| Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-08-18 11:42 -0400 (Mon, 18 Aug 2025).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) | x86_64 | 4.5.1 (2025-06-13) -- "Great Square Root" | 4824 |
| palomino7 | Windows Server 2022 Datacenter | x64 | 4.5.1 (2025-06-13 ucrt) -- "Great Square Root" | 4566 |
| merida1 | macOS 12.7.5 Monterey | x86_64 | 4.5.1 RC (2025-06-05 r88288) -- "Great Square Root" | 4604 |
| kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.5.1 Patched (2025-06-14 r88325) -- "Great Square Root" | 4545 |
| kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4579 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 2111/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| STATegRa 1.44.0 (landing page) David Gomez-Cabrero
| nebbiolo1 | Linux (Ubuntu 24.04.3 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | |||||||||
| kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | NA | ||||||||||
|
To the developers/maintainers of the STATegRa package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: STATegRa |
| Version: 1.44.0 |
| Command: E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:STATegRa.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings STATegRa_1.44.0.tar.gz |
| StartedAt: 2025-08-15 07:30:41 -0400 (Fri, 15 Aug 2025) |
| EndedAt: 2025-08-15 07:34:49 -0400 (Fri, 15 Aug 2025) |
| EllapsedTime: 247.9 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: STATegRa.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD check --no-multiarch --install=check:STATegRa.install-out.txt --library=E:\biocbuild\bbs-3.21-bioc\R\library --no-vignettes --timings STATegRa_1.44.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory 'E:/biocbuild/bbs-3.21-bioc/meat/STATegRa.Rcheck'
* using R version 4.5.1 (2025-06-13 ucrt)
* using platform: x86_64-w64-mingw32
* R was compiled by
gcc.exe (GCC) 14.2.0
GNU Fortran (GCC) 14.2.0
* running under: Windows Server 2022 x64 (build 20348)
* using session charset: UTF-8
* using option '--no-vignettes'
* checking for file 'STATegRa/DESCRIPTION' ... OK
* checking extension type ... Package
* this is package 'STATegRa' version '1.44.0'
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking whether package 'STATegRa' can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking 'build' directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... NOTE
modelSelection,list-numeric-character: no visible binding for global
variable 'components'
modelSelection,list-numeric-character: no visible binding for global
variable 'mylabel'
plotVAF,caClass: no visible binding for global variable 'comp'
plotVAF,caClass: no visible binding for global variable 'VAF'
plotVAF,caClass: no visible binding for global variable 'block'
selectCommonComps,list-numeric: no visible binding for global variable
'comps'
selectCommonComps,list-numeric: no visible binding for global variable
'block'
selectCommonComps,list-numeric: no visible binding for global variable
'comp'
selectCommonComps,list-numeric: no visible binding for global variable
'ratio'
Undefined global functions or variables:
VAF block comp components comps mylabel ratio
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
modelSelection.Rd: ggplot
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of 'data' directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in 'vignettes' ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
plotRes 4.86 0.29 5.15
* checking for unstated dependencies in 'tests' ... OK
* checking tests ...
Running 'STATEgRa_Example.omicsCLUST.R'
Running 'STATEgRa_Example.omicsPCA.R'
Running 'STATegRa_Example.omicsNPC.R'
Running 'runTests.R'
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE
Status: 2 NOTEs
See
'E:/biocbuild/bbs-3.21-bioc/meat/STATegRa.Rcheck/00check.log'
for details.
