Back to Multiple platform build/check report for BioC 3.22:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2025-10-14 12:07 -0400 (Tue, 14 Oct 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" 4864
lconwaymacOS 12.7.1 Montereyx86_644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4652
kjohnson3macOS 13.7.7 Venturaarm644.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" 4597
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4610
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 2020/2346HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.19.2  (landing page)
Joshua David Campbell
Snapshot Date: 2025-10-13 13:45 -0400 (Mon, 13 Oct 2025)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: 238aed05
git_last_commit_date: 2025-09-26 08:22:06 -0400 (Fri, 26 Sep 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  NO, package depends on 'MAST' which is not available
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  NO, package depends on 'MAST' which is not available
kjohnson3macOS 13.7.7 Ventura / arm64  OK    OK    OK    OK  NO, package depends on 'MAST' which is not available
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for singleCellTK on taishan

To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: singleCellTK
Version: 2.19.2
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.19.2.tar.gz
StartedAt: 2025-10-14 12:55:04 -0000 (Tue, 14 Oct 2025)
EndedAt: 2025-10-14 13:16:31 -0000 (Tue, 14 Oct 2025)
EllapsedTime: 1286.5 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings singleCellTK_2.19.2.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck’
* using R version 4.5.0 (2025-04-11)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.19.2’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Imports includes 80 non-default packages.
Importing from so many packages makes the package vulnerable to any of
them becoming unavailable.  Move as many as possible to Suggests and
use conditionally.
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... INFO
  installed size is  7.0Mb
  sub-directories of 1Mb or more:
    R         1.0Mb
    extdata   1.6Mb
    shiny     3.0Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dedupRowNames.Rd: SingleCellExperiment-class
  detectCellOutlier.Rd: colData
  diffAbundanceFET.Rd: colData
  downSampleCells.Rd: SingleCellExperiment-class
  downSampleDepth.Rd: SingleCellExperiment-class
  featureIndex.Rd: SummarizedExperiment-class,
    SingleCellExperiment-class
  getBiomarker.Rd: SingleCellExperiment-class
  getDEGTopTable.Rd: SingleCellExperiment-class
  getEnrichRResult.Rd: SingleCellExperiment-class
  getFindMarkerTopTable.Rd: SingleCellExperiment-class
  getGenesetNamesFromCollection.Rd: SingleCellExperiment-class
  getPathwayResultNames.Rd: SingleCellExperiment-class
  getSampleSummaryStatsTable.Rd: SingleCellExperiment-class, assay,
    colData
  getSoupX.Rd: SingleCellExperiment-class
  getTSCANResults.Rd: SingleCellExperiment-class
  getTopHVG.Rd: SingleCellExperiment-class
  importAlevin.Rd: DelayedArray, readMM
  importAnnData.Rd: DelayedArray, readMM
  importBUStools.Rd: readMM
  importCellRanger.Rd: readMM, DelayedArray
  importCellRangerV2Sample.Rd: readMM, DelayedArray
  importCellRangerV3Sample.Rd: readMM, DelayedArray
  importDropEst.Rd: DelayedArray, readMM
  importExampleData.Rd: scRNAseq, Matrix, DelayedArray,
    ReprocessedFluidigmData, ReprocessedAllenData, NestorowaHSCData
  importFromFiles.Rd: readMM, DelayedArray, SingleCellExperiment-class
  importGeneSetsFromCollection.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GeneSetCollection, GSEABase, metadata
