| Back to Multiple platform build/check report for BioC 3.22: simplified long |
|
This page was generated on 2025-10-23 12:07 -0400 (Thu, 23 Oct 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 Patched (2025-08-23 r88802) -- "Great Square Root" | 4894 |
| lconway | macOS 12.7.6 Monterey | x86_64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4684 |
| kjohnson3 | macOS 13.7.7 Ventura | arm64 | 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root" | 4629 |
| taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.5.0 (2025-04-11) -- "How About a Twenty-Six" | 4642 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 2053/2355 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| SNPRelate 1.43.2 (landing page) Xiuwen Zheng
| nebbiolo2 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| lconway | macOS 12.7.6 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson3 | macOS 13.7.7 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | NA | ||||||||||
|
To the developers/maintainers of the SNPRelate package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/SNPRelate.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: SNPRelate |
| Version: 1.43.2 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:SNPRelate.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings SNPRelate_1.43.2.tar.gz |
| StartedAt: 2025-10-22 22:09:17 -0400 (Wed, 22 Oct 2025) |
| EndedAt: 2025-10-22 22:10:12 -0400 (Wed, 22 Oct 2025) |
| EllapsedTime: 55.6 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: SNPRelate.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:SNPRelate.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings SNPRelate_1.43.2.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck’
* using R version 4.5.1 Patched (2025-09-10 r88807)
* using platform: aarch64-apple-darwin20
* R was compiled by
Apple clang version 16.0.0 (clang-1600.0.26.6)
GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.7
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘SNPRelate/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘SNPRelate’ version ‘1.43.2’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘SNPRelate’ can be installed ... OK
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
* used C++ compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking whether startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
SNPGDSFileClass-class.Rd: gds.class
snpgdsBED2GDS.Rd: gdsfmt
snpgdsGDS2BED.Rd: gdsfmt
snpgdsGDS2Eigen.Rd: gdsfmt
snpgdsGDS2PED.Rd: gdsfmt
snpgdsGEN2GDS.Rd: gdsfmt
snpgdsPCACorr.Rd: add.gdsn
snpgdsPED2GDS.Rd: gdsfmt
snpgdsVCF2GDS.Rd: gdsfmt
snpgdsVCF2GDS_R.Rd: gdsfmt
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking LazyData ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking line endings in Makefiles ... OK
* checking compilation flags in Makevars ... OK
* checking for GNU extensions in Makefiles ... OK
* checking for portable use of $(BLAS_LIBS) and $(LAPACK_LIBS) ... OK
* checking use of PKG_*FLAGS in Makefiles ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
‘/Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/00check.log’
for details.
SNPRelate.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL SNPRelate ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘SNPRelate’ ... ** this is package ‘SNPRelate’ version ‘1.43.2’ ** using staged installation ** libs using C compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’ using C++ compiler: ‘Apple clang version 15.0.0 (clang-1500.1.0.2.5)’ using SDK: ‘MacOSX11.3.1.sdk’ clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c ConvToGDS.cpp -o ConvToGDS.o clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c R_SNPRelate.c -o R_SNPRelate.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c SNPRelate.cpp -o SNPRelate.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c ThreadPool.cpp -o ThreadPool.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c dGenGWAS.cpp -o dGenGWAS.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c dVect.cpp -o dVect.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genBeta.cpp -o genBeta.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genEIGMIX.cpp -o genEIGMIX.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genFst.cpp -o genFst.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genHWE.cpp -o genHWE.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genIBD.cpp -o genIBD.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genIBS.cpp -o genIBS.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genKING.cpp -o genKING.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genLD.cpp -o genLD.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genPCA.cpp -o genPCA.o clang++ -arch arm64 -std=gnu++17 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG -DUSING_R -DUSE_FC_LEN_T -I. -I'/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/gdsfmt/include' -I/opt/R/arm64/include -fPIC -falign-functions=64 -Wall -g -O2 -c genSlideWin.cpp -o genSlideWin.o clang++ -arch arm64 -std=gnu++17 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o SNPRelate.so ConvToGDS.o R_SNPRelate.o SNPRelate.o ThreadPool.o dGenGWAS.o dVect.o genBeta.o genEIGMIX.o genFst.o genHWE.o genIBD.o genIBS.o genKING.o genLD.o genPCA.o genSlideWin.o -lpthread -L/Library/Frameworks/R.framework/Resources/lib -lRlapack -L/Library/Frameworks/R.framework/Resources/lib -lRblas -L/opt/gfortran/lib/gcc/aarch64-apple-darwin20.0/14.2.0 -L/opt/gfortran/lib -lemutls_w -lheapt_w -lgfortran -lquadmath -F/Library/Frameworks/R.framework/.. -framework R installing to /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/00LOCK-SNPRelate/00new/SNPRelate/libs ** R ** data *** moving datasets to lazyload DB ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** checking absolute paths in shared objects and dynamic libraries ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (SNPRelate)
SNPRelate.Rcheck/tests/runTests.Rout
R version 4.5.1 Patched (2025-09-10 r88807) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("SNPRelate")
Genetic Relationship Matrix (GRM, GCTA):
Excluding 8,088 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 1,000
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 282597
CPU capabilities:
2025-10-22 22:09:46 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
Saving to the GDS file:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:47 Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 7,088 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 2,000
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 559412
CPU capabilities:
2025-10-22 22:09:47 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Saving to the GDS file:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:47 Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 5,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 3,800
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 1066957
CPU capabilities:
2025-10-22 22:09:47 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Saving to the GDS file:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:47 Done.
GRM merging:
open 'tmp1.gds' (1,000 variants)
open 'tmp2.gds' (2,000 variants)
open 'tmp3.gds' (3,800 variants)
Weight: 0.147059, 0.294118, 0.558824
Output: tmp.gds
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Genetic Relationship Matrix (GRM, GCTA):
Excluding 2,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 6,800
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 1908966
CPU capabilities:
2025-10-22 22:09:47 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
2025-10-22 22:09:48 Done.
Genetic Relationship Matrix (GRM, IndivBeta):
Excluding 8,088 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 1,000
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 282597
CPU capabilities:
2025-10-22 22:09:48 (internal increment: 56320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Saving to the GDS file:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:48 Done.
Genetic Relationship Matrix (GRM, IndivBeta):
Excluding 7,088 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 2,000
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 559412
CPU capabilities:
2025-10-22 22:09:48 (internal increment: 56320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Saving to the GDS file:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:48 Done.
Genetic Relationship Matrix (GRM, IndivBeta):
Excluding 5,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 3,800
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 1066957
CPU capabilities:
2025-10-22 22:09:48 (internal increment: 56320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Saving to the GDS file:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:48 Done.
GRM merging:
open 'tmp1.gds' (1,000 variants)
open 'tmp2.gds' (2,000 variants)
open 'tmp3.gds' (3,800 variants)
Weight: 0.147059, 0.294118, 0.558824
Output: tmp.gds
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Writing ...
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Genetic Relationship Matrix (GRM, IndivBeta):
Excluding 2,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 6,800
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 1908966
CPU capabilities:
2025-10-22 22:09:48 (internal increment: 56320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
2025-10-22 22:09:49 Done.
Linkage Disequilibrium (LD) estimation on genotypes:
# of samples: 279
# of SNPs: 1,000
using 1 thread
method: covariance
LD matrix: the sum of all selected genotypes (0,1,2) = 283058
Linkage Disequilibrium (LD) estimation on genotypes:
# of samples: 279
# of SNPs: 1,000
using 1 thread
method: correlation
LD matrix: the sum of all selected genotypes (0,1,2) = 283058
FUNCTION: SNPGDSFileClass
FUNCTION: SNPRelate-package
Start file conversion from PLINK BED to SNP GDS ...
BED file: '/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/plinkhapmap.bed.gz'
SNP-major mode (Sample X SNP), 45.7K
FAM file: '/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/plinkhapmap.fam.gz'
BIM file: '/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/plinkhapmap.bim.gz'
Wed Oct 22 22:09:49 2025 (store sample id, snp id, position, and chromosome)
start writing: 60 samples, 5000 SNPs ...
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Wed Oct 22 22:09:49 2025 Done.
Optimize the access efficiency ...
Clean up the fragments of GDS file:
open the file 'HapMap.gds' (98.1K)
# of fragments: 38
save to 'HapMap.gds.tmp'
rename 'HapMap.gds.tmp' (97.8K, reduced: 240B)
# of fragments: 18
Principal Component Analysis (PCA) on genotypes:
Excluding 203 SNPs on non-autosomes
Excluding 387 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 60
# of SNPs: 4,410
using 1 thread/core
# of principal components: 32
PCA: the sum of all selected genotypes (0,1,2) = 115276
CPU capabilities:
2025-10-22 22:09:49 (internal increment: 8192)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
2025-10-22 22:09:50 Begin (eigenvalues and eigenvectors)
2025-10-22 22:09:50 Done.
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
PLINK IBD: the sum of all selected genotypes (0,1,2) = 2253891
2025-10-22 22:09:50 (internal increment: 56320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:50 Done.
