Back to Build/check report for BioC 3.23:   simplified   long
ABC[D]EFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-11-05 11:32 -0500 (Wed, 05 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.3 LTS)x86_64R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences" 4818
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 605/2323HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
DNEA 1.1.0  (landing page)
Christopher Patsalis
Snapshot Date: 2025-11-04 13:40 -0500 (Tue, 04 Nov 2025)
git_url: https://git.bioconductor.org/packages/DNEA
git_branch: devel
git_last_commit: 0ff4d1c
git_last_commit_date: 2025-10-29 11:36:34 -0500 (Wed, 29 Oct 2025)
nebbiolo1Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published


CHECK results for DNEA on nebbiolo1

To the developers/maintainers of the DNEA package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/DNEA.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: DNEA
Version: 1.1.0
Command: /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:DNEA.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings DNEA_1.1.0.tar.gz
StartedAt: 2025-11-04 22:54:47 -0500 (Tue, 04 Nov 2025)
EndedAt: 2025-11-04 23:04:10 -0500 (Tue, 04 Nov 2025)
EllapsedTime: 563.7 seconds
RetCode: 0
Status:   OK  
CheckDir: DNEA.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD check --install=check:DNEA.install-out.txt --library=/home/biocbuild/bbs-3.23-bioc/R/site-library --timings DNEA_1.1.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.23-bioc/meat/DNEA.Rcheck’
* using R Under development (unstable) (2025-10-20 r88955)
* using platform: x86_64-pc-linux-gnu
* R was compiled by
    gcc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
    GNU Fortran (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0
* running under: Ubuntu 24.04.3 LTS
* using session charset: UTF-8
* checking for file ‘DNEA/DESCRIPTION’ ... OK
* this is package ‘DNEA’ version ‘1.1.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... INFO
Package which this enhances but not available for checking: ‘massdataset’
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘DNEA’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... NOTE
Problems with news in ‘NEWS.md’:
  Cannot extract version info from the following section titles:
    DNEA v.0.99.12
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  BICtune-methods.Rd: BiocParallel
  adjacencyGraph-methods.Rd: igraph
  clusterNet.Rd: igraph
  consensusClusteringResults-class.Rd: igraph
  getNetworks.Rd: BiocParallel
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                     user system elapsed
stabilitySelection 19.769  3.627  12.193
BICtune-methods    19.954  2.422  10.911
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 2 NOTEs
See
  ‘/home/biocbuild/bbs-3.23-bioc/meat/DNEA.Rcheck/00check.log’
for details.


Installation output

DNEA.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.23-bioc/R/bin/R CMD INSTALL DNEA
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.23-bioc/R/site-library’
* installing *source* package ‘DNEA’ ...
** this is package ‘DNEA’ version ‘1.1.0’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (DNEA)

Tests output

DNEA.Rcheck/tests/testthat.Rout


R Under development (unstable) (2025-10-20 r88955) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/testing-design.html#sec-tests-files-overview
> # * https://testthat.r-lib.org/articles/special-files.html
> 
> library(testthat)
> library(DNEA)
> 
> test_check("DNEA")
Optimizing the lambda hyperparameter using Bayesian-Information Criterion outlined in Guo et al. (2011)
A Link to this reference can be found in the function documentation by running ?BICtune() in the console.
The log_scaled_data expression data will be used for analysis.

Provided lambda values will be used for optimization...
Optimizing the lambda hyperparameter using Bayesian-Information Criterion outlined in Guo et al. (2011)
A Link to this reference can be found in the function documentation by running ?BICtune() in the console.
The log_scaled_data expression data will be used for analysis.

Provided lambda values will be used for optimization...
The raw peak intensity data was used for aggregation
The aggregated log-scaled data is in the @assay slot
(The orginal DNEA object can be found in the @original_experiment slot)
Data has been normalized for further analysis. New data can be found in the log_scaled_data assay!
Data diagnostics was performed on log_scaled_data assay. To check a different assay, please specify the assay parameter.
Diagnostic criteria are as follows: 
DNEAinputSummary
  Number of Samples  -  322
  Number of Features  -  83
               min_eigen condition_num
all_data    9.870990e-02  7.028033e+01
DM:control  8.577548e-02  8.229973e+01
DM:case    -2.833480e-15  6.999910e+17
The log_scaled_data expression data will be used for analysis.
The log_scaled_data expression data will be used for analysis.
The log_scaled_data expression data will be used for analysis.
The log_scaled_data expression data will be used for analysis.
Optimizing the lambda hyperparameter using Bayesian-Information Criterion outlined in Guo et al. (2011)
A Link to this reference can be found in the function documentation by running ?BICtune() in the console
NOTE: if your dataset contains fewer than ~500 samples per experimental condition, consider setting  "aprox=TRUE". This will provide more reliable results

TUNING LAMBDA FOR DM:control!:
--------------------------------------------------

Estimating optimal c constant range for asymptotic lambda...
Fine-tuning Lambda...
The optimal Lambda hyper-parameter has been set to: 0.0199548849358947!

