Back to Multiple platform build/check report for BioC 3.22:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-11-20 12:05 -0500 (Thu, 20 Nov 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo2Linux (Ubuntu 24.04.3 LTS)x86_644.5.2 (2025-10-31) -- "[Not] Part in a Rumble" 4615
merida1macOS 12.7.6 Montereyx86_644.5.2 Patched (2025-11-05 r88990) -- "[Not] Part in a Rumble" 4610
kjohnson1macOS 13.7.5 Venturaarm644.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble" 4598
taishanLinux (openEuler 24.03 LTS)aarch644.5.0 (2025-04-11) -- "How About a Twenty-Six" 4668
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 257/2361HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.74.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-11-17 13:45 -0500 (Mon, 17 Nov 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_22
git_last_commit: d2ce144
git_last_commit_date: 2025-10-29 09:58:55 -0500 (Wed, 29 Oct 2025)
nebbiolo2Linux (Ubuntu 24.04.3 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
merida1macOS 12.7.6 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson1macOS 13.7.5 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
taishanLinux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on kjohnson1

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.74.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.74.0.tar.gz
StartedAt: 2025-11-18 03:27:18 -0500 (Tue, 18 Nov 2025)
EndedAt: 2025-11-18 03:27:38 -0500 (Tue, 18 Nov 2025)
EllapsedTime: 20.2 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.74.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.2 Patched (2025-11-04 r88984)
* using platform: aarch64-apple-darwin20
* R was compiled by
    Apple clang version 16.0.0 (clang-1600.0.26.6)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Ventura 13.7.8
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.74.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’
* used SDK: ‘MacOSX11.3.1.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.74.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 15.0.0 (clang-1500.0.40.1)’
using SDK: ‘MacOSX11.3.1.sdk’
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch arm64 -std=gnu2x -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/arm64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch arm64 -std=gnu2x -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/arm64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.125   0.041   0.178 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480695 25.7    1056222 56.5         NA   634382 33.9
Vcells 890561  6.8    8388608 64.0      65536  2109354 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Nov 18 03:27:28 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Nov 18 03:27:28 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x6000023ac060>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Tue Nov 18 03:27:29 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Tue Nov 18 03:27:30 2025"
> 
> ColMode(tmp2)
<pointer: 0x6000023ac060>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
           [,1]       [,2]       [,3]       [,4]
[1,] 98.6669564  0.8070602 0.44642797 -0.3588797
[2,] -0.7054420 -0.3477885 0.74820135 -0.1000222
[3,] -0.9139560 -0.6228093 0.77573660 -0.2024172
[4,] -0.7929975  0.6085014 0.07818589  0.8566882
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
           [,1]      [,2]       [,3]      [,4]
[1,] 98.6669564 0.8070602 0.44642797 0.3588797
[2,]  0.7054420 0.3477885 0.74820135 0.1000222
[3,]  0.9139560 0.6228093 0.77573660 0.2024172
[4,]  0.7929975 0.6085014 0.07818589 0.8566882
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 9.9331242 0.8983653 0.6681527 0.5990657
[2,] 0.8399059 0.5897360 0.8649863 0.3162628
[3,] 0.9560105 0.7891827 0.8807591 0.4499080
[4,] 0.8905041 0.7800650 0.2796174 0.9255745
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 222.99820 34.79071 32.12795 31.34954
[2,]  34.10450 31.24515 34.39806 28.26265
[3,]  35.47406 33.51464 34.58333 29.70150
[4,]  34.69804 33.40915 27.87436 35.11243
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x6000023b4000>
> exp(tmp5)
<pointer: 0x6000023b4000>
> log(tmp5,2)
<pointer: 0x6000023b4000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 464.1415
> Min(tmp5)
[1] 52.34023
> mean(tmp5)
[1] 72.3439
> Sum(tmp5)
[1] 14468.78
> Var(tmp5)
[1] 850.1413
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.94179 70.47971 73.52806 68.51543 70.39865 71.66224 70.58417 67.78250
 [9] 69.40237 71.14410
> rowSums(tmp5)
 [1] 1798.836 1409.594 1470.561 1370.309 1407.973 1433.245 1411.683 1355.650
 [9] 1388.047 1422.882
> rowVars(tmp5)
 [1] 7804.68947   56.84830  116.10016   46.58812   97.50355   77.99555
 [7]   34.62772  111.90388   93.48494   77.56514
> rowSd(tmp5)
 [1] 88.344154  7.539781 10.774979  6.825549  9.874388  8.831509  5.884532
 [8] 10.578463  9.668761  8.807107
> rowMax(tmp5)
 [1] 464.14153  86.33020  90.67908  81.40216  87.75559  84.93703  80.78917
 [8]  89.62738  86.14846  90.22464
> rowMin(tmp5)
 [1] 61.42559 58.82500 52.34023 56.36170 53.44591 53.00572 59.00963 53.81128
 [9] 53.19806 59.64815
> 
> colMeans(tmp5)
 [1] 112.48083  69.49083  67.14905  65.23448  72.23467  66.32148  72.66087
 [8]  68.77689  71.31267  67.67448  73.87356  68.13583  73.37796  73.95120
[15]  71.65618  70.04703  75.13170  69.40443  71.42003  66.54388
> colSums(tmp5)
 [1] 1124.8083  694.9083  671.4905  652.3448  722.3467  663.2148  726.6087
 [8]  687.7689  713.1267  676.7448  738.7356  681.3583  733.7796  739.5120
[15]  716.5618  700.4703  751.3170  694.0443  714.2003  665.4388
> colVars(tmp5)
 [1] 15315.54052    28.09863    85.66817    40.37905    34.88769    62.69232
 [7]    82.07853   111.41747    82.92280    57.80565    71.02245    90.80099
[13]   117.89268    26.48406   124.03323    55.32896   117.15130    89.99344
[19]    85.12793    63.83036
> colSd(tmp5)