Identity-By-State (IBS) analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
IBS: the sum of all selected genotypes (0,1,2) = 2253891
2025-10-22 22:09:50 (internal increment: 56320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:50 Done.
Linkage Disequilibrium (LD) estimation on genotypes:
# of samples: 279
# of SNPs: 200
using 1 thread
method: composite
LD matrix: the sum of all selected genotypes (0,1,2) = 55417
FUNCTION: hapmap_geno
FUNCTION: snpgdsAdmixPlot
Eigen-analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
Eigen-analysis: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:09:50 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:50 Begin (eigenvalues and eigenvectors)
2025-10-22 22:09:50 Done.
FUNCTION: snpgdsAdmixProp
Eigen-analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
Eigen-analysis: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:09:50 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
2025-10-22 22:09:51 Begin (eigenvalues and eigenvectors)
2025-10-22 22:09:51 Done.
FUNCTION: snpgdsAlleleSwitch
Strand-switching at 50 SNP locus/loci.
Unable to determine switching at 10 SNP locus/loci.
FUNCTION: snpgdsApartSelection
Wed Oct 22 22:09:51 2025 Chromosome 1, # of SNPs: 367
Wed Oct 22 22:09:51 2025 Chromosome 2, # of SNPs: 367
Wed Oct 22 22:09:51 2025 Chromosome 3, # of SNPs: 317
Wed Oct 22 22:09:51 2025 Chromosome 4, # of SNPs: 295
Wed Oct 22 22:09:51 2025 Chromosome 5, # of SNPs: 295
Wed Oct 22 22:09:51 2025 Chromosome 6, # of SNPs: 283
Wed Oct 22 22:09:51 2025 Chromosome 7, # of SNPs: 245
Wed Oct 22 22:09:51 2025 Chromosome 8, # of SNPs: 234
Wed Oct 22 22:09:51 2025 Chromosome 9, # of SNPs: 202
Wed Oct 22 22:09:51 2025 Chromosome 10, # of SNPs: 224
Wed Oct 22 22:09:51 2025 Chromosome 11, # of SNPs: 223
Wed Oct 22 22:09:51 2025 Chromosome 12, # of SNPs: 208
Wed Oct 22 22:09:51 2025 Chromosome 13, # of SNPs: 172
Wed Oct 22 22:09:51 2025 Chromosome 14, # of SNPs: 147
Wed Oct 22 22:09:51 2025 Chromosome 15, # of SNPs: 121
Wed Oct 22 22:09:51 2025 Chromosome 16, # of SNPs: 129
Wed Oct 22 22:09:51 2025 Chromosome 17, # of SNPs: 116
Wed Oct 22 22:09:51 2025 Chromosome 18, # of SNPs: 129
Wed Oct 22 22:09:51 2025 Chromosome 19, # of SNPs: 73
Wed Oct 22 22:09:51 2025 Chromosome 20, # of SNPs: 106
Wed Oct 22 22:09:51 2025 Chromosome 21, # of SNPs: 62
Wed Oct 22 22:09:51 2025 Chromosome 22, # of SNPs: 51
Wed Oct 22 22:09:51 2025 Chromosome 23, # of SNPs: 204
Total # of SNPs selected:4570
FUNCTION: snpgdsBED2GDS
Start file conversion from PLINK BED to SNP GDS ...
BED file: '/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/plinkhapmap.bed.gz'
SNP-major mode (Sample X SNP), 45.7K
FAM file: '/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/plinkhapmap.fam.gz'
BIM file: '/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/plinkhapmap.bim.gz'
Wed Oct 22 22:09:51 2025 (store sample id, snp id, position, and chromosome)
start writing: 60 samples, 5000 SNPs ...
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Wed Oct 22 22:09:51 2025 Done.
Optimize the access efficiency ...
Clean up the fragments of GDS file:
open the file 'HapMap.gds' (98.1K)
# of fragments: 38
save to 'HapMap.gds.tmp'
rename 'HapMap.gds.tmp' (97.8K, reduced: 240B)
# of fragments: 18
FUNCTION: snpgdsClose
FUNCTION: snpgdsCombineGeno
Create a GDS genotype file:
The new dataset consists of 10 samples and 3000 SNPs
write sample.id
write snp.id
write snp.rs.id
write snp.position
write snp.chromosome
write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Create a GDS genotype file:
The new dataset consists of 20 samples and 3000 SNPs
write sample.id
write snp.id
write snp.rs.id
write snp.position
write snp.chromosome
write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Merge SNP GDS files:
open 't1.gds' ...
10 samples, 3000 SNPs
open 't2.gds' ...
20 samples, 3000 SNPs
Concatenating samples (mapping to the first GDS file) ...
reference: 3000 SNPs (100.0%)
file 2: 0 allele flips, 0 ambiguous locus/loci
[no flip]: 3000
create 'test.gds': 30 samples, 3000 SNPs
FileFormat = SNP_ARRAY
writing genotypes ...
Clean up the fragments of GDS file:
open the file 'test.gds' (46.2K)
# of fragments: 32
save to 'test.gds.tmp'
rename 'test.gds.tmp' (46.0K, reduced: 204B)
# of fragments: 15
Done.
Create a GDS genotype file:
The new dataset consists of 279 samples and 100 SNPs
write sample.id
write snp.id
write snp.rs.id
write snp.position
write snp.chromosome
write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Create a GDS genotype file:
The new dataset consists of 279 samples and 200 SNPs
write sample.id
write snp.id
write snp.rs.id
write snp.position
write snp.chromosome
write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Merge SNP GDS files:
open 't1.gds' ...
279 samples, 100 SNPs
open 't2.gds' ...
279 samples, 200 SNPs
Concatenating SNPs ...
create 'test.gds': 279 samples, 300 SNPs
FileFormat = SNP_ARRAY
writing genotypes ...
Clean up the fragments of GDS file:
open the file 'test.gds' (19.1K)
# of fragments: 32
save to 'test.gds.tmp'
rename 'test.gds.tmp' (18.9K, reduced: 204B)
# of fragments: 15
Done.
FUNCTION: snpgdsCreateGeno
Principal Component Analysis (PCA) on genotypes:
Excluding 42 SNPs on non-autosomes
Excluding 79 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 879
using 1 thread/core
# of principal components: 32
PCA: the sum of all selected genotypes (0,1,2) = 243452
CPU capabilities:
2025-10-22 22:09:51 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:51 Begin (eigenvalues and eigenvectors)
2025-10-22 22:09:51 Done.
FUNCTION: snpgdsCreateGenoSet
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 689 SNPs (monomorphic: TRUE, MAF: 0.005, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,034
using 1 thread/core
sliding window: 500,000 basepairs, Inf SNPs
|LD| threshold: 0.2
method: composite
Chrom 1: |====================|====================|
70.25%, 503 / 716 (Wed Oct 22 22:09:51 2025)
Chrom 2: |====================|====================|
69.14%, 513 / 742 (Wed Oct 22 22:09:51 2025)
Chrom 3: |====================|====================|
70.28%, 428 / 609 (Wed Oct 22 22:09:51 2025)
Chrom 4: |====================|====================|
67.62%, 380 / 562 (Wed Oct 22 22:09:51 2025)
Chrom 5: |====================|====================|
72.79%, 412 / 566 (Wed Oct 22 22:09:51 2025)
Chrom 6: |====================|====================|
69.73%, 394 / 565 (Wed Oct 22 22:09:51 2025)
Chrom 7: |====================|====================|
71.61%, 338 / 472 (Wed Oct 22 22:09:51 2025)
Chrom 8: |====================|====================|
65.78%, 321 / 488 (Wed Oct 22 22:09:51 2025)
Chrom 9: |====================|====================|
72.12%, 300 / 416 (Wed Oct 22 22:09:51 2025)
Chrom 10: |====================|====================|
69.57%, 336 / 483 (Wed Oct 22 22:09:51 2025)
Chrom 11: |====================|====================|
72.48%, 324 / 447 (Wed Oct 22 22:09:51 2025)
Chrom 12: |====================|====================|
70.96%, 303 / 427 (Wed Oct 22 22:09:51 2025)
Chrom 13: |====================|====================|
72.97%, 251 / 344 (Wed Oct 22 22:09:51 2025)
Chrom 14: |====================|====================|
71.99%, 203 / 282 (Wed Oct 22 22:09:51 2025)
Chrom 15: |====================|====================|
70.99%, 186 / 262 (Wed Oct 22 22:09:51 2025)
Chrom 16: |====================|====================|
67.63%, 188 / 278 (Wed Oct 22 22:09:51 2025)
Chrom 17: |====================|====================|
70.53%, 146 / 207 (Wed Oct 22 22:09:51 2025)
Chrom 18: |====================|====================|
70.30%, 187 / 266 (Wed Oct 22 22:09:51 2025)
Chrom 19: |====================|====================|
78.33%, 94 / 120 (Wed Oct 22 22:09:51 2025)
Chrom 20: |====================|====================|
66.81%, 153 / 229 (Wed Oct 22 22:09:51 2025)
Chrom 21: |====================|====================|
70.63%, 89 / 126 (Wed Oct 22 22:09:51 2025)
Chrom 22: |====================|====================|
68.97%, 80 / 116 (Wed Oct 22 22:09:51 2025)
6,129 markers are selected in total.