STATegRa.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### E:\biocbuild\bbs-3.21-bioc\R\bin\R.exe CMD INSTALL STATegRa ### ############################################################################## ############################################################################## * installing to library 'E:/biocbuild/bbs-3.21-bioc/R/library' * installing *source* package 'STATegRa' ... ** this is package 'STATegRa' version '1.44.0' ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (STATegRa)
STATegRa.Rcheck/tests/runTests.Rout
R version 4.5.1 (2025-06-13 ucrt) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Fri Aug 15 07:34:38 2025
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
3.75 0.39 4.09
STATegRa.Rcheck/tests/STATEgRa_Example.omicsCLUST.Rout
R version 4.5.1 (2025-06-13 ucrt) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: generics
Attaching package: 'generics'
The following objects are masked from 'package:base':
as.difftime, as.factor, as.ordered, intersect, is.element, setdiff,
setequal, union
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, is.unsorted, lapply,
mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int,
rank, rbind, rownames, sapply, saveRDS, table, tapply, unique,
unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
30.68 1.31 31.96
STATegRa.Rcheck/tests/STATegRa_Example.omicsNPC.Rout
R version 4.5.1 (2025-06-13 ucrt) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
85.35 2.53 87.96
STATegRa.Rcheck/tests/STATEgRa_Example.omicsPCA.Rout
R version 4.5.1 (2025-06-13 ucrt) -- "Great Square Root"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 -0.0781574360 -0.0431503598
sample2 0.1192218513 0.0294086509
sample3 0.0531412009 -0.0746839727
sample4 -0.0292975055 -0.0005962356
sample5 -0.0202091769 0.0110463284
sample6 -0.1226089031 0.1053467968
sample7 -0.1078928207 -0.0322473952
sample8 -0.1782895152 0.1449363041
sample9 -0.0468698124 -0.0455174382
sample10 0.0036030551 0.0420109847
sample11 0.0035566450 -0.0566292475
sample12 -0.1006128913 0.0641381262
sample13 0.1174408517 0.0907488102
sample14 -0.0981203258 0.0617739003
sample15 -0.0085334409 -0.0087011748
sample16 -0.0783148604 0.1581295702
sample17 0.1483609958 0.0638581958
sample18 0.0963086211 0.0556641770
sample19 0.0217244043 -0.0720087570
sample20 0.0635636333 -0.0779651794
sample21 0.0201840430 0.1566390976
sample22 -0.0218268880 -0.0764102827
sample23 -0.0852041941 -0.0032691263
sample24 0.1287171005 0.1924539986
sample25 0.0430574192 -0.0456568409
sample26 0.1453896963 0.0541510605
sample27 0.0197488644 -0.1185654831
sample28 0.1025336419 0.0650684651
sample29 -0.0706018603 -0.0682986371
sample30 0.1295627392 -0.0066766395
sample31 -0.1147449119 0.1232687969
sample32 0.0374310776 0.0380180147
sample33 -0.0599516129 0.0136869454
sample34 0.0984200766 0.0375322412
sample35 0.0543098325 -0.0378103665
sample36 -0.1403625523 -0.0343752475
sample37 -0.0228942049 -0.0732841333
sample38 0.0222077143 -0.0962593888
sample39 0.0941738511 0.0215198597