 [1] 123.755972   5.300814   9.255710   6.354452   5.906580   7.917848
 [7]   9.059720  10.555448   9.106195   7.603002   8.427482   9.528955
[13]  10.857840   5.146266  11.137021   7.438344  10.823645   9.486487
[19]   9.226480   7.989390
> colMax(tmp5)
 [1] 464.14153  76.72649  85.37012  73.85804  86.14846  80.78917  85.22378
 [8]  89.83984  88.76466  81.07992  86.73305  83.54004  90.22464  80.66803
[15]  85.54825  81.75911  90.67908  82.77927  89.62738  81.43369
> colMin(tmp5)
 [1] 60.41554 60.60089 53.19806 54.87203 65.28659 53.81128 53.82548 60.27459
 [9] 60.43701 56.36170 58.86607 53.44591 59.21560 67.02373 52.34023 56.85356
[17] 63.59649 53.00572 61.07205 57.11111
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 89.94179 70.47971 73.52806 68.51543 70.39865 71.66224 70.58417 67.78250
 [9]       NA 71.14410
> rowSums(tmp5)
 [1] 1798.836 1409.594 1470.561 1370.309 1407.973 1433.245 1411.683 1355.650
 [9]       NA 1422.882
> rowVars(tmp5)
 [1] 7804.68947   56.84830  116.10016   46.58812   97.50355   77.99555
 [7]   34.62772  111.90388   92.61011   77.56514
> rowSd(tmp5)
 [1] 88.344154  7.539781 10.774979  6.825549  9.874388  8.831509  5.884532
 [8] 10.578463  9.623415  8.807107
> rowMax(tmp5)
 [1] 464.14153  86.33020  90.67908  81.40216  87.75559  84.93703  80.78917
 [8]  89.62738        NA  90.22464
> rowMin(tmp5)
 [1] 61.42559 58.82500 52.34023 56.36170 53.44591 53.00572 59.00963 53.81128
 [9]       NA 59.64815
> 
> colMeans(tmp5)
 [1] 112.48083  69.49083  67.14905  65.23448  72.23467  66.32148  72.66087
 [8]  68.77689  71.31267  67.67448  73.87356  68.13583        NA  73.95120
[15]  71.65618  70.04703  75.13170  69.40443  71.42003  66.54388
> colSums(tmp5)
 [1] 1124.8083  694.9083  671.4905  652.3448  722.3467  663.2148  726.6087
 [8]  687.7689  713.1267  676.7448  738.7356  681.3583        NA  739.5120
[15]  716.5618  700.4703  751.3170  694.0443  714.2003  665.4388
> colVars(tmp5)
 [1] 15315.54052    28.09863    85.66817    40.37905    34.88769    62.69232
 [7]    82.07853   111.41747    82.92280    57.80565    71.02245    90.80099
[13]          NA    26.48406   124.03323    55.32896   117.15130    89.99344
[19]    85.12793    63.83036
> colSd(tmp5)
 [1] 123.755972   5.300814   9.255710   6.354452   5.906580   7.917848
 [7]   9.059720  10.555448   9.106195   7.603002   8.427482   9.528955
[13]         NA   5.146266  11.137021   7.438344  10.823645   9.486487
[19]   9.226480   7.989390
> colMax(tmp5)
 [1] 464.14153  76.72649  85.37012  73.85804  86.14846  80.78917  85.22378
 [8]  89.83984  88.76466  81.07992  86.73305  83.54004        NA  80.66803
[15]  85.54825  81.75911  90.67908  82.77927  89.62738  81.43369
> colMin(tmp5)
 [1] 60.41554 60.60089 53.19806 54.87203 65.28659 53.81128 53.82548 60.27459
 [9] 60.43701 56.36170 58.86607 53.44591       NA 67.02373 52.34023 56.85356
[17] 63.59649 53.00572 61.07205 57.11111
> 
> Max(tmp5,na.rm=TRUE)
[1] 464.1415
> Min(tmp5,na.rm=TRUE)
[1] 52.34023
> mean(tmp5,na.rm=TRUE)
[1] 72.40987
> Sum(tmp5,na.rm=TRUE)
[1] 14409.56
> Var(tmp5,na.rm=TRUE)
[1] 853.5601
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.94179 70.47971 73.52806 68.51543 70.39865 71.66224 70.58417 67.78250
 [9] 69.93852 71.14410
> rowSums(tmp5,na.rm=TRUE)
 [1] 1798.836 1409.594 1470.561 1370.309 1407.973 1433.245 1411.683 1355.650
 [9] 1328.832 1422.882
> rowVars(tmp5,na.rm=TRUE)
 [1] 7804.68947   56.84830  116.10016   46.58812   97.50355   77.99555
 [7]   34.62772  111.90388   92.61011   77.56514
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.344154  7.539781 10.774979  6.825549  9.874388  8.831509  5.884532
 [8] 10.578463  9.623415  8.807107
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.14153  86.33020  90.67908  81.40216  87.75559  84.93703  80.78917
 [8]  89.62738  86.14846  90.22464
> rowMin(tmp5,na.rm=TRUE)
 [1] 61.42559 58.82500 52.34023 56.36170 53.44591 53.00572 59.00963 53.81128
 [9] 53.19806 59.64815
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 112.48083  69.49083  67.14905  65.23448  72.23467  66.32148  72.66087
 [8]  68.77689  71.31267  67.67448  73.87356  68.13583  74.95156  73.95120
[15]  71.65618  70.04703  75.13170  69.40443  71.42003  66.54388
> colSums(tmp5,na.rm=TRUE)
 [1] 1124.8083  694.9083  671.4905  652.3448  722.3467  663.2148  726.6087
 [8]  687.7689  713.1267  676.7448  738.7356  681.3583  674.5640  739.5120
[15]  716.5618  700.4703  751.3170  694.0443  714.2003  665.4388
> colVars(tmp5,na.rm=TRUE)
 [1] 15315.54052    28.09863    85.66817    40.37905    34.88769    62.69232
 [7]    82.07853   111.41747    82.92280    57.80565    71.02245    90.80099
[13]   104.77199    26.48406   124.03323    55.32896   117.15130    89.99344
[19]    85.12793    63.83036
> colSd(tmp5,na.rm=TRUE)
 [1] 123.755972   5.300814   9.255710   6.354452   5.906580   7.917848
 [7]   9.059720  10.555448   9.106195   7.603002   8.427482   9.528955
[13]  10.235819   5.146266  11.137021   7.438344  10.823645   9.486487
[19]   9.226480   7.989390
> colMax(tmp5,na.rm=TRUE)
 [1] 464.14153  76.72649  85.37012  73.85804  86.14846  80.78917  85.22378
 [8]  89.83984  88.76466  81.07992  86.73305  83.54004  90.22464  80.66803
[15]  85.54825  81.75911  90.67908  82.77927  89.62738  81.43369
> colMin(tmp5,na.rm=TRUE)
 [1] 60.41554 60.60089 53.19806 54.87203 65.28659 53.81128 53.82548 60.27459
 [9] 60.43701 56.36170 58.86607 53.44591 60.12042 67.02373 52.34023 56.85356
[17] 63.59649 53.00572 61.07205 57.11111
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.94179 70.47971 73.52806 68.51543 70.39865 71.66224 70.58417 67.78250
 [9]      NaN 71.14410
> rowSums(tmp5,na.rm=TRUE)
 [1] 1798.836 1409.594 1470.561 1370.309 1407.973 1433.245 1411.683 1355.650
 [9]    0.000 1422.882
> rowVars(tmp5,na.rm=TRUE)
 [1] 7804.68947   56.84830  116.10016   46.58812   97.50355   77.99555
 [7]   34.62772  111.90388         NA   77.56514
> rowSd(tmp5,na.rm=TRUE)
 [1] 88.344154  7.539781 10.774979  6.825549  9.874388  8.831509  5.884532