  importGeneSetsFromGMT.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, getGmt, GSEABase, metadata
  importGeneSetsFromList.Rd: GeneSetCollection-class,
    SingleCellExperiment-class, GSEABase, metadata
  importGeneSetsFromMSigDB.Rd: SingleCellExperiment-class, msigdbr,
    GeneSetCollection-class, GSEABase, metadata
  importMitoGeneSet.Rd: SingleCellExperiment-class,
    GeneSetCollection-class, GSEABase, metadata
  importMultipleSources.Rd: DelayedArray
  importOptimus.Rd: readMM, DelayedArray
  importSEQC.Rd: readMM, DelayedArray
  importSTARsolo.Rd: readMM, DelayedArray
  iterateSimulations.Rd: SingleCellExperiment-class
  listSampleSummaryStatsTables.Rd: SingleCellExperiment-class, metadata
  plotBarcodeRankDropsResults.Rd: SingleCellExperiment-class
  plotBarcodeRankScatter.Rd: SingleCellExperiment-class
  plotBatchCorrCompare.Rd: SingleCellExperiment-class
  plotBatchVariance.Rd: SingleCellExperiment-class
  plotBcdsResults.Rd: SingleCellExperiment-class
  plotClusterAbundance.Rd: colData
  plotCxdsResults.Rd: SingleCellExperiment-class
  plotDEGHeatmap.Rd: SingleCellExperiment-class
  plotDEGRegression.Rd: SingleCellExperiment-class
  plotDEGViolin.Rd: SingleCellExperiment-class
  plotDEGVolcano.Rd: SingleCellExperiment-class
  plotDecontXResults.Rd: SingleCellExperiment-class
  plotDoubletFinderResults.Rd: SingleCellExperiment-class
  plotEmptyDropsResults.Rd: SingleCellExperiment-class
  plotEmptyDropsScatter.Rd: SingleCellExperiment-class
  plotEnrichR.Rd: SingleCellExperiment-class
  plotFindMarkerHeatmap.Rd: SingleCellExperiment-class
  plotPCA.Rd: SingleCellExperiment-class
  plotPathway.Rd: SingleCellExperiment-class
  plotRunPerCellQCResults.Rd: SingleCellExperiment-class
  plotSCEBarAssayData.Rd: SingleCellExperiment-class
  plotSCEBarColData.Rd: SingleCellExperiment-class
  plotSCEBatchFeatureMean.Rd: SingleCellExperiment-class
  plotSCEDensity.Rd: SingleCellExperiment-class
  plotSCEDensityAssayData.Rd: SingleCellExperiment-class
  plotSCEDensityColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceColData.Rd: SingleCellExperiment-class
  plotSCEDimReduceFeatures.Rd: SingleCellExperiment-class
  plotSCEHeatmap.Rd: SingleCellExperiment-class
  plotSCEScatter.Rd: SingleCellExperiment-class
  plotSCEViolin.Rd: SingleCellExperiment-class
  plotSCEViolinAssayData.Rd: SingleCellExperiment-class
  plotSCEViolinColData.Rd: SingleCellExperiment-class
  plotScDblFinderResults.Rd: SingleCellExperiment-class
  plotScdsHybridResults.Rd: SingleCellExperiment-class
  plotScrubletResults.Rd: SingleCellExperiment-class
  plotSoupXResults.Rd: SingleCellExperiment-class
  plotTSCANClusterDEG.Rd: SingleCellExperiment-class
  plotTSCANClusterPseudo.Rd: SingleCellExperiment-class
  plotTSCANDimReduceFeatures.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeGenes.Rd: SingleCellExperiment-class
  plotTSCANPseudotimeHeatmap.Rd: SingleCellExperiment-class
  plotTSCANResults.Rd: SingleCellExperiment-class
  plotTSNE.Rd: SingleCellExperiment-class
  plotUMAP.Rd: SingleCellExperiment-class
  readSingleCellMatrix.Rd: DelayedArray
  reportCellQC.Rd: SingleCellExperiment-class
  reportClusterAbundance.Rd: colData
  reportDiffAbundanceFET.Rd: colData
  retrieveSCEIndex.Rd: SingleCellExperiment-class
  runBBKNN.Rd: SingleCellExperiment-class
  runBarcodeRankDrops.Rd: SingleCellExperiment-class, colData
  runBcds.Rd: SingleCellExperiment-class, colData
  runCellQC.Rd: colData
  runComBatSeq.Rd: SingleCellExperiment-class
  runCxds.Rd: SingleCellExperiment-class, colData
  runCxdsBcdsHybrid.Rd: colData
  runDEAnalysis.Rd: SingleCellExperiment-class
  runDecontX.Rd: colData
  runDimReduce.Rd: SingleCellExperiment-class
