| Back to Multiple platform build/check report for BioC 3.13 |
|
This page was generated on 2021-10-15 15:06:24 -0400 (Fri, 15 Oct 2021).
|
To the developers/maintainers of the STATegRa package: - Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/STATegRa.git to reflect on this report. See How and When does the builder pull? When will my changes propagate? here for more information. - Make sure to use the following settings in order to reproduce any error or warning you see on this page. |
| Package 1855/2041 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| STATegRa 1.28.0 (landing page) David Gomez-Cabrero
| nebbiolo1 | Linux (Ubuntu 20.04.2 LTS) / x86_64 | OK | OK | OK | |||||||||
| tokay2 | Windows Server 2012 R2 Standard / x64 | OK | OK | OK | OK | |||||||||
| machv2 | macOS 10.14.6 Mojave / x86_64 | OK | OK | OK | OK | |||||||||
| Package: STATegRa |
| Version: 1.28.0 |
| Command: C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.13-bioc\R\library --no-vignettes --timings STATegRa_1.28.0.tar.gz |
| StartedAt: 2021-10-15 06:14:59 -0400 (Fri, 15 Oct 2021) |
| EndedAt: 2021-10-15 06:20:49 -0400 (Fri, 15 Oct 2021) |
| EllapsedTime: 350.1 seconds |
| RetCode: 0 |
| Status: OK |
| CheckDir: STATegRa.Rcheck |
| Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD check --force-multiarch --install=check:STATegRa.install-out.txt --library=C:\Users\biocbuild\bbs-3.13-bioc\R\library --no-vignettes --timings STATegRa_1.28.0.tar.gz ### ############################################################################## ############################################################################## * using log directory 'C:/Users/biocbuild/bbs-3.13-bioc/meat/STATegRa.Rcheck' * using R version 4.1.1 (2021-08-10) * using platform: x86_64-w64-mingw32 (64-bit) * using session charset: ISO8859-1 * using option '--no-vignettes' * checking for file 'STATegRa/DESCRIPTION' ... OK * checking extension type ... Package * this is package 'STATegRa' version '1.28.0' * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking whether package 'STATegRa' can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking 'build' directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking R files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * loading checks for arch 'i386' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * loading checks for arch 'x64' ** checking whether the package can be loaded ... OK ** checking whether the package can be loaded with stated dependencies ... OK ** checking whether the package can be unloaded cleanly ... OK ** checking whether the namespace can be loaded with stated dependencies ... OK ** checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... NOTE modelSelection,list-numeric-character: no visible binding for global variable 'components' modelSelection,list-numeric-character: no visible binding for global variable 'mylabel' plotVAF,caClass: no visible binding for global variable 'comp' plotVAF,caClass: no visible binding for global variable 'VAF' plotVAF,caClass: no visible binding for global variable 'block' selectCommonComps,list-numeric: no visible binding for global variable 'comps' selectCommonComps,list-numeric: no visible binding for global variable 'block' selectCommonComps,list-numeric: no visible binding for global variable 'comp' selectCommonComps,list-numeric: no visible binding for global variable 'ratio' Undefined global functions or variables: VAF block comp components comps mylabel ratio * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of 'data' directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking files in 'vignettes' ... OK * checking examples ... ** running examples for arch 'i386' ... OK ** running examples for arch 'x64' ... OK * checking for unstated dependencies in 'tests' ... OK * checking tests ... ** running tests for arch 'i386' ... Running 'STATEgRa_Example.omicsCLUST.R' Running 'STATEgRa_Example.omicsPCA.R' Running 'STATegRa_Example.omicsNPC.R' Running 'runTests.R' OK ** running tests for arch 'x64' ... Running 'STATEgRa_Example.omicsCLUST.R' Running 'STATEgRa_Example.omicsPCA.R' Running 'STATegRa_Example.omicsNPC.R' Running 'runTests.R' OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes in 'inst/doc' ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 1 NOTE See 'C:/Users/biocbuild/bbs-3.13-bioc/meat/STATegRa.Rcheck/00check.log' for details.
