| Back to Multiple platform build/check report for BioC 3.14 |
|
This page was generated on 2022-04-13 12:07:37 -0400 (Wed, 13 Apr 2022).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4324 |
| tokay2 | Windows Server 2012 R2 Standard | x64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4077 |
| machv2 | macOS 10.14.6 Mojave | x86_64 | 4.1.3 (2022-03-10) -- "One Push-Up" | 4137 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the aroma.light package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/aroma.light.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 77/2083 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| aroma.light 3.24.0 (landing page) Henrik Bengtsson
| nebbiolo2 | Linux (Ubuntu 20.04.4 LTS) / x86_64 | OK | OK | OK | |||||||||
| tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
| machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
| Package: aroma.light |
| Version: 3.24.0 |
| Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings aroma.light_3.24.0.tar.gz |
| StartedAt: 2022-04-12 10:22:00 -0400 (Tue, 12 Apr 2022) |
| EndedAt: 2022-04-12 10:24:03 -0400 (Tue, 12 Apr 2022) |
| EllapsedTime: 123.4 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: aroma.light.Rcheck |
| Warnings: 0 |
##############################################################################
##############################################################################
###
### Running command:
###
### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings aroma.light_3.24.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/Users/biocbuild/bbs-3.14-bioc/meat/aroma.light.Rcheck’
* using R version 4.1.3 (2022-03-10)
* using platform: x86_64-apple-darwin17.0 (64-bit)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘aroma.light/DESCRIPTION’ ... OK
* this is package ‘aroma.light’ version ‘3.24.0’
* package encoding: latin1
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... NOTE
Found the following hidden files and directories:
inst/rsp/.rspPlugins
These were most likely included in error. See section ‘Package
structure’ in the ‘Writing R Extensions’ manual.
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘aroma.light’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
normalizeCurveFit 11.139 0.137 11.283
normalizeAffine 10.881 0.151 11.038
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘backtransformAffine.matrix.R’
Running ‘backtransformPrincipalCurve.matrix.R’
Running ‘callNaiveGenotypes.R’
Running ‘distanceBetweenLines.R’
Running ‘findPeaksAndValleys.R’
Running ‘fitPrincipalCurve.matrix.R’
Running ‘fitXYCurve.matrix.R’
Running ‘iwpca.matrix.R’
Running ‘likelihood.smooth.spline.R’
Running ‘medianPolish.matrix.R’
Running ‘normalizeAffine.matrix.R’
Running ‘normalizeAverage.list.R’
Running ‘normalizeAverage.matrix.R’
Running ‘normalizeCurveFit.matrix.R’
Running ‘normalizeDifferencesToAverage.R’
Running ‘normalizeFragmentLength-ex1.R’
Running ‘normalizeFragmentLength-ex2.R’
Running ‘normalizeQuantileRank.list.R’
Running ‘normalizeQuantileRank.matrix.R’
Running ‘normalizeQuantileSpline.matrix.R’
Running ‘normalizeTumorBoost,flavors.R’
Running ‘normalizeTumorBoost.R’
Running ‘robustSmoothSpline.R’
Running ‘rowAverages.matrix.R’
Running ‘sampleCorrelations.matrix.R’
Running ‘sampleTuples.R’
Running ‘wpca.matrix.R’
Running ‘wpca2.matrix.R’
OK
* checking PDF version of manual ... OK
* DONE
Status: 1 NOTE
See
‘/Users/biocbuild/bbs-3.14-bioc/meat/aroma.light.Rcheck/00check.log’
for details.
aroma.light.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL aroma.light ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.1/Resources/library’ * installing *source* package ‘aroma.light’ ... ** using staged installation ** R ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (aroma.light)
aroma.light.Rcheck/tests/backtransformAffine.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:8, nrow=4, ncol=2)
> X[2,2] <- NA_integer_
>
> print(X)
[,1] [,2]
[1,] 1 5
[2,] 2 NA
[3,] 3 7
[4,] 4 8
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=c(1,5)))
[,1] [,2]
[1,] 0 0
[2,] 1 NA
[3,] 2 2
[4,] 3 3
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, b=c(1,1/2)))
[,1] [,2]
[1,] 1 10
[2,] 2 NA
[3,] 3 14
[4,] 4 16
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:4,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 0 4
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:3,ncol=1)))
[,1] [,2]
[1,] 0 4
[2,] 0 NA
[3,] 0 4
[4,] 3 7
>
> # Returns a 4x2 matrix
> print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2)))
[,1] [,2]
[1,] 0 2
[2,] 0 NA
[3,] 2 3
[4,] 2 3
>
> # Returns a 4x1 matrix
> print(backtransformAffine(X, b=c(1,1/2), project=TRUE))
[,1]
[1,] 2.8
[2,] 1.6
[3,] 5.2
[4,] 6.4
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE)
> print(X)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
>
> # If the columns of X are identical, and a identity
> # backtransformation is applied and projected, the
> # same matrix is returned.
> X <- matrix(1:4, nrow=4, ncol=3)
> X[,2] <- X[,2]*2; X[,3] <- X[,3]*3
> print(X)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 2 4 6
[3,] 3 6 9
[4,] 4 8 12
> Y <- backtransformAffine(X, b=c(1,2,3))
> print(Y)
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 2 2 2
[3,] 3 3 3
[4,] 4 4 4
> Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE)
> print(Y)
[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
> stopifnot(sum(X[,1]-Y) <= .Machine$double.eps)
>
> proc.time()
user system elapsed
0.441 0.092 0.505
aroma.light.Rcheck/tests/backtransformPrincipalCurve.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Consider the case where K=4 measurements have been done
> # for the same underlying signals 'x'. The different measurements
> # have different systematic variation
> #
> # y_k = f(x_k) + eps_k; k = 1,...,K.
> #
> # In this example, we assume non-linear measurement functions
> #
> # f(x) = a + b*x + x^c + eps(b*x)
> #
> # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential.
> # We also assume heteroscedastic zero-mean noise with standard
> # deviation proportional to the rescaled underlying signal 'x'.
> #
> # Furthermore, we assume that measurements k=2 and k=3 undergo the
> # same transformation, which may illustrate that the come from
> # the same batch. However, when *fitting* the model below we
> # will assume they are independent.
>
> # Transforms
> a <- c(2, 15, 15, 3)
> b <- c(2, 3, 3, 4)
> c <- c(1, 2, 2, 1/2)
> K <- length(a)
>
> # The true signal
> N <- 1000
> x <- rexp(N)
>
> # The noise
> bX <- outer(b,x)
> E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x))
>
> # The transformed signals with noise
> Xc <- t(sapply(c, FUN=function(c) x^c))
> Y <- a + bX + Xc + E
> Y <- t(Y)
>
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Fit principal curve through Y = (y_1, y_2, ..., y_K)
> fit <- fitPrincipalCurve(Y)
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, Y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
> L <- ncol(fit$s)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform data according to model fit
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Backtransform toward the principal curve (the "common scale")
> YN1 <- backtransformPrincipalCurve(Y, fit=fit)
> stopifnot(ncol(YN1) == K)
>
>
> # Backtransform toward the first dimension
> YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1)
> stopifnot(ncol(YN2) == K)
>
>
> # Backtransform toward the last (fitted) dimension
> YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L)
> stopifnot(ncol(YN3) == K)
>
>
> # Backtransform toward the third dimension (dimension by dimension)
> # Note, this assumes that K == L.