 [8] 10.578463        NA  8.807107
> rowMax(tmp5,na.rm=TRUE)
 [1] 464.14153  86.33020  90.67908  81.40216  87.75559  84.93703  80.78917
 [8]  89.62738        NA  90.22464
> rowMin(tmp5,na.rm=TRUE)
 [1] 61.42559 58.82500 52.34023 56.36170 53.44591 53.00572 59.00963 53.81128
 [9]       NA 59.64815
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 117.05989  69.53081  68.69915  64.39820  70.68869  66.10697  72.70709
 [8]  69.34576  70.76652  67.44077  74.23874  69.37044       NaN  73.20659
[15]  70.11261  71.51297  76.23318  69.18589  70.26697  67.59197
> colSums(tmp5,na.rm=TRUE)
 [1] 1053.5390  625.7773  618.2924  579.5838  636.1983  594.9627  654.3638
 [8]  624.1118  636.8987  606.9669  668.1487  624.3340    0.0000  658.8593
[15]  631.0135  643.6167  686.0987  622.6730  632.4027  608.3277
> colVars(tmp5,na.rm=TRUE)
 [1] 16994.09537    31.59297    69.34476    37.55850    12.36066    70.01117
 [7]    92.31431   121.70408    89.93253    64.41688    78.39997    85.00310
[13]          NA    23.55714   112.73325    38.06901   118.14585   100.70531
[19]    80.81134    59.45120
> colSd(tmp5,na.rm=TRUE)
 [1] 130.361403   5.620763   8.327350   6.128499   3.515773   8.367268
 [7]   9.608034  11.031957   9.483276   8.026013   8.854376   9.219713
[13]         NA   4.853569  10.617592   6.170009  10.869492  10.035203
[19]   8.989513   7.710461
> colMax(tmp5,na.rm=TRUE)
 [1] 464.14153  76.72649  85.37012  73.85804  74.95977  80.78917  85.22378
 [8]  89.83984  88.76466  81.07992  86.73305  83.54004      -Inf  80.66803
[15]  84.08776  81.75911  90.67908  82.77927  89.62738  81.43369
> colMin(tmp5,na.rm=TRUE)
 [1] 60.41554 60.60089 58.01683 54.87203 65.28659 53.81128 53.82548 60.27459
 [9] 60.43701 56.36170 58.86607 53.44591      Inf 67.02373 52.34023 63.88541
[17] 63.59649 53.00572 61.07205 59.00963
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 303.6835 267.1297 180.0233 238.9500 156.9376 229.6712 266.0592 180.7358
 [9] 211.7822 177.7093
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 303.6835 267.1297 180.0233 238.9500 156.9376 229.6712 266.0592 180.7358
 [9] 211.7822 177.7093
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1] -1.563194e-13  1.705303e-13  1.421085e-13 -8.526513e-14  1.421085e-14
 [6]  1.705303e-13 -1.136868e-13  1.136868e-13 -2.842171e-13  1.705303e-13
[11]  1.136868e-13 -1.136868e-13 -9.947598e-14 -1.421085e-13 -5.684342e-14
[16]  0.000000e+00  0.000000e+00  2.273737e-13  5.684342e-14  5.684342e-14
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
3   2 
9   20 
10   13 
2   6 
8   7 
4   8 
8   3 
9   10 
9   8 
3   4 
8   15 
7   15 
2   20 
10   10 
4   1 
6   4 
10   8 
7   7 
6   9 
2   18 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 2.598493
> Min(tmp)
[1] -2.338456
> mean(tmp)
[1] -0.0247314
> Sum(tmp)
[1] -2.47314
> Var(tmp)
[1] 1.045411
> 
> rowMeans(tmp)
[1] -0.0247314
> rowSums(tmp)
[1] -2.47314
> rowVars(tmp)
[1] 1.045411
> rowSd(tmp)
[1] 1.022454
> rowMax(tmp)
[1] 2.598493
> rowMin(tmp)
[1] -2.338456
> 
> colMeans(tmp)
  [1] -0.07581973 -0.76120447  0.48575799 -0.39226535  0.23330314  0.75450024
  [7] -0.21851113 -0.13914656 -0.42652929  0.22420503  0.14298615 -0.05090905
 [13] -1.17151152 -0.13311718  2.27547237 -0.02271889 -0.47192461 -0.55645514
 [19] -0.59157996 -0.85931497  0.31045621  0.87864651  0.77593241  0.49606138
 [25] -1.29350730 -1.88598969 -0.46880617 -0.47767091 -0.25071500 -1.17748828
 [31]  1.54572755 -0.08276629  0.08111508  0.87587420 -0.23464452  1.16787638
 [37]  1.06244082 -0.59949338  1.06490897  2.12495002 -0.32751817  0.24441361
 [43] -1.10931475  1.53286005 -0.17520818  0.58878205 -0.98820041  0.40956377
 [49] -0.91377854 -0.18351445 -0.23262882  0.00828949  0.53692184 -0.24274410
 [55] -0.21724343 -0.44922154  2.59849320  0.81470116  1.51678341 -0.63643280
 [61] -0.21847749 -1.18879288 -1.44372053 -1.66963369 -0.71940082 -2.03352928
 [67] -0.48353411  1.11351160  0.64121637 -1.01941156  0.05101326  0.21969690
 [73]  0.15841979  0.32676230 -1.74210292 -0.04259030 -0.01285365 -2.33845611
 [79]  0.64152575  0.57510033  1.85345689  0.85976656  2.30446379 -0.45480503
 [85]  2.18654339  0.23593024 -1.45018951 -0.05014092  0.73212405 -1.27369486
 [91] -0.67519765 -2.29363957 -0.36368033 -0.10629991 -0.47967249 -0.65011746
 [97] -1.88037107  1.21552784  0.74507972  1.32390507
> colSums(tmp)
  [1] -0.07581973 -0.76120447  0.48575799 -0.39226535  0.23330314  0.75450024
  [7] -0.21851113 -0.13914656 -0.42652929  0.22420503  0.14298615 -0.05090905
 [13] -1.17151152 -0.13311718  2.27547237 -0.02271889 -0.47192461 -0.55645514
 [19] -0.59157996 -0.85931497  0.31045621  0.87864651  0.77593241  0.49606138
 [25] -1.29350730 -1.88598969 -0.46880617 -0.47767091 -0.25071500 -1.17748828
 [31]  1.54572755 -0.08276629  0.08111508  0.87587420 -0.23464452  1.16787638
 [37]  1.06244082 -0.59949338  1.06490897  2.12495002 -0.32751817  0.24441361
 [43] -1.10931475  1.53286005 -0.17520818  0.58878205 -0.98820041  0.40956377
 [49] -0.91377854 -0.18351445 -0.23262882  0.00828949  0.53692184 -0.24274410
 [55] -0.21724343 -0.44922154  2.59849320  0.81470116  1.51678341 -0.63643280
 [61] -0.21847749 -1.18879288 -1.44372053 -1.66963369 -0.71940082 -2.03352928
 [67] -0.48353411  1.11351160  0.64121637 -1.01941156  0.05101326  0.21969690
 [73]  0.15841979  0.32676230 -1.74210292 -0.04259030 -0.01285365 -2.33845611
 [79]  0.64152575  0.57510033  1.85345689  0.85976656  2.30446379 -0.45480503
 [85]  2.18654339  0.23593024 -1.45018951 -0.05014092  0.73212405 -1.27369486
 [91] -0.67519765 -2.29363957 -0.36368033 -0.10629991 -0.47967249 -0.65011746
 [97] -1.88037107  1.21552784  0.74507972  1.32390507
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1] -0.07581973 -0.76120447  0.48575799 -0.39226535  0.23330314  0.75450024
  [7] -0.21851113 -0.13914656 -0.42652929  0.22420503  0.14298615 -0.05090905
