| Back to Multiple platform build/check report for BioC 3.17: simplified long |
|
This page was generated on 2023-10-16 11:35:26 -0400 (Mon, 16 Oct 2023).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4626 |
| palomino3 | Windows Server 2022 Datacenter | x64 | 4.3.1 (2023-06-16 ucrt) -- "Beagle Scouts" | 4379 |
| merida1 | macOS 12.6.4 Monterey | x86_64 | 4.3.1 (2023-06-16) -- "Beagle Scouts" | 4395 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
| Package 949/2230 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.6.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 22.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
| palomino3 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | |||||||||
| merida1 | macOS 12.6.4 Monterey / x86_64 | OK | OK | OK | OK | |||||||||
| kjohnson2 | macOS 12.6.1 Monterey / arm64 | see weekly results here | ||||||||||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
| Package: HPiP |
| Version: 1.6.0 |
| Command: /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings HPiP_1.6.0.tar.gz |
| StartedAt: 2023-10-15 22:03:13 -0400 (Sun, 15 Oct 2023) |
| EndedAt: 2023-10-15 22:16:36 -0400 (Sun, 15 Oct 2023) |
| EllapsedTime: 803.2 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: HPiP.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings HPiP_1.6.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck’
* using R version 4.3.1 (2023-06-16)
* using platform: x86_64-pc-linux-gnu (64-bit)
* R was compiled by
gcc (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0
GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0
* running under: Ubuntu 22.04.3 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.6.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 35.813 0.920 36.733
corr_plot 35.919 0.664 36.592
FSmethod 34.050 0.691 34.743
pred_ensembel 13.873 0.527 10.672
enrichfindP 0.432 0.048 8.956
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
‘HPiP_tutorial.Rmd’ using ‘UTF-8’... OK
NONE
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/home/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/bbs-3.17-bioc/R/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.1 (2023-06-16) -- "Beagle Scouts"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 97.819779
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 95.100721
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 107.094499
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 110.843729
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 101.292572
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 99.499909
iter 10 value 89.831880
iter 20 value 78.167159
iter 30 value 78.139306
iter 40 value 78.131670
final value 78.131421
converged
Fitting Repeat 2
# weights: 305
initial value 100.453213
final value 94.052910
converged
Fitting Repeat 3
# weights: 305
initial value 94.892826
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 98.551378
iter 10 value 92.945356
iter 10 value 92.945356
iter 10 value 92.945356
final value 92.945356
converged
Fitting Repeat 5
# weights: 305
initial value 103.268258
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 102.472941
iter 10 value 93.765896
iter 10 value 93.765896
iter 10 value 93.765896
final value 93.765896
converged
Fitting Repeat 2
# weights: 507
initial value 117.213184
iter 10 value 89.711698
iter 20 value 81.443464
iter 30 value 81.232287
final value 81.232284
converged
Fitting Repeat 3
# weights: 507
initial value 110.896984
iter 10 value 92.945405
final value 92.945356
converged
Fitting Repeat 4
# weights: 507
initial value 107.945315
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 101.241363
iter 10 value 92.945381
final value 92.945355
converged
Fitting Repeat 1
# weights: 103
initial value 97.038178
iter 10 value 94.177113
iter 20 value 93.976646
iter 30 value 93.647011
iter 40 value 93.095101
iter 50 value 93.009297
iter 60 value 92.906509
iter 70 value 92.858999
iter 80 value 83.900268
iter 90 value 81.000323
iter 100 value 80.277158
final value 80.277158
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 100.967822
iter 10 value 93.568225
iter 20 value 88.425536
iter 30 value 87.639615
iter 40 value 84.195805
iter 50 value 82.583138
iter 60 value 81.754226
iter 70 value 81.238414
iter 80 value 81.161261
final value 81.160723
converged
Fitting Repeat 3
# weights: 103
initial value 104.256749
iter 10 value 94.180887
iter 20 value 94.055561
iter 30 value 93.438717
iter 40 value 93.201520
iter 50 value 92.902703
iter 60 value 92.469592
iter 70 value 88.782694
iter 80 value 88.385225
iter 90 value 83.071871
iter 100 value 82.124008
final value 82.124008
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 104.936300
iter 10 value 94.057357
iter 20 value 93.563938
iter 30 value 93.231500
iter 40 value 91.982234
iter 50 value 86.334219
iter 60 value 83.299938
iter 70 value 81.813738
iter 80 value 81.810490
iter 80 value 81.810489
iter 80 value 81.810489
final value 81.810489
converged
Fitting Repeat 5
# weights: 103
initial value 96.990573
iter 10 value 93.860953
iter 20 value 92.952938
iter 30 value 92.893473
iter 40 value 92.888636
iter 50 value 92.885836
iter 60 value 92.818932
iter 70 value 89.090560
iter 80 value 88.384788
iter 90 value 83.127371
iter 100 value 80.391694
final value 80.391694
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 108.320289
iter 10 value 87.603672
iter 20 value 84.950140
iter 30 value 84.242605
iter 40 value 83.655528
iter 50 value 82.147645
iter 60 value 79.761255
iter 70 value 78.172697
iter 80 value 77.156498
iter 90 value 76.880758
iter 100 value 76.561544
final value 76.561544
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 122.151650
iter 10 value 94.248713
iter 20 value 86.133982
iter 30 value 82.703609
iter 40 value 78.793950
iter 50 value 78.192246
iter 60 value 77.887296
iter 70 value 77.541569
iter 80 value 76.802276
iter 90 value 76.309038
iter 100 value 76.257245
final value 76.257245
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 97.947514
iter 10 value 91.676054
iter 20 value 84.216785
iter 30 value 82.424594
iter 40 value 81.877544
iter 50 value 80.206686
iter 60 value 79.612631
iter 70 value 79.259166
iter 80 value 79.155876
iter 90 value 78.834686
iter 100 value 78.412191
final value 78.412191
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.879336
iter 10 value 94.032216
iter 20 value 93.154015
iter 30 value 87.666263
iter 40 value 83.219675
iter 50 value 82.557376
iter 60 value 82.337299
iter 70 value 82.078412
iter 80 value 80.394625
iter 90 value 79.396976