Create a GDS genotype file:
The new dataset consists of 279 samples and 6129 SNPs
write sample.id
write snp.id
write snp.rs.id
write snp.position
write snp.chromosome
write snp.allele
SNP genotypes are stored in SNP-major mode (Sample X SNP).
FUNCTION: snpgdsCutTree
Individual dissimilarity analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
Dissimilarity: the sum of all selected genotypes (0,1,2) = 2253891
Dissimilarity: Wed Oct 22 22:09:51 2025 0%
Dissimilarity: Wed Oct 22 22:09:53 2025 100%
Determine groups by permutation (Z threshold: 15, outlier threshold: 5):
Create 3 groups.
Create 4 groups.
FUNCTION: snpgdsDiss
Individual dissimilarity analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
Dissimilarity: the sum of all selected genotypes (0,1,2) = 2253891
Dissimilarity: Wed Oct 22 22:09:53 2025 0%
Dissimilarity: Wed Oct 22 22:09:54 2025 100%
Determine groups by permutation (Z threshold: 15, outlier threshold: 5):
Create 3 groups.
FUNCTION: snpgdsDrawTree
Individual dissimilarity analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
Dissimilarity: the sum of all selected genotypes (0,1,2) = 2253891
Dissimilarity: Wed Oct 22 22:09:54 2025 0%
Dissimilarity: Wed Oct 22 22:09:56 2025 100%
Determine groups by permutation (Z threshold: 15, outlier threshold: 5):
Create 3 groups.
FUNCTION: snpgdsEIGMIX
Eigen-analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
Eigen-analysis: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:09:56 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:56 Begin (eigenvalues and eigenvectors)
2025-10-22 22:09:56 Done.
FUNCTION: snpgdsErrMsg
FUNCTION: snpgdsExampleFileName
FUNCTION: snpgdsFst
Fst estimation on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
Method: Weir & Cockerham, 1984
# of Populations: 4
CEU (92), HCB (47), JPT (47), YRI (93)
Fst estimation on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
Method: Weir & Hill, 2002
# of Populations: 4
CEU (92), HCB (47), JPT (47), YRI (93)
FUNCTION: snpgdsGDS2BED
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.95)
Converting from GDS to PLINK binary PED:
Working space: 279 samples, 8722 SNPs
Output a BIM file.
Output a BED file ...
Wed Oct 22 22:09:56 2025 0%
Wed Oct 22 22:09:56 2025 100%
Done.
FUNCTION: snpgdsGDS2Eigen
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.95)
Converting from GDS to EIGENSOFT:
save to *.snp: 8722 snps
save to *.ind: 279 samples
Output: Wed Oct 22 22:09:56 2025 0%
Output: Wed Oct 22 22:09:57 2025 100%
Done.
FUNCTION: snpgdsGDS2PED
Converting from GDS to PLINK PED:
Output a MAP file DONE.
Output a PED file ...
Output: Wed Oct 22 22:09:57 2025 0%
Output: Wed Oct 22 22:09:57 2025 100%
FUNCTION: snpgdsGEN2GDS
running snpgdsGEN2GDS ...
FUNCTION: snpgdsGRM
Genetic Relationship Matrix (GRM, GCTA):
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:09:57 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:57 Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:09:57 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
Saving to the GDS file:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:58 Done.
FUNCTION: snpgdsGetGeno
Genotype matrix: 1000 SNPs X 279 samples
Genotype matrix: 279 samples X 1000 SNPs
FUNCTION: snpgdsHCluster
Individual dissimilarity analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
Dissimilarity: the sum of all selected genotypes (0,1,2) = 2253891
Dissimilarity: Wed Oct 22 22:09:58 2025 0%
Dissimilarity: Wed Oct 22 22:09:59 2025 100%
Determine groups by permutation (Z threshold: 15, outlier threshold: 5):
Create 3 groups.
FUNCTION: snpgdsHWE
Keeping 716 SNPs according to chromosome 1
Excluding 160 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
FUNCTION: snpgdsIBDKING
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 2,086 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 92
# of SNPs: 6,637
using 1 thread/core
No family is specified, and all individuals are treated as singletons.
Relationship inference in the presence of population stratification.
KING IBD: the sum of all selected genotypes (0,1,2) = 622718
CPU capabilities:
2025-10-22 22:09:59 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:59 Done.
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 2,086 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 92
# of SNPs: 6,637
using 1 thread/core
No family is specified, and all individuals are treated as singletons.
Relationship inference in the presence of population stratification.
KING IBD: the sum of all selected genotypes (0,1,2) = 622718
CPU capabilities:
2025-10-22 22:09:59 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:09:59 Done.
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 2,086 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 92
# of SNPs: 6,637
using 1 thread/core
# of families: 20, and within- and between-family relationship are estimated differently.
Relationship inference in the presence of population stratification.
KING IBD: the sum of all selected genotypes (0,1,2) = 622718
CPU capabilities:
2025-10-22 22:10:00 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:00 Done.
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 2,086 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 92
# of SNPs: 6,637
using 1 thread/core
Relationship inference in a homogeneous population.
KING IBD: the sum of all selected genotypes (0,1,2) = 622718
2025-10-22 22:10:00 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:00 Done.
IBD analysis (KING method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 2,086 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 92
# of SNPs: 6,637
using 1 thread/core
Relationship inference in a homogeneous population.
KING IBD: the sum of all selected genotypes (0,1,2) = 622718
2025-10-22 22:10:00 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:00 Done.
FUNCTION: snpgdsIBDMLE
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 1,581 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05)
# of samples: 30
# of SNPs: 7,142
using 1 thread/core
sliding window: 500,000 basepairs, Inf SNPs
|LD| threshold: 0.2
method: composite
Chrom 1: |====================|====================|
54.75%, 392 / 716 (Wed Oct 22 22:10:00 2025)
Chrom 2: |====================|====================|
54.85%, 407 / 742 (Wed Oct 22 22:10:00 2025)
Chrom 3: |====================|====================|
55.99%, 341 / 609 (Wed Oct 22 22:10:00 2025)
Chrom 4: |====================|====================|
56.58%, 318 / 562 (Wed Oct 22 22:10:00 2025)
Chrom 5: |====================|====================|
56.36%, 319 / 566 (Wed Oct 22 22:10:00 2025)
Chrom 6: |====================|====================|
53.45%, 302 / 565 (Wed Oct 22 22:10:00 2025)
Chrom 7: |====================|====================|
55.72%, 263 / 472 (Wed Oct 22 22:10:00 2025)
Chrom 8: |====================|====================|
50.82%, 248 / 488 (Wed Oct 22 22:10:00 2025)
Chrom 9: |====================|====================|
54.81%, 228 / 416 (Wed Oct 22 22:10:00 2025)
Chrom 10: |====================|====================|
49.90%, 241 / 483 (Wed Oct 22 22:10:00 2025)
Chrom 11: |====================|====================|
54.81%, 245 / 447 (Wed Oct 22 22:10:00 2025)
Chrom 12: |====================|====================|
54.57%, 233 / 427 (Wed Oct 22 22:10:00 2025)
Chrom 13: |====================|====================|
53.49%, 184 / 344 (Wed Oct 22 22:10:00 2025)
Chrom 14: |====================|====================|
56.03%, 158 / 282 (Wed Oct 22 22:10:00 2025)
Chrom 15: |====================|====================|
54.58%, 143 / 262 (Wed Oct 22 22:10:00 2025)
Chrom 16: |====================|====================|
54.68%, 152 / 278 (Wed Oct 22 22:10:00 2025)
Chrom 17: |====================|====================|
55.56%, 115 / 207 (Wed Oct 22 22:10:00 2025)
Chrom 18: |====================|====================|
55.64%, 148 / 266 (Wed Oct 22 22:10:00 2025)
Chrom 19: |====================|====================|
66.67%, 80 / 120 (Wed Oct 22 22:10:00 2025)
Chrom 20: |====================|====================|
53.28%, 122 / 229 (Wed Oct 22 22:10:00 2025)
Chrom 21: |====================|====================|
50.79%, 64 / 126 (Wed Oct 22 22:10:00 2025)
Chrom 22: |====================|====================|
51.72%, 60 / 116 (Wed Oct 22 22:10:00 2025)
4,763 markers are selected in total.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 8 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 30
# of SNPs: 242
using 1 thread/core
MLE IBD: the sum of all selected genotypes (0,1,2) = 7765
MLE IBD: Wed Oct 22 22:10:00 2025 0%
MLE IBD: Wed Oct 22 22:10:00 2025 100%
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 7 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 25
# of SNPs: 243
using 1 thread/core
Specifying allele frequencies, mean: 0.535, sd: 0.288
MLE IBD: the sum of all selected genotypes (0,1,2) = 6486
MLE IBD: Wed Oct 22 22:10:00 2025 0%
MLE IBD: Wed Oct 22 22:10:00 2025 100%
FUNCTION: snpgdsIBDMLELogLik
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 1,581 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05)