> YN4 <- Y
> for (cc in 1:L) {
+ YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=cc)
+ }
> stopifnot(identical(YN4, YN2))
>
>
> # Backtransform a subset toward the first dimension
> # Note, this assumes that K == L.
> YN5 <- backtransformPrincipalCurve(Y, fit=fit,
+ targetDimension=1, dimensions=2:3)
> stopifnot(identical(YN5, YN2[,2:3]))
> stopifnot(ncol(YN5) == 2)
>
>
> # Extract signals from measurement #2 and backtransform according
> # its model fit. Signals are standardized to target dimension 1.
> y6 <- Y[,2,drop=FALSE]
> yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2,
+ targetDimension=1)
> stopifnot(identical(yN6, YN2[,2,drop=FALSE]))
> stopifnot(ncol(yN6) == 1)
>
>
> # Extract signals from measurement #2 and backtransform according
> # the the model fit of measurement #3 (because we believe these
> # two have undergone very similar transformations.
> # Signals are standardized to target dimension 1.
> y7 <- Y[,2,drop=FALSE]
> yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3,
+ targetDimension=1)
> stopifnot(ncol(yN7) == 1)
>
> rho <- cor(yN7, yN6)
> print(rho)
[,1]
[1,] 0.9999738
> stopifnot(rho > 0.999)
>
> proc.time()
user system elapsed
1.244 0.128 1.346
aroma.light.Rcheck/tests/callNaiveGenotypes.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A bimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.1)
> xBB <- rnorm(n=10000, mean=1, sd=0.1)
> x <- c(xAA,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.005661461 1.6626079717
2 valley 0.502301932 0.0003184256
3 peak 0.997774423 1.6757772515
> calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20)
Calling genotypes from allele B fractions (BAFs)...
Fitting naive genotype model...
Fitting naive genotype model from normal allele B fractions (BAFs)...
Flavor: density
Censoring BAFs...
Before:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.356805 -0.001643 0.514028 0.499697 0.999965 1.390554
[1] 20000
After:
Min. 1st Qu. Median Mean 3rd Qu. Max.
-Inf -0.001643 0.514028 0.999965 Inf
[1] 16771
Censoring BAFs...done
Copy number level #1 (C=1) of 1...
Identified extreme points in density of BAF:
type x density
1 peak 0.01453226 1.624803432
2 valley 0.49826801 0.003835453
3 peak 0.97857302 1.633717817
Local minimas ("valleys") in BAF:
type x density
2 valley 0.498268 0.003835453
Copy number level #1 (C=1) of 1...done
Fitting naive genotype model from normal allele B fractions (BAFs)...done
[[1]]
[[1]]$flavor
[1] "density"
[[1]]$cn
[1] 1
[[1]]$nbrOfGenotypeGroups
[1] 2
[[1]]$tau
[1] 0.498268
[[1]]$n
[1] 16771
[[1]]$fit
type x density
1 peak 0.01453226 1.624803432
2 valley 0.49826801 0.003835453
3 peak 0.97857302 1.633717817
[[1]]$fitValleys
type x density
2 valley 0.498268 0.003835453
attr(,"class")
[1] "NaiveGenotypeModelFit" "list"
Fitting naive genotype model...done
Copy number level #1 (C=1) of 1...
Model fit:
$flavor
[1] "density"
$cn
[1] 1
$nbrOfGenotypeGroups
[1] 2
$tau
[1] 0.498268
$n
[1] 16771
$fit
type x density
1 peak 0.01453226 1.624803432
2 valley 0.49826801 0.003835453
3 peak 0.97857302 1.633717817
$fitValleys
type x density
2 valley 0.498268 0.003835453
Genotype threshholds [1]: 0.498268013581096
TCN=1 => BAF in {0,1}.
Call regions: A = (-Inf,0.498], B = (0.498,+Inf)
Copy number level #1 (C=1) of 1...done
Calling genotypes from allele B fractions (BAFs)...done
> xc <- split(x, calls)
> print(table(calls))
calls
0 1
10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with missing values
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAB <- rnorm(n=10000, mean=1/2, sd=0.1)
> x <- c(xAA,xAB,xBB)
> x[sample(length(x), size=0.05*length(x))] <- NA_real_
> x[sample(length(x), size=0.01*length(x))] <- -Inf
> x[sample(length(x), size=0.01*length(x))] <- +Inf
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.008587972 1.1515990
2 valley 0.249673358 0.1878524
3 peak 0.492041684 1.1833641
4 valley 0.742356512 0.1974216
5 peak 0.996644591 1.1574541
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
9614 9297 9617
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> xAA <- rnorm(n=10000, mean=0, sd=0.02)
> xAB <- rnorm(n=10000, mean=1/2, sd=0.02)
> xBB <- rnorm(n=10000, mean=1, sd=0.02)
> x <- c(xAA,xAB,xBB)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.002212905 2.608444e+00
2 valley 0.247699992 3.123377e-05
3 peak 0.497612888 2.612301e+00
4 valley 0.747525785 3.302536e-05
5 peak 0.997438682 2.612536e+00
> calls <- callNaiveGenotypes(x)
> xc <- split(x, calls)
> print(table(calls))
calls
0 0.5 1
10000 10000 10000
> xx <- c(list(x),xc)
> plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.891 0.116 0.982
aroma.light.Rcheck/tests/distanceBetweenLines.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE))
+
+ ############################################################
+ # Lines in two-dimensions
+ ############################################################
+ x <- list(a=c(1,0), b=c(1,2))
+ y <- list(a=c(0,2), b=c(1,1))
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- c(-1,8)
+ plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim)
+
+ # Highlight the offset coordinates for both lines
+ points(t(x$a), pch="+", col="red")
+ text(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points(t(y$a), pch="+", col="blue")
+ text(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ v <- c(-1,1)*10
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v)
+
+ lines(xv, col="red")
+ lines(yv, col="blue")
+
+ points(t(fit$xs), cex=2.0, col="red")
+ text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points(t(fit$yt), cex=1.5, col="blue")
+ text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+ print(fit)
+
+
+ ############################################################
+ # Lines in three-dimensions
+ ############################################################
+ x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal'
+ y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line
+ fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b)
+
+ xlim <- ylim <- zlim <- c(-1,3)
+ dummy <- t(c(1,1,1))*100
+
+ # Coordinates for the lines in 3d
+ v <- seq(-10,10, by=1)
+ xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v)
+ yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v)
+
+ for (theta in seq(30,140,length.out=3)) {
+ plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="",
+ xlim=ylim, ylim=ylim, zlim=zlim)
+
+ # Highlight the offset coordinates for both lines
+ points3d(t(x$a), pch="+", col="red")
+ text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5))