STATegRa.Rcheck/00install.out
##############################################################################
##############################################################################
###
### Running command:
###
### C:\cygwin\bin\curl.exe -O http://155.52.207.165/BBS/3.13/bioc/src/contrib/STATegRa_1.28.0.tar.gz && rm -rf STATegRa.buildbin-libdir && mkdir STATegRa.buildbin-libdir && C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD INSTALL --merge-multiarch --build --library=STATegRa.buildbin-libdir STATegRa_1.28.0.tar.gz && C:\Users\biocbuild\bbs-3.13-bioc\R\bin\R.exe CMD INSTALL STATegRa_1.28.0.zip && rm STATegRa_1.28.0.tar.gz STATegRa_1.28.0.zip
###
##############################################################################
##############################################################################
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
25 3177k 25 809k 0 0 1643k 0 0:00:01 --:--:-- 0:00:01 1641k
100 3177k 100 3177k 0 0 2244k 0 0:00:01 0:00:01 --:--:-- 2245k
install for i386
* installing *source* package 'STATegRa' ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
converting help for package 'STATegRa'
finding HTML links ... done
STATegRa-defunct html
STATegRa html
STATegRaUsersGuide html
STATegRa_data html
STATegRa_data_TCGA_BRCA html
bioDist html
bioDistFeature html
bioDistFeaturePlot html
bioDistW html
bioDistWPlot html
bioDistclass html
bioMap html
caClass-class html
combiningMappings html
createOmicsExpressionSet html
getInitialData html
getLoadings html
getMethodInfo html
getPreprocessing html
getScores html
getVAF html
holistOmics html
modelSelection html
finding level-2 HTML links ... done
omicsCompAnalysis html
omicsNPC html
plotRes html
plotVAF html
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
install for x64
* installing *source* package 'STATegRa' ...
** testing if installed package can be loaded
* MD5 sums
packaged installation of 'STATegRa' as STATegRa_1.28.0.zip
* DONE (STATegRa)
* installing to library 'C:/Users/biocbuild/bbs-3.13-bioc/R/library'
package 'STATegRa' successfully unpacked and MD5 sums checked
|
STATegRa.Rcheck/tests_i386/runTests.Rout
R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Fri Oct 15 06:18:52 2021
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
3.39 0.21 3.59
|
STATegRa.Rcheck/tests_x64/runTests.Rout
R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage("STATegRa")
Common components
[1] 2
Distinctive components
[[1]]
[1] 0
[[2]]
[1] 0
Common components
[1] 2
Distinctive components
[[1]]
[1] 1
[[2]]
[1] 1
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
RUNIT TEST PROTOCOL -- Fri Oct 15 06:20:41 2021
***********************************************
Number of test functions: 4
Number of errors: 0
Number of failures: 0
1 Test Suite :
STATegRa RUnit Tests - 4 test functions, 0 errors, 0 failures
Number of test functions: 4
Number of errors: 0
Number of failures: 0
Warning messages:
1: In rownames(pData) == colnames(exprs) :
longer object length is not a multiple of shorter object length
2: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "%accum", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 2
3: In modelSelection(Input = list(B1, B2), Rmax = 4, fac.sel = "fixed.num", :
Rmax cannot be higher than the minimum of components selected for each block. Rmax fixed to: 3
>
> proc.time()
user system elapsed
3.42 0.25 3.65
|
|
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsCLUST.Rout
R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
4: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
5: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
6: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
7: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
26.68 0.78 27.45
|
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsCLUST.Rout
R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSCLUSTERING
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> #############################################
> ## PART 1: CREATING a bioMap CLASS
> #############################################
> ####### This part creates or reads the map between features.
> ####### In the present example the map is downloaded from a resource.
> ####### then the class is created.
>
> #load("../data/STATegRa_S2.rda")
> data(STATegRa_S2)
>
> MAP.SYMBOL<-bioMap(name = "Symbol-miRNA",
+ metadata = list(type_v1="Gene",type_v2="miRNA",
+ source_database="targetscan.Hs.eg.db",
+ data_extraction="July2014"),
+ map=mapdata)
>
>
> #############################################
> ## PART 2: CREATING a bioDist CLASS
> #############################################
> ##### In the second part given a set of main features and surrogate feautres,
> ##### the profile of the main features is computed through the surrogate features.