  runDoubletFinder.Rd: SingleCellExperiment-class
  runDropletQC.Rd: colData
  runEmptyDrops.Rd: SingleCellExperiment-class, colData
  runEnrichR.Rd: SingleCellExperiment-class
  runFastMNN.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runFeatureSelection.Rd: SingleCellExperiment-class
  runFindMarker.Rd: SingleCellExperiment-class
  runGSVA.Rd: SingleCellExperiment-class
  runHarmony.Rd: SingleCellExperiment-class
  runKMeans.Rd: SingleCellExperiment-class, colData
  runLimmaBC.Rd: SingleCellExperiment-class, assay
  runMNNCorrect.Rd: SingleCellExperiment-class, assay,
    BiocParallelParam-class
  runModelGeneVar.Rd: SingleCellExperiment-class
  runPerCellQC.Rd: SingleCellExperiment-class, BiocParallelParam,
    colData
  runSCANORAMA.Rd: SingleCellExperiment-class, assay
  runSCMerge.Rd: SingleCellExperiment-class, colData, assay,
    BiocParallelParam-class
  runScDblFinder.Rd: SingleCellExperiment-class, colData
  runScranSNN.Rd: SingleCellExperiment-class, reducedDim, assay,
    altExp, colData, igraph
  runScrublet.Rd: SingleCellExperiment-class, colData
  runSingleR.Rd: SingleCellExperiment-class
  runSoupX.Rd: SingleCellExperiment-class
  runTSCAN.Rd: SingleCellExperiment-class
  runTSCANClusterDEAnalysis.Rd: SingleCellExperiment-class
  runTSCANDEG.Rd: SingleCellExperiment-class
  runTSNE.Rd: SingleCellExperiment-class
  runUMAP.Rd: SingleCellExperiment-class, BiocParallelParam-class
  runVAM.Rd: SingleCellExperiment-class
  runZINBWaVE.Rd: SingleCellExperiment-class, colData,
    BiocParallelParam-class
  sampleSummaryStats.Rd: SingleCellExperiment-class, assay, colData
  scaterPCA.Rd: SingleCellExperiment-class, BiocParallelParam-class
  scaterlogNormCounts.Rd: logNormCounts
  sctkListGeneSetCollections.Rd: GeneSetCollection-class
  sctkPythonInstallConda.Rd: conda_install, reticulate, conda_create
  sctkPythonInstallVirtualEnv.Rd: virtualenv_install, reticulate,
    virtualenv_create
  selectSCTKConda.Rd: reticulate
  selectSCTKVirtualEnvironment.Rd: reticulate
  setRowNames.Rd: SingleCellExperiment-class
  setSCTKDisplayRow.Rd: SingleCellExperiment-class
  singleCellTK.Rd: SingleCellExperiment-class
  subsetSCECols.Rd: SingleCellExperiment-class
  subsetSCERows.Rd: SingleCellExperiment-class, altExp
  summarizeSCE.Rd: SingleCellExperiment-class
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
importGeneSetsFromMSigDB 49.021  0.639  49.793
runSeuratSCTransform     44.088  0.511  44.738
plotDoubletFinderResults 41.298  0.781  42.621
runDoubletFinder         36.574  0.036  36.728
plotScDblFinderResults   33.708  0.542  34.312
runScDblFinder           22.244  0.263  22.533
importExampleData        15.002  0.670  21.521
plotBatchCorrCompare     14.605  0.160  14.981
plotScdsHybridResults    12.172  0.108  12.316
plotBcdsResults          11.160  0.174  11.236
plotDecontXResults       10.147  0.403  10.841
plotDEGViolin             8.442  0.439   9.085
plotCxdsResults           8.736  0.104   9.424
runUMAP                   7.590  0.058   7.791
runDecontX                7.534  0.005   7.552
plotUMAP                  7.372  0.100   7.502
plotDEGRegression         6.936  0.375   7.606
plotTSCANClusterDEG       7.286  0.008   7.335
detectCellOutlier         6.116  0.168   6.301
plotFindMarkerHeatmap     5.796  0.112   5.926
plotEmptyDropsResults     5.812  0.056   5.878
convertSCEToSeurat        5.661  0.207   5.886
plotEmptyDropsScatter     5.751  0.028   5.788
runEmptyDrops             5.245  0.004   5.255
getEnrichRResult          0.410  0.015  11.063
runEnrichR                0.357  0.059  23.066
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.22-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.


Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-4.5.0/site-library’
* installing *source* package ‘singleCellTK’ ...
** this is package ‘singleCellTK’ version ‘2.19.2’
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
All Done!
> 
> proc.time()
   user  system elapsed 
  0.194   0.027   0.207 

singleCellTK.Rcheck/tests/testthat.Rout


R version 4.5.0 (2025-04-11) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: generics

Attaching package: 'generics'

The following objects are masked from 'package:base':

    as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
    setequal, union


Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
    mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
    rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
    unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

    findMatches

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: Seqinfo
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays
Loading required package: abind

Attaching package: 'S4Arrays'

The following object is masked from 'package:abind':

    abind

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
[1]	train-logloss:0.452573 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.320290 
[3]	train-logloss:0.237363 
[4]	train-logloss:0.182378 
[5]	train-logloss:0.144113 
[6]	train-logloss:0.117560 
[7]	train-logloss:0.098812 
[8]	train-logloss:0.084977 
[9]	train-logloss:0.075059 
[10]	train-logloss:0.067480 
[11]	train-logloss:0.061855 
[12]	train-logloss:0.057358 
[13]	train-logloss:0.053969 
[14]	train-logloss:0.050909 
[15]	train-logloss:0.047615 
[16]	train-logloss:0.045564 
[17]	train-logloss:0.043868 
[1]	train-logloss:0.453064 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.321072 
[3]	train-logloss:0.238210 
[4]	train-logloss:0.183469 
[5]	train-logloss:0.145239 
[6]	train-logloss:0.118860 
[7]	train-logloss:0.100304 
[8]	train-logloss:0.086606 
[9]	train-logloss:0.076012 
[10]	train-logloss:0.068021 
[11]	train-logloss:0.062325 
[12]	train-logloss:0.057942 
[13]	train-logloss:0.054289 
[14]	train-logloss:0.051302 
[15]	train-logloss:0.048796 
[1]	train-logloss:0.453064 
Will train until train_logloss hasn't improved in 2 rounds.

[2]	train-logloss:0.321072 
[3]	train-logloss:0.238210 
[4]	train-logloss:0.183469 
[5]	train-logloss:0.145239 
[6]	train-logloss:0.118860 
[7]	train-logloss:0.100304 
[8]	train-logloss:0.086606 
[9]	train-logloss:0.076012 
[10]	train-logloss:0.068021 
[11]	train-logloss:0.062325 
[12]	train-logloss:0.057942 
[13]	train-logloss:0.054289 
[14]	train-logloss:0.051302 
[15]	train-logloss:0.048796 
[16]	train-logloss:0.046452 
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9849

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8351
Number of communities: 7
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]