+ points3d(t(y$a), pch="+", col="blue")
+ text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5))
+
+ # Draw the lines
+ lines3d(xv, col="red")
+ lines3d(yv, col="blue")
+
+ # Draw the two points that are closest to each other
+ points3d(t(fit$xs), cex=2.0, col="red")
+ text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5))
+ points3d(t(fit$yt), cex=1.5, col="blue")
+ text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5))
+
+ # Draw the distance between the two points
+ lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2)
+ }
+
+ print(fit)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.699 0.101 0.773
aroma.light.Rcheck/tests/findPeaksAndValleys.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> layout(matrix(1:3, ncol=1))
> par(mar=c(2,4,4,1)+0.1)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A unimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1 <- rnorm(n=10000, mean=0, sd=1)
> x <- x1
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.004479307 0.3988595690
2 valley 3.940522179 0.0001409823
3 peak 4.193406890 0.0002793466
> plot(density(x), lwd=2, main="x1")
> abline(v=fit$x)
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x2 <- rnorm(n=10000, mean=4, sd=1)
> x3 <- rnorm(n=10000, mean=8, sd=1)
> x <- c(x1,x2,x3)
> fit <- findPeaksAndValleys(x)
> print(fit)
type x density
1 peak -0.05136318 0.12357026
2 valley 1.96355761 0.04357240
3 peak 3.94249768 0.12637695
4 valley 5.92143774 0.04261678
5 peak 8.00831999 0.12389143
> plot(density(x), lwd=2, main="c(x1,x2,x3)")
> abline(v=fit$x)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # A trimodal distribution with clear separation
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> x1b <- rnorm(n=10000, mean=0, sd=0.1)
> x2b <- rnorm(n=10000, mean=4, sd=0.1)
> x3b <- rnorm(n=10000, mean=8, sd=0.1)
> x <- c(x1b,x2b,x3b)
>
> # Illustrating explicit usage of density()
> d <- density(x)
> fit <- findPeaksAndValleys(d, tol=0)
> print(fit)
type x density
1 peak -0.02563308 3.424934e-01
2 valley 1.97621083 1.202092e-06
3 peak 3.97805473 3.426941e-01
4 valley 5.97989863 1.208496e-06
5 peak 7.98174253 3.426671e-01
> plot(d, lwd=2, main="c(x1b,x2b,x3b)")
> abline(v=fit$x)
>
> proc.time()
user system elapsed
0.518 0.093 0.586
aroma.light.Rcheck/tests/fitPrincipalCurve.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> J <- 1000
> x <- rexp(J)
> a <- c(2,15,3)
> b <- c(2,3,4)
> c <- c(1,2,1/2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x))
> y <- a + bx + xc + eps
> y <- t(y)
>
> # Fit principal curve through (y_1, y_2, y_3)
> fit <- fitPrincipalCurve(y, verbose=TRUE)
Fitting principal curve...
Data size: 1000x3
Identifying missing values...
Identifying missing values...done
Data size after removing non-finite data points: 1000x3
Calling principal_curve()...
Starting curve---distance^2: 1626161
Iteration 1---distance^2: 361.0285
Iteration 2---distance^2: 360.4674
Iteration 3---distance^2: 360.4829
Converged: TRUE
Number of iterations: 3
Processing time/iteration: 0.2s (0.1s/iteration)
Calling principal_curve()...done
Fitting principal curve...done
>
> # Flip direction of 'lambda'?
> rho <- cor(fit$lambda, y[,1], use="complete.obs")
> flip <- (rho < 0)
> if (flip) {
+ fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda
+ }
>
>
> # Backtransform (y_1, y_2, y_3) to be proportional to each other
> yN <- backtransformPrincipalCurve(y, fit=fit)
>
> # Same backtransformation dimension by dimension
> yN2 <- y
> for (cc in 1:ncol(y)) {
+ yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc)
+ }
> stopifnot(identical(yN2, yN))
>
>
> xlim <- c(0, 1.04*max(x))
> ylim <- range(c(y,yN), na.rm=TRUE)
>
>
> # Pairwise signals vs x before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (cc in 1:3) {
+ ylab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab)
+ abline(h=a[cc], lty=3)
+ mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]),
+ cex=0.8, las=2, line=0, adj=1.1, padj=-0.2)
+ points(x, y[,cc])
+ points(x, yN[,cc], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
> title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2)
>
>
> # Pairwise signals before and after transform
> layout(matrix(1:4, nrow=2, byrow=TRUE))
> par(mar=c(4,4,3,2)+0.1)
> for (rr in 3:2) {
+ ylab <- substitute(y[c], env=list(c=rr))
+ for (cc in 1:2) {
+ if (cc == rr) {
+ plot.new()
+ next
+ }
+ xlab <- substitute(y[c], env=list(c=cc))
+ plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab)
+ abline(a=0, b=1, lty=2)
+ points(y[,c(cc,rr)])
+ points(yN[,c(cc,rr)], col="tomato")
+ legend("topleft", col=c("black", "tomato"), pch=19,
+ c("orignal", "transformed"), bty="n")
+ }
+ }
> title(main="Pairwise signals before and after transform", outer=TRUE, line=-2)
>
> proc.time()
user system elapsed
1.506 0.155 1.635
aroma.light.Rcheck/tests/fitXYCurve.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Simulate data from the model y <- a + bx + x^c + eps(bx)
> x <- rexp(1000)
> a <- c(2,15)
> b <- c(2,1)
> c <- c(1,2)
> bx <- outer(b,x)
> xc <- t(sapply(c, FUN=function(c) x^c))
> eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
> Y <- a + bx + xc + eps
> Y <- t(Y)
>
> lim <- c(0,70)
> plot(Y, xlim=lim, ylim=lim)
>
> # Fit principal curve through a subset of (y_1, y_2)
> subset <- sample(nrow(Y), size=0.3*nrow(Y))
> fit <- fitXYCurve(Y[subset,], bandwidth=0.2)
>
> lines(fit, col="red", lwd=2)
>
> # Backtransform (y_1, y_2) keeping y_1 unchanged
> YN <- backtransformXYCurve(Y, fit=fit)
> points(YN, col="blue")
> abline(a=0, b=1, col="red", lwd=2)
>
> proc.time()
user system elapsed
0.645 0.102 0.723
aroma.light.Rcheck/tests/iwpca.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,4)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/10 of the observations
+ idx <- sample(1:nrow(y), size=1/10*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Plot the data with fitted lines at four different view points
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ N <- 4
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ theta <- seq(0,270,length.out=N)
+ phi <- rep(20, length.out=N)
+ xlim <- ylim <- zlim <- c(0,45)
+ persp <- list()
+ for (kk in seq_along(theta)) {
+ # Plot the data
+ persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim)
+ }
+
+ # Weights on the observations
+ # Example a: Equal weights
+ w <- NULL
+ # Example b: More weight on the outliers (uncomment to test)
+ w <- rep(1, length(x)); w[idx] <- 0.8
+
+ # ...and show all iterations too with different colors.
