline0.0800.0010.081
medianPolish0.0030.0000.003
normalizeAffine4.1180.0374.160
normalizeCurveFit4.2990.0124.312
normalizeDifferencesToAverage0.1740.0030.178
normalizeFragmentLength0.8920.0180.912
normalizeQuantileRank0.5550.0040.559
normalizeQuantileRank.matrix0.0280.0000.028
normalizeQuantileSpline0.4160.0010.417
normalizeTumorBoost0.1680.0030.174
robustSmoothSpline0.2650.0050.270
sampleCorrelations0.1320.0000.132
sampleTuples000
wpca0.0350.0010.036