 [13] -1.17151152 -0.13311718  2.27547237 -0.02271889 -0.47192461 -0.55645514
 [19] -0.59157996 -0.85931497  0.31045621  0.87864651  0.77593241  0.49606138
 [25] -1.29350730 -1.88598969 -0.46880617 -0.47767091 -0.25071500 -1.17748828
 [31]  1.54572755 -0.08276629  0.08111508  0.87587420 -0.23464452  1.16787638
 [37]  1.06244082 -0.59949338  1.06490897  2.12495002 -0.32751817  0.24441361
 [43] -1.10931475  1.53286005 -0.17520818  0.58878205 -0.98820041  0.40956377
 [49] -0.91377854 -0.18351445 -0.23262882  0.00828949  0.53692184 -0.24274410
 [55] -0.21724343 -0.44922154  2.59849320  0.81470116  1.51678341 -0.63643280
 [61] -0.21847749 -1.18879288 -1.44372053 -1.66963369 -0.71940082 -2.03352928
 [67] -0.48353411  1.11351160  0.64121637 -1.01941156  0.05101326  0.21969690
 [73]  0.15841979  0.32676230 -1.74210292 -0.04259030 -0.01285365 -2.33845611
 [79]  0.64152575  0.57510033  1.85345689  0.85976656  2.30446379 -0.45480503
 [85]  2.18654339  0.23593024 -1.45018951 -0.05014092  0.73212405 -1.27369486
 [91] -0.67519765 -2.29363957 -0.36368033 -0.10629991 -0.47967249 -0.65011746
 [97] -1.88037107  1.21552784  0.74507972  1.32390507
> colMin(tmp)
  [1] -0.07581973 -0.76120447  0.48575799 -0.39226535  0.23330314  0.75450024
  [7] -0.21851113 -0.13914656 -0.42652929  0.22420503  0.14298615 -0.05090905
 [13] -1.17151152 -0.13311718  2.27547237 -0.02271889 -0.47192461 -0.55645514
 [19] -0.59157996 -0.85931497  0.31045621  0.87864651  0.77593241  0.49606138
 [25] -1.29350730 -1.88598969 -0.46880617 -0.47767091 -0.25071500 -1.17748828
 [31]  1.54572755 -0.08276629  0.08111508  0.87587420 -0.23464452  1.16787638
 [37]  1.06244082 -0.59949338  1.06490897  2.12495002 -0.32751817  0.24441361
 [43] -1.10931475  1.53286005 -0.17520818  0.58878205 -0.98820041  0.40956377
 [49] -0.91377854 -0.18351445 -0.23262882  0.00828949  0.53692184 -0.24274410
 [55] -0.21724343 -0.44922154  2.59849320  0.81470116  1.51678341 -0.63643280
 [61] -0.21847749 -1.18879288 -1.44372053 -1.66963369 -0.71940082 -2.03352928
 [67] -0.48353411  1.11351160  0.64121637 -1.01941156  0.05101326  0.21969690
 [73]  0.15841979  0.32676230 -1.74210292 -0.04259030 -0.01285365 -2.33845611
 [79]  0.64152575  0.57510033  1.85345689  0.85976656  2.30446379 -0.45480503
 [85]  2.18654339  0.23593024 -1.45018951 -0.05014092  0.73212405 -1.27369486
 [91] -0.67519765 -2.29363957 -0.36368033 -0.10629991 -0.47967249 -0.65011746
 [97] -1.88037107  1.21552784  0.74507972  1.32390507
> colMedians(tmp)
  [1] -0.07581973 -0.76120447  0.48575799 -0.39226535  0.23330314  0.75450024
  [7] -0.21851113 -0.13914656 -0.42652929  0.22420503  0.14298615 -0.05090905
 [13] -1.17151152 -0.13311718  2.27547237 -0.02271889 -0.47192461 -0.55645514
 [19] -0.59157996 -0.85931497  0.31045621  0.87864651  0.77593241  0.49606138
 [25] -1.29350730 -1.88598969 -0.46880617 -0.47767091 -0.25071500 -1.17748828
 [31]  1.54572755 -0.08276629  0.08111508  0.87587420 -0.23464452  1.16787638
 [37]  1.06244082 -0.59949338  1.06490897  2.12495002 -0.32751817  0.24441361
 [43] -1.10931475  1.53286005 -0.17520818  0.58878205 -0.98820041  0.40956377
 [49] -0.91377854 -0.18351445 -0.23262882  0.00828949  0.53692184 -0.24274410
 [55] -0.21724343 -0.44922154  2.59849320  0.81470116  1.51678341 -0.63643280
 [61] -0.21847749 -1.18879288 -1.44372053 -1.66963369 -0.71940082 -2.03352928
 [67] -0.48353411  1.11351160  0.64121637 -1.01941156  0.05101326  0.21969690
 [73]  0.15841979  0.32676230 -1.74210292 -0.04259030 -0.01285365 -2.33845611
 [79]  0.64152575  0.57510033  1.85345689  0.85976656  2.30446379 -0.45480503
 [85]  2.18654339  0.23593024 -1.45018951 -0.05014092  0.73212405 -1.27369486
 [91] -0.67519765 -2.29363957 -0.36368033 -0.10629991 -0.47967249 -0.65011746
 [97] -1.88037107  1.21552784  0.74507972  1.32390507
> colRanges(tmp)
            [,1]       [,2]     [,3]       [,4]      [,5]      [,6]       [,7]
[1,] -0.07581973 -0.7612045 0.485758 -0.3922653 0.2333031 0.7545002 -0.2185111
[2,] -0.07581973 -0.7612045 0.485758 -0.3922653 0.2333031 0.7545002 -0.2185111
           [,8]       [,9]    [,10]     [,11]       [,12]     [,13]      [,14]
[1,] -0.1391466 -0.4265293 0.224205 0.1429862 -0.05090905 -1.171512 -0.1331172
[2,] -0.1391466 -0.4265293 0.224205 0.1429862 -0.05090905 -1.171512 -0.1331172
        [,15]       [,16]      [,17]      [,18]    [,19]     [,20]     [,21]
[1,] 2.275472 -0.02271889 -0.4719246 -0.5564551 -0.59158 -0.859315 0.3104562
[2,] 2.275472 -0.02271889 -0.4719246 -0.5564551 -0.59158 -0.859315 0.3104562
         [,22]     [,23]     [,24]     [,25]    [,26]      [,27]      [,28]
[1,] 0.8786465 0.7759324 0.4960614 -1.293507 -1.88599 -0.4688062 -0.4776709
[2,] 0.8786465 0.7759324 0.4960614 -1.293507 -1.88599 -0.4688062 -0.4776709
         [,29]     [,30]    [,31]       [,32]      [,33]     [,34]      [,35]
[1,] -0.250715 -1.177488 1.545728 -0.08276629 0.08111508 0.8758742 -0.2346445
[2,] -0.250715 -1.177488 1.545728 -0.08276629 0.08111508 0.8758742 -0.2346445
        [,36]    [,37]      [,38]    [,39]   [,40]      [,41]     [,42]
[1,] 1.167876 1.062441 -0.5994934 1.064909 2.12495 -0.3275182 0.2444136
[2,] 1.167876 1.062441 -0.5994934 1.064909 2.12495 -0.3275182 0.2444136
         [,43]   [,44]      [,45]    [,46]      [,47]     [,48]      [,49]
[1,] -1.109315 1.53286 -0.1752082 0.588782 -0.9882004 0.4095638 -0.9137785
[2,] -1.109315 1.53286 -0.1752082 0.588782 -0.9882004 0.4095638 -0.9137785
          [,50]      [,51]      [,52]     [,53]      [,54]      [,55]
[1,] -0.1835145 -0.2326288 0.00828949 0.5369218 -0.2427441 -0.2172434
[2,] -0.1835145 -0.2326288 0.00828949 0.5369218 -0.2427441 -0.2172434
          [,56]    [,57]     [,58]    [,59]      [,60]      [,61]     [,62]
[1,] -0.4492215 2.598493 0.8147012 1.516783 -0.6364328 -0.2184775 -1.188793
[2,] -0.4492215 2.598493 0.8147012 1.516783 -0.6364328 -0.2184775 -1.188793
         [,63]     [,64]      [,65]     [,66]      [,67]    [,68]     [,69]