+ maxIter <- c(seq(1,20,length.out=10),Inf)
+ col <- topo.colors(length(maxIter))
+ # Show the fitted value for every iteration
+ for (ii in seq_along(maxIter)) {
+ # Fit a line using IWPCA through data
+ fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE)
+
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ for (kk in seq_along(theta)) {
+ # Set pane to draw in
+ par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1)
+ # Set the viewpoint of the pane
+ options(persp.matrix=persp[[kk]])
+
+ # Get the first principal component
+ points3d(t(ymid), col=col[ii])
+ lines3d(t(yline), col=col[ii])
+
+ # Highlight the last one
+ if (ii == length(maxIter))
+ lines3d(t(yline), col="red", lwd=3)
+ }
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.557 0.093 0.626
aroma.light.Rcheck/tests/likelihood.smooth.spline.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Define f(x)
> f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x))
>
> # Simulate data from this function in the range [a,b]
> a <- -2; b <- 5
> x <- seq(a, b, length.out=3000)
> y <- eval(f)
>
> # Add some noise to the data
> y <- y + rnorm(length(y), 0, 10)
>
> # Plot the function and its second derivative
> plot(x,y, type="l", lwd=4)
>
> # Fit a cubic smoothing spline and plot it
> g <- smooth.spline(x,y, df=16)
> lines(g, col="yellow", lwd=2, lty=2)
>
> # Calculating the (log) likelihood of the fitted spline
> l <- likelihood(g)
>
> cat("Log likelihood with unique x values:\n")
Log likelihood with unique x values:
> print(l)
Likelihood of smoothing spline: -287347.1
Log base: 2.718282
Weighted residuals sum of square: 287347.2
Penalty: -0.1147564
Smoothing parameter lambda: 0.0009257147
Roughness score: 123.9652
>
> # Note that this is not the same as the log likelihood of the
> # data on the fitted spline iff the x values are non-unique
> x[1:5] <- x[1] # Non-unique x values
> g <- smooth.spline(x,y, df=16)
> l <- likelihood(g)
>
> cat("\nLog likelihood of the *spline* data set:\n")
Log likelihood of the *spline* data set:
> print(l)
Likelihood of smoothing spline: -287230.2
Log base: 2.718282
Weighted residuals sum of square: 287230.4
Penalty: -0.1147482
Smoothing parameter lambda: 0.0009261969
Roughness score: 123.8917
>
> # In cases with non unique x values one has to proceed as
> # below if one want to get the log likelihood for the original
> # data.
> l <- likelihood(g, x=x, y=y)
> cat("\nLog likelihood of the *original* data set:\n")
Log likelihood of the *original* data set:
> print(l)
Likelihood of smoothing spline: -287348.5
Log base: 2.718282
Weighted residuals sum of square: 287348.6
Penalty: -0.1147485
Smoothing parameter lambda: 0.0009261969
Roughness score: 123.8922
>
>
>
>
>
>
> proc.time()
user system elapsed
0.659 0.105 0.736
aroma.light.Rcheck/tests/medianPolish.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Deaths from sport parachuting; from ABC of EDA, p.224:
> deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE)
> rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA")
> colnames(deaths) <- 1973:1975
>
> print(deaths)
1973 1974 1975
1-24 14 15 14
25-74 7 4 7
75-199 8 2 10
200++ 15 9 10
NA 0 2 0
>
> mp <- medianPolish(deaths)
> mp1 <- medpolish(deaths, trace=FALSE)
> print(mp)
Median Polish Results (Dataset: "deaths")
Overall: 8
Row Effects:
1-24 25-74 75-199 200++ NA
6 -1 0 2 -8
Column Effects:
1973 1974 1975
0 -1 0
Residuals:
1973 1974 1975
1-24 0 2 0
25-74 0 -2 0
75-199 0 -5 2
200++ 5 0 0
NA 0 3 0
>
> ff <- c("overall", "row", "col", "residuals")
> stopifnot(all.equal(mp[ff], mp1[ff]))
>
> # Validate decomposition:
> stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid))
>
> proc.time()
user system elapsed
0.491 0.098 0.564
aroma.light.Rcheck/tests/normalizeAffine.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> rgC <- rg
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg, channel=channel)
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC, channel=channel)
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
There were 50 or more warnings (use warnings() to see the first 50)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2)
> colnames(rgCA) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,channel] <- calibrateMultiscan(rg[,sidx])
+ }
>
> plotMvsA(rgCA)
> title(main="Average calibrated")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The affine normalized average calibrated data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Create a matrix where the columns represent the channels
> # to be normalized.
> rgCAN <- rgCA
> # Affine normalization of channels
> rgCAN <- normalizeAffine(rgCAN)
>
> plotMvsA(rgCAN)
> title(main="Affine normalized A.C.")
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCAN <- rgCAN * 2^5
> plotMvsA(rgCAN)
> title(main="Rescaled normalized")
>
>
>
> proc.time()
user system elapsed
3.441 0.227 3.646
aroma.light.Rcheck/tests/normalizeAverage.list.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.654 0.109 0.739
aroma.light.Rcheck/tests/normalizeAverage.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE))
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.474 0.085 0.535
aroma.light.Rcheck/tests/normalizeCurveFit.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light")
> rg <- read.table(pathname, header=TRUE, sep="\t")
> nbrOfScans <- max(rg$slide)
>
> rg <- as.list(rg)
> for (field in c("R", "G"))
+ rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans)
> rg$slide <- rg$spot <- NULL
> rg <- as.matrix(as.data.frame(rg))
> colnames(rg) <- rep(c("R", "G"), each=nbrOfScans)
>
> layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE))
>
> rgC <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ channelColor <- switch(channel, R="red", G="green")
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The raw data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ plotMvsAPairs(rg[,sidx])
+ title(main=paste("Observed", channel))
+ box(col=channelColor)
+
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ # The calibrated data
+ # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
+ rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL)
+
+ plotMvsAPairs(rgC[,sidx])
+ title(main=paste("Calibrated", channel))
+ box(col=channelColor)
+ } # for (channel ...)
>
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # The average calibrated data
> #
> # Note how the red signals are weaker than the green. The reason
> # for this can be that the scale factor in the green channel is
> # greater than in the red channel, but it can also be that there
> # is a remaining relative difference in bias between the green
> # and the red channel, a bias that precedes the scanning.
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> rgCA <- rg
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCA[,sidx] <- calibrateMultiscan(rg[,sidx])
+ }
>
> rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2)
> colnames(rgCAavg) <- c("R", "G")
> for (channel in c("R", "G")) {
+ sidx <- which(colnames(rg) == channel)
+ rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE)
+ }
>
> # Add some "fake" outliers
> outliers <- 1:600
> rgCAavg[outliers,"G"] <- 50000
>
> plotMvsA(rgCAavg)
> title(main="Average calibrated (AC)")
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Normalize data
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Weight-down outliers when normalizing
> weights <- rep(1, nrow(rgCAavg))
> weights[outliers] <- 0.001
>
> # Affine normalization of channels
> rgCANa <- normalizeAffine(rgCAavg, weights=weights)
> # It is always ok to rescale the affine normalized data if its
> # done on (R,G); not on (A,M)! However, this is only needed for
> # esthetic purposes.