sample40 -0.0643801326 -0.0687866220
sample41 0.0327637927 -0.1232188152
sample42 0.0500431835 -0.0292474574
sample43 0.0184498747 0.0233012021
sample44 -0.1487898469 0.1171349913
sample45 0.1050774315 0.1123199646
sample46 0.1151195605 -0.1094027679
sample47 0.0962593671 -0.0288462285
sample48 -0.0004837195 -0.0310281094
sample49 -0.1135207658 0.1213971929
sample50 0.0123553021 -0.1740744360
sample51 -0.0550529829 0.1258887903
sample52 -0.0499121183 0.0728545463
sample53 -0.1119773626 0.1588015408
sample54 0.0360055660 0.0228575846
sample55 -0.0210419025 0.0006732145
sample56 0.0434169278 0.0633126117
sample57 -0.0197824530 0.1150714624
sample58 -0.0030439917 0.0326098906
sample59 -0.0500253230 0.0129421951
sample60 -0.0184278702 0.0136089248
sample61 -0.0150299430 0.0635027797
sample62 0.0304763761 -0.0201316712
sample63 -0.1102252393 0.1285976744
sample64 -0.1552588041 0.0971168877
sample65 0.0058503058 0.0207114984
sample66 0.0025605386 0.0424318812
sample67 -0.1546634931 -0.0661712366
sample68 -0.0536369422 -0.0923681389
sample69 -0.0640330436 0.0081983756
sample70 -0.0163517841 -0.0663229914
sample71 0.0102537588 -0.1345922644
sample72 0.0654195909 -0.0196117142
sample73 0.1048556047 0.0220940026
sample74 -0.0123799539 0.0586116204
sample75 -0.0392078010 -0.0209754301
sample76 -0.0648953399 -0.0524764171
sample77 -0.1172922125 -0.0201186989
sample78 0.1463068256 0.0708470485
sample79 -0.0265211125 -0.1603311322
sample80 -0.0279737239 -0.0214203781
sample81 -0.0079211509 -0.0738452107
sample82 0.1544236488 -0.0361467259
sample83 0.0494211226 -0.0050045386
sample84 0.0259038477 -0.0346550898
sample85 -0.1116484433 -0.0031495038
sample86 0.1306482944 -0.0377213414
sample87 0.0554778182 -0.0459748705
sample88 0.0301623911 0.0382197785
sample89 0.1016866691 0.0694035037
sample90 -0.0086819916 -0.0201320153
sample91 -0.1578625440 -0.2097827017
sample92 -0.0170936726 -0.1655810497
sample93 0.0979806782 -0.0121511884
sample94 -0.0131484144 -0.0114931974
sample95 -0.0315682616 -0.0758860679
sample96 -0.0024125621 -0.0470136923
sample97 -0.0634545422 0.0270331137
sample98 0.0359374581 -0.0135487849
sample99 0.1009163458 0.1124778294
sample100 -0.0551753135 0.0246490004
sample101 0.0080118836 -0.1627369515
sample102 0.0046444488 0.0095627642
sample103 0.0472523115 -0.0940393054
sample104 -0.0198159442 -0.0591093136
sample105 0.0400237809 -0.0160913060
sample106 0.0923808468 0.0369017380
sample107 0.1019373908 0.0224954522
sample108 0.0877091655 -0.0128834593
sample109 -0.0864824264 -0.0900945363
sample110 0.1223115571 -0.0096086283
sample111 -0.0257354583 -0.0936172129
sample112 0.0765286582 0.0270348383
sample113 -0.0258803171 0.0377495608
sample114 -0.0021138977 -0.0882015539
sample115 -0.0303460062 -0.0723589540
sample116 -0.0780508294 -0.0685068736
sample117 -0.0536898006 -0.0911911460
sample118 -0.0666651097 -0.0236231743
sample119 -0.1021871627 -0.2324938459
sample120 -0.0750216534 0.0243378343
sample121 0.0756936441 0.0942951104
sample122 0.0259628171 0.0731985422