[ FAIL 0 | WARN 22 | SKIP 0 | PASS 225 ]
> 
> proc.time()
   user  system elapsed 
365.633   8.585 397.208 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0030.0000.003
SEG0.0000.0030.002
calcEffectSizes0.2720.0160.288
combineSCE1.1440.0321.180
computeZScore0.2650.0070.273
convertSCEToSeurat5.6610.2075.886
convertSeuratToSCE0.4840.0120.497
dedupRowNames0.0760.0000.076
detectCellOutlier6.1160.1686.301
diffAbundanceFET0.0580.0080.066
discreteColorPalette0.0090.0000.009
distinctColors0.0040.0000.003
downSampleCells0.7080.0560.765
downSampleDepth0.5730.0110.587
expData-ANY-character-method0.1860.0040.190
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.2340.0000.234
expData-set0.2040.0080.212
expData0.1640.0150.180
expDataNames-ANY-method0.1590.0000.159
expDataNames0.1570.0000.157
expDeleteDataTag0.0290.0080.037
expSetDataTag0.0270.0000.026
expTaggedData0.0280.0000.028
exportSCE0.0230.0000.023
exportSCEtoAnnData0.0760.0000.077
exportSCEtoFlatFile0.0600.0160.076
featureIndex0.0470.0000.047
generateSimulatedData0.0600.0040.064
getBiomarker0.0670.0040.072
getDEGTopTable0.9880.0681.059
getDiffAbundanceResults0.0550.0000.055
getEnrichRResult 0.410 0.01511.063
getFindMarkerTopTable2.1100.0602.179
getMSigDBTable0.0040.0000.004
getPathwayResultNames0.0260.0000.026
getSampleSummaryStatsTable0.2960.0040.301
getSoupX000
getTSCANResults1.4870.0241.529
getTopHVG1.1950.0361.233
importAnnData0.0020.0000.001
importBUStools0.2280.0000.231
importCellRanger1.1130.0161.137
importCellRangerV2Sample0.2180.0000.219
importCellRangerV3Sample0.4820.0200.503
importDropEst0.3350.0000.338
importExampleData15.002 0.67021.521
importGeneSetsFromCollection2.0140.0162.035
importGeneSetsFromGMT0.0810.0040.086
importGeneSetsFromList0.1780.0000.179
importGeneSetsFromMSigDB49.021 0.63949.793
importMitoGeneSet0.0710.0000.071
importOptimus0.0020.0000.002
importSEQC0.1910.0070.202
importSTARsolo0.2010.0160.220
iterateSimulations0.2350.0080.244
listSampleSummaryStatsTables0.3630.0640.429
mergeSCEColData0.4690.0000.471
mouseBrainSubsetSCE0.040.000.04
msigdb_table0.0020.0000.002
plotBarcodeRankDropsResults1.2450.0121.260
plotBarcodeRankScatter1.2830.0001.287
plotBatchCorrCompare14.605 0.16014.981
plotBatchVariance0.6270.0040.633
plotBcdsResults11.160 0.17411.236
plotBubble1.1190.0321.154
plotClusterAbundance2.0370.0002.044
plotCxdsResults8.7360.1049.424
plotDEGHeatmap3.2400.2713.522
plotDEGRegression6.9360.3757.606
plotDEGViolin8.4420.4399.085
plotDEGVolcano1.3060.0431.391
plotDecontXResults10.147 0.40310.841
plotDimRed0.4870.0160.523
plotDoubletFinderResults41.298 0.78142.621
plotEmptyDropsResults5.8120.0565.878
plotEmptyDropsScatter5.7510.0285.788
plotFindMarkerHeatmap5.7960.1125.926
plotMASTThresholdGenes1.9310.0361.972
plotPCA0.5410.0040.547
plotPathway0.9430.0000.951
plotRunPerCellQCResults4.6400.0444.699
plotSCEBarAssayData0.4670.0040.473
plotSCEBarColData0.3200.0000.321
plotSCEBatchFeatureMean0.5950.0240.621
plotSCEDensity0.4480.0080.458
plotSCEDensityAssayData0.4710.0120.486
plotSCEDensityColData0.4320.0000.433
plotSCEDimReduceColData1.1790.0001.194
plotSCEDimReduceFeatures0.5360.0040.542
plotSCEHeatmap0.6010.0040.606
plotSCEScatter2.0470.0992.152
plotSCEViolin0.4940.0040.500
plotSCEViolinAssayData0.5270.0070.536
plotSCEViolinColData0.4920.0200.514
plotScDblFinderResults33.708 0.54234.312
plotScanpyDotPlot0.0250.0000.025