> rgCANa <- rgCANa *2^1.4
> plotMvsA(rgCANa)
> title(main="Normalized AC")
>
> # Curve-fit (lowess) normalization
> rgCANlw <- normalizeLowess(rgCAavg, weights=weights)
Warning message:
In normalizeCurveFit.matrix(X, method = "lowess", ...) :
Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights.
> plotMvsA(rgCANlw, col="orange", add=TRUE)
>
> # Curve-fit (loess) normalization
> rgCANl <- normalizeLoess(rgCAavg, weights=weights)
> plotMvsA(rgCANl, col="red", add=TRUE)
>
> # Curve-fit (robust spline) normalization
> rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights)
> plotMvsA(rgCANrs, col="blue", add=TRUE)
>
> legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19,
+ col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine]))
> title(main="Normalized AC")
> plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE)
> plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE)
> abline(a=0, b=1, lty=2)
> legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19,
+ col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n")
>
>
> proc.time()
user system elapsed
11.203 0.265 11.508
aroma.light.Rcheck/tests/normalizeDifferencesToAverage.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Simulate three shifted tracks of different lengths with same profiles
> ns <- c(A=2, B=1, C=0.25)*1000
> xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) })
> zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n))
>
> yy <- list(
+ A = rnorm(ns["A"], mean=0, sd=0.5),
+ B = rnorm(ns["B"], mean=5, sd=0.4),
+ C = rnorm(ns["C"], mean=-5, sd=1.1)
+ )
> yy <- lapply(yy, FUN=function(y) {
+ n <- length(y)
+ y[1:(n/2)] <- y[1:(n/2)] + 2
+ y[1:(n/4)] <- y[1:(n/4)] - 4
+ y
+ })
>
> # Shift all tracks toward the first track
> yyN <- normalizeDifferencesToAverage(yy, baseline=1)
>
> # The baseline channel is not changed
> stopifnot(identical(yy[[1]], yyN[[1]]))
>
> # Get the estimated parameters
> fit <- attr(yyN, "fit")
>
> # Plot the tracks
> layout(matrix(1:2, ncol=1))
> x <- unlist(xx)
> col <- unlist(zz)
> y <- unlist(yy)
> yN <- unlist(yyN)
> plot(x, y, col=col, ylim=c(-10,10))
> plot(x, yN, col=col, ylim=c(-10,10))
>
> proc.time()
user system elapsed
0.669 0.119 0.766
aroma.light.Rcheck/tests/normalizeFragmentLength-ex1.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 1: Single-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Number samples
> I <- 9
>
> # Number of loci
> J <- 1000
>
> # Fragment lengths
> fl <- seq(from=100, to=1000, length.out=J)
>
> # Simulate data points with unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=50)
> fl[hasUnknownFL] <- NA_real_
>
> # Simulate data
> y <- matrix(0, nrow=J, ncol=I)
> maxY <- 12
> for (kk in 1:I) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- function(fl) {
+ mu <- rep(maxY, length(fl))
+ ok <- !is.na(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+ eps <- rnorm(J, mean=0, sd=1)
+ y[,kk] <- mu(fl) + eps
+ }
>
> # Normalize data (to a zero baseline)
> yN <- apply(y, MARGIN=2, FUN=function(y) {
+ normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median")
+ })
>
> # The correction factors
> rho <- y-yN
> print(summary(rho))
V1 V2 V3 V4
Min. :3.263 Min. :7.322 Min. :6.662 Min. :7.290
1st Qu.:3.990 1st Qu.:7.788 1st Qu.:7.095 1st Qu.:7.639
Median :4.860 Median :8.178 Median :7.535 Median :8.015
Mean :5.003 Mean :8.207 Mean :7.605 Mean :8.050
3rd Qu.:5.956 3rd Qu.:8.606 3rd Qu.:8.088 3rd Qu.:8.433
Max. :7.288 Max. :9.208 Max. :8.792 Max. :8.995
V5 V6 V7 V8
Min. :6.889 Min. :7.502 Min. :6.237 Min. :5.072
1st Qu.:7.243 1st Qu.:7.850 1st Qu.:6.701 1st Qu.:5.618
Median :7.680 Median :8.164 Median :7.164 Median :6.231
Mean :7.746 Mean :8.231 Mean :7.265 Mean :6.361
3rd Qu.:8.213 3rd Qu.:8.589 3rd Qu.:7.789 3rd Qu.:7.059
Max. :8.883 Max. :9.205 Max. :8.653 Max. :8.101
V9
Min. :5.565
1st Qu.:6.101
Median :6.608
Mean :6.776
3rd Qu.:7.416
Max. :8.495
> # The correction for units with unknown fragment lengths
> # equals the median correction factor of all other units
> print(summary(rho[hasUnknownFL,]))
V1 V2 V3 V4 V5
Min. :4.86 Min. :8.178 Min. :7.535 Min. :8.015 Min. :7.68
1st Qu.:4.86 1st Qu.:8.178 1st Qu.:7.535 1st Qu.:8.015 1st Qu.:7.68
Median :4.86 Median :8.178 Median :7.535 Median :8.015 Median :7.68
Mean :4.86 Mean :8.178 Mean :7.535 Mean :8.015 Mean :7.68
3rd Qu.:4.86 3rd Qu.:8.178 3rd Qu.:7.535 3rd Qu.:8.015 3rd Qu.:7.68
Max. :4.86 Max. :8.178 Max. :7.535 Max. :8.015 Max. :7.68
V6 V7 V8 V9
Min. :8.164 Min. :7.164 Min. :6.231 Min. :6.608
1st Qu.:8.164 1st Qu.:7.164 1st Qu.:6.231 1st Qu.:6.608
Median :8.164 Median :7.164 Median :6.231 Median :6.608
Mean :8.164 Mean :7.164 Mean :6.231 Mean :6.608
3rd Qu.:8.164 3rd Qu.:7.164 3rd Qu.:6.231 3rd Qu.:6.608
Max. :8.164 Max. :7.164 Max. :6.231 Max. :6.608
>
> # Plot raw data
> layout(matrix(1:9, ncol=3))
> xlim <- c(0,max(fl, na.rm=TRUE))
> ylim <- c(0,max(y, na.rm=TRUE))
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> for (kk in 1:I) {
+ plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2)
+ }
>
> # Plot normalized data
> layout(matrix(1:9, ncol=3))
> ylim <- c(-1,1)*max(y, na.rm=TRUE)/2
> for (kk in 1:I) {
+ plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab)
+ ok <- (is.finite(fl) & is.finite(y[,kk]))
+ lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2)
+ }
>
> proc.time()
user system elapsed
1.244 0.139 1.362
aroma.light.Rcheck/tests/normalizeFragmentLength-ex2.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> # Example 2: Two-enzyme fragment-length normalization of 6 arrays
> # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
> set.seed(0xbeef)
>
> # Number samples
> I <- 5
>
> # Number of loci
> J <- 3000
>
> # Fragment lengths (two enzymes)
> fl <- matrix(0, nrow=J, ncol=2)
> fl[,1] <- seq(from=100, to=1000, length.out=J)