sample123 0.1037846216 -0.0369196724
sample124 -0.0611207841 0.0421721739
sample125 0.0738472700 0.0066949937
sample126 -0.0972916498 0.0762641575
sample127 -0.0824697661 -0.0096637416
sample128 0.1249407761 0.0929311221
sample129 0.0734067424 -0.0434361611
sample130 0.0003501965 -0.0309852749
sample131 -0.0930182836 0.0155938016
sample132 -0.0736222750 0.0733028372
sample133 0.0498397971 -0.0462438013
sample134 -0.1644873463 0.0720006695
sample135 0.0752297145 0.0003819077
sample136 -0.0227145874 -0.0495505055
sample137 -0.0564717510 -0.0288914275
sample138 -0.0255988068 -0.0610858906
sample139 -0.0621217819 0.0235809029
sample140 0.0604152437 -0.0435591738
sample141 -0.0246743958 0.0532648178
sample142 0.0409560403 0.0316278621
sample143 0.0077355237 -0.0476896671
sample144 -0.0173240844 -0.0156778210
sample145 -0.0485474365 0.1202769667
sample146 -0.0419645733 -0.0811280212
sample147 0.0977308264 -0.0274838238
sample148 -0.0368256135 0.0803979315
sample149 0.0072865773 -0.1532986787
sample150 -0.1020825289 0.0624775883
sample151 -0.0305399025 -0.0289279742
sample152 0.0533594823 -0.0638309739
sample153 0.0891627977 0.1799575216
sample154 0.0727557400 -0.0834160070
sample155 0.0880668481 -0.0220818381
sample156 0.0276560974 -0.0326624805
sample157 0.1155032181 0.0183616616
sample158 0.0281507481 -0.0104938044
sample159 -0.0663235656 0.0443836663
sample160 0.0302643860 0.0404266253
sample161 -0.0114715505 -0.0591026966
sample162 0.1337087240 0.1398135442
sample163 -0.1330124370 0.1688781029
sample164 0.0150336124 0.0028415043
sample165 -0.0076520267 -0.0164128972
sample166 -0.0367794290 0.0630660864
sample167 -0.1111988886 0.0030058093
sample168 0.0672981639 0.0446279015
sample169 0.0413004934 0.0224395605
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 0.0420513423 0.0867863172
sample2 0.0820829162 -0.0410977782
sample3 -0.0155901484 -0.0195182487
sample4 0.1001337254 -0.0410786395
sample5 0.0153466279 -0.0253259618
sample6 -0.0340323606 -0.0408223196
sample7 -0.0722580339 0.0002332008
sample8 0.0457503047 -0.0370015963
sample9 0.0086248399 0.0820184898
sample10 0.0423599409 -0.0083923118
sample11 -0.0022549801 0.0787765993
sample12 -0.0322105030 0.1479824652
sample13 0.0293891890 -0.0306748466
sample14 -0.0337481335 -0.0367506897
sample15 -0.0815539686 0.1275622254
sample16 -0.0508449153 0.0540604657
sample17 -0.0062595624 0.0041023745
sample18 -0.0705638805 -0.0351047848
sample19 0.0476840230 -0.0509598016
sample20 -0.0522964450 0.0715521642
sample21 0.0119129806 -0.0376092911
sample22 -0.0724394732 -0.0095625391
sample23 0.0992532067 0.0134289073
sample24 0.1595121869 0.0728662631
sample25 0.0920692563 -0.0749757051
sample26 0.0595540819 0.0848966244
sample27 -0.0826487965 -0.0086735764
sample28 0.0384789347 0.0440967034
sample29 -0.0777673293 0.1735308238
sample30 -0.1229471347 -0.0819005878
sample31 -0.0579843948 -0.0238644806
sample32 -0.0970392499 -0.0111426535
sample33 -0.1017587778 -0.0630442843
sample34 -0.0637922372 0.0377941563
sample35 -0.0789984917 -0.0229723476