[1,] -1.443721 -1.669634 -0.7194008 -2.033529 -0.4835341 1.113512 0.6412164
[2,] -1.443721 -1.669634 -0.7194008 -2.033529 -0.4835341 1.113512 0.6412164
         [,70]      [,71]     [,72]     [,73]     [,74]     [,75]      [,76]
[1,] -1.019412 0.05101326 0.2196969 0.1584198 0.3267623 -1.742103 -0.0425903
[2,] -1.019412 0.05101326 0.2196969 0.1584198 0.3267623 -1.742103 -0.0425903
           [,77]     [,78]     [,79]     [,80]    [,81]     [,82]    [,83]
[1,] -0.01285365 -2.338456 0.6415258 0.5751003 1.853457 0.8597666 2.304464
[2,] -0.01285365 -2.338456 0.6415258 0.5751003 1.853457 0.8597666 2.304464
         [,84]    [,85]     [,86]    [,87]       [,88]     [,89]     [,90]
[1,] -0.454805 2.186543 0.2359302 -1.45019 -0.05014092 0.7321241 -1.273695
[2,] -0.454805 2.186543 0.2359302 -1.45019 -0.05014092 0.7321241 -1.273695
          [,91]    [,92]      [,93]      [,94]      [,95]      [,96]     [,97]
[1,] -0.6751977 -2.29364 -0.3636803 -0.1062999 -0.4796725 -0.6501175 -1.880371
[2,] -0.6751977 -2.29364 -0.3636803 -0.1062999 -0.4796725 -0.6501175 -1.880371
        [,98]     [,99]   [,100]
[1,] 1.215528 0.7450797 1.323905
[2,] 1.215528 0.7450797 1.323905
> 
> 
> Max(tmp2)
[1] 3.526148
> Min(tmp2)
[1] -2.434421
> mean(tmp2)
[1] 0.1542828
> Sum(tmp2)
[1] 15.42828
> Var(tmp2)
[1] 1.349175
> 
> rowMeans(tmp2)
  [1] -1.645209671 -0.068289735 -1.670251173  0.104490734 -1.506168269
  [6]  0.424503815 -0.573725056 -0.907246508  0.908270912 -1.586240801
 [11] -0.822282964  3.526148318 -1.175013620 -0.186221796 -0.606321591
 [16] -0.001948822 -1.952455928  0.567257020  1.190363694  1.402929993
 [21] -0.401070274 -0.456168375 -0.035510383 -0.843223595  0.230797943
 [26] -0.462162223  0.583213488 -1.022195388 -2.117898059 -0.185610365
 [31]  0.425856965  0.318008035 -0.169587778  0.624199185  0.753337384
 [36] -1.320372177  1.071804447 -2.434420594 -0.413611505  0.963633777
 [41] -0.650219813 -0.747502632 -1.522974998  1.702085930  0.717466621
 [46]  0.016602598  1.951124139  0.285576570  1.229835460 -0.106469856
 [51]  0.659231797 -0.669097307  2.680146413  1.110567516  1.615446418
 [56]  0.223486236  2.838654157 -0.219734712  0.744480529 -0.346898749
 [61]  1.564391537  0.330833039 -0.983891285 -0.183109153 -0.877291279
 [66] -0.731148635  1.413882290 -0.777747713  2.029707589  2.019686225
 [71]  0.503410530  0.899327114  2.174293388  0.504241761 -1.124499914
 [76]  0.019143719  2.397368685 -0.383245138  0.316896786 -0.611031460
 [81]  0.622002219  0.277944372 -1.476411530 -0.670309259 -0.819892285
 [86]  2.383380248 -0.979592063  0.589338734 -0.038770223  0.662907851
 [91]  1.290162789 -0.162584764  0.795419474  0.284700898  1.379463250
 [96]  1.465664012 -1.066452157  0.886342868  0.329233213 -0.868905652
> rowSums(tmp2)
  [1] -1.645209671 -0.068289735 -1.670251173  0.104490734 -1.506168269
  [6]  0.424503815 -0.573725056 -0.907246508  0.908270912 -1.586240801
 [11] -0.822282964  3.526148318 -1.175013620 -0.186221796 -0.606321591
 [16] -0.001948822 -1.952455928  0.567257020  1.190363694  1.402929993
 [21] -0.401070274 -0.456168375 -0.035510383 -0.843223595  0.230797943
 [26] -0.462162223  0.583213488 -1.022195388 -2.117898059 -0.185610365
 [31]  0.425856965  0.318008035 -0.169587778  0.624199185  0.753337384
 [36] -1.320372177  1.071804447 -2.434420594 -0.413611505  0.963633777
 [41] -0.650219813 -0.747502632 -1.522974998  1.702085930  0.717466621
 [46]  0.016602598  1.951124139  0.285576570  1.229835460 -0.106469856
 [51]  0.659231797 -0.669097307  2.680146413  1.110567516  1.615446418
 [56]  0.223486236  2.838654157 -0.219734712  0.744480529 -0.346898749
 [61]  1.564391537  0.330833039 -0.983891285 -0.183109153 -0.877291279
 [66] -0.731148635  1.413882290 -0.777747713  2.029707589  2.019686225
 [71]  0.503410530  0.899327114  2.174293388  0.504241761 -1.124499914
 [76]  0.019143719  2.397368685 -0.383245138  0.316896786 -0.611031460
 [81]  0.622002219  0.277944372 -1.476411530 -0.670309259 -0.819892285
 [86]  2.383380248 -0.979592063  0.589338734 -0.038770223  0.662907851
 [91]  1.290162789 -0.162584764  0.795419474  0.284700898  1.379463250
 [96]  1.465664012 -1.066452157  0.886342868  0.329233213 -0.868905652
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1] -1.645209671 -0.068289735 -1.670251173  0.104490734 -1.506168269
  [6]  0.424503815 -0.573725056 -0.907246508  0.908270912 -1.586240801
 [11] -0.822282964  3.526148318 -1.175013620 -0.186221796 -0.606321591
 [16] -0.001948822 -1.952455928  0.567257020  1.190363694  1.402929993
 [21] -0.401070274 -0.456168375 -0.035510383 -0.843223595  0.230797943
 [26] -0.462162223  0.583213488 -1.022195388 -2.117898059 -0.185610365
 [31]  0.425856965  0.318008035 -0.169587778  0.624199185  0.753337384
 [36] -1.320372177  1.071804447 -2.434420594 -0.413611505  0.963633777
 [41] -0.650219813 -0.747502632 -1.522974998  1.702085930  0.717466621
 [46]  0.016602598  1.951124139  0.285576570  1.229835460 -0.106469856
 [51]  0.659231797 -0.669097307  2.680146413  1.110567516  1.615446418
 [56]  0.223486236  2.838654157 -0.219734712  0.744480529 -0.346898749
 [61]  1.564391537  0.330833039 -0.983891285 -0.183109153 -0.877291279
 [66] -0.731148635  1.413882290 -0.777747713  2.029707589  2.019686225
 [71]  0.503410530  0.899327114  2.174293388  0.504241761 -1.124499914
 [76]  0.019143719  2.397368685 -0.383245138  0.316896786 -0.611031460
 [81]  0.622002219  0.277944372 -1.476411530 -0.670309259 -0.819892285
 [86]  2.383380248 -0.979592063  0.589338734 -0.038770223  0.662907851
 [91]  1.290162789 -0.162584764  0.795419474  0.284700898  1.379463250
 [96]  1.465664012 -1.066452157  0.886342868  0.329233213 -0.868905652
> rowMin(tmp2)
  [1] -1.645209671 -0.068289735 -1.670251173  0.104490734 -1.506168269
  [6]  0.424503815 -0.573725056 -0.907246508  0.908270912 -1.586240801
 [11] -0.822282964  3.526148318 -1.175013620 -0.186221796 -0.606321591
 [16] -0.001948822 -1.952455928  0.567257020  1.190363694  1.402929993