# of samples: 30
# of SNPs: 7,142
using 1 thread/core
sliding window: 500,000 basepairs, Inf SNPs
|LD| threshold: 0.2
method: composite
Chrom 1: |====================|====================|
54.75%, 392 / 716 (Wed Oct 22 22:10:00 2025)
Chrom 2: |====================|====================|
54.85%, 407 / 742 (Wed Oct 22 22:10:00 2025)
Chrom 3: |====================|====================|
55.99%, 341 / 609 (Wed Oct 22 22:10:00 2025)
Chrom 4: |====================|====================|
56.58%, 318 / 562 (Wed Oct 22 22:10:00 2025)
Chrom 5: |====================|====================|
56.36%, 319 / 566 (Wed Oct 22 22:10:00 2025)
Chrom 6: |====================|====================|
53.45%, 302 / 565 (Wed Oct 22 22:10:00 2025)
Chrom 7: |====================|====================|
55.72%, 263 / 472 (Wed Oct 22 22:10:00 2025)
Chrom 8: |====================|====================|
50.82%, 248 / 488 (Wed Oct 22 22:10:00 2025)
Chrom 9: |====================|====================|
54.81%, 228 / 416 (Wed Oct 22 22:10:00 2025)
Chrom 10: |====================|====================|
49.90%, 241 / 483 (Wed Oct 22 22:10:00 2025)
Chrom 11: |====================|====================|
54.81%, 245 / 447 (Wed Oct 22 22:10:00 2025)
Chrom 12: |====================|====================|
54.57%, 233 / 427 (Wed Oct 22 22:10:00 2025)
Chrom 13: |====================|====================|
53.49%, 184 / 344 (Wed Oct 22 22:10:00 2025)
Chrom 14: |====================|====================|
56.03%, 158 / 282 (Wed Oct 22 22:10:00 2025)
Chrom 15: |====================|====================|
54.58%, 143 / 262 (Wed Oct 22 22:10:00 2025)
Chrom 16: |====================|====================|
54.68%, 152 / 278 (Wed Oct 22 22:10:00 2025)
Chrom 17: |====================|====================|
55.56%, 115 / 207 (Wed Oct 22 22:10:00 2025)
Chrom 18: |====================|====================|
55.64%, 148 / 266 (Wed Oct 22 22:10:00 2025)
Chrom 19: |====================|====================|
66.67%, 80 / 120 (Wed Oct 22 22:10:00 2025)
Chrom 20: |====================|====================|
53.28%, 122 / 229 (Wed Oct 22 22:10:00 2025)
Chrom 21: |====================|====================|
50.79%, 64 / 126 (Wed Oct 22 22:10:00 2025)
Chrom 22: |====================|====================|
51.72%, 60 / 116 (Wed Oct 22 22:10:00 2025)
4,763 markers are selected in total.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 8 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 30
# of SNPs: 242
using 1 thread/core
MLE IBD: the sum of all selected genotypes (0,1,2) = 7765
MLE IBD: Wed Oct 22 22:10:00 2025 0%
MLE IBD: Wed Oct 22 22:10:00 2025 100%
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 7 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 25
# of SNPs: 243
using 1 thread/core
Specifying allele frequencies, mean: 0.535, sd: 0.288
MLE IBD: the sum of all selected genotypes (0,1,2) = 6486
MLE IBD: Wed Oct 22 22:10:00 2025 0%
MLE IBD: Wed Oct 22 22:10:00 2025 100%
FUNCTION: snpgdsIBDMoM
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 2,086 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 92
# of SNPs: 6,637
using 1 thread/core
PLINK IBD: the sum of all selected genotypes (0,1,2) = 622718
2025-10-22 22:10:00 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:00 Done.
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,730 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 93
# of SNPs: 6,993
using 1 thread/core
PLINK IBD: the sum of all selected genotypes (0,1,2) = 648378
2025-10-22 22:10:00 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:00 Done.
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,730 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 93
# of SNPs: 6,993
using 1 thread/core
Specifying allele frequencies, mean: 0.498, sd: 0.313
*** A correction factor based on allele count is not used, since the allele frequencies are specified.
PLINK IBD: the sum of all selected genotypes (0,1,2) = 648378
2025-10-22 22:10:00 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:00 Done.
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,011 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 25
# of SNPs: 7,712
using 1 thread/core
Specifying allele frequencies, mean: 0.499, sd: 0.314
*** A correction factor based on allele count is not used, since the allele frequencies are specified.
PLINK IBD: the sum of all selected genotypes (0,1,2) = 192501
2025-10-22 22:10:00 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:00 Done.
FUNCTION: snpgdsIBDSelection
IBD analysis (PLINK method of moment) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 1,730 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 93
# of SNPs: 6,993
using 1 thread/core
PLINK IBD: the sum of all selected genotypes (0,1,2) = 648378
2025-10-22 22:10:00 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:00 Done.
FUNCTION: snpgdsIBS
Identity-By-State (IBS) analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
IBS: the sum of all selected genotypes (0,1,2) = 2253891
2025-10-22 22:10:00 (internal increment: 56320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:00 Done.
FUNCTION: snpgdsIBSNum
Identity-By-State (IBS) analysis on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
IBS: the sum of all selected genotypes (0,1,2) = 2253891
2025-10-22 22:10:01 (internal increment: 56320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:01 Done.
FUNCTION: snpgdsIndInb
Estimating individual inbreeding coefficients:
Excluding 365 SNPs on non-autosomes
Excluding 1 SNP (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
# of samples: 279
# of SNPs: 8,722
using 1 thread/core
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
FUNCTION: snpgdsIndInbCoef
FUNCTION: snpgdsIndivBeta
Individual Inbreeding and Relatedness (beta estimator):
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
Individual Beta: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:10:01 (internal increment: 56320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:01 Done.
FUNCTION: snpgdsLDMat
Linkage Disequilibrium (LD) estimation on genotypes:
# of samples: 279
# of SNPs: 203
using 1 thread
method: composite
LD matrix: the sum of all selected genotypes (0,1,2) = 56582
Linkage Disequilibrium (LD) estimation on genotypes:
# of samples: 279
# of SNPs: 203
using 1 thread
sliding window size: 203
method: composite
LD matrix: the sum of all selected genotypes (0,1,2) = 56582
FUNCTION: snpgdsLDpair
FUNCTION: snpgdsLDpruning
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 689 SNPs (monomorphic: TRUE, MAF: 0.005, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,034
using 1 thread/core
sliding window: 500,000 basepairs, Inf SNPs
|LD| threshold: 0.2
method: composite
Chrom 1: |====================|====================|
70.25%, 503 / 716 (Wed Oct 22 22:10:01 2025)
Chrom 2: |====================|====================|
69.14%, 513 / 742 (Wed Oct 22 22:10:01 2025)
Chrom 3: |====================|====================|
70.28%, 428 / 609 (Wed Oct 22 22:10:01 2025)
Chrom 4: |====================|====================|
67.62%, 380 / 562 (Wed Oct 22 22:10:01 2025)
Chrom 5: |====================|====================|
72.79%, 412 / 566 (Wed Oct 22 22:10:01 2025)
Chrom 6: |====================|====================|
69.73%, 394 / 565 (Wed Oct 22 22:10:01 2025)
Chrom 7: |====================|====================|
71.61%, 338 / 472 (Wed Oct 22 22:10:01 2025)
Chrom 8: |====================|====================|
65.78%, 321 / 488 (Wed Oct 22 22:10:01 2025)
Chrom 9: |====================|====================|
72.12%, 300 / 416 (Wed Oct 22 22:10:01 2025)
Chrom 10: |====================|====================|
69.57%, 336 / 483 (Wed Oct 22 22:10:01 2025)
Chrom 11: |====================|====================|
72.48%, 324 / 447 (Wed Oct 22 22:10:01 2025)
Chrom 12: |====================|====================|
70.96%, 303 / 427 (Wed Oct 22 22:10:01 2025)
Chrom 13: |====================|====================|
72.97%, 251 / 344 (Wed Oct 22 22:10:01 2025)
Chrom 14: |====================|====================|
71.99%, 203 / 282 (Wed Oct 22 22:10:01 2025)
Chrom 15: |====================|====================|
70.99%, 186 / 262 (Wed Oct 22 22:10:01 2025)
Chrom 16: |====================|====================|
67.63%, 188 / 278 (Wed Oct 22 22:10:01 2025)
Chrom 17: |====================|====================|
70.53%, 146 / 207 (Wed Oct 22 22:10:01 2025)
Chrom 18: |====================|====================|
70.30%, 187 / 266 (Wed Oct 22 22:10:01 2025)
Chrom 19: |====================|====================|
78.33%, 94 / 120 (Wed Oct 22 22:10:01 2025)
Chrom 20: |====================|====================|
66.81%, 153 / 229 (Wed Oct 22 22:10:01 2025)
Chrom 21: |====================|====================|
70.63%, 89 / 126 (Wed Oct 22 22:10:01 2025)
Chrom 22: |====================|====================|
68.97%, 80 / 116 (Wed Oct 22 22:10:01 2025)
6,129 markers are selected in total.
List of 22
$ chr1 : int [1:503] 1 2 3 5 7 10 11 14 15 16 ...