sample36 -0.1224939133 -0.1274955302
sample37 -0.1798821414 -0.1673427992
sample38 -0.0466306708 0.0888160723
sample39 0.0168687816 0.0421533817
sample40 -0.1756392716 -0.1526642902
sample41 -0.0042373237 0.0004928680
sample42 0.0447849128 -0.0651504913
sample43 -0.0482308047 -0.0253529381
sample44 0.1986717403 -0.0545777213
sample45 0.0741838456 0.0054703584
sample46 -0.0478774327 -0.0007072256
sample47 -0.0608189206 0.0481622438
sample48 0.1381488778 0.0578288134
sample49 0.0530523167 -0.1405532578
sample50 0.0173796035 0.1602389564
sample51 -0.0462558538 0.0303473833
sample52 -0.0280063425 0.0280388397
sample53 -0.0667618436 0.0237702002
sample54 -0.0121833042 -0.0521354333
sample55 -0.0182395881 0.0221328394
sample56 0.0001256818 0.0030907420
sample57 -0.0316673103 0.0530190310
sample58 -0.0393917506 -0.0297798826
sample59 -0.1278290436 -0.0546528290
sample60 -0.1486984646 0.1069156168
sample61 -0.0793121238 0.0569796374
sample62 -0.1172801491 -0.0149198835
sample63 0.0028728827 0.1300519956
sample64 -0.0237363051 0.1073287744
sample65 0.0126535078 0.0589808495
sample66 0.0468195702 -0.0771072522
sample67 -0.1494265075 -0.0769860753
sample68 -0.0977962672 -0.0577351400
sample69 -0.0403087357 0.0156042011
sample70 -0.0221532832 0.0315440831
sample71 0.0546432121 -0.0272396407
sample72 -0.1107488111 -0.0537319698
sample73 -0.0906761161 0.0579966374
sample74 -0.0586554450 0.0121421571
sample75 -0.0390493765 0.0349282694
sample76 0.0022960280 -0.1676558835
sample77 0.0232096422 -0.2067302752
sample78 0.0929756304 -0.0434939184
sample79 0.1619494071 -0.0378113927
sample80 -0.0680366238 0.1424663298
sample81 0.0530782706 -0.0358350767
sample82 -0.0266822560 -0.0577445227
sample83 -0.1517235342 -0.0448554765
sample84 0.0570966515 -0.0273813106
sample85 -0.1086289233 -0.1228119630
sample86 -0.0833860635 -0.0442915259
sample87 -0.0022018918 -0.0943906900
sample88 0.0078226131 -0.1140506474
sample89 -0.0611056058 -0.0094585263
sample90 -0.0022928374 -0.0936254021
sample91 -0.0433594823 0.3205982488
sample92 0.1815332787 -0.0334679933
sample93 -0.0267631297 0.0614428934
sample94 -0.0181878319 0.0605090344
sample95 0.0720374296 -0.0013045521
sample96 0.0559713804 -0.0118791303
sample97 0.0217411244 0.0195414230
sample98 -0.0379177915 0.0588356987
sample99 0.0792429209 -0.0151273492
sample100 -0.0222116015 -0.0023321477
sample101 0.0387225238 0.1224226179
sample102 0.2094614439 -0.0516442024
sample103 -0.0138483012 0.0301051832
sample104 0.0807986096 -0.0162718739
sample105 0.0520493314 -0.1229665031
sample106 0.0192613997 -0.0185238105
sample107 -0.0319017095 0.0405123213
sample108 0.0140690608 0.0163421404
sample109 0.1831928410 0.0613007996
sample110 0.0292790426 -0.0199849015
sample111 0.1423250188 0.0327340649
sample112 -0.0426332399 -0.0029083538
sample113 0.0771905140 0.0268733902
sample114 0.0241639725 -0.0184080426
sample115 0.1959014209 0.0460131164
sample116 0.1394475143 -0.0530805479
sample117 0.1672360656 -0.1386536008
sample118 0.0448344017 -0.0117621831