> fl[,2] <- seq(from=1000, to=100, length.out=J)
>
> # Let 1/2 of the units be on both enzymes
> fl[seq(from=1, to=J, by=4),1] <- NA_real_
> fl[seq(from=2, to=J, by=4),2] <- NA_real_
>
> # Let some have unknown fragment lengths
> hasUnknownFL <- seq(from=1, to=J, by=15)
> fl[hasUnknownFL,] <- NA_real_
>
> # Sty/Nsp mixing proportions:
> rho <- rep(1, I)
> rho[1] <- 1/3; # Less Sty in 1st sample
> rho[3] <- 3/2; # More Sty in 3rd sample
>
>
> # Simulate data
> z <- array(0, dim=c(J,2,I))
> maxLog2Theta <- 12
> for (ii in 1:I) {
+ # Common effect for both enzymes
+ mu <- function(fl) {
+ k <- runif(n=1, min=3, max=5)
+ mu <- rep(maxLog2Theta, length(fl))
+ ok <- is.finite(fl)
+ mu[ok] <- mu[ok] - fl[ok]^{1/k}
+ mu
+ }
+
+ # Calculate the effect for each data point
+ for (ee in 1:2) {
+ z[,ee,ii] <- mu(fl[,ee])
+ }
+
+ # Update the Sty/Nsp mixing proportions
+ ee <- 2
+ z[,ee,ii] <- rho[ii]*z[,ee,ii]
+
+ # Add random errors
+ for (ee in 1:2) {
+ eps <- rnorm(J, mean=0, sd=1/sqrt(2))
+ z[,ee,ii] <- z[,ee,ii] + eps
+ }
+ }
>
>
> hasFl <- is.finite(fl)
>
> unitSets <- list(
+ nsp = which( hasFl[,1] & !hasFl[,2]),
+ sty = which(!hasFl[,1] & hasFl[,2]),
+ both = which( hasFl[,1] & hasFl[,2]),
+ none = which(!hasFl[,1] & !hasFl[,2])
+ )
>
> # The observed data is a mix of two enzymes
> theta <- matrix(NA_real_, nrow=J, ncol=I)
>
> # Single-enzyme units
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ theta[uu,] <- 2^z[uu,ee,]
+ }
>
> # Both-enzyme units (sum on intensity scale)
> uu <- unitSets$both
> theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2
>
> # Missing units (sample from the others)
> uu <- unitSets$none
> theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu))
>
> # Calculate target array
> thetaT <- rowMeans(theta, na.rm=TRUE)
> targetFcns <- list()
> for (ee in 1:2) {
+ uu <- unitSets[[ee]]
+ fit <- lowess(fl[uu,ee], log2(thetaT[uu]))
+ class(fit) <- "lowess"
+ targetFcns[[ee]] <- function(fl, ...) {
+ predict(fit, newdata=fl)
+ }
+ }
>
>
> # Fit model only to a subset of the data
> subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10))
>
> # Normalize data (to a target baseline)
> thetaN <- matrix(NA_real_, nrow=J, ncol=I)
> fits <- vector("list", I)
> for (ii in 1:I) {
+ lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns,
+ fragmentLengths=fl, onMissing="median",
+ subsetToFit=subsetToFit, .returnFit=TRUE)
+ fits[[ii]] <- attr(lthetaNi, "modelFit")
+ thetaN[,ii] <- 2^lthetaNi
+ }
>
>
> # Plot raw data
> xlim <- c(0, max(fl, na.rm=TRUE))
> ylim <- c(0, max(log2(theta), na.rm=TRUE))
> Mlim <- c(-1,1)*4
> xlab <- "Fragment length"
> ylab <- expression(log2(theta))
> Mlab <- expression(M==log[2](theta/theta[R]))
>
> layout(matrix(1:(3*I), ncol=I, byrow=TRUE))
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw")
+
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The raw data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1)
+ }
+
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], log2(theta[uu,ii]), col=3+1)
+
+ for (ee in 1:2) {
+ # The true effects
+ uu <- unitSets[[ee]]
+ lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3)
+
+ # The estimated effects
+ fit <- fits[[ii]][[ee]]$fit
+ lines(fit, col="orange", lwd=3)
+
+ muT <- targetFcns[[ee]](fl[uu,ee])
+ lines(fl[uu,ee], muT, col="cyan", lwd=1)
+ }
+ }
>
> # Calculate log-ratios
> thetaR <- rowMeans(thetaN, na.rm=TRUE)
> M <- log2(thetaN/thetaR)
>
> # Plot normalized data
> for (ii in 1:I) {
+ plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized")
+ # Single-enzyme units
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ points(fl[uu,ee], M[uu,ii], col=ee+1)
+ }
+ # Both-enzyme units (use fragment-length for enzyme #1)
+ uu <- unitSets$both
+ points(fl[uu,1], M[uu,ii], col=3+1)
+ }
>
> ylim <- c(0,1.5)
> for (ii in 1:I) {
+ data <- list()
+ for (ee in 1:2) {
+ # The normalized data
+ uu <- unitSets[[ee]]
+ data[[ee]] <- M[uu,ii]
+ }
+ uu <- unitSets$both
+ if (length(uu) > 0)
+ data[[3]] <- M[uu,ii]
+
+ uu <- unitSets$none
+ if (length(uu) > 0)
+ data[[4]] <- M[uu,ii]
+
+ cols <- seq_along(data)+1
+ plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized")
+
+ abline(v=0, lty=2)
+ }
>
>
> proc.time()
user system elapsed
1.254 0.182 1.409
aroma.light.Rcheck/tests/normalizeQuantileRank.list.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Simulate ten samples of different lengths
> N <- 10000
> X <- list()
> for (kk in 1:8) {
+ rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]]
+ size <- runif(1, min=0.3, max=1)
+ a <- rgamma(1, shape=20, rate=10)
+ b <- rgamma(1, shape=10, rate=10)
+ values <- rfcn(size*N, a, b)
+
+ # "Censor" values
+ values[values < 0 | values > 8] <- NA_real_
+
+ X[[kk]] <- values
+ }
>
> # Add 20% missing values
> X <- lapply(X, FUN=function(x) {
+ x[sample(length(x), size=0.20*length(x))] <- NA_real_
+ x
+ })
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions")
>
> proc.time()
user system elapsed
0.681 0.109 0.766
aroma.light.Rcheck/tests/normalizeQuantileRank.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Normalize quantiles
> Xn <- normalizeQuantile(X)
>
> # Plot the data
> layout(matrix(1:2, ncol=1))
> xlim <- range(X, Xn, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
0.607 0.100 0.683
aroma.light.Rcheck/tests/normalizeQuantileSpline.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Simulate three samples with on average 20% missing values
> N <- 10000
> X <- cbind(rnorm(N, mean=3, sd=1),
+ rnorm(N, mean=4, sd=2),
+ rgamma(N, shape=2, rate=1))
> X[sample(3*N, size=0.20*3*N)] <- NA_real_
>
> # Plot the data
> layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE))
> xlim <- range(X, na.rm=TRUE)
> plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions")
>