iter 100 value 77.065132
final value 77.065132
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 129.405013
iter 10 value 93.367595
iter 20 value 81.637507
iter 30 value 80.691256
iter 40 value 80.378051
iter 50 value 78.519130
iter 60 value 77.606444
iter 70 value 77.470173
iter 80 value 77.053426
iter 90 value 76.819554
iter 100 value 76.387609
final value 76.387609
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 115.561525
iter 10 value 93.155684
iter 20 value 88.056600
iter 30 value 83.760198
iter 40 value 83.482267
iter 50 value 83.095779
iter 60 value 79.732885
iter 70 value 78.406341
iter 80 value 78.158315
iter 90 value 78.029513
iter 100 value 78.017053
final value 78.017053
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 107.152994
iter 10 value 94.275224
iter 20 value 92.417460
iter 30 value 83.434109
iter 40 value 82.899665
iter 50 value 82.140729
iter 60 value 81.542941
iter 70 value 81.025990
iter 80 value 79.702922
iter 90 value 78.328472
iter 100 value 77.499211
final value 77.499211
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 103.944264
iter 10 value 93.988999
iter 20 value 86.624196
iter 30 value 80.124255
iter 40 value 78.983185
iter 50 value 77.885483
iter 60 value 76.682501
iter 70 value 76.553418
iter 80 value 76.479970
iter 90 value 76.140385
iter 100 value 76.007394
final value 76.007394
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 136.866656
iter 10 value 95.064084
iter 20 value 93.834680
iter 30 value 93.094994
iter 40 value 91.281172
iter 50 value 87.663237
iter 60 value 83.436244
iter 70 value 80.004240
iter 80 value 77.757100
iter 90 value 77.354939
iter 100 value 77.222492
final value 77.222492
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.832538
iter 10 value 95.322410
iter 20 value 90.550130
iter 30 value 85.610534
iter 40 value 82.486895
iter 50 value 80.157287
iter 60 value 79.027230
iter 70 value 78.196754
iter 80 value 77.696497
iter 90 value 77.578254
iter 100 value 77.542779
final value 77.542779
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.971473
final value 94.054641
converged
Fitting Repeat 2
# weights: 103
initial value 96.810185
final value 94.054478
converged
Fitting Repeat 3
# weights: 103
initial value 97.418065
final value 94.054398
converged
Fitting Repeat 4
# weights: 103
initial value 93.884965
final value 92.955986
converged
Fitting Repeat 5
# weights: 103
initial value 94.354219
final value 94.054611
converged
Fitting Repeat 1
# weights: 305
initial value 98.550260
iter 10 value 92.955614
iter 20 value 92.950754
iter 30 value 92.945963
iter 40 value 92.768479
iter 50 value 91.467061
iter 60 value 82.606411
iter 70 value 80.812817
iter 80 value 80.803955
iter 90 value 77.994514
iter 100 value 77.936204
final value 77.936204
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 100.834805
iter 10 value 92.305595
iter 20 value 92.116030
iter 30 value 90.908161
iter 40 value 80.455671
iter 50 value 79.871299
iter 60 value 79.754171
iter 70 value 79.587537
iter 80 value 79.579009
iter 90 value 79.575735
iter 100 value 79.574586
final value 79.574586
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 105.653638
iter 10 value 94.057462
iter 20 value 93.888817
iter 30 value 93.224845
iter 40 value 92.946598
final value 92.946204
converged
Fitting Repeat 4
# weights: 305
initial value 112.761063
iter 10 value 94.058525
iter 20 value 94.053481
final value 94.053212
converged
Fitting Repeat 5
# weights: 305
initial value 98.542662
iter 10 value 94.059981
final value 94.055863
converged
Fitting Repeat 1
# weights: 507
initial value 105.168736
iter 10 value 92.953669
iter 20 value 92.947483
final value 92.946378
converged
Fitting Repeat 2
# weights: 507
initial value 107.433285
iter 10 value 92.714032
iter 20 value 90.870237
iter 30 value 90.820170
iter 40 value 90.813027
iter 50 value 90.811517
iter 60 value 90.779007
iter 70 value 90.293619
iter 80 value 89.052615
iter 90 value 88.989143
iter 100 value 88.986188
final value 88.986188
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 102.062630
iter 10 value 92.953551
iter 20 value 92.835708
iter 30 value 89.072318
iter 40 value 89.065581
iter 50 value 89.063215
iter 60 value 89.062249
iter 70 value 89.062020
iter 80 value 87.598574
iter 90 value 79.293896
final value 79.293688
converged
Fitting Repeat 4
# weights: 507
initial value 98.230915
iter 10 value 92.954637
iter 20 value 92.901055
iter 30 value 90.250011
iter 40 value 81.279711
iter 50 value 78.746800
iter 60 value 78.524564
iter 70 value 78.518644
iter 80 value 78.492071
iter 90 value 78.488957
iter 100 value 78.488926
final value 78.488926
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 97.899958
iter 10 value 92.954056
iter 20 value 92.949105
iter 30 value 92.948908
iter 40 value 92.947635
iter 50 value 85.227930
iter 60 value 82.586646
iter 70 value 82.369234
final value 82.369189
converged
Fitting Repeat 1
# weights: 103
initial value 96.679929
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.453635
iter 10 value 93.309465
iter 20 value 88.822332
iter 30 value 83.350659
iter 40 value 83.239170
final value 83.239160
converged
Fitting Repeat 3
# weights: 103
initial value 99.038938
final value 94.395061
converged
Fitting Repeat 4
# weights: 103
initial value 101.520127
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 107.091167
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 113.096379
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 98.314792
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 99.193008
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 94.786701
final value 93.682857
converged
Fitting Repeat 5
# weights: 305
initial value 119.930993
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 94.698204
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 95.915857
iter 10 value 94.174538
iter 20 value 86.356372
iter 30 value 85.868010
final value 85.868007
converged
Fitting Repeat 3
# weights: 507
initial value 108.521411
final value 94.315790
converged
Fitting Repeat 4
# weights: 507
initial value 102.253513
iter 10 value 94.232864
final value 94.232773
converged
Fitting Repeat 5
# weights: 507
initial value 94.841479
final value 94.354396
converged
Fitting Repeat 1
# weights: 103
initial value 99.104265
iter 10 value 93.892567
iter 20 value 86.783418
iter 30 value 84.406761
iter 40 value 83.921829
iter 50 value 83.576542
iter 60 value 83.339746
iter 70 value 83.014536
iter 80 value 82.928009
iter 90 value 82.923420
final value 82.923412
converged
Fitting Repeat 2