$ chr2 : int [1:513] 717 718 719 720 721 723 724 725 726 727 ...
$ chr3 : int [1:428] 1459 1461 1464 1466 1468 1469 1470 1472 1474 1476 ...
$ chr4 : int [1:380] 2068 2069 2070 2071 2072 2074 2076 2077 2078 2079 ...
$ chr5 : int [1:412] 2630 2631 2635 2636 2637 2638 2640 2642 2643 2645 ...
$ chr6 : int [1:394] 3196 3197 3198 3200 3201 3204 3205 3206 3207 3208 ...
$ chr7 : int [1:338] 3761 3762 3763 3766 3767 3768 3770 3771 3772 3773 ...
$ chr8 : int [1:321] 4233 4234 4235 4237 4238 4239 4240 4241 4242 4244 ...
$ chr9 : int [1:300] 4721 4722 4724 4727 4728 4730 4731 4733 4735 4736 ...
$ chr10: int [1:336] 5137 5139 5140 5143 5144 5145 5146 5147 5148 5149 ...
$ chr11: int [1:324] 5620 5623 5624 5625 5626 5628 5630 5631 5632 5633 ...
$ chr12: int [1:303] 6067 6068 6069 6070 6073 6074 6075 6077 6078 6079 ...
$ chr13: int [1:251] 6494 6497 6498 6499 6500 6501 6503 6505 6507 6509 ...
$ chr14: int [1:203] 6840 6841 6842 6843 6844 6845 6846 6847 6848 6850 ...
$ chr15: int [1:186] 7120 7121 7122 7124 7125 7126 7127 7128 7129 7130 ...
$ chr16: int [1:188] 7382 7383 7385 7387 7388 7389 7391 7392 7394 7395 ...
$ chr17: int [1:146] 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 ...
$ chr18: int [1:187] 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 ...
$ chr19: int [1:94] 8133 8135 8136 8137 8138 8139 8140 8141 8142 8144 ...
$ chr20: int [1:153] 8253 8257 8258 8259 8260 8261 8262 8265 8266 8267 ...
$ chr21: int [1:89] 8482 8484 8485 8486 8487 8488 8489 8490 8491 8492 ...
$ chr22: int [1:80] 8608 8609 8610 8612 8613 8614 8615 8617 8618 8625 ...
FUNCTION: snpgdsMergeGRM
Genetic Relationship Matrix (GRM, GCTA):
Excluding 2,288 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 6,800
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 1908966
CPU capabilities:
2025-10-22 22:10:01 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:01 Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 5,688 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 3,400
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 951558
CPU capabilities:
2025-10-22 22:10:01 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Saving to the GDS file:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
2025-10-22 22:10:02 Done.
Genetic Relationship Matrix (GRM, GCTA):
Excluding 5,688 SNPs (non-autosomes or non-selection)
Excluding 0 SNP (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 3,400
using 1 thread/core
GRM Calculation: the sum of all selected genotypes (0,1,2) = 957408
CPU capabilities:
2025-10-22 22:10:02 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
Saving to the GDS file:
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:02 Done.
GRM merging:
open 'tmp1.gds' (3,400 variants)
open 'tmp2.gds' (3,400 variants)
Weight: 0.5, 0.5
Output: tmp.gds
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
GRM merging:
open 'tmp1.gds' (3,400 variants)
open 'tmp2.gds' (3,400 variants)
Weight: 0.5, 0.5
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
FUNCTION: snpgdsOpen
FUNCTION: snpgdsOption
FUNCTION: snpgdsPCA
Principal Component Analysis (PCA) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
# of principal components: 32
PCA: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:10:02 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:02 Begin (eigenvalues and eigenvectors)
2025-10-22 22:10:02 Done.
FUNCTION: snpgdsPCACorr
Principal Component Analysis (PCA) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
# of principal components: 32
PCA: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:10:03 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:03 Begin (eigenvalues and eigenvectors)
2025-10-22 22:10:03 Done.
SNP Correlation:
# of samples: 279
# of SNPs: 9,088
using 1 thread
Correlation: the sum of all selected genotypes (0,1,2) = 2553065
2025-10-22 22:10:03 (internal increment: 14092)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:03 Done.
SNP Correlation:
# of samples: 279
# of SNPs: 9,088
using 1 thread
Creating 'test.gds' ...
Correlation: the sum of all selected genotypes (0,1,2) = 2553065
2025-10-22 22:10:03
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:03 Done.
FUNCTION: snpgdsPCASNPLoading
Principal Component Analysis (PCA) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
# of principal components: 8
PCA: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:10:03 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:03 Begin (eigenvalues and eigenvectors)
2025-10-22 22:10:03 Done.
SNP Loading:
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
using the top 8 eigenvectors
SNP Loading: the sum of all selected genotypes (0,1,2) = 2253891
2025-10-22 22:10:03 (internal increment: 14092)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
2025-10-22 22:10:04 Done.
FUNCTION: snpgdsPCASampLoading
Principal Component Analysis (PCA) on genotypes:
Excluding 365 SNPs on non-autosomes
Excluding 684 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
# of principal components: 8
PCA: the sum of all selected genotypes (0,1,2) = 2253891
CPU capabilities:
2025-10-22 22:10:04 (internal increment: 1760)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:04 Begin (eigenvalues and eigenvectors)
2025-10-22 22:10:04 Done.
SNP Loading:
# of samples: 279
# of SNPs: 8,039
using 1 thread/core
using the top 8 eigenvectors
SNP Loading: the sum of all selected genotypes (0,1,2) = 2253891
2025-10-22 22:10:04 (internal increment: 14092)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:04 Done.
Sample Loading:
# of samples: 100
# of SNPs: 8,039
using 1 thread/core
using the top 8 eigenvectors
Sample Loading: the sum of all selected genotypes (0,1,2) = 808327
2025-10-22 22:10:04 (internal increment: 39320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:04 Done.
FUNCTION: snpgdsPED2GDS
Converting from GDS to PLINK PED:
Output a MAP file DONE.
Output a PED file ...
Output: Wed Oct 22 22:10:04 2025 0%
Output: Wed Oct 22 22:10:04 2025 100%
PLINK PED/MAP to GDS Format:
Import 9088 variants from 'tmp.map'
Chromosome:
1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 3 4 5 6 7
716 483 447 427 344 282 262 278 207 266 120 742 229 126 116 609 562 566 565 472
8 9 X
488 416 365
Reading 'tmp.ped'
Output: 'test.gds'
Import 279 samples
Transpose the genotypic matrix ...
Done.
Optimize the access efficiency ...
Clean up the fragments of GDS file:
open the file 'test.gds' (1.3M)
# of fragments: 50
save to 'test.gds.tmp'
rename 'test.gds.tmp' (711.4K, reduced: 618.7K)
# of fragments: 26
FUNCTION: snpgdsPairIBD
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 1,646 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05)
# of samples: 93
# of SNPs: 7,077
using 1 thread/core
sliding window: 500,000 basepairs, Inf SNPs
|LD| threshold: 0.2
method: composite
Chrom 1: |====================|====================|
62.29%, 446 / 716 (Wed Oct 22 22:10:05 2025)
Chrom 2: |====================|====================|
62.26%, 462 / 742 (Wed Oct 22 22:10:05 2025)
Chrom 3: |====================|====================|
60.10%, 366 / 609 (Wed Oct 22 22:10:05 2025)
Chrom 4: |====================|====================|
64.41%, 362 / 562 (Wed Oct 22 22:10:05 2025)
Chrom 5: |====================|====================|
62.90%, 356 / 566 (Wed Oct 22 22:10:05 2025)
Chrom 6: |====================|====================|
60.18%, 340 / 565 (Wed Oct 22 22:10:05 2025)
Chrom 7: |====================|====================|
63.14%, 298 / 472 (Wed Oct 22 22:10:05 2025)
Chrom 8: |====================|====================|
57.58%, 281 / 488 (Wed Oct 22 22:10:05 2025)
Chrom 9: |====================|====================|
62.98%, 262 / 416 (Wed Oct 22 22:10:05 2025)
Chrom 10: |====================|====================|
60.46%, 292 / 483 (Wed Oct 22 22:10:05 2025)
Chrom 11: |====================|====================|
63.09%, 282 / 447 (Wed Oct 22 22:10:05 2025)
Chrom 12: |====================|====================|
62.76%, 268 / 427 (Wed Oct 22 22:10:05 2025)
Chrom 13: |====================|====================|
63.08%, 217 / 344 (Wed Oct 22 22:10:05 2025)
Chrom 14: |====================|====================|
63.83%, 180 / 282 (Wed Oct 22 22:10:05 2025)
Chrom 15: |====================|====================|
63.74%, 167 / 262 (Wed Oct 22 22:10:05 2025)
Chrom 16: |====================|====================|
62.23%, 173 / 278 (Wed Oct 22 22:10:05 2025)
Chrom 17: |====================|====================|
65.70%, 136 / 207 (Wed Oct 22 22:10:05 2025)
Chrom 18: |====================|====================|
59.40%, 158 / 266 (Wed Oct 22 22:10:05 2025)
Chrom 19: |====================|====================|
68.33%, 82 / 120 (Wed Oct 22 22:10:05 2025)
Chrom 20: |====================|====================|
66.38%, 152 / 229 (Wed Oct 22 22:10:05 2025)
Chrom 21: |====================|====================|
61.11%, 77 / 126 (Wed Oct 22 22:10:05 2025)
Chrom 22: |====================|====================|
57.76%, 67 / 116 (Wed Oct 22 22:10:05 2025)
5,424 markers are selected in total.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 12 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 25
# of SNPs: 238
using 1 thread/core
Specifying allele frequencies, mean: 0.505, sd: 0.283
MLE IBD: the sum of all selected genotypes (0,1,2) = 5996
MLE IBD: Wed Oct 22 22:10:05 2025 0%
MLE IBD: Wed Oct 22 22:10:05 2025 100%
IBD analysis (PLINK method of moment) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 12 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 25