>
> # Load Data
> data(STATegRa_S1)
> #load("../data/STATegRa.S1.Rdata")
>
> ## Create ExpressionSets
> # source("../R/STATegRa_omicsPCA_classes_and_methods.R")
> # Block1 - Expression data
> mRNA.ds <- createOmicsExpressionSet(Data=Block1,pData=ed,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> miRNA.ds <- createOmicsExpressionSet(Data=Block2,pData=ed,pDataDescr=c("classname"))
>
> # Create Gene-gene distance computed through miRNA data
> bioDistmiRNA<-bioDist(referenceFeatures = rownames(Block1),
+ reference = "Var1",
+ mapping = MAP.SYMBOL,
+ surrogateData = miRNA.ds, ### miRNA data
+ referenceData = mRNA.ds, ### mRNA data
+ maxitems=2,
+ selectionRule="sd",
+ expfac=NULL,
+ aggregation = "sum",
+ distance = "spearman",
+ noMappingDist = 0,
+ filtering = NULL,
+ name = "mRNAbymiRNA")
>
> require(Biobase)
Loading required package: Biobase
Loading required package: BiocGenerics
Loading required package: parallel
Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':
clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
clusterExport, clusterMap, parApply, parCapply, parLapply,
parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':
IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':
Filter, Find, Map, Position, Reduce, anyDuplicated, append,
as.data.frame, basename, cbind, colnames, dirname, do.call,
duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
tapply, union, unique, unsplit, which.max, which.min
Welcome to Bioconductor
Vignettes contain introductory material; view with
'browseVignettes()'. To cite Bioconductor, see
'citation("Biobase")', and for packages 'citation("pkgname")'.
>
> # Create Gene-gene distance through mRNA data
> bioDistmRNA<-bioDistclass(name = "mRNAbymRNA",
+ distance = cor(t(exprs(mRNA.ds)),method="spearman"),
+ map.name = "id",
+ map.metadata = list(),
+ params = list())
>
> #############################################
> ## PART 3: CREATING a LISTOF WEIGTHED DISTANCES MATRICES: bioDistWList
> #############################################
>
> bioDistList<-list(bioDistmRNA,bioDistmiRNA)
> weights<-matrix(0,4,2)
> weights[,1]<-c(0,0.33,0.67,1)
> weights[,2]<-c(1,0.67,0.33,0)#
>
> bioDistWList<-bioDistW(referenceFeatures = rownames(Block1),
+ bioDistList = bioDistList,
+ weights=weights)
> length(bioDistWList)
[1] 4
>
> #############################################
> ## PART 4: DEFINING THE STRENGTH OF ASSOCIATIONS IN GENERAL
> #############################################
>
> bioDistWPlot(referenceFeatures = rownames(Block1) ,
+ listDistW = bioDistWList,
+ method.cor="spearman")
Warning messages:
1: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
2: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
3: In cor.test.default(getDist(listDistW[[i]])[referenceFeatures, referenceFeatures], :
Cannot compute exact p-value with ties
4: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
5: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
6: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
7: In plot.window(...) :
relative range of values ( 0 * EPS) is small (axis 2)
>
> #############################################
> ## PART 5: DEFINING THE ASSOCIATIONS FOR A GIVEN GENE
> #############################################
>
> ## IDH1
>
> IDH1.F<-bioDistFeature(Feature = "IDH1" ,
+ listDistW = bioDistWList,
+ threshold.cor=0.7)
> bioDistFeaturePlot(data=IDH1.F)
>
> ## PDGFRA
>
> #PDGFRA.F<-bioDistFeature(Feature = "PDGFRA" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=PDGFRA.F,name="../vignettes/PDGFRA.png")
>
> ## EGFR
> #EGFR.F<-bioDistFeature(Feature = "EGFR" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.7)
> #bioDistFeaturePlot(data=EGFR.F,name="../vignettes/EGFR.png")
>
> ## MGMT
> #MGMT.F<-bioDistFeature(Feature = "MGMT" ,
> # listDistW = bioDistWList,
> # threshold.cor=0.5)
> #bioDistFeaturePlot(data=MGMT.F,name="../vignettes/MGMT.png")
>
>
>
>
>
> proc.time()
user system elapsed
25.04 0.82 25.86
|
|
STATegRa.Rcheck/tests_i386/STATegRa_Example.omicsNPC.Rout
R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
66.67 0.23 66.89
|
STATegRa.Rcheck/tests_x64/STATegRa_Example.omicsNPC.Rout
R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> rm(list = ls())
> require("STATegRa")
Loading required package: STATegRa
> # Load the data
> data("TCGA_BRCA_Batch_93")
> # Setting dataTypes
> dataTypes <- c("count", "count", "continuous")
> # Setting methods to combine pvalues
> combMethods = c("Fisher", "Liptak", "Tippett")
> # Setting number of permutations
> numPerms = 1000
> # Setting number of cores
> numCores = 1
> # Setting holistOmics to print out the steps that it performs.