# weights: 103
initial value 102.396742
iter 10 value 94.488578
iter 20 value 94.486702
iter 30 value 94.476486
iter 40 value 86.583916
iter 50 value 86.149551
iter 60 value 85.811416
iter 70 value 85.668507
iter 80 value 84.618633
iter 90 value 83.857353
iter 100 value 83.479122
final value 83.479122
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 105.558266
iter 10 value 94.382026
iter 20 value 85.269056
iter 30 value 84.121193
iter 40 value 82.674950
iter 50 value 81.705130
iter 60 value 81.587282
final value 81.581739
converged
Fitting Repeat 4
# weights: 103
initial value 96.628718
iter 10 value 94.319445
iter 20 value 90.472688
iter 30 value 87.599714
iter 40 value 86.454463
iter 50 value 84.415001
iter 60 value 84.020224
iter 70 value 83.622426
iter 80 value 83.420582
iter 90 value 83.363167
iter 100 value 83.351396
final value 83.351396
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 105.660765
iter 10 value 94.516472
iter 20 value 94.476150
iter 30 value 92.896400
iter 40 value 84.704836
iter 50 value 83.941827
iter 60 value 83.233310
iter 70 value 82.956562
iter 80 value 82.127796
iter 90 value 81.741449
iter 100 value 81.586113
final value 81.586113
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 112.692843
iter 10 value 94.408760
iter 20 value 89.007266
iter 30 value 87.291436
iter 40 value 85.166114
iter 50 value 83.758610
iter 60 value 83.410878
iter 70 value 82.339125
iter 80 value 82.051665
iter 90 value 81.398638
iter 100 value 80.869736
final value 80.869736
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 104.997759
iter 10 value 91.585336
iter 20 value 84.364428
iter 30 value 84.266068
iter 40 value 83.966423
iter 50 value 82.616288
iter 60 value 81.915385
iter 70 value 80.872458
iter 80 value 80.714933
iter 90 value 80.379377
iter 100 value 80.124885
final value 80.124885
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.324464
iter 10 value 94.608337
iter 20 value 93.162799
iter 30 value 87.882129
iter 40 value 86.179401
iter 50 value 85.537346
iter 60 value 83.316708
iter 70 value 82.162041
iter 80 value 81.904898
iter 90 value 81.588030
iter 100 value 81.095296
final value 81.095296
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.308472
iter 10 value 93.588798
iter 20 value 85.435043
iter 30 value 84.729317
iter 40 value 84.115264
iter 50 value 82.042489
iter 60 value 81.687324
iter 70 value 81.588529
iter 80 value 81.538448
iter 90 value 81.327579
iter 100 value 80.691225
final value 80.691225
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 118.238835
iter 10 value 94.890965
iter 20 value 88.750531
iter 30 value 84.309958
iter 40 value 82.685953
iter 50 value 81.753531
iter 60 value 81.276951
iter 70 value 80.951029
iter 80 value 80.730619
iter 90 value 80.484112
iter 100 value 80.056014
final value 80.056014
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 134.629104
iter 10 value 94.507768
iter 20 value 89.517797
iter 30 value 85.425582
iter 40 value 84.497176
iter 50 value 83.941920
iter 60 value 82.898948
iter 70 value 82.208483
iter 80 value 80.816361
iter 90 value 80.346729
iter 100 value 80.277797
final value 80.277797
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 110.801028
iter 10 value 94.484846
iter 20 value 92.002371
iter 30 value 85.634683
iter 40 value 84.467899
iter 50 value 83.289679
iter 60 value 83.194479
iter 70 value 83.062545
iter 80 value 82.902150
iter 90 value 82.862398
iter 100 value 82.821430
final value 82.821430
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 108.157819
iter 10 value 95.504204
iter 20 value 93.455698
iter 30 value 92.415961
iter 40 value 90.794586
iter 50 value 86.539088
iter 60 value 86.393686
iter 70 value 85.519514
iter 80 value 85.236319
iter 90 value 84.496114
iter 100 value 81.766770
final value 81.766770
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 129.028139
iter 10 value 94.548149
iter 20 value 94.498155
iter 30 value 94.151992
iter 40 value 91.231590
iter 50 value 85.798664
iter 60 value 84.677170
iter 70 value 83.413241
iter 80 value 83.027755
iter 90 value 82.807969
iter 100 value 81.927134
final value 81.927134
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 116.987752
iter 10 value 94.988344
iter 20 value 91.310504
iter 30 value 84.302752
iter 40 value 83.672746
iter 50 value 82.051249
iter 60 value 81.832183
iter 70 value 81.730769
iter 80 value 81.530817
iter 90 value 81.221025
iter 100 value 80.929402
final value 80.929402
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.001406
iter 10 value 94.485887
iter 20 value 94.484234
iter 30 value 94.311804
iter 40 value 94.308260
final value 94.308255
converged
Fitting Repeat 2
# weights: 103
initial value 104.860557
final value 94.485898
converged
Fitting Repeat 3
# weights: 103
initial value 98.049504
final value 94.485757
converged
Fitting Repeat 4
# weights: 103
initial value 101.228068
final value 94.485679
converged
Fitting Repeat 5
# weights: 103
initial value 99.717332
final value 94.485671
converged
Fitting Repeat 1
# weights: 305
initial value 94.596701
iter 10 value 94.485053
iter 20 value 93.516663
iter 30 value 87.916184
iter 40 value 87.765266
iter 50 value 85.021652
iter 60 value 84.179719
iter 70 value 84.144701
iter 80 value 81.237159
iter 90 value 79.481462
iter 100 value 79.448147
final value 79.448147
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 96.842723
iter 10 value 94.489110
iter 20 value 94.250360
iter 30 value 88.422527
final value 88.422233
converged
Fitting Repeat 3
# weights: 305
initial value 126.435269
iter 10 value 94.491610
iter 20 value 94.485365
iter 30 value 89.694410
iter 40 value 85.541211
iter 50 value 85.392702
iter 60 value 85.374083
iter 70 value 85.372306
iter 80 value 85.099752
iter 90 value 84.974717
iter 100 value 84.905538
final value 84.905538
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 95.921256
iter 10 value 94.411218
iter 20 value 94.408204
iter 30 value 94.260359
iter 40 value 86.326835
iter 50 value 86.276271
iter 60 value 86.256709
iter 70 value 86.254202
iter 80 value 85.996527
iter 90 value 85.837477
iter 100 value 85.763042
final value 85.763042
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 111.177409
iter 10 value 94.358857
iter 20 value 94.354454
iter 30 value 85.629754
iter 40 value 85.441137
iter 50 value 85.415519
iter 60 value 85.405344
iter 70 value 85.393235
iter 80 value 85.393099
final value 85.393079
converged
Fitting Repeat 1
# weights: 507
initial value 111.583863
iter 10 value 94.491435
iter 20 value 94.187175
iter 30 value 93.176867