 [21] -0.401070274 -0.456168375 -0.035510383 -0.843223595  0.230797943
 [26] -0.462162223  0.583213488 -1.022195388 -2.117898059 -0.185610365
 [31]  0.425856965  0.318008035 -0.169587778  0.624199185  0.753337384
 [36] -1.320372177  1.071804447 -2.434420594 -0.413611505  0.963633777
 [41] -0.650219813 -0.747502632 -1.522974998  1.702085930  0.717466621
 [46]  0.016602598  1.951124139  0.285576570  1.229835460 -0.106469856
 [51]  0.659231797 -0.669097307  2.680146413  1.110567516  1.615446418
 [56]  0.223486236  2.838654157 -0.219734712  0.744480529 -0.346898749
 [61]  1.564391537  0.330833039 -0.983891285 -0.183109153 -0.877291279
 [66] -0.731148635  1.413882290 -0.777747713  2.029707589  2.019686225
 [71]  0.503410530  0.899327114  2.174293388  0.504241761 -1.124499914
 [76]  0.019143719  2.397368685 -0.383245138  0.316896786 -0.611031460
 [81]  0.622002219  0.277944372 -1.476411530 -0.670309259 -0.819892285
 [86]  2.383380248 -0.979592063  0.589338734 -0.038770223  0.662907851
 [91]  1.290162789 -0.162584764  0.795419474  0.284700898  1.379463250
 [96]  1.465664012 -1.066452157  0.886342868  0.329233213 -0.868905652
> 
> colMeans(tmp2)
[1] 0.1542828
> colSums(tmp2)
[1] 15.42828
> colVars(tmp2)
[1] 1.349175
> colSd(tmp2)
[1] 1.16154
> colMax(tmp2)
[1] 3.526148
> colMin(tmp2)
[1] -2.434421
> colMedians(tmp2)
[1] 0.06181723
> colRanges(tmp2)
          [,1]
[1,] -2.434421
[2,]  3.526148
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.2934903  2.9273759 -3.9696611 -1.4719979 -3.0953346  0.7387777
 [7] -1.4798744  6.4877916 -5.3948164 -5.9007446
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.67236268
[2,] -1.06582260
[3,] -0.07505462
[4,]  0.51236370
[5,]  2.13926308
> 
> rowApply(tmp,sum)
 [1]  0.362824 -7.521162 -4.079169 -1.098247  2.147407 -2.236392  2.600372
 [8] -1.135453 -3.189564  1.697410
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    3    3    6   10    3    3    8    9     4
 [2,]    9    7    8   10    3    5    9    6    5     6
 [3,]    7    2    6    3    5   10    2    1    3     9
 [4,]    4    6   10    1    6    6    6    3    8     2
 [5,]    8    9    1    5    8    2    7    5    1     5
 [6,]    5    4    2    4    4    9   10   10    6     7
 [7,]    3    5    5    8    9    4    1    9   10     3
 [8,]   10   10    9    9    7    8    4    4    2    10
 [9,]    2    1    4    2    2    7    8    7    4     8
[10,]    6    8    7    7    1    1    5    2    7     1
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -1.9988863  0.7924403  2.7085343 -3.7866604 -1.6892890  0.9928565
 [7] -1.5074890  1.4814742 -1.9111166 -1.4541277 -1.0336686 -4.8318458
[13]  0.5879785  5.1739144 -1.6361800 -2.1927446 -0.2327197 -0.7842613
[19]  1.7199382  3.1377764
> colApply(tmp,quantile)[,1]
            [,1]
[1,] -1.76017346
[2,] -0.64173725
[3,] -0.18049992
[4,]  0.03380008
[5,]  0.54972422
> 
> rowApply(tmp,sum)
[1]  6.873116 -4.340157 -5.397041 -2.337606 -1.262388
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]   14    3   10   14    3
[2,]   12    8   15   12   13
[3,]   16   16    6   16   15
[4,]    4    6    3    2   14
[5,]   10   15    2    3   16
> 
> 
> as.matrix(tmp)
            [,1]       [,2]       [,3]       [,4]       [,5]       [,6]
[1,]  0.54972422  0.4405849  1.6365547 -0.9151920  0.1937060 -0.1879642
[2,] -1.76017346 -0.1796215  0.6935868 -0.4555468  0.4594374 -0.1071005
[3,] -0.18049992  0.3065629 -0.7321479 -1.7537159 -1.8874637  1.4862963
[4,]  0.03380008 -0.1168555  0.5191611 -1.0994584 -1.0648106 -0.8239511
[5,] -0.64173725  0.3417695  0.5913797  0.4372526  0.6098420  0.6255760
           [,7]        [,8]         [,9]       [,10]      [,11]        [,12]
[1,]  1.8727060  0.15966845 -0.353020955 -1.72562599 -0.5448134 -1.253750536
[2,] -1.8878391  1.02762651 -0.875138980  1.32618174 -1.2845970 -0.005149855
[3,] -1.0283802  0.02982782 -0.004338072 -0.03637942 -0.2499181 -2.225505454
[4,]  0.0868042 -1.18183325  1.191997417 -0.66504003  1.2745770 -0.851832045
[5,] -0.5507798  1.44618466 -1.870615994 -0.35326401 -0.2289172 -0.495607911
           [,13]      [,14]      [,15]      [,16]      [,17]      [,18]
[1,]  1.51551214  2.8246423 -1.5015782  0.5188156  1.9074336 -0.6481534
[2,]  0.08833472  0.8972767 -0.4176270 -0.1386897 -0.1710107 -2.2737526
[3,] -0.61703082  0.9862900 -0.1174207 -0.2892249 -1.3855465  0.8018525
[4,]  0.01828964 -0.3085817  0.8753064 -0.6239549 -0.1246346 -0.3854587
[5,] -0.41712722  0.7742871 -0.4748605 -1.6596906 -0.4589615  1.7212509
          [,19]      [,20]
[1,]  0.2480520  2.1358150
[2,]  0.8714232 -0.1477771
[3,]  1.0075449  0.4921564
[4,] -0.1316373  1.0405065
[5,] -0.2754446 -0.3829245
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  649  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  563  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
           col1       col2      col3     col4       col5       col6       col7
row1 -0.1721908 -0.1957657 0.9632237 1.519463 0.09626402 -0.2834869 -0.8348278
           col8       col9    col10      col11     col12    col13     col14
row1 0.01947287 -0.3766485 1.559027 -0.4366982 -1.034737 1.070262 -0.977591
          col15     col16     col17     col18     col19      col20
row1 -0.2897985 0.2714634 0.8697123 -1.116402 -1.292341 -0.3342181
> tmp[,"col10"]
         col10
row1  1.559027
row2 -1.459784
row3 -0.455805
row4 -1.945708
row5  1.470007
> tmp[c("row1","row5"),]
           col1       col2       col3       col4       col5       col6
row1 -0.1721908 -0.1957657  0.9632237  1.5194632 0.09626402 -0.2834869
row5  1.0322768  0.8827593 -0.5067700 -0.2253133 0.26201341 -1.0622589
           col7       col8       col9    col10      col11      col12    col13
row1 -0.8348278 0.01947287 -0.3766485 1.559027 -0.4366982 -1.0347368 1.070262
row5  0.4277143 0.38657973 -0.1278557 1.470007 -2.0949707  0.5622969 0.347666