sample119 0.0910381835 0.2217433435
sample120 0.0331392541 -0.0057274384
sample121 -0.0307573536 0.1392506537
sample122 0.0839782476 -0.0291994118
sample123 -0.0239650980 -0.0642163830
sample124 0.0909151248 0.0130419792
sample125 0.0065351134 -0.1092631790
sample126 -0.0935310943 0.1368283851
sample127 -0.0035388292 0.0292755616
sample128 0.0660296772 0.1018566582
sample129 -0.0693639332 -0.0695421978
sample130 -0.0008493973 -0.0669704360
sample131 -0.0431023719 0.0174064761
sample132 0.0637041283 0.0029374967
sample133 0.0289494045 -0.0390818787
sample134 -0.0446201583 0.0456334450
sample135 -0.0712337145 0.0521634751
sample136 -0.0596272108 0.0197299109
sample137 -0.0793152495 -0.0380628557
sample138 0.0973547340 -0.0454218040
sample139 -0.0539903768 -0.1534327495
sample140 -0.0850828100 0.0955814253
sample141 0.0192682806 -0.0554449963
sample142 0.0672262759 -0.0461320693
sample143 0.0303729867 -0.0519260189
sample144 0.0089364229 0.0145814931
sample145 0.0638772431 0.0122258707
sample146 -0.0585857858 0.0063083110
sample147 -0.0894133617 -0.1124615986
sample148 0.0216368646 -0.0615966985
sample149 0.0515418269 -0.0839903482
sample150 -0.0568282046 -0.0124469024
sample151 0.0789531944 -0.0261830983
sample152 0.0330752055 0.1306443619
sample153 0.1751934429 0.1497732753
sample154 -0.0421425865 -0.0037010393
sample155 -0.0680178022 0.0095711017
sample156 -0.0388912115 0.1057562825
sample157 -0.0314769304 0.0561367344
sample158 -0.0329620806 0.0353947225
sample159 0.0398417659 -0.1007373620
sample160 -0.0424938017 0.0108496100
sample161 0.0888370590 -0.0679699968
sample162 0.0027478161 0.1237843985
sample163 0.0126108195 0.0725434532
sample164 0.0566779819 -0.0458324012
sample165 0.0315336239 -0.0236362264
sample166 0.0612059366 -0.0425232808
sample167 -0.0142729860 0.0179308241
sample168 0.0169504447 -0.0769617814
sample169 -0.0675079957 0.0131505158
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 0.0012329705 1.635717e-01
sample2 0.0724350110 6.021293e-03
sample3 0.0188460436 1.080036e-01
sample4 -0.0390145228 -3.113880e-04
sample5 -0.1774811622 2.996385e-02
sample6 0.0451444433 3.455860e-02
sample7 0.0226466211 7.020128e-03
sample8 0.1033680296 9.856828e-03
sample9 -0.1350011748 -8.979099e-02
sample10 -0.1259887211 5.097855e-02
sample11 -0.0979788385 -7.086536e-02
sample12 0.0863019124 8.620318e-02
sample13 0.1381401108 -1.828007e-01
sample14 0.0615073860 2.642803e-02
sample15 -0.0381598985 3.101661e-02
sample16 0.0048776737 -1.271813e-03
sample17 0.0788480952 1.547556e-02
sample18 0.0884188725 3.795487e-02
sample19 -0.0703044392 1.084004e-01
sample20 0.0025585471 -7.975878e-02
sample21 -0.0941601625 4.126746e-02
sample22 0.0550273375 7.806739e-02
sample23 -0.0679495241 4.102008e-02
sample24 0.1310962884 -1.649308e-01
sample25 -0.0113585237 4.426864e-02
sample26 0.1402945951 -2.016539e-02
sample27 -0.0261561193 -1.588498e-03
sample28 0.0724198737 -5.850589e-02
sample29 0.0330058533 -2.060868e-03
sample30 0.0228752482 2.015427e-02
sample31 0.0635067948 6.670335e-02