TUNING LAMBDA FOR DM:case!:
--------------------------------------------------

Estimating optimal c constant range for asymptotic lambda...
Fine-tuning Lambda...
The optimal Lambda hyper-parameter has been set to: 0.0495095483188967!
selection_probabilites from stability selection will be used in glasso model!

Estimating model for DM:control...using 0.0199548849358947 for lambda...
model estimated!

Estimating model for DM:case...using 0.0495095483188967 for lambda...
model estimated!

DM:control network specific edges: 463
DM:case network specific edges: 423
-----------------------------------
Number of edges shared by both networks: 434
Total number of edges in dataset: 1320
The log_scaled_data expression data will be used for analysis.
Optimizing the lambda hyperparameter using Bayesian-Information Criterion outlined in Guo et al. (2011)
A Link to this reference can be found in the function documentation by running ?BICtune() in the console
NOTE: if your dataset contains fewer than ~500 samples per experimental condition, consider setting  "aprox=TRUE". This will provide more reliable results

TUNING LAMBDA FOR DM:control!:
--------------------------------------------------

Estimating optimal c constant range for asymptotic lambda...
Fine-tuning Lambda...
The optimal Lambda hyper-parameter has been set to: 0.0199548849358947!

TUNING LAMBDA FOR DM:case!:
--------------------------------------------------

Estimating optimal c constant range for asymptotic lambda...
Fine-tuning Lambda...
The optimal Lambda hyper-parameter has been set to: 0.0495095483188967!
selection_probabilites from stability selection will be used in glasso model!

Estimating model for DM:control...using 0.0199548849358947 for lambda...
model estimated!

Estimating model for DM:case...using 0.0495095483188967 for lambda...
model estimated!

DM:control network specific edges: 463
DM:case network specific edges: 423
-----------------------------------
Number of edges shared by both networks: 434
Total number of edges in dataset: 1320
The log_input_data expression data will be used for analysis.
The log_input_data expression data will be used for analysis.
Vectors to compare are not the same length!
Vectors to compare are not the same length!
DM:control network specific edges: 11
DM:case network specific edges: 7
-----------------------------------
Number of edges shared by both networks: 10
Total number of edges in dataset: 28
DM:control network specific edges: 11
DM:case network specific edges: 7
-----------------------------------
Number of edges shared by both networks: 10
Total number of edges in dataset: 28
[ FAIL 0 | WARN 1 | SKIP 0 | PASS 53 ]

[ FAIL 0 | WARN 1 | SKIP 0 | PASS 53 ]
> 
> proc.time()
   user  system elapsed 
517.075  20.811 236.624 

Example timings

DNEA.Rcheck/DNEA-Ex.timings

nameusersystemelapsed
BICscores-methods0.1760.0290.205
BICtune-methods19.954 2.42210.911
CCsummary-methods0.1850.0040.189
DNEA-class0.9130.0590.971
DNEAinputSummary-class0.8960.0730.969
addExpressionData0.9760.1151.092
adjacencyGraph-methods0.1710.0080.179
adjacencyMatrix-methods0.2240.2290.453
aggregateFeatures2.2420.0332.275
clusterNet3.4120.2263.638
collapsed_DNEA-class2.2580.1042.362
createDNEAobject0.9100.0440.954
datasetSummary-methods0.8920.0130.906
diagnostics-methods0.9270.0410.968
edgeList-methods0.1730.0000.172
expressionData-methods1.1550.9152.071
featureNames-methods0.9210.0170.938
filterNetworks-methods0.2200.0020.221
getNetworkFiles0.1660.0020.167
getNetworks0.3800.0120.392
includeMetadata0.9100.0220.932
lambdas2Test-methods0.9000.0210.921
massDataset2DNEA0.0520.0040.055
metaData-methods0.9250.0280.953
netGSAresults-methods0.1800.0060.186
networkGroupIDs-methods0.9040.0090.913
networkGroups-methods0.9390.0040.943
nodeList-methods0.9070.0260.933
numFeatures-methods0.8970.0120.909
numSamples-methods0.9630.0491.011
optimizedLambda-methods0.8970.0120.911
plotNetworks0.2780.0060.284
projectName-methods0.9050.0070.911
runNetGSA2.3270.0422.369
sampleNames-methods0.9130.0210.934
selectionProbabilities-methods0.2490.2050.453
selectionResults-methods0.2610.2000.460
stabilitySelection19.769 3.62712.193
subnetworkMembership-methods1.3590.7470.208
sumExp2DNEA2.4390.2022.641