          col14      col15      col16     col17      col18      col19
row1 -0.9775910 -0.2897985  0.2714634 0.8697123 -1.1164017 -1.2923405
row5  0.3219572 -1.9376807 -0.5344655 1.0517446 -0.9706379 -0.4819589
          col20
row1 -0.3342181
row5 -1.7050932
> tmp[,c("col6","col20")]
           col6      col20
row1 -0.2834869 -0.3342181
row2  0.6465700  0.3280795
row3 -0.8750036  1.3439932
row4  0.2529769  1.1304540
row5 -1.0622589 -1.7050932
> tmp[c("row1","row5"),c("col6","col20")]
           col6      col20
row1 -0.2834869 -0.3342181
row5 -1.0622589 -1.7050932
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
        col1     col2    col3     col4    col5     col6     col7     col8
row1 52.4229 51.14269 51.9866 48.46421 50.6038 103.0184 50.76336 48.55543
         col9    col10    col11    col12    col13    col14    col15    col16
row1 52.16751 49.38129 48.38523 50.50753 49.81855 48.84096 49.93729 48.52537
        col17    col18    col19    col20
row1 50.53516 48.93518 48.41559 103.6778
> tmp[,"col10"]
        col10
row1 49.38129
row2 30.04526
row3 30.28182
row4 29.34911
row5 48.02081
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 52.42290 51.14269 51.98660 48.46421 50.60380 103.0184 50.76336 48.55543
row5 49.61795 50.10372 49.08363 50.76635 49.25397 104.1262 50.51768 51.33404
         col9    col10    col11    col12    col13    col14    col15    col16
row1 52.16751 49.38129 48.38523 50.50753 49.81855 48.84096 49.93729 48.52537
row5 48.58594 48.02081 49.31140 49.76703 49.87236 49.13668 49.40111 50.66912
        col17    col18    col19    col20
row1 50.53516 48.93518 48.41559 103.6778
row5 48.67851 50.90396 49.76262 103.6702
> tmp[,c("col6","col20")]
          col6     col20
row1 103.01839 103.67780
row2  75.32556  72.78289
row3  75.42032  73.29450
row4  73.66662  76.00517
row5 104.12617 103.67018
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 103.0184 103.6778
row5 104.1262 103.6702
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 103.0184 103.6778
row5 104.1262 103.6702
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
          col13
[1,]  0.6052437
[2,]  0.4773819
[3,] -0.3795610
[4,] -0.7891126
[5,]  0.3559979
> tmp[,c("col17","col7")]
           col17       col7
[1,]  1.99213011 -0.2188195
[2,]  0.89753161 -0.8568450
[3,] -0.13919793 -0.0463816
[4,] -0.01403816  0.4816944
[5,]  0.59527216 -0.3915177
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,] -0.2545014 -1.0811282
[2,] -0.1518093  0.9662740
[3,] -2.2891813 -1.0574557
[4,]  1.7018194  0.6432555
[5,] -1.6171105 -0.1081024
> subBufferedMatrix(tmp,1,c("col6"))[,1]
           col1
[1,] -0.2545014
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
           col6
[1,] -0.2545014
[2,] -0.1518093
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]       [,3]      [,4]       [,5]       [,6]
row3 -1.5411294 -1.1479121  0.1828927 0.1000749 -2.2786891 -2.2374115
row1  0.9713512 -0.8701153 -0.1780837 0.7502161  0.5132858 -0.1911645
           [,7]       [,8]       [,9]      [,10]     [,11]      [,12]
row3  0.4754939 -0.4606883 -0.6627859 -1.4347334 0.6126046  0.5838754
row1 -0.3607600  0.6930869  0.7781661 -0.7144245 0.5502421 -1.4202105
          [,13]     [,14]      [,15]      [,16]         [,17]       [,18]
row3 -0.9071809 -1.343834  0.7389386 -1.3827012 -0.2811003570 0.003549308
row1  0.7882712 -0.610729 -1.2071620 -0.4312049  0.0009080309 1.102557596
          [,19]      [,20]
row3 -0.4732727  0.4149459
row1  1.0604433 -0.2879771
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
         [,1]       [,2]     [,3]      [,4]       [,5]     [,6]      [,7]
row2 0.136457 -0.7576428 1.244568 0.1942995 -0.3050271 1.503923 -2.674424
          [,8]       [,9]     [,10]
row2 -0.471295 -0.3781012 0.1411503
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
          [,1]      [,2]       [,3]     [,4]      [,5]      [,6]       [,7]
row5 0.2789328 -1.863013 -0.9485234 1.372085 0.1040517 -1.359818 -0.8549417
          [,8]     [,9]      [,10]     [,11]      [,12]      [,13]     [,14]
row5 0.5935811 1.224695 -0.6833549 -1.619511 -0.4019269 -0.1756879 0.8569449
         [,15]    [,16]     [,17]     [,18]     [,19]     [,20]
row5 0.2636775 1.643199 0.1003332 0.9083801 -0.848009 0.2768888
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x6000023a4780>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd07bd90968"
 [2] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd065f8ca5d"
 [3] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd030add3f8"
 [4] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd0643757bf"
 [5] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd06d61efff"
 [6] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd038d38673"
 [7] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd04720052a"
 [8] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd07332ce1" 
 [9] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd030c76b78"
[10] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd07460ac4c"
[11] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd076cfed44"
[12] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd04ce2484c"
[13] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd01bf89d03"
[14] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd05f0c3e4d"
[15] "/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests/BMdcd01cce61fb"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x60000238c240>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x60000238c240>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.22-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x60000238c240>
> rowMedians(tmp)
  [1] -0.1881263613  0.7329031578  0.3093287406 -0.3140753918 -0.0775905307
  [6]  0.6121697088 -0.4266856060 -0.0267149888  0.1284451965  0.4272996072
 [11]  0.0678465882  0.3003135348 -0.2433561039 -0.1984502780  0.2224936397
 [16]  0.0485230054  0.2209982170 -0.3565880536 -0.3354205973 -0.2720023073