sample32 -0.0685099691 4.955271e-02
sample33 0.0777765184 1.272078e-01
sample34 -0.0157842440 3.024314e-02
sample35 0.0529632685 -1.500972e-01
sample36 -0.0070900863 -2.025308e-01
sample37 0.0442420451 -1.802089e-01
sample38 0.0781511269 3.676416e-02
sample39 -0.0120331843 3.388843e-02
sample40 0.0473291937 -1.471562e-01
sample41 -0.0228189428 2.673551e-02
sample42 0.0245360270 7.960867e-02
sample43 -0.1036362820 8.229576e-02
sample44 0.1012228917 -7.049444e-02
sample45 -0.0013731986 2.450916e-02
sample46 0.0558509969 -2.947422e-03
sample47 0.0380481133 -4.554175e-02
sample48 -0.0784342018 -4.888978e-02
sample49 0.0605164008 1.162359e-02
sample50 -0.0530079271 2.737928e-02
sample51 -0.1514646540 -5.678343e-02
sample52 -0.1860935253 -1.246717e-01
sample53 0.0064177096 2.700996e-02
sample54 -0.0697038348 2.308389e-02
sample55 -0.1633577042 -1.366442e-02
sample56 -0.1011485101 -4.682203e-02
sample57 -0.1730374231 -1.609603e-01
sample58 0.0071384691 1.666955e-02
sample59 0.0030461613 -3.005288e-02
sample60 -0.0215835246 -2.665878e-01
sample61 -0.1510583681 -1.002385e-01
sample62 0.0925533891 4.845838e-02
sample63 0.0596311831 4.137026e-02
sample64 0.0449225816 2.600595e-03
sample65 -0.0939383741 4.406910e-02
sample66 -0.1063400718 5.709995e-02
sample67 0.0201589895 -2.361728e-01
sample68 -0.0037203273 -2.418394e-02
sample69 0.0645161207 1.155622e-01
sample70 0.1013440015 1.351789e-01
sample71 0.0016467889 2.976839e-02
sample72 -0.0328893086 2.835854e-02
sample73 -0.0275080085 5.148184e-02
sample74 -0.1341719697 7.895280e-02
sample75 -0.0951575677 3.943182e-02
sample76 0.0864721947 -3.034993e-02
sample77 0.1035749573 2.545353e-02
sample78 0.1575644176 -4.939589e-02
sample79 -0.0189137022 -4.874679e-02
sample80 -0.1384140614 -4.267513e-05
sample81 0.0118846484 6.357931e-02
sample82 0.1675308134 -3.533913e-02
sample83 0.0065673333 7.812606e-02
sample84 -0.1486891585 3.109058e-02
sample85 0.0532724351 -7.417888e-02
sample86 0.1138477277 1.912625e-05
sample87 -0.0432864009 -6.080474e-02
sample88 -0.0433450388 -1.402490e-01
sample89 -0.0331205807 1.395401e-02
sample90 0.0607412817 8.610413e-02
sample91 0.0566272600 -1.303748e-01
sample92 0.0359582563 -1.061604e-01
sample93 0.0433646351 4.443634e-02
sample94 0.0477291309 1.059574e-01
sample95 0.0249595807 3.980525e-02
sample96 -0.0035218974 9.293928e-02
sample97 0.0066048794 1.527231e-01
sample98 -0.0020366829 5.579549e-02
sample99 0.0886616145 3.728231e-02
sample100 0.1091259135 3.560420e-02
sample101 0.0739726498 4.317995e-02
sample102 -0.0574461045 2.783919e-02
sample103 -0.0142731042 -9.705585e-03
sample104 -0.0710395181 -4.068350e-02
sample105 -0.0980831330 3.452954e-02
sample106 0.0254259314 -3.628982e-02
sample107 0.0160653443 9.173395e-02
sample108 0.0200987661 2.379692e-02
sample109 0.0389780746 -1.692357e-02
sample110 0.0326304847 -2.988109e-02
sample111 -0.0676937490 6.038214e-02
sample112 -0.0167883458 -5.336938e-03
sample113 -0.0969216966 2.757606e-02
sample114 0.0026398366 9.209155e-02
sample115 0.0308047414 -1.603820e-02