iter 40 value 92.510894
iter 50 value 88.957699
iter 60 value 88.816340
iter 70 value 87.843064
iter 80 value 87.391182
iter 90 value 87.389237
final value 87.389127
converged
Fitting Repeat 2
# weights: 507
initial value 96.196149
iter 10 value 94.054525
iter 20 value 93.499407
iter 30 value 83.650839
iter 40 value 83.615696
iter 50 value 83.614397
final value 83.614204
converged
Fitting Repeat 3
# weights: 507
initial value 107.750778
iter 10 value 92.519924
iter 20 value 87.544618
iter 30 value 87.025265
iter 40 value 87.023701
iter 50 value 86.995674
iter 60 value 86.987369
iter 70 value 86.911790
iter 80 value 85.989049
iter 90 value 83.022493
iter 100 value 82.243481
final value 82.243481
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 132.606071
iter 10 value 86.554592
iter 20 value 86.377730
iter 30 value 84.137151
iter 40 value 84.045470
iter 50 value 83.653878
iter 60 value 83.377028
iter 70 value 83.334249
iter 80 value 83.333558
iter 90 value 83.145517
iter 100 value 82.789414
final value 82.789414
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 99.852380
iter 10 value 92.700899
iter 20 value 92.535345
iter 30 value 92.411461
iter 40 value 92.041211
iter 50 value 92.039737
iter 60 value 92.034887
iter 70 value 86.160804
iter 80 value 84.508423
iter 90 value 81.649972
iter 100 value 80.991689
final value 80.991689
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.887144
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 96.023925
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 94.468821
iter 10 value 84.389448
iter 20 value 84.213430
iter 30 value 84.206372
iter 40 value 84.204940
final value 84.204907
converged
Fitting Repeat 4
# weights: 103
initial value 97.131728
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 101.936586
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 98.550103
final value 94.288571
converged
Fitting Repeat 2
# weights: 305
initial value 97.709724
final value 94.442072
converged
Fitting Repeat 3
# weights: 305
initial value 94.766298
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 100.030616
final value 94.483810
converged
Fitting Repeat 5
# weights: 305
initial value 110.556042
final value 94.354396
converged
Fitting Repeat 1
# weights: 507
initial value 106.323125
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 111.582228
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 104.021124
iter 10 value 88.474537
iter 20 value 84.754592
final value 84.407432
converged
Fitting Repeat 4
# weights: 507
initial value 101.072145
iter 10 value 93.075236
iter 20 value 91.195917
final value 91.195840
converged
Fitting Repeat 5
# weights: 507
initial value 101.670082
iter 10 value 94.128092
final value 94.127374
converged
Fitting Repeat 1
# weights: 103
initial value 101.500987
iter 10 value 94.461444
iter 20 value 94.073769
iter 30 value 93.994624
iter 40 value 91.511746
iter 50 value 87.635416
iter 60 value 86.854940
iter 70 value 85.462257
iter 80 value 83.879280
iter 90 value 83.857998
iter 100 value 83.715500
final value 83.715500
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 99.371206
iter 10 value 93.708945
iter 20 value 92.806276
iter 30 value 89.847302
iter 40 value 86.823957
iter 50 value 86.157945
iter 60 value 85.938575
iter 70 value 85.691122
iter 80 value 85.330498
iter 90 value 85.289514
iter 100 value 85.274418
final value 85.274418
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 103.521693
iter 10 value 93.816709
iter 20 value 86.942587
iter 30 value 85.180634
iter 40 value 84.589458
iter 50 value 83.969126
iter 60 value 83.730108
iter 70 value 83.603079
final value 83.602797
converged
Fitting Repeat 4
# weights: 103
initial value 106.240180
iter 10 value 94.488982
iter 20 value 88.454246
iter 30 value 85.524999
iter 40 value 84.989721
iter 50 value 84.763461
iter 60 value 84.724276
final value 84.724166
converged
Fitting Repeat 5
# weights: 103
initial value 108.184590
iter 10 value 94.393259
iter 20 value 93.850847
iter 30 value 92.190498
iter 40 value 87.903123
iter 50 value 86.849114
iter 60 value 86.638222
iter 70 value 84.981171
iter 80 value 84.036570
iter 90 value 83.705768
iter 100 value 83.602699
final value 83.602699
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 125.850912
iter 10 value 94.520702
iter 20 value 93.547083
iter 30 value 86.032896
iter 40 value 84.779704
iter 50 value 84.276368
iter 60 value 84.116990
iter 70 value 84.047000
iter 80 value 83.881411
iter 90 value 83.817582
iter 100 value 83.736101
final value 83.736101
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 103.815985
iter 10 value 94.509017
iter 20 value 86.708801
iter 30 value 86.296742
iter 40 value 85.314005
iter 50 value 83.611470
iter 60 value 83.168885
iter 70 value 82.534727
iter 80 value 82.394111
iter 90 value 82.162280
iter 100 value 82.095638
final value 82.095638
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 100.812365
iter 10 value 94.458897
iter 20 value 92.377893
iter 30 value 91.510347
iter 40 value 91.425711
iter 50 value 91.386927
iter 60 value 91.046034
iter 70 value 90.891262
iter 80 value 88.412295
iter 90 value 86.060555
iter 100 value 83.838373
final value 83.838373
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 102.974967
iter 10 value 93.809924
iter 20 value 86.589723
iter 30 value 84.511896
iter 40 value 83.403823
iter 50 value 83.208980
iter 60 value 83.046707
iter 70 value 82.709805
iter 80 value 82.622692
iter 90 value 82.618611
iter 100 value 82.618085
final value 82.618085
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 119.920731
iter 10 value 94.443232
iter 20 value 91.845332
iter 30 value 91.149384
iter 40 value 88.831255
iter 50 value 86.881051
iter 60 value 86.269935
iter 70 value 85.334283
iter 80 value 84.621759
iter 90 value 83.925187
iter 100 value 83.852478
final value 83.852478
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 107.978138
iter 10 value 94.345329
iter 20 value 93.107615
iter 30 value 89.797283
iter 40 value 88.108902
iter 50 value 87.361749
iter 60 value 85.379680
iter 70 value 84.447414
iter 80 value 83.663092
iter 90 value 83.387665
iter 100 value 83.273932
final value 83.273932
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 116.694942
iter 10 value 94.541106
iter 20 value 93.473669
iter 30 value 89.938367
iter 40 value 87.206972
iter 50 value 84.544438
iter 60 value 83.951770
iter 70 value 83.520504
iter 80 value 83.069259
iter 90 value 82.666592
iter 100 value 82.548599
final value 82.548599
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 123.717662