# of SNPs: 238
using 1 thread/core
Specifying allele frequencies, mean: 0.505, sd: 0.283
*** A correction factor based on allele count is not used, since the allele frequencies are specified.
PLINK IBD: the sum of all selected genotypes (0,1,2) = 5996
2025-10-22 22:10:05 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:05 Done.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 12 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 25
# of SNPs: 238
using 1 thread/core
Specifying allele frequencies, mean: 0.505, sd: 0.283
MLE IBD: the sum of all selected genotypes (0,1,2) = 5996
MLE IBD: Wed Oct 22 22:10:05 2025 0%
MLE IBD: Wed Oct 22 22:10:05 2025 100%
Genotype matrix: 250 SNPs X 25 samples
[1] -384.5064
[1] -379.8635
[1] -389.2882
[1] -390.0637
[1] -405.3267
[1] -386.6771
[1] -382.3052
[1] -375.7884
[1] -400.5859
[1] -379.9675
[1] -372.4947
[1] -372.3346
[1] -393.543
[1] -387.7755
[1] -373.858
[1] -380.4349
[1] -389.0108
[1] -402.2013
[1] -393.1451
[1] -388.5999
[1] -383.8134
[1] -376.6837
[1] -385.4354
[1] -378.9947
FUNCTION: snpgdsPairIBDMLELogLik
SNP pruning based on LD:
Excluding 365 SNPs on non-autosomes
Excluding 1,646 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.05)
# of samples: 93
# of SNPs: 7,077
using 1 thread/core
sliding window: 500,000 basepairs, Inf SNPs
|LD| threshold: 0.2
method: composite
Chrom 1: |====================|====================|
62.29%, 446 / 716 (Wed Oct 22 22:10:05 2025)
Chrom 2: |====================|====================|
62.26%, 462 / 742 (Wed Oct 22 22:10:05 2025)
Chrom 3: |====================|====================|
60.10%, 366 / 609 (Wed Oct 22 22:10:05 2025)
Chrom 4: |====================|====================|
64.41%, 362 / 562 (Wed Oct 22 22:10:05 2025)
Chrom 5: |====================|====================|
62.90%, 356 / 566 (Wed Oct 22 22:10:05 2025)
Chrom 6: |====================|====================|
60.18%, 340 / 565 (Wed Oct 22 22:10:05 2025)
Chrom 7: |====================|====================|
63.14%, 298 / 472 (Wed Oct 22 22:10:05 2025)
Chrom 8: |====================|====================|
57.58%, 281 / 488 (Wed Oct 22 22:10:05 2025)
Chrom 9: |====================|====================|
62.98%, 262 / 416 (Wed Oct 22 22:10:05 2025)
Chrom 10: |====================|====================|
60.46%, 292 / 483 (Wed Oct 22 22:10:05 2025)
Chrom 11: |====================|====================|
63.09%, 282 / 447 (Wed Oct 22 22:10:05 2025)
Chrom 12: |====================|====================|
62.76%, 268 / 427 (Wed Oct 22 22:10:05 2025)
Chrom 13: |====================|====================|
63.08%, 217 / 344 (Wed Oct 22 22:10:05 2025)
Chrom 14: |====================|====================|
63.83%, 180 / 282 (Wed Oct 22 22:10:05 2025)
Chrom 15: |====================|====================|
63.74%, 167 / 262 (Wed Oct 22 22:10:05 2025)
Chrom 16: |====================|====================|
62.23%, 173 / 278 (Wed Oct 22 22:10:05 2025)
Chrom 17: |====================|====================|
65.70%, 136 / 207 (Wed Oct 22 22:10:05 2025)
Chrom 18: |====================|====================|
59.40%, 158 / 266 (Wed Oct 22 22:10:05 2025)
Chrom 19: |====================|====================|
68.33%, 82 / 120 (Wed Oct 22 22:10:05 2025)
Chrom 20: |====================|====================|
66.38%, 152 / 229 (Wed Oct 22 22:10:05 2025)
Chrom 21: |====================|====================|
61.11%, 77 / 126 (Wed Oct 22 22:10:05 2025)
Chrom 22: |====================|====================|
57.76%, 67 / 116 (Wed Oct 22 22:10:05 2025)
5,424 markers are selected in total.
Identity-By-Descent analysis (MLE) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 12 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 25
# of SNPs: 238
using 1 thread/core
Specifying allele frequencies, mean: 0.505, sd: 0.283
MLE IBD: the sum of all selected genotypes (0,1,2) = 5996
MLE IBD: Wed Oct 22 22:10:05 2025 0%
MLE IBD: Wed Oct 22 22:10:05 2025 100%
IBD analysis (PLINK method of moment) on genotypes:
Excluding 8,838 SNPs (non-autosomes or non-selection)
Excluding 12 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: 0.01)
# of samples: 25
# of SNPs: 238
using 1 thread/core
Specifying allele frequencies, mean: 0.505, sd: 0.283
*** A correction factor based on allele count is not used, since the allele frequencies are specified.
PLINK IBD: the sum of all selected genotypes (0,1,2) = 5996
2025-10-22 22:10:05 (internal increment: 65536)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:05 Done.
Genotype matrix: 250 SNPs X 25 samples
[1] -384.5064
[1] -379.8635
[1] -389.2882
[1] -390.0637
[1] -405.3267
[1] -386.6771
[1] -382.3052
[1] -375.7884
[1] -400.5859
[1] -379.9675
[1] -372.4947
[1] -372.3346
[1] -393.543
[1] -387.7755
[1] -373.858
[1] -380.4349
[1] -389.0108
[1] -402.2013
[1] -393.1451
[1] -388.5999
[1] -383.8134
[1] -376.6837
[1] -385.4354
[1] -378.9947
FUNCTION: snpgdsPairScore
Excluding 365 SNPs on non-autosomes
Pair Score Calculation:
# of samples: 120
# of SNPs: 8,723
Method: IBS
Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236
List of 3
$ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ...
$ snp.id : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ...
$ score :'data.frame': 60 obs. of 5 variables:
..$ Avg : num [1:60] 1.72 1.73 1.71 1.72 1.73 ...
..$ SD : num [1:60] 0.452 0.443 0.457 0.45 0.443 ...
..$ Num : int [1:60] 8684 8627 8669 8637 8682 8634 8654 8678 8680 8679 ...
..$ Sample1: chr [1:60] "NA19139" "NA10847" "NA18515" "NA19129" ...
..$ Sample2: chr [1:60] "NA19138" "NA12146" "NA18516" "NA19128" ...
Pair Score Calculation:
# of samples: 120
# of SNPs: 8,723
Method: IBS
Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236
List of 3
$ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ...
$ snp.id : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ...
$ score :'data.frame': 60 obs. of 5 variables:
..$ Avg : num [1:60] 0.999 1 1 1 1 ...
..$ SD : num [1:60] 0.024 0 0.0186 0.0215 0.0215 ...
..$ Num : int [1:60] 8684 8627 8669 8637 8682 8634 8654 8678 8680 8679 ...
..$ Sample1: chr [1:60] "NA19139" "NA10847" "NA18515" "NA19129" ...
..$ Sample2: chr [1:60] "NA19138" "NA12146" "NA18516" "NA19128" ...
Pair Score Calculation:
# of samples: 120
# of SNPs: 8,723
Method: IBS
Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236
List of 3
$ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ...
$ snp.id : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ...
$ score : num [1:3, 1:8723] 1.75 0.437 60 1.583 0.497 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : chr [1:3] "Avg" "SD" "Num"
.. ..$ : NULL
Pair Score Calculation:
# of samples: 120
# of SNPs: 8,723
Method: IBS
Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236
List of 3
$ sample.id: chr [1:120] "NA19139" "NA19160" "NA07034" "NA12814" ...
$ snp.id : int [1:8723] 1 2 3 4 5 6 7 8 9 10 ...
$ score : int [1:60, 1:8723] 1 1 2 2 2 2 2 1 2 2 ...