 [21]  0.4154344706  0.0125093395 -0.4845695307  0.1413791476  0.0254543149
 [26] -0.2984534263  0.2112222765  0.2476775811  0.4003431709 -0.1395555321
 [31] -0.3294300051 -0.1588840727  0.2771313701 -0.0348064517  0.2559013043
 [36]  0.5466814752 -0.1665084310 -0.1381546624 -0.3358610605  0.0742651433
 [41]  0.7160503572 -0.4794423786  0.3793438815  0.5378767464  0.0375128287
 [46] -0.0011337083  0.0146412460  0.3190625115 -0.3559265475  0.3601399051
 [51] -0.7304131436  0.2771943083  0.0198677868 -0.6321014357 -0.0903023513
 [56] -0.1946037291 -0.0054854523  0.2935515575 -0.0070476060 -0.4973016542
 [61] -0.1085791248  0.3861249689  0.3454812268 -0.0200475838 -0.1252052577
 [66] -0.2146026039  0.0947152817  0.2576722169 -0.0193963257  0.3118412856
 [71] -0.1090155798  0.3089846138  0.3920113374  0.3385082039 -0.0698421739
 [76]  0.4000029624 -0.3436615392  0.5623725484 -0.0474389036 -0.0087856136
 [81]  0.5335708094 -0.1167594603  0.3243034684  0.5710308186  0.2104156969
 [86]  0.0857075821 -0.2383755493 -0.1093486750  0.3413925000  0.5760699303
 [91]  0.0573467735  0.0971890615  0.3041464000 -0.0521608033  0.2172920913
 [96] -0.3779455574 -0.4146676823 -0.0035140495 -0.4194376590 -0.3533762246
[101]  0.1886268357 -0.1016355531 -0.2600971359  0.0491208024  0.5663509131
[106]  0.0744839848  0.2530081059 -0.1011239376 -0.0597122458 -0.0892781252
[111] -0.0986268480 -0.0122611218 -0.1961522611 -0.2327662374 -0.2142571425
[116]  0.3910984816 -0.1253379933  0.5230193833 -0.6423610231 -0.4976760911
[121]  0.1021952620  0.3939875256  0.0213443855  0.4389610766  0.4152372759
[126]  0.1513697268  0.1046173637  0.1998504537 -0.3028268092 -0.1631932726
[131] -0.0002119672  0.3175093072 -0.0928031403 -0.4531658370  0.2396138844
[136]  0.2443747186 -0.2923592701 -0.0660373000 -0.1943725433 -0.0948686480
[141] -0.1034107823  0.1315602035  0.0090912940  0.0288878869  0.1277643625
[146]  0.6435194382  0.2008073867 -0.0286369509 -0.0046029620 -0.1288847805
[151]  0.3730543013  0.7626421361  0.0620579441 -0.2416372552 -0.3421272649
[156]  0.1716205722 -0.0287481531  0.1930678836  0.3415574030 -0.2945714158
[161]  0.0535640567  0.4039934580 -0.1868228402  0.3126032600  0.1709980776
[166]  0.1110035498  0.5744505279 -0.1488922996  0.2915609397  0.0777498085
[171]  0.2043340735  0.1261081141 -0.1331514851 -0.5817472363 -0.4765051316
[176]  0.1495994194 -0.0065115735 -0.2558362433 -0.2938626093  0.2471698704
[181] -0.2864282434  0.0625747561 -0.4121675513 -0.2368813008  0.4681465003
[186]  0.1164500672 -0.1461868399  0.1851295594  0.1917187729  0.4198103549
[191] -0.1781754493 -0.1318945560 -0.2223614636  0.3732395708 -0.7124836199
[196] -0.0730930586 -0.0934012632 -0.1955683581 -0.4960094046  0.3021704496
[201]  0.7665123607  0.5468835823  0.4515769627  0.0006617440 -0.3594440319
[206]  0.2503559272 -0.1486724928 -0.2302669848 -0.2758885810 -0.1512287978
[211] -0.2634551200 -0.7141975657  0.2827016801  0.0280482275 -0.2197020970
[216] -0.2541529359 -0.2249086010  0.1723535473 -0.1912888802 -0.4918040942
[221] -0.1693307106 -0.3819850041  0.2313730421  0.1399722146 -0.2534757348
[226] -0.1523029421  0.1397510214  0.0409877544 -0.5447966735 -0.0852397670
> 
> proc.time()
   user  system elapsed 
  0.727   3.129   4.869 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000038d0000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000038d0000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000038d0000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x6000038d0000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x6000038cc7e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038cc7e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x6000038cc7e0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038cc7e0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000038cc7e0>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038cc9c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038cc9c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000038cc9c0>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000038cc9c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000038cc9c0>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x6000038cc9c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000038cc9c0>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x6000038cc9c0>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x6000038cc9c0>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038ccba0>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x6000038ccba0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038ccba0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038ccba0>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilee0b4139e4029" "BufferedMatrixFilee0b439ef643e"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilee0b4139e4029" "BufferedMatrixFilee0b439ef643e"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038d82a0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038d82a0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000038d82a0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x6000038d82a0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x6000038d82a0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x6000038d82a0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038d8480>
> .Call("R_bm_AddColumn",P)
<pointer: 0x6000038d8480>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x6000038d8480>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x6000038d8480>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000038d8660>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x6000038d8660>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.132   0.047   0.210 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.2 Patched (2025-11-04 r88984) -- "[Not] Part in a Rumble"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.133   0.030   0.195 

Example timings