iter 10 value 94.413740
iter 20 value 91.218961
iter 30 value 85.857006
iter 40 value 85.386439
iter 50 value 84.114777
iter 60 value 83.582789
iter 70 value 82.862353
iter 80 value 82.717861
iter 90 value 82.565898
iter 100 value 82.367744
final value 82.367744
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 112.830842
iter 10 value 94.666116
iter 20 value 92.342284
iter 30 value 85.286478
iter 40 value 84.294845
iter 50 value 83.991270
iter 60 value 83.956456
iter 70 value 83.453116
iter 80 value 82.749626
iter 90 value 82.459460
iter 100 value 82.303426
final value 82.303426
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 113.935285
iter 10 value 94.669057
iter 20 value 94.448739
iter 30 value 94.001540
iter 40 value 92.699895
iter 50 value 89.411329
iter 60 value 86.260014
iter 70 value 84.280028
iter 80 value 83.856900
iter 90 value 83.592178
iter 100 value 83.427396
final value 83.427396
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 97.811157
iter 10 value 94.485880
iter 20 value 94.484229
iter 30 value 94.290178
iter 40 value 93.349734
iter 50 value 93.222159
iter 60 value 89.872392
iter 70 value 88.290606
iter 80 value 88.228456
iter 90 value 88.227935
iter 100 value 88.208596
final value 88.208596
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.713101
final value 94.485916
converged
Fitting Repeat 3
# weights: 103
initial value 102.383139
final value 94.485629
converged
Fitting Repeat 4
# weights: 103
initial value 107.983855
final value 94.485786
converged
Fitting Repeat 5
# weights: 103
initial value 98.539809
final value 94.485890
converged
Fitting Repeat 1
# weights: 305
initial value 95.323726
iter 10 value 94.488919
iter 20 value 94.322493
iter 30 value 92.926953
iter 40 value 92.830118
iter 50 value 92.303166
iter 60 value 92.170264
iter 70 value 92.169296
iter 80 value 92.083510
iter 80 value 92.083510
iter 80 value 92.083510
final value 92.083510
converged
Fitting Repeat 2
# weights: 305
initial value 101.401678
iter 10 value 94.359744
iter 20 value 94.354681
final value 94.354615
converged
Fitting Repeat 3
# weights: 305
initial value 111.007288
iter 10 value 94.324996
iter 20 value 94.321691
iter 30 value 94.318634
iter 40 value 89.380302
iter 50 value 86.604916
iter 60 value 86.587145
iter 70 value 86.573554
iter 80 value 86.506694
iter 90 value 86.405870
iter 100 value 85.749376
final value 85.749376
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 113.931902
iter 10 value 93.706969
iter 20 value 93.705371
iter 30 value 93.698435
iter 40 value 93.581741
iter 50 value 87.596586
iter 60 value 84.414778
iter 70 value 84.409051
final value 84.408998
converged
Fitting Repeat 5
# weights: 305
initial value 94.799561
iter 10 value 94.359112
iter 20 value 94.354971
iter 30 value 94.227582
iter 40 value 85.516750
iter 50 value 85.514959
final value 85.513328
converged
Fitting Repeat 1
# weights: 507
initial value 97.428353
iter 10 value 94.362345
iter 20 value 94.354673
iter 30 value 94.251297
iter 40 value 87.126474
iter 50 value 87.116243
iter 60 value 87.070856
final value 87.070798
converged
Fitting Repeat 2
# weights: 507
initial value 127.785164
iter 10 value 94.350547
iter 20 value 94.341994
iter 30 value 93.298726
iter 40 value 91.833736
iter 50 value 91.800672
iter 60 value 91.767037
iter 70 value 91.764910
iter 80 value 91.755930
iter 90 value 91.276963
iter 100 value 87.775398
final value 87.775398
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 119.861719
iter 10 value 94.300223
iter 20 value 94.053733
iter 30 value 94.027884
iter 40 value 93.944535
iter 50 value 93.940681
iter 60 value 93.938793
iter 70 value 92.584297
iter 80 value 86.411156
iter 90 value 85.899002
iter 100 value 84.018731
final value 84.018731
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 107.887493
iter 10 value 94.504722
iter 20 value 94.495093
iter 30 value 94.087440
iter 40 value 87.175334
iter 50 value 84.642031
iter 60 value 84.113602
iter 70 value 83.954040
iter 80 value 83.908046
iter 90 value 83.907552
iter 100 value 83.901595
final value 83.901595
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 98.572725
iter 10 value 89.584400
iter 20 value 89.060541
iter 30 value 89.049318
iter 40 value 86.050847
iter 50 value 83.978784
iter 60 value 83.977540
iter 70 value 83.977212
iter 80 value 83.963456
iter 90 value 83.956651
iter 100 value 83.872580
final value 83.872580
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 111.553291
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 100.303208
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 95.027911
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 99.248523
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 100.224804
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 125.882652
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 95.294563
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 113.115498
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 100.169949
iter 10 value 94.484432
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 96.167541
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 118.431619
final value 94.484211
converged
Fitting Repeat 2
# weights: 507
initial value 99.297952
final value 94.484211
converged
Fitting Repeat 3
# weights: 507
initial value 96.526402
iter 10 value 94.473119
iter 10 value 94.473118
iter 10 value 94.473118
final value 94.473118
converged
Fitting Repeat 4
# weights: 507
initial value 108.357283
final value 94.473118
converged
Fitting Repeat 5
# weights: 507
initial value 117.337309
final value 94.484210
converged
Fitting Repeat 1
# weights: 103
initial value 101.421381
iter 10 value 94.423199
iter 20 value 93.980960
iter 30 value 92.328303
iter 40 value 92.078565
iter 50 value 92.030075
iter 60 value 86.635695
iter 70 value 84.560693
iter 80 value 84.447460
iter 90 value 84.294652
iter 100 value 83.245907
final value 83.245907
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 97.079612
iter 10 value 94.490046
iter 20 value 94.423750
iter 30 value 94.068315
iter 40 value 93.987307
iter 50 value 93.963090
iter 60 value 93.835632
iter 70 value 92.229428
iter 80 value 91.929536
iter 90 value 91.863413
iter 100 value 91.361003
final value 91.361003
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.158789
iter 10 value 94.498304
iter 20 value 93.947083
iter 30 value 87.594353
iter 40 value 87.046943
iter 50 value 86.989252
iter 60 value 86.827720
iter 70 value 86.599162
final value 86.599146
converged
Fitting Repeat 4