> verbose = TRUE
> # Run holistOmics analysis.
> output <- omicsNPC(dataInput = TCGA_BRCA_Data, dataTypes = dataTypes, combMethods = combMethods, numPerms = numPerms, numCores = numCores, verbose = verbose)
Compute initial statistics on data
Building NULL distributions by permuting data
Compute pseudo p-values based on NULL distributions...
NPC p-values calculation...
>
> proc.time()
user system elapsed
64.98 0.29 65.26
|
|
STATegRa.Rcheck/tests_i386/STATEgRa_Example.omicsPCA.Rout
R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: i386-w64-mingw32/i386 (32-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 0.0781575594 -0.0431548606
sample2 -0.1192221351 0.0294021895
sample3 -0.0531408719 -0.0746837586
sample4 0.0292971804 -0.0006033889
sample5 0.0202090752 0.0110455323
sample6 0.1226088466 0.1053493181
sample7 0.1078931318 -0.0322419135
sample8 0.1782891187 0.1449330434
sample9 0.0468697284 -0.0455171759
sample10 -0.0036032676 0.0420077830
sample11 -0.0035566376 -0.0566285162
sample12 0.1006129669 0.0641393908
sample13 -0.1174412754 0.0907475403
sample14 0.0981203566 0.0617763581
sample15 0.0085337231 -0.0086956217
sample16 0.0783146845 0.1581333476
sample17 -0.1483610653 0.0638580125
sample18 -0.0963084395 0.0556687986
sample19 -0.0217243093 -0.0720128570
sample20 -0.0635633956 -0.0779610247
sample21 -0.0201843956 0.1566382042
sample22 0.0218273803 -0.0764055767
sample23 0.0852039056 -0.0032765078
sample24 -0.1287181413 0.1924426036
sample25 -0.0430575638 -0.0456638644
sample26 -0.1453899763 0.0541458694
sample27 -0.0197483656 -0.1185592761
sample28 -0.1025339397 0.0650655274
sample29 0.0706022417 -0.0682932991
sample30 -0.1295622999 -0.0066677456
sample31 0.1147449325 0.1232727323
sample32 -0.0374308225 0.0380249717
sample33 0.0599520743 0.0136936275
sample34 -0.0984199314 0.0375364671
sample35 -0.0543096420 -0.0378035066
sample36 0.1403628055 -0.0343638695
sample37 0.0228947667 -0.0732689245
sample38 -0.0222073068 -0.0962567254
sample39 -0.0941739218 0.0215180491
sample40 0.0643807064 -0.0687719514
sample41 -0.0327635010 -0.1232187196
sample42 -0.0500431638 -0.0292513799
sample43 -0.0184497193 0.0233044499
sample44 0.1487889421 0.1171209902
sample45 -0.1050778759 0.1123140272
sample46 -0.1151191631 -0.1093995705
sample47 -0.0962591540 -0.0288417980
sample48 0.0004832630 -0.0310379630
sample49 0.1135203919 0.1213936615
sample50 -0.0123549977 -0.1740763092
sample51 0.0550527468 0.1258930875
sample52 0.0499118514 0.0728581032
sample53 0.1119772690 0.1588064377
sample54 -0.0360055712 0.0228585712
sample55 0.0210418827 0.0006750777
sample56 -0.0434171475 0.0633131295
sample57 0.0197820730 0.1150754026
sample58 0.0030440707 0.0326127648
sample59 0.0500256735 0.0129521897
sample60 0.0184280096 0.0136218297
sample61 0.0150298934 0.0635097080
sample62 -0.0304758776 -0.0201235929
sample63 0.1102250137 0.1285968244
sample64 0.1552586841 0.0971185184
sample65 -0.0058503822 0.0207102686
sample66 -0.0025607457 0.0424284574
sample67 0.1546638671 -0.0661577864
sample68 0.0536374227 -0.0923603873
sample69 0.0640332980 0.0082003894
sample70 0.0163521701 -0.0663227228
sample71 -0.0102536142 -0.1345965012
sample72 -0.0654191772 -0.0196035962