Pair Score Calculation:
# of samples: 120
# of SNPs: 8,723
Method: IBS
Output: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/tmp.gds
Genotype Score: the sum of all selected genotypes (0,1,2) = 1050236
FUNCTION: snpgdsSNPList
FUNCTION: snpgdsSNPListClass
FUNCTION: snpgdsSNPListIntersect
FUNCTION: snpgdsSNPRateFreq
FUNCTION: snpgdsSampMissRate
FUNCTION: snpgdsSelectSNP
Excluding 365 SNPs on non-autosomes
Excluding 1,221 SNPs (monomorphic: TRUE, MAF: 0.05, missing rate: 0.95)
FUNCTION: snpgdsSlidingWindow
Sliding Window Analysis:
Excluding 8 SNPs (monomorphic: TRUE, MAF: NaN, missing rate: NaN)
# of samples: 279
# of SNPs: 9,080
using 1 thread/core
window size: 500000, shift: 100000 (basepair)
Chromosome Set: 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23
Wed Oct 22 22:10:05 2025, Chromosome 1 (716 SNPs), 2448 windows
Wed Oct 22 22:10:05 2025, Chromosome 2 (742 SNPs), 2416 windows
Wed Oct 22 22:10:05 2025, Chromosome 3 (609 SNPs), 1985 windows
Wed Oct 22 22:10:05 2025, Chromosome 4 (562 SNPs), 1894 windows
Wed Oct 22 22:10:05 2025, Chromosome 5 (566 SNPs), 1797 windows
Wed Oct 22 22:10:05 2025, Chromosome 6 (565 SNPs), 1694 windows
Wed Oct 22 22:10:05 2025, Chromosome 7 (472 SNPs), 1573 windows
Wed Oct 22 22:10:05 2025, Chromosome 8 (488 SNPs), 1445 windows
Wed Oct 22 22:10:05 2025, Chromosome 9 (416 SNPs), 1393 windows
Wed Oct 22 22:10:05 2025, Chromosome 10 (483 SNPs), 1343 windows
Wed Oct 22 22:10:06 2025, Chromosome 11 (447 SNPs), 1338 windows
Wed Oct 22 22:10:06 2025, Chromosome 12 (427 SNPs), 1316 windows
Wed Oct 22 22:10:06 2025, Chromosome 13 (344 SNPs), 948 windows
Wed Oct 22 22:10:06 2025, Chromosome 14 (281 SNPs), 847 windows
Wed Oct 22 22:10:06 2025, Chromosome 15 (262 SNPs), 774 windows
Wed Oct 22 22:10:06 2025, Chromosome 16 (278 SNPs), 873 windows
Wed Oct 22 22:10:06 2025, Chromosome 17 (207 SNPs), 773 windows
Wed Oct 22 22:10:06 2025, Chromosome 18 (266 SNPs), 753 windows
Wed Oct 22 22:10:06 2025, Chromosome 19 (120 SNPs), 627 windows
Wed Oct 22 22:10:06 2025, Chromosome 20 (229 SNPs), 602 windows
Wed Oct 22 22:10:06 2025, Chromosome 21 (126 SNPs), 311 windows
Wed Oct 22 22:10:06 2025, Chromosome 22 (116 SNPs), 312 windows
Wed Oct 22 22:10:06 2025, Chromosome 23 (358 SNPs), 1507 windows
Wed Oct 22 22:10:06 2025 Done.
FUNCTION: snpgdsSummary
The file name: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/hapmap_geno.gds
The total number of samples: 279
The total number of SNPs: 9088
SNP genotypes are stored in SNP-major mode (Sample X SNP).
FUNCTION: snpgdsTranspose
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test.gds
The total number of samples: 279
The total number of SNPs: 9088
SNP genotypes are stored in SNP-major mode (Sample X SNP).
SNP genotypes: 279 samples, 9088 SNPs
Genotype matrix is being transposed ...
Clean up the fragments of GDS file:
open the file 'test.gds' (1.3M)
# of fragments: 28
save to 'test.gds.tmp'
rename 'test.gds.tmp' (709.6K, reduced: 619.1K)
# of fragments: 26
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test.gds
The total number of samples: 279
The total number of SNPs: 9088
SNP genotypes are stored in individual-major mode (SNP X Sample).
FUNCTION: snpgdsVCF2GDS
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3
Start file conversion from VCF to SNP GDS ...
Method: extracting biallelic SNPs
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
import 2 variants.
+ genotype { Bit2 3x2, 2B } *
Optimize the access efficiency ...
Clean up the fragments of GDS file:
open the file 'test1.gds' (2.9K)
# of fragments: 46
save to 'test1.gds.tmp'
rename 'test1.gds.tmp' (2.6K, reduced: 312B)
# of fragments: 20
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test1.gds
The total number of samples: 3
The total number of SNPs: 2
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Start file conversion from VCF to SNP GDS ...
Method: extracting biallelic SNPs
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
import 2 variants.
+ genotype { Bit2 3x2, 2B } *
SNP genotypes: 3 samples, 2 SNPs
Genotype matrix is being transposed ...
Optimize the access efficiency ...
Clean up the fragments of GDS file:
open the file 'test2.gds' (3.0K)
# of fragments: 48
save to 'test2.gds.tmp'
rename 'test2.gds.tmp' (2.6K, reduced: 417B)
# of fragments: 20
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test2.gds
The total number of samples: 3
The total number of SNPs: 2
SNP genotypes are stored in individual-major mode (SNP X Sample).
Start file conversion from VCF to SNP GDS ...
Method: dosage (0,1,2) of reference allele for all variant sites
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
import 5 variants.
+ genotype { Bit2 3x5, 4B } *
SNP genotypes: 3 samples, 5 SNPs
Genotype matrix is being transposed ...
Optimize the access efficiency ...
Clean up the fragments of GDS file:
open the file 'test3.gds' (3.1K)
# of fragments: 48
save to 'test3.gds.tmp'
rename 'test3.gds.tmp' (2.7K, reduced: 419B)
# of fragments: 20
Some of 'snp.allele' are not standard (e.g., A/G,T).
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test3.gds
The total number of samples: 3
The total number of SNPs: 5
SNP genotypes are stored in individual-major mode (SNP X Sample).
The number of valid samples: 3
The number of biallelic unique SNPs: 2
Start file conversion from VCF to SNP GDS ...
Method: dosage (0,1,2) of reference allele for all variant sites
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
import 5 variants.
+ genotype { Bit2 3x5, 4B } *
Optimize the access efficiency ...
Clean up the fragments of GDS file:
open the file 'test4.gds' (3.0K)
# of fragments: 46
save to 'test4.gds.tmp'
rename 'test4.gds.tmp' (2.7K, reduced: 312B)
# of fragments: 20
Some of 'snp.allele' are not standard (e.g., A/G,T).
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test4.gds
The total number of samples: 3
The total number of SNPs: 5
SNP genotypes are stored in SNP-major mode (Sample X SNP).
The number of valid samples: 3
The number of biallelic unique SNPs: 2
Start file conversion from VCF to SNP GDS ...
Method: dosage (0,1,2) of reference allele for all variant sites
Number of samples: 3
Parsing "/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf" ...
import 5 variants.
+ genotype { Bit2 3x5, 4B } *
Optimize the access efficiency ...
Clean up the fragments of GDS file:
open the file 'test5.gds' (3.0K)
# of fragments: 46
save to 'test5.gds.tmp'
rename 'test5.gds.tmp' (2.7K, reduced: 312B)
# of fragments: 20
Some of 'snp.allele' are not standard (e.g., T/A,G).
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test5.gds
The total number of samples: 3
The total number of SNPs: 5
SNP genotypes are stored in SNP-major mode (Sample X SNP).
The number of valid samples: 3
The number of biallelic unique SNPs: 2
FUNCTION: snpgdsVCF2GDS_R
##fileformat=VCFv4.1
##fileDate=20090805
##source=myImputationProgramV3.1
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta
##contig=<ID=20,length=62435964,assembly=B36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="Homo sapiens",taxonomy=x>
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=A,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">
#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003
20 14370 rs6054257 G A 29 PASS NS=3;DP=14;AF=0.5;DB;H2 GT:GQ:DP:HQ 0|0:48:1:51,51 1|0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 q10 NS=3;DP=11;AF=0.017 GT:GQ:DP:HQ 0|0:49:3:58,50 0|1:3:5:65,3 0/0:41:3
20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6:23,27 2|1:2:0:18,2 2/2:35:4
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0|0:54:7:56,60 0|0:48:4:51,51 0/0:61:2
20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1:40:3
Start snpgdsVCF2GDS ...
Extracting bi-allelic and polymorhpic SNPs.
Scanning ...
file: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf
content: 5 rows x 12 columns
Wed Oct 22 22:10:06 2025 store sample id, snp id, position, and chromosome.
start writing: 3 samples, 2 SNPs ...
file: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf
[1] 1
Wed Oct 22 22:10:06 2025 Done.
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test1.gds
The total number of samples: 3
The total number of SNPs: 2
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Start snpgdsVCF2GDS ...
Extracting bi-allelic and polymorhpic SNPs.
Scanning ...
file: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf
content: 5 rows x 12 columns
Wed Oct 22 22:10:06 2025 store sample id, snp id, position, and chromosome.
start writing: 3 samples, 2 SNPs ...
file: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf
[1] 1
Wed Oct 22 22:10:06 2025 Done.