# weights: 103
initial value 97.967459
iter 10 value 93.954285
iter 20 value 92.129330
iter 30 value 92.068191
iter 40 value 91.773273
iter 50 value 90.774971
iter 60 value 90.741173
iter 70 value 90.739459
iter 80 value 90.733650
iter 90 value 90.726020
iter 100 value 90.679750
final value 90.679750
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 103.268882
iter 10 value 94.473626
iter 20 value 90.664355
iter 30 value 90.250966
iter 40 value 89.076815
iter 50 value 88.433725
iter 60 value 85.974047
iter 70 value 85.849477
iter 80 value 85.797505
iter 90 value 85.283406
iter 100 value 84.907662
final value 84.907662
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 102.295749
iter 10 value 93.155135
iter 20 value 87.846584
iter 30 value 86.289005
iter 40 value 85.591552
iter 50 value 84.999484
iter 60 value 83.915911
iter 70 value 83.506969
iter 80 value 83.197355
iter 90 value 83.007004
iter 100 value 82.849939
final value 82.849939
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 106.796906
iter 10 value 94.352452
iter 20 value 92.863006
iter 30 value 90.361806
iter 40 value 86.896897
iter 50 value 83.025656
iter 60 value 82.663451
iter 70 value 82.195462
iter 80 value 81.953216
iter 90 value 81.764275
iter 100 value 81.756881
final value 81.756881
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 107.320787
iter 10 value 99.971178
iter 20 value 94.495798
iter 30 value 91.620270
iter 40 value 89.407675
iter 50 value 89.221792
iter 60 value 89.018546
iter 70 value 88.793774
iter 80 value 85.868360
iter 90 value 84.820916
iter 100 value 83.874484
final value 83.874484
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 119.280539
iter 10 value 94.504741
iter 20 value 91.695254
iter 30 value 87.716365
iter 40 value 85.716022
iter 50 value 85.016906
iter 60 value 84.301969
iter 70 value 83.884874
iter 80 value 82.832004
iter 90 value 82.081989
iter 100 value 81.765981
final value 81.765981
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 101.987020
iter 10 value 94.416852
iter 20 value 89.806156
iter 30 value 87.968694
iter 40 value 86.051693
iter 50 value 84.446319
iter 60 value 84.331387
iter 70 value 82.644424
iter 80 value 81.906664
iter 90 value 81.674652
iter 100 value 81.643409
final value 81.643409
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 111.680370
iter 10 value 94.628390
iter 20 value 94.409519
iter 30 value 92.670149
iter 40 value 83.481395
iter 50 value 82.028542
iter 60 value 81.859073
iter 70 value 81.676019
iter 80 value 81.248675
iter 90 value 81.083741
iter 100 value 80.857479
final value 80.857479
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 106.474648
iter 10 value 90.360889
iter 20 value 88.400034
iter 30 value 84.657162
iter 40 value 83.497282
iter 50 value 82.760342
iter 60 value 82.474260
iter 70 value 82.113960
iter 80 value 81.395070
iter 90 value 81.233973
iter 100 value 81.118905
final value 81.118905
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.086182
iter 10 value 94.964974
iter 20 value 94.431935
iter 30 value 91.887793
iter 40 value 89.378643
iter 50 value 89.179662
iter 60 value 87.876042
iter 70 value 86.183271
iter 80 value 85.352300
iter 90 value 83.541904
iter 100 value 82.468475
final value 82.468475
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 111.419376
iter 10 value 93.978410
iter 20 value 93.379378
iter 30 value 89.614291
iter 40 value 86.767360
iter 50 value 83.418533
iter 60 value 82.006332
iter 70 value 81.449501
iter 80 value 81.374570
iter 90 value 81.271051
iter 100 value 81.243653
final value 81.243653
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 116.927999
iter 10 value 96.573312
iter 20 value 94.534909
iter 30 value 94.207771
iter 40 value 90.885824
iter 50 value 89.491492
iter 60 value 86.514300
iter 70 value 83.743309
iter 80 value 82.914174
iter 90 value 82.508155
iter 100 value 81.506994
final value 81.506994
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.931573
final value 94.486156
converged
Fitting Repeat 2
# weights: 103
initial value 95.394364
final value 94.485984
converged
Fitting Repeat 3
# weights: 103
initial value 94.846521
final value 94.486043
converged
Fitting Repeat 4
# weights: 103
initial value 105.616375
final value 94.485947
converged
Fitting Repeat 5
# weights: 103
initial value 99.286560
final value 94.486228
converged
Fitting Repeat 1
# weights: 305
initial value 99.793775
iter 10 value 94.488742
iter 20 value 94.323646
iter 30 value 93.947134
iter 40 value 92.913578
iter 50 value 86.102202
iter 60 value 86.025000
iter 70 value 85.977135
iter 80 value 85.972276
final value 85.972230
converged
Fitting Repeat 2
# weights: 305
initial value 98.080265
iter 10 value 94.489246
iter 20 value 94.436737
iter 30 value 94.094032
final value 94.093881
converged
Fitting Repeat 3
# weights: 305
initial value 119.314764
iter 10 value 93.459898
iter 20 value 93.404518
iter 30 value 93.388218
iter 40 value 93.042550
iter 50 value 91.397507
iter 60 value 90.399720
iter 70 value 90.389144
iter 80 value 90.387570
iter 90 value 90.387415
iter 100 value 89.508261
final value 89.508261
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.084731
iter 10 value 94.489198
iter 20 value 94.466917
iter 30 value 94.166397
iter 40 value 91.919700
iter 50 value 86.372158
iter 60 value 83.779195
iter 70 value 83.742423
iter 80 value 83.732925
iter 90 value 82.910042
iter 100 value 82.860227
final value 82.860227
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 96.119560
iter 10 value 92.940012
iter 20 value 92.843507
iter 30 value 91.845529
iter 40 value 91.833595
iter 50 value 91.831030
iter 60 value 91.802268
iter 70 value 91.778424
final value 91.778127
converged
Fitting Repeat 1
# weights: 507
initial value 94.802461
iter 10 value 94.431726
iter 20 value 94.427720
iter 30 value 94.355059
iter 40 value 91.703076
iter 50 value 89.610818
iter 60 value 85.762657
iter 70 value 83.489237
iter 80 value 82.573091
iter 90 value 81.083735
iter 100 value 80.164796
final value 80.164796
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 134.554149
iter 10 value 94.492871
iter 20 value 94.484801
iter 30 value 94.319277
iter 40 value 88.250599
iter 50 value 86.604355
iter 60 value 86.593769
iter 70 value 86.589162
iter 80 value 86.505999
iter 90 value 84.959530
iter 100 value 84.055139
final value 84.055139
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 117.810266
iter 10 value 92.976163
iter 20 value 87.881980
iter 30 value 87.879749
final value 87.878985
converged
Fitting Repeat 4
# weights: 507
initial value 109.552077