> Xn <- normalizeQuantile(X)
> plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions")
>
> Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99)
> plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions")
> plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions")
>
> proc.time()
user system elapsed
1.377 0.193 1.541
aroma.light.Rcheck/tests/normalizeTumorBoost,flavors.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.24.0 (2020-08-26 16:11:58 UTC) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following object is masked from 'package:R.methodsS3':
throw
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, load, save
R.utils v2.11.0 (2021-09-26 08:30:02 UTC) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
>
> # Drop loci with missing values
> data <- na.omit(data)
>
> attachLocally(data)
> pos <- position/1e6
>
> # Call naive genotypes
> muN <- callNaiveGenotypes(betaN)
>
> # Genotype classes
> isAA <- (muN == 0)
> isAB <- (muN == 1/2)
> isBB <- (muN == 1)
>
> # Sanity checks
> stopifnot(all(muN[isAA] == 0))
> stopifnot(all(muN[isAB] == 1/2))
> stopifnot(all(muN[isBB] == 1))
>
> # TumorBoost normalization with different flavors
> betaTNs <- list()
> for (flavor in c("v1", "v2", "v3", "v4")) {
+ betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor)
+
+ # Assert that no non-finite values are introduced
+ stopifnot(all(is.finite(betaTN)))
+
+ # Assert that nothing is flipped
+ stopifnot(all(betaTN[isAA] < 1/2))
+ stopifnot(all(betaTN[isBB] > 1/2))
+
+ betaTNs[[flavor]] <- betaTN
+ }
>
> # Plot
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
> for (flavor in names(betaTNs)) {
+ betaTN <- betaTNs[[flavor]]
+ ylab <- sprintf("betaTN[%s]", flavor)
+ plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab)
+ }
>
> proc.time()
user system elapsed
0.969 0.144 1.088
aroma.light.Rcheck/tests/normalizeTumorBoost.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
> library("R.utils")
Loading required package: R.oo
Loading required package: R.methodsS3
R.methodsS3 v1.8.1 (2020-08-26 16:20:06 UTC) successfully loaded. See ?R.methodsS3 for help.
R.oo v1.24.0 (2020-08-26 16:11:58 UTC) successfully loaded. See ?R.oo for help.
Attaching package: 'R.oo'
The following object is masked from 'package:R.methodsS3':
throw
The following objects are masked from 'package:methods':
getClasses, getMethods
The following objects are masked from 'package:base':
attach, detach, load, save
R.utils v2.11.0 (2021-09-26 08:30:02 UTC) successfully loaded. See ?R.utils for help.
Attaching package: 'R.utils'
The following object is masked from 'package:utils':
timestamp
The following objects are masked from 'package:base':
cat, commandArgs, getOption, inherits, isOpen, nullfile, parse,
warnings
>
> # Load data
> pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light")
> data <- loadObject(pathname)
> attachLocally(data)
> pos <- position/1e6
> muN <- genotypeN
>
> layout(matrix(1:4, ncol=1))
> par(mar=c(2.5,4,0.5,1)+0.1)
> ylim <- c(-0.05, 1.05)
> col <- rep("#999999", length(muN))
> col[muN == 1/2] <- "#000000"
>
> # Allele B fractions for the normal sample
> plot(pos, betaN, col=col, ylim=ylim)
>
> # Allele B fractions for the tumor sample
> plot(pos, betaT, col=col, ylim=ylim)
>
> # TumorBoost w/ naive genotype calls
> betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE)
> plot(pos, betaTN, col=col, ylim=ylim)
>
> # TumorBoost w/ external multi-sample genotype calls
> betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE)
> plot(pos, betaTNx, col=col, ylim=ylim)
>
> proc.time()
user system elapsed
0.844 0.137 0.956
aroma.light.Rcheck/tests/robustSmoothSpline.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars) & robust smoothing splines")
>
> # Fit a smoothing spline using L_2 norm
> cars.spl <- smooth.spline(speed, dist)
> lines(cars.spl, col = "blue")
>
> # Fit a smoothing spline using L_1 norm
> cars.rspl <- robustSmoothSpline(speed, dist)
> lines(cars.rspl, col = "red")
>
> # Fit a smoothing spline using L_2 norm with 10 degrees of freedom
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue")
>
> # Fit a smoothing spline using L_1 norm with 10 degrees of freedom
> lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red")
>
> # Fit a smoothing spline using Tukey's biweight norm
> cars.rspl <- robustSmoothSpline(speed, dist, method = "symmetric")
> lines(cars.rspl, col = "purple")
>
> legend(5,120, c(
+ paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)),
+ paste("robustSmoothSpline L1 [C.V.] => df =",round(cars.rspl$df,1)),
+ paste("robustSmoothSpline symmetric [C.V.] => df =",round(cars.rspl$df,1)),
+ "standard with s( * , df = 10)", "robust with s( * , df = 10)"
+ ),
+ col = c("blue","red","purple","blue","red"), lty = c(1,1,1,2,2),
+ bg='bisque')
>
> proc.time()
user system elapsed
0.700 0.108 0.781
aroma.light.Rcheck/tests/rowAverages.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> X <- matrix(1:30, nrow=5L, ncol=6L)
> mu <- rowMeans(X)
> sd <- apply(X, MARGIN=1L, FUN=sd)
>
> y <- rowAverages(X)
> stopifnot(all(y == mu))
> stopifnot(all(attr(y,"deviance") == sd))
> stopifnot(all(attr(y,"df") == ncol(X)))
>
> proc.time()
user system elapsed
0.427 0.088 0.491
aroma.light.Rcheck/tests/sampleCorrelations.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # Simulate 20000 genes with 10 observations each
> X <- matrix(rnorm(n=20000), ncol=10)
>
> # Calculate the correlation for 5000 random gene pairs
> cor <- sampleCorrelations(X, npairs=5000)
> print(summary(cor))
Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.931787 -0.243169 -0.008098 -0.001064 0.240974 0.942645
>
>
> proc.time()
user system elapsed
0.956 0.124 1.056
aroma.light.Rcheck/tests/sampleTuples.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> pairs <- sampleTuples(1:10, size=5, length=2)