plotScanpyEmbedding0.0240.0000.024
plotScanpyHVG0.0230.0000.023
plotScanpyHeatmap0.0240.0000.024
plotScanpyMarkerGenes0.0240.0000.024
plotScanpyMarkerGenesDotPlot0.0230.0000.024
plotScanpyMarkerGenesHeatmap0.0250.0000.024
plotScanpyMarkerGenesMatrixPlot0.0240.0000.024
plotScanpyMarkerGenesViolin0.0240.0000.024
plotScanpyMatrixPlot0.0240.0000.025
plotScanpyPCA0.0240.0000.024
plotScanpyPCAGeneRanking0.0230.0000.024
plotScanpyPCAVariance0.0240.0000.023
plotScanpyViolin0.0200.0030.024
plotScdsHybridResults12.172 0.10812.316
plotScrubletResults0.0190.0040.023
plotSeuratElbow0.0230.0000.023
plotSeuratHVG0.0220.0000.023
plotSeuratJackStraw0.0240.0000.024
plotSeuratReduction0.0230.0000.023
plotSoupXResults000
plotTSCANClusterDEG7.2860.0087.335
plotTSCANClusterPseudo2.0680.0002.077
plotTSCANDimReduceFeatures2.1100.0122.131
plotTSCANPseudotimeGenes2.5450.0082.564
plotTSCANPseudotimeHeatmap1.9230.0081.938
plotTSCANResults1.9360.0121.956
plotTSNE0.5460.0080.555
plotTopHVG0.9060.0040.943
plotUMAP7.3720.1007.502
readSingleCellMatrix0.0070.0000.007
reportCellQC0.1110.0000.111
reportDropletQC0.0260.0000.027
reportQCTool0.1060.0040.110
retrieveSCEIndex0.0340.0000.034
runBBKNN000
runBarcodeRankDrops0.2990.0000.299
runBcds3.1880.0293.188
runCellQC0.1010.0030.104
runClusterSummaryMetrics0.5210.0000.523
runComBatSeq0.6480.0000.649
runCxds0.4120.0010.413
runCxdsBcdsHybrid3.2130.0633.282
runDEAnalysis0.5770.0000.578
runDecontX7.5340.0057.552
runDimReduce0.3780.0000.379
runDoubletFinder36.574 0.03636.728
runDropletQC0.0250.0000.025
runEmptyDrops5.2450.0045.255
runEnrichR 0.357 0.05923.066
runFastMNN2.3640.0562.451
runFeatureSelection0.2870.0040.290
runFindMarker1.9820.0041.992
runGSVA0.9930.0161.013
runHarmony0.0590.0000.059
runKMeans0.2430.0040.247
runLimmaBC0.2260.0080.234
runMNNCorrect0.5590.0000.562
runModelGeneVar0.4160.0040.422
runNormalization2.6340.0872.732
runPerCellQC0.4570.0000.481
runSCANORAMA000
runSCMerge0.0050.0000.004
runScDblFinder22.244 0.26322.533
runScanpyFindClusters0.0260.0000.026
runScanpyFindHVG0.0210.0040.026
runScanpyFindMarkers0.0260.0000.025
runScanpyNormalizeData0.1380.0000.139
runScanpyPCA0.0250.0000.025
runScanpyScaleData0.0240.0000.024
runScanpyTSNE0.0220.0040.026
runScanpyUMAP0.0250.0000.026
runScranSNN0.420.000.42
runScrublet0.0200.0040.024
runSeuratFindClusters0.0200.0040.024
runSeuratFindHVG0.6560.0000.657
runSeuratHeatmap0.0250.0000.024
runSeuratICA0.0220.0040.026
runSeuratJackStraw0.0260.0000.025
runSeuratNormalizeData0.0260.0000.026
runSeuratPCA0.0260.0000.025
runSeuratSCTransform44.088 0.51144.738
runSeuratScaleData0.0240.0000.024
runSeuratUMAP0.0240.0000.024
runSingleR0.0490.0000.049
runSoupX000
runTSCAN0.9030.0000.905
runTSCANClusterDEAnalysis0.9930.0241.020
runTSCANDEG1.0180.0121.032
runTSNE0.9760.0040.982
runUMAP7.5900.0587.791
runVAM0.4220.0040.428
runZINBWaVE0.0040.0000.004
sampleSummaryStats0.2300.0000.231
scaterCPM0.1430.0000.144
scaterPCA0.6580.0000.660
scaterlogNormCounts0.2770.0000.278
sce0.0200.0040.024
sctkListGeneSetCollections0.1060.0040.111
sctkPythonInstallConda000
sctkPythonInstallVirtualEnv000
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.1240.0000.125
setSCTKDisplayRow0.5710.0080.580
singleCellTK000
subDiffEx0.4150.0040.420
subsetSCECols0.1070.0000.107
subsetSCERows0.3820.0000.384
summarizeSCE0.090.000.09
trimCounts0.2060.0000.206