iter 10 value 94.491421
iter 20 value 94.378957
iter 30 value 93.948063
iter 40 value 86.140974
iter 50 value 85.165097
iter 60 value 84.889112
iter 70 value 84.766085
iter 80 value 82.167947
iter 90 value 82.142933
final value 82.142482
converged
Fitting Repeat 5
# weights: 507
initial value 111.997600
iter 10 value 93.709434
iter 20 value 93.143640
iter 30 value 91.189146
iter 40 value 90.242778
iter 50 value 89.957185
iter 60 value 89.915077
iter 70 value 89.896202
iter 80 value 89.896160
iter 90 value 89.896069
iter 100 value 89.895988
final value 89.895988
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 98.708624
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 104.450781
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 96.341639
final value 94.038251
converged
Fitting Repeat 4
# weights: 103
initial value 102.086551
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 97.642399
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 95.180960
final value 94.038251
converged
Fitting Repeat 2
# weights: 305
initial value 103.399481
iter 10 value 92.779088
iter 20 value 91.360087
final value 91.360074
converged
Fitting Repeat 3
# weights: 305
initial value 95.274587
iter 10 value 93.732893
iter 10 value 93.732893
iter 10 value 93.732893
final value 93.732893
converged
Fitting Repeat 4
# weights: 305
initial value 104.842460
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 97.296988
final value 94.008696
converged
Fitting Repeat 1
# weights: 507
initial value 102.223502
iter 10 value 93.545562
final value 93.097211
converged
Fitting Repeat 2
# weights: 507
initial value 97.881474
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 117.504516
iter 10 value 94.052911
iter 10 value 94.052910
iter 10 value 94.052910
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 98.193016
final value 94.052908
converged
Fitting Repeat 5
# weights: 507
initial value 102.210238
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 98.946037
iter 10 value 93.994910
iter 20 value 89.270254
iter 30 value 86.692258
iter 40 value 84.112739
iter 50 value 83.735864
iter 60 value 83.105582
iter 70 value 81.376371
iter 80 value 81.124827
iter 90 value 81.120605
iter 100 value 81.098612
final value 81.098612
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 113.282732
iter 10 value 93.749104
iter 20 value 85.216160
iter 30 value 83.976937
iter 40 value 83.703946
iter 50 value 83.502873
iter 60 value 82.277063
iter 70 value 81.986464
iter 80 value 81.700432
iter 90 value 81.568912
iter 100 value 81.522250
final value 81.522250
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 97.525757
iter 10 value 94.063748
iter 20 value 93.963249
iter 30 value 91.521735
iter 40 value 90.868300
iter 50 value 90.799224
iter 60 value 90.760933
iter 70 value 90.756502
iter 70 value 90.756501
iter 70 value 90.756501
final value 90.756501
converged
Fitting Repeat 4
# weights: 103
initial value 96.233574
iter 10 value 94.067905
iter 20 value 93.785827
iter 30 value 87.544810
iter 40 value 85.308486
iter 50 value 85.098515
iter 60 value 84.660895
iter 70 value 84.122744
iter 80 value 83.992325
iter 90 value 83.944508
iter 100 value 83.868357
final value 83.868357
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 100.352426
iter 10 value 92.837179
iter 20 value 85.101565
iter 30 value 84.856646
iter 40 value 84.708853
iter 50 value 84.559438
iter 60 value 82.684854
iter 70 value 82.363054
iter 80 value 82.271918
iter 90 value 82.254895
iter 100 value 81.103030
final value 81.103030
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 102.812789
iter 10 value 94.190951
iter 20 value 88.659492
iter 30 value 85.445707
iter 40 value 84.765509
iter 50 value 84.518480
iter 60 value 84.347195
iter 70 value 82.714258
iter 80 value 82.172057
iter 90 value 81.587818
iter 100 value 81.418923
final value 81.418923
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 108.541617
iter 10 value 93.815837
iter 20 value 86.960715
iter 30 value 83.681476
iter 40 value 82.341860
iter 50 value 81.609010
iter 60 value 81.471512
iter 70 value 81.156293
iter 80 value 80.996609
iter 90 value 80.866694
iter 100 value 80.514286
final value 80.514286
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 109.046324
iter 10 value 94.042147
iter 20 value 87.367512
iter 30 value 84.844811
iter 40 value 83.119308
iter 50 value 82.416485
iter 60 value 81.360194
iter 70 value 80.846709
iter 80 value 80.454117
iter 90 value 80.015312
iter 100 value 79.890446
final value 79.890446
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 100.418917
iter 10 value 94.384188
iter 20 value 94.012989
iter 30 value 89.038636
iter 40 value 86.707473
iter 50 value 85.811688
iter 60 value 85.303181
iter 70 value 85.125529
iter 80 value 83.677532
iter 90 value 83.345574
iter 100 value 82.761345
final value 82.761345
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 104.113319
iter 10 value 94.062697
iter 20 value 92.134241
iter 30 value 84.577119
iter 40 value 84.304617
iter 50 value 84.116573
iter 60 value 83.927471
iter 70 value 83.795897
iter 80 value 83.587566
iter 90 value 83.484600
iter 100 value 83.325093
final value 83.325093
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 120.707009
iter 10 value 95.241400
iter 20 value 94.201886
iter 30 value 89.384002
iter 40 value 84.186567
iter 50 value 83.727704
iter 60 value 83.532066
iter 70 value 83.380264
iter 80 value 81.594772
iter 90 value 81.503793
iter 100 value 81.194240
final value 81.194240
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 112.348389
iter 10 value 90.474553
iter 20 value 82.939799
iter 30 value 82.275359
iter 40 value 81.804461
iter 50 value 80.969212
iter 60 value 80.734835
iter 70 value 80.652095
iter 80 value 80.568935
iter 90 value 80.353883
iter 100 value 80.187509
final value 80.187509
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 118.505322
iter 10 value 91.068989
iter 20 value 86.828828
iter 30 value 86.373233
iter 40 value 84.923027
iter 50 value 83.028481
iter 60 value 81.755505
iter 70 value 81.393117
iter 80 value 81.248422
iter 90 value 80.816502
iter 100 value 80.466638
final value 80.466638
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 109.106772
iter 10 value 96.513946
iter 20 value 94.251316
iter 30 value 93.515938
iter 40 value 86.496826
iter 50 value 86.243460
iter 60 value 84.801436
iter 70 value 81.591014
iter 80 value 80.993561
iter 90 value 80.814288
iter 100 value 80.673215
final value 80.673215
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.989753