> print(pairs)
[,1] [,2]
[1,] 3 1
[2,] 5 10
[3,] 7 6
[4,] 6 10
[5,] 4 9
>
> triples <- sampleTuples(1:10, size=5, length=3)
> print(triples)
[,1] [,2] [,3]
[1,] 9 10 2
[2,] 4 1 9
[3,] 8 3 2
[4,] 5 7 3
[5,] 3 2 7
>
> # Allow tuples with repeated elements
> quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE)
> print(quadruples)
[,1] [,2] [,3] [,4]
[1,] 3 1 1 3
[2,] 1 2 1 2
[3,] 2 2 3 1
[4,] 3 3 2 3
[5,] 2 1 3 1
>
> proc.time()
user system elapsed
0.472 0.096 0.539
aroma.light.Rcheck/tests/wpca.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> for (zzz in 0) {
+
+ # This example requires plot3d() in R.basic [http://www.braju.com/R/]
+ if (!require(pkgName <- "R.basic", character.only=TRUE)) break
+
+ # -------------------------------------------------------------
+ # A first example
+ # -------------------------------------------------------------
+ # Simulate data from the model y <- a + bx + eps(bx)
+ x <- rexp(1000)
+ a <- c(2,15,3)
+ b <- c(2,3,15)
+ bx <- outer(b,x)
+ eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x))
+ y <- a + bx + eps
+ y <- t(y)
+
+ # Add some outliers by permuting the dimensions for 1/3 of the observations
+ idx <- sample(1:nrow(y), size=1/3*nrow(y))
+ y[idx,] <- y[idx,c(2,3,1)]
+
+ # Down-weight the outliers W times to demonstrate how weights are used
+ W <- 10
+
+ # Plot the data with fitted lines at four different view points
+ N <- 4
+ theta <- seq(0,180,length.out=N)
+ phi <- rep(30, length.out=N)
+
+ # Use a different color for each set of weights
+ col <- topo.colors(W)
+
+ opar <- par(mar=c(1,1,1,1)+0.1)
+ layout(matrix(1:N, nrow=2, byrow=TRUE))
+ for (kk in seq(theta)) {
+ # Plot the data
+ plot3d(y, theta=theta[kk], phi=phi[kk])
+
+ # First, same weights for all observations
+ w <- rep(1, length=nrow(y))
+
+ for (ww in 1:W) {
+ # Fit a line using IWPCA through data
+ fit <- wpca(y, w=w, swapDirections=TRUE)
+
+ # Get the first principal component
+ ymid <- fit$xMean
+ d0 <- apply(y, MARGIN=2, FUN=min) - ymid
+ d1 <- apply(y, MARGIN=2, FUN=max) - ymid
+ b <- fit$vt[1,]
+ y0 <- -b * max(abs(d0))
+ y1 <- b * max(abs(d1))
+ yline <- matrix(c(y0,y1), nrow=length(b), ncol=2)
+ yline <- yline + ymid
+
+ points3d(t(ymid), col=col)
+ lines3d(t(yline), col=col)
+
+ # Down-weight outliers only, because here we know which they are.
+ w[idx] <- w[idx]/2
+ }
+
+ # Highlight the last one
+ lines3d(t(yline), col="red", lwd=3)
+ }
+
+ par(opar)
+
+ } # for (zzz in 0)
Loading required package: R.basic
Warning message:
In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, :
there is no package called 'R.basic'
> rm(zzz)
>
> proc.time()
user system elapsed
0.574 0.096 0.645
aroma.light.Rcheck/tests/wpca2.matrix.Rout
R version 4.1.3 (2022-03-10) -- "One Push-Up"
Copyright (C) 2022 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin17.0 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> library("aroma.light")
aroma.light v3.24.0 (2022-04-12) successfully loaded. See ?aroma.light for help.
>
> # -------------------------------------------------------------
> # A second example
> # -------------------------------------------------------------
> # Data
> x <- c(1,2,3,4,5)
> y <- c(2,4,3,3,6)
>
> opar <- par(bty="L")
> opalette <- palette(c("blue", "red", "black"))
> xlim <- ylim <- c(0,6)
>
> # Plot the data and the center mass
> plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim)
> points(mean(x), mean(y), cex=2, lwd=2, col="blue")
>
>
> # Linear regression y ~ x
> fit <- lm(y ~ x)
> abline(fit, lty=1, col=1)
>
> # Linear regression y ~ x through without intercept
> fit <- lm(y ~ x - 1)
> abline(fit, lty=2, col=1)
>
>
> # Linear regression x ~ y
> fit <- lm(x ~ y)
> c <- coefficients(fit)
> b <- 1/c[2]
> a <- -b*c[1]
> abline(a=a, b=b, lty=1, col=2)
>
> # Linear regression x ~ y through without intercept
> fit <- lm(x ~ y - 1)
> b <- 1/coefficients(fit)
> abline(a=0, b=b, lty=2, col=2)
>
>
> # Orthogonal linear "regression"
> fit <- wpca(cbind(x,y))
>
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lwd=2, col=3)
>
> # Orthogonal linear "regression" without intercept
> fit <- wpca(cbind(x,y), center=FALSE)
> b <- fit$vt[1,2]/fit$vt[1,1]
> a <- fit$xMean[2]-b*fit$xMean[1]
> abline(a=a, b=b, lty=2, lwd=2, col=3)
>
> legend(xlim[1],ylim[2], legend=c("lm(y~x)", "lm(y~x-1)", "lm(x~y)",
+ "lm(x~y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3),
+ lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2))
>
> palette(opalette)
> par(opar)
>
> proc.time()
user system elapsed
0.510 0.091 0.575
aroma.light.Rcheck/aroma.light-Ex.timings
| name | user | system | elapsed | |
| backtransformAffine | 0.004 | 0.004 | 0.008 | |
| backtransformPrincipalCurve | 0.804 | 0.036 | 0.840 | |
| calibrateMultiscan | 0.000 | 0.000 | 0.001 | |
| callNaiveGenotypes | 0.302 | 0.020 | 0.323 | |
| distanceBetweenLines | 0.142 | 0.009 | 0.151 | |
| findPeaksAndValleys | 0.047 | 0.004 | 0.051 | |
| fitPrincipalCurve | 0.585 | 0.028 | 0.616 | |
| fitXYCurve | 0.235 | 0.009 | 0.244 | |
| iwpca | 0.130 | 0.003 | 0.134 | |
| likelihood.smooth.spline | 0.173 | 0.008 | 0.181 | |
| medianPolish | 0.010 | 0.002 | 0.011 | |
| normalizeAffine | 10.881 | 0.151 | 11.038 | |
| normalizeCurveFit | 11.139 | 0.137 | 11.283 | |
| normalizeDifferencesToAverage | 0.246 | 0.016 | 0.262 | |
| normalizeFragmentLength | 1.689 | 0.099 | 1.794 | |
| normalizeQuantileRank | 0.995 | 0.023 | 1.024 | |
| normalizeQuantileRank.matrix | 0.054 | 0.005 | 0.060 | |
| normalizeQuantileSpline | 1.070 | 0.054 | 1.125 | |
| normalizeTumorBoost | 0.330 | 0.034 | 0.366 | |
| robustSmoothSpline | 0.525 | 0.016 | 0.542 | |
| sampleCorrelations | 0.528 | 0.017 | 0.545 | |
| sampleTuples | 0.002 | 0.001 | 0.002 | |
| wpca | 0.121 | 0.005 | 0.128 | |