sample116 0.1240307224 -1.273000e-01
sample117 -0.0334729018 -5.392709e-02
sample118 0.1037152934 -6.252431e-02
sample119 0.1064176683 -1.196203e-01
sample120 0.0771355129 1.004933e-01
sample121 0.0129350747 -3.181973e-02
sample122 -0.0847492236 5.568330e-02
sample123 0.0041336749 -7.693192e-03
sample124 0.0583458068 8.396392e-02
sample125 -0.0634844602 5.232541e-02
sample126 0.0662580939 1.091732e-01
sample127 0.0865024624 1.094176e-01
sample128 0.0627817478 1.470968e-02
sample129 0.0336276406 4.007856e-02
sample130 0.0293517750 8.046116e-02
sample131 0.0469197653 2.209740e-03
sample132 0.0241740741 1.248599e-01
sample133 -0.0907303210 -1.466701e-02
sample134 0.0350842069 -7.539662e-02
sample135 -0.0001333445 -9.185393e-03
sample136 0.0335876040 9.860271e-02
sample137 0.0640148877 7.554467e-02
sample138 -0.0060964800 1.742763e-02
sample139 0.0592084422 -5.614970e-02
sample140 -0.0427985971 1.099548e-02
sample141 -0.0618796359 9.301040e-02
sample142 -0.0898554442 -3.573415e-02
sample143 -0.0817389220 -8.880525e-02
sample144 -0.0787754772 3.821391e-02
sample145 -0.1085821552 -1.569476e-01
sample146 0.0589557911 4.373356e-02
sample147 0.0495330379 -7.277228e-03
sample148 -0.1161592775 -9.079056e-03
sample149 0.0121579451 -7.788377e-02
sample150 0.0314512519 -3.520213e-02
sample151 -0.0575382133 1.945353e-02
sample152 0.0494542106 -7.025538e-02
sample153 0.0941332824 -2.153296e-01
sample154 0.0335931971 -2.078732e-02
sample155 -0.0690457688 2.780408e-02
sample156 -0.1039901630 6.292523e-02
sample157 0.0408645765 -8.065514e-03
sample158 -0.1018105325 -7.816885e-03
sample159 0.0281730562 1.207208e-02
sample160 -0.1643053028 -2.978101e-03
sample161 -0.0374329228 -8.524610e-02
sample162 0.0804535328 -8.349750e-02
sample163 0.0743228013 1.406229e-02
sample164 -0.1208805985 2.139462e-02
sample165 -0.1608115904 -2.025191e-02
sample166 0.0425944680 2.660717e-02
sample167 0.0226849488 4.464281e-02
sample168 0.0180735586 7.466379e-04
sample169 -0.0190779043 -2.645403e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
14.81 0.73 15.54
STATegRa.Rcheck/STATegRa-Ex.timings
| name | user | system | elapsed | |
| STATegRaUsersGuide | 0 | 0 | 0 | |
| STATegRa_data | 0.12 | 0.04 | 0.16 | |
| STATegRa_data_TCGA_BRCA | 0 | 0 | 0 | |
| bioDist | 0.62 | 0.06 | 0.69 | |
| bioDistFeature | 0.36 | 0.03 | 0.39 | |
| bioDistFeaturePlot | 0.34 | 0.05 | 0.39 | |
| bioDistW | 0.36 | 0.04 | 0.41 | |
| bioDistWPlot | 0.41 | 0.03 | 0.44 | |
| bioMap | 0.02 | 0.00 | 0.02 | |
| combiningMappings | 0.01 | 0.00 | 0.01 | |
| createOmicsExpressionSet | 0.11 | 0.02 | 0.13 | |
| getInitialData | 0.49 | 0.37 | 0.86 | |
| getLoadings | 0.54 | 0.35 | 0.89 | |
| getMethodInfo | 0.77 | 0.26 | 1.03 | |
| getPreprocessing | 1.09 | 0.54 | 1.62 | |
| getScores | 0.74 | 0.29 | 1.04 | |
| getVAF | 0.59 | 0.27 | 0.86 | |
| holistOmics | 0 | 0 | 0 | |
| modelSelection | 2.16 | 1.08 | 3.23 | |
| omicsCompAnalysis | 4.42 | 0.36 | 4.78 | |
| omicsNPC | 0.01 | 0.00 | 0.02 | |
| plotRes | 4.86 | 0.29 | 5.15 | |
| plotVAF | 4.10 | 0.35 | 4.44 | |