iter 10 value 94.127985
iter 20 value 91.046720
iter 30 value 86.945998
iter 40 value 86.159784
iter 50 value 85.888106
iter 60 value 84.481246
iter 70 value 82.259529
iter 80 value 82.036869
iter 90 value 81.453925
iter 100 value 80.975002
final value 80.975002
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 104.765514
final value 94.054673
converged
Fitting Repeat 2
# weights: 103
initial value 96.631009
final value 93.290664
converged
Fitting Repeat 3
# weights: 103
initial value 94.199179
final value 94.054373
converged
Fitting Repeat 4
# weights: 103
initial value 96.088220
final value 94.054560
converged
Fitting Repeat 5
# weights: 103
initial value 105.846812
final value 94.054629
converged
Fitting Repeat 1
# weights: 305
initial value 100.873314
iter 10 value 94.135202
iter 20 value 93.805475
iter 30 value 86.144696
iter 40 value 86.019465
iter 50 value 85.511141
iter 60 value 85.472921
iter 70 value 85.470038
iter 80 value 85.438007
iter 90 value 83.454373
iter 100 value 83.436324
final value 83.436324
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.679209
iter 10 value 94.057742
iter 20 value 94.052550
iter 30 value 94.050505
final value 94.050483
converged
Fitting Repeat 3
# weights: 305
initial value 98.189899
iter 10 value 94.057012
iter 20 value 91.339046
iter 30 value 86.378594
iter 40 value 86.378277
iter 50 value 85.210473
iter 60 value 85.210118
final value 85.210108
converged
Fitting Repeat 4
# weights: 305
initial value 104.801315
iter 10 value 92.832080
iter 20 value 91.951015
iter 30 value 91.949056
iter 40 value 91.413484
iter 50 value 91.413313
iter 60 value 91.411159
iter 70 value 91.331661
iter 80 value 91.283620
final value 91.283584
converged
Fitting Repeat 5
# weights: 305
initial value 96.082564
iter 10 value 94.057091
iter 20 value 86.300857
iter 30 value 82.840703
iter 40 value 80.292547
iter 50 value 79.919312
iter 60 value 79.916818
iter 70 value 79.911334
iter 80 value 79.760259
iter 90 value 79.753002
iter 100 value 79.751968
final value 79.751968
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 101.281119
iter 10 value 92.156545
iter 20 value 91.988831
iter 30 value 91.983281
iter 40 value 91.981700
iter 50 value 91.963669
iter 60 value 91.961213
iter 70 value 91.931850
iter 80 value 87.761605
iter 90 value 86.314278
iter 100 value 86.311008
final value 86.311008
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 100.809228
iter 10 value 94.060716
iter 20 value 93.823333
iter 30 value 83.871381
iter 40 value 83.323901
iter 50 value 83.305365
iter 60 value 82.284003
iter 70 value 81.581532
iter 80 value 81.371898
iter 90 value 81.342199
iter 100 value 81.308749
final value 81.308749
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 105.127295
iter 10 value 94.059558
iter 20 value 93.316181
iter 30 value 92.893850
iter 40 value 91.949121
iter 50 value 91.357290
iter 60 value 91.357178
iter 70 value 91.357132
iter 80 value 91.357040
final value 91.357022
converged
Fitting Repeat 4
# weights: 507
initial value 100.057863
iter 10 value 94.061149
iter 20 value 93.816121
iter 30 value 86.791191
iter 40 value 81.758318
iter 50 value 80.788169
final value 80.783287
converged
Fitting Repeat 5
# weights: 507
initial value 97.846653
iter 10 value 86.391752
iter 20 value 85.385680
iter 30 value 85.322181
iter 40 value 85.320752
iter 50 value 83.285337
iter 60 value 83.147992
iter 70 value 83.037914
iter 80 value 83.037405
iter 90 value 83.036661
final value 83.036146
converged
Fitting Repeat 1
# weights: 507
initial value 125.996879
iter 10 value 118.046730
iter 20 value 117.418331
iter 30 value 108.901297
iter 40 value 106.639773
iter 50 value 104.910275
iter 60 value 102.583462
iter 70 value 102.288810
iter 80 value 101.557680
iter 90 value 100.486068
iter 100 value 100.163930
final value 100.163930
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 138.054771
iter 10 value 112.678992
iter 20 value 109.415264
iter 30 value 105.939792
iter 40 value 104.964846
iter 50 value 103.929211
iter 60 value 103.623273
iter 70 value 103.450250
iter 80 value 103.372083
iter 90 value 103.175911
iter 100 value 102.863482
final value 102.863482
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 153.281074
iter 10 value 118.056790
iter 20 value 117.822596
iter 30 value 107.956990
iter 40 value 107.758445
iter 50 value 107.386188
iter 60 value 104.959114
iter 70 value 102.166326
iter 80 value 101.830362
iter 90 value 101.706892
iter 100 value 101.504612
final value 101.504612
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 128.892737
iter 10 value 117.586915
iter 20 value 107.779410
iter 30 value 102.531780
iter 40 value 101.963533
iter 50 value 101.694439
iter 60 value 101.544394
iter 70 value 100.985025
iter 80 value 100.546975
iter 90 value 100.459589
iter 100 value 100.375251
final value 100.375251
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 162.896574
iter 10 value 115.760380
iter 20 value 107.604838
iter 30 value 106.033409
iter 40 value 104.478886
iter 50 value 103.853949
iter 60 value 103.702165
iter 70 value 102.878515
iter 80 value 102.188588
iter 90 value 101.934497
iter 100 value 101.152563
final value 101.152563
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Sun Oct 15 22:07:34 2023
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
44.141 1.710 42.906
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 34.050 | 0.691 | 34.743 | |
| FreqInteractors | 0.224 | 0.011 | 0.237 | |
| calculateAAC | 0.034 | 0.007 | 0.043 | |
| calculateAutocor | 0.525 | 0.025 | 0.550 | |
| calculateCTDC | 0.079 | 0.000 | 0.079 | |
| calculateCTDD | 0.585 | 0.027 | 0.613 | |
| calculateCTDT | 0.232 | 0.016 | 0.249 | |
| calculateCTriad | 0.345 | 0.009 | 0.354 | |
| calculateDC | 0.087 | 0.008 | 0.095 | |
| calculateF | 0.292 | 0.007 | 0.300 | |
| calculateKSAAP | 0.090 | 0.009 | 0.098 | |
| calculateQD_Sm | 1.448 | 0.067 | 1.516 | |
| calculateTC | 1.488 | 0.132 | 1.620 | |
| calculateTC_Sm | 0.230 | 0.004 | 0.234 | |
| corr_plot | 35.919 | 0.664 | 36.592 | |
| enrichfindP | 0.432 | 0.048 | 8.956 | |
| enrichfind_hp | 0.074 | 0.012 | 1.094 | |
| enrichplot | 0.235 | 0.012 | 0.248 | |
| filter_missing_values | 0.001 | 0.000 | 0.001 | |
| getFASTA | 0.546 | 0.025 | 4.934 | |
| getHPI | 0.000 | 0.001 | 0.001 | |
| get_negativePPI | 0.000 | 0.002 | 0.002 | |
| get_positivePPI | 0 | 0 | 0 | |
| impute_missing_data | 0.000 | 0.002 | 0.002 | |
| plotPPI | 0.066 | 0.009 | 0.074 | |
| pred_ensembel | 13.873 | 0.527 | 10.672 | |
| var_imp | 35.813 | 0.920 | 36.733 | |