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test2.gds
The total number of samples: 3
The total number of SNPs: 2
SNP genotypes are stored in SNP-major mode (Sample X SNP).
Start snpgdsVCF2GDS ...
Storing dosage of the reference allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants.
Scanning ...
file: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf
content: 5 rows x 12 columns
Wed Oct 22 22:10:06 2025 store sample id, snp id, position, and chromosome.
start writing: 3 samples, 5 SNPs ...
file: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf
Wed Oct 22 22:10:06 2025 Done.
Some of 'snp.allele' are not standard (e.g., A/G,T).
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test3.gds
The total number of samples: 3
The total number of SNPs: 5
SNP genotypes are stored in SNP-major mode (Sample X SNP).
The number of valid samples: 3
The number of biallelic unique SNPs: 2
Start snpgdsVCF2GDS ...
Storing dosage of the reference allele for all variant sites, including bi-allelic SNPs, multi-allelic SNPs, indels and structural variants.
Scanning ...
file: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf
content: 5 rows x 12 columns
Wed Oct 22 22:10:06 2025 store sample id, snp id, position, and chromosome.
start writing: 3 samples, 5 SNPs ...
file: /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/SNPRelate/extdata/sequence.vcf
Wed Oct 22 22:10:06 2025 Done.
Some of 'snp.allele' are not standard (e.g., A/G,T).
The file name: /Users/biocbuild/bbs-3.22-bioc/meat/SNPRelate.Rcheck/tests/test4.gds
The total number of samples: 3
The total number of SNPs: 5
SNP genotypes are stored in SNP-major mode (Sample X SNP).
The number of valid samples: 3
The number of biallelic unique SNPs: 2
SNP Correlation:
# of samples: 90
# of SNPs: 9,088
using 1 thread
Correlation: the sum of all selected genotypes (0,1,2) = 824424
2025-10-22 22:10:06 (internal increment: 43688)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:06 Done.
SNP Correlation:
# of samples: 90
# of SNPs: 9,088
using 1 thread
Creating 'test.gds' ...
Correlation: the sum of all selected genotypes (0,1,2) = 824424
2025-10-22 22:10:06
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:06 Done.
SNP Loading:
# of samples: 90
# of SNPs: 8,695
using 1 thread/core
using the top 8 eigenvectors
SNP Loading: the sum of all selected genotypes (0,1,2) = 787449
2025-10-22 22:10:06 (internal increment: 43688)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:06 Done.
Sample Loading:
# of samples: 100
# of SNPs: 8,695
using 1 thread/core
using the top 8 eigenvectors
Sample Loading: the sum of all selected genotypes (0,1,2) = 875255
2025-10-22 22:10:06 (internal increment: 39320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:06 Done.
SNP Correlation:
# of samples: 90
# of SNPs: 9,088
using 2 threads
Correlation: the sum of all selected genotypes (0,1,2) = 824424
2025-10-22 22:10:06 (internal increment: 43688)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:06 Done.
SNP Correlation:
# of samples: 90
# of SNPs: 9,088
using 2 threads
Creating 'test.gds' ...
Correlation: the sum of all selected genotypes (0,1,2) = 824424
2025-10-22 22:10:06
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:06 Done.
SNP Loading:
# of samples: 90
# of SNPs: 8,695
using 1 thread/core
using the top 8 eigenvectors
SNP Loading: the sum of all selected genotypes (0,1,2) = 787449
2025-10-22 22:10:06 (internal increment: 43688)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 1s
2025-10-22 22:10:07 Done.
Sample Loading:
# of samples: 100
# of SNPs: 8,695
using 1 thread/core
using the top 8 eigenvectors
Sample Loading: the sum of all selected genotypes (0,1,2) = 875255
2025-10-22 22:10:07 (internal increment: 39320)
[..................................................] 0%, ETC: ---
[==================================================] 100%, completed, 0s
2025-10-22 22:10:07 Done.
RUNIT TEST PROTOCOL -- Wed Oct 22 22:10:07 2025
***********************************************
Number of test functions: 13
Number of errors: 0
Number of failures: 0
1 Test Suite :
SNPRelate RUnit Tests - 13 test functions, 0 errors, 0 failures
Number of test functions: 13
Number of errors: 0
Number of failures: 0
>
> proc.time()
user system elapsed
19.561 0.837 20.446
SNPRelate.Rcheck/SNPRelate-Ex.timings
| name | user | system | elapsed | |
| SNPGDSFileClass-class | 0.011 | 0.001 | 0.012 | |
| SNPRelate-package | 0.502 | 0.031 | 0.537 | |
| snpgdsAdmixPlot | 0.452 | 0.004 | 0.461 | |
| snpgdsAdmixProp | 0.435 | 0.004 | 0.458 | |
| snpgdsAlleleSwitch | 0.046 | 0.002 | 0.051 | |
| snpgdsApartSelection | 0.031 | 0.004 | 0.035 | |
| snpgdsBED2GDS | 0.035 | 0.005 | 0.049 | |
| snpgdsClose | 0.007 | 0.000 | 0.007 | |
| snpgdsCombineGeno | 0.055 | 0.016 | 0.076 | |
| snpgdsCreateGeno | 0.108 | 0.006 | 0.121 | |
| snpgdsCreateGenoSet | 0.066 | 0.011 | 0.080 | |
| snpgdsCutTree | 1.580 | 0.011 | 1.606 | |
| snpgdsDiss | 1.481 | 0.005 | 1.511 | |
| snpgdsDrawTree | 1.437 | 0.003 | 1.454 | |
| snpgdsEIGMIX | 0.431 | 0.005 | 0.437 | |
| snpgdsErrMsg | 0 | 0 | 0 | |
| snpgdsExampleFileName | 0.001 | 0.000 | 0.000 | |
| snpgdsFst | 0.016 | 0.002 | 0.017 | |
| snpgdsGDS2BED | 0.022 | 0.006 | 0.028 | |
| snpgdsGDS2Eigen | 0.157 | 0.022 | 0.179 | |
| snpgdsGDS2PED | 0.140 | 0.021 | 0.166 | |
| snpgdsGEN2GDS | 0 | 0 | 0 | |
| snpgdsGRM | 0.949 | 0.014 | 0.993 | |
| snpgdsGetGeno | 0.019 | 0.006 | 0.024 | |
| snpgdsHCluster | 1.515 | 0.016 | 1.595 | |
| snpgdsHWE | 0.008 | 0.001 | 0.009 | |
| snpgdsIBDKING | 0.604 | 0.019 | 0.627 | |
| snpgdsIBDMLE | 0.154 | 0.007 | 0.161 | |
| snpgdsIBDMLELogLik | 0.149 | 0.007 | 0.155 | |
| snpgdsIBDMoM | 0.139 | 0.009 | 0.148 | |
| snpgdsIBDSelection | 0.051 | 0.004 | 0.054 | |
| snpgdsIBS | 0.127 | 0.003 | 0.131 | |
| snpgdsIBSNum | 0.134 | 0.008 | 0.142 | |
| snpgdsIndInb | 0.011 | 0.001 | 0.012 | |
| snpgdsIndInbCoef | 0.003 | 0.000 | 0.003 | |
| snpgdsIndivBeta | 0.154 | 0.003 | 0.158 | |
| snpgdsLDMat | 0.125 | 0.009 | 0.137 | |
| snpgdsLDpair | 0.001 | 0.000 | 0.001 | |
| snpgdsLDpruning | 0.017 | 0.005 | 0.022 | |
| snpgdsMergeGRM | 1.045 | 0.027 | 1.086 | |
| snpgdsOpen | 0.006 | 0.000 | 0.006 | |
| snpgdsOption | 0.001 | 0.000 | 0.001 | |
| snpgdsPCA | 0.500 | 0.010 | 0.513 | |
| snpgdsPCACorr | 0.500 | 0.009 | 0.511 | |
| snpgdsPCASNPLoading | 0.535 | 0.004 | 0.558 | |
| snpgdsPCASampLoading | 0.433 | 0.006 | 0.439 | |
| snpgdsPED2GDS | 0.490 | 0.031 | 0.527 | |
| snpgdsPairIBD | 0.238 | 0.009 | 0.247 | |
| snpgdsPairIBDMLELogLik | 0.123 | 0.008 | 0.131 | |
| snpgdsPairScore | 0.089 | 0.015 | 0.105 | |
| snpgdsSNPList | 0.004 | 0.000 | 0.004 | |
| snpgdsSNPListIntersect | 0.019 | 0.002 | 0.021 | |
| snpgdsSNPRateFreq | 0.084 | 0.003 | 0.087 | |
| snpgdsSampMissRate | 0.003 | 0.000 | 0.004 | |
| snpgdsSelectSNP | 0.003 | 0.000 | 0.003 | |
| snpgdsSlidingWindow | 0.348 | 0.046 | 0.395 | |
| snpgdsSummary | 0.013 | 0.001 | 0.014 | |
| snpgdsTranspose | 0.034 | 0.006 | 0.040 | |
| snpgdsVCF2GDS | 0.063 | 0.142 | 0.212 | |
| snpgdsVCF2GDS_R | 0.028 | 0.106 | 0.139 | |