sample73 -0.1048553261 0.0221000170
sample74 0.0123800499 0.0586157003
sample75 0.0392079721 -0.0209726118
sample76 0.0648954580 -0.0524759365
sample77 0.1172922660 -0.0201200255
sample78 -0.1463072584 0.0708399398
sample79 0.0265208829 -0.1603425684
sample80 0.0279739193 -0.0214153311
sample81 0.0079212135 -0.0738495580
sample82 -0.1544234601 -0.0361450520
sample83 -0.0494205440 -0.0049938594
sample84 -0.0259039734 -0.0346591622
sample85 0.1116487449 -0.0031403885
sample86 -0.1306479068 -0.0377155810
sample87 -0.0554777860 -0.0459739535
sample88 -0.0301626494 0.0382206824
sample89 -0.1016866182 0.0694078366
sample90 0.0086821634 -0.0201323756
sample91 0.1578629717 -0.2097792379
sample92 0.0170933508 -0.1655936681
sample93 -0.0979805114 -0.0121500481
sample94 0.0131486197 -0.0114929501
sample95 0.0315682449 -0.0758917263
sample96 0.0024125826 -0.0470185271
sample97 0.0634545796 0.0270303634
sample98 -0.0359372573 -0.0135466489
sample99 -0.1009167583 0.1124712534
sample100 0.0551754094 0.0246502129
sample101 -0.0080116038 -0.1627407409
sample102 -0.0046451156 0.0095472750
sample103 -0.0472520891 -0.0940383525
sample104 0.0198157459 -0.0591147260
sample105 -0.0400238984 -0.0160949046
sample106 -0.0923810123 0.0369003857
sample107 -0.1019372381 0.0224967303
sample108 -0.0877091519 -0.0128849754
sample109 0.0864820278 -0.0901081211
sample110 -0.1223116472 -0.0096108519
sample111 0.0257352421 -0.0936281292
sample112 -0.0765285919 0.0270379400
sample113 0.0258799861 0.0377438341
sample114 0.0021141068 -0.0882040153
sample115 0.0303455298 -0.0723735408
sample116 0.0780504483 -0.0685162416
sample117 0.0536894084 -0.0912025380
sample118 0.0666649902 -0.0236261119
sample119 0.1021872531 -0.2325004030
sample120 0.0750216330 0.0243345617
sample121 -0.0756937872 0.0942970348
sample122 -0.0259632042 0.0731921195
sample123 -0.1037844691 -0.0369178672
sample124 0.0611205180 0.0421647001
sample125 -0.0738472616 0.0066944368
sample126 0.0972919116 0.0762698781
sample127 0.0824699422 -0.0096644716
sample128 -0.1249411505 0.0929253705
sample129 -0.0734063712 -0.0434313518
sample130 -0.0003500264 -0.0309857158
sample131 0.0930184045 0.0155970085
sample132 0.0736220615 0.0732972114
sample133 -0.0498398362 -0.0462455902
sample134 0.1644872644 0.0720046906
sample135 -0.0752295055 0.0003869594
sample136 0.0227149942 -0.0495469424
sample137 0.0564721687 -0.0288860564
sample138 0.0255986485 -0.0610930556
sample139 0.0621218795 0.0235857897
sample140 -0.0604148972 -0.0435532387
sample141 0.0246743050 0.0532630381
sample142 -0.0409563846 0.0316234304
sample143 -0.0077356384 -0.0476908799
sample144 0.0173240997 -0.0156785865
sample145 0.0485467759 0.1202737908
sample146 0.0419649952 -0.0811240923
sample147 -0.0977304657 -0.0274771186
sample148 0.0368253309 0.0803969570
sample149 -0.0072864887 -0.1533016959
sample150 0.1020825525 0.0624822556
sample151 0.0305397165 -0.0289337016
sample152 -0.0533595220 -0.0638335148
sample153 -0.0891639361 0.1799453029
sample154 -0.0727554418 -0.0834129412
sample155 -0.0880665838 -0.0220770347
sample156 -0.0276558874 -0.0326601866
sample157 -0.1155031565 0.0183635475
sample158 -0.0281506708 -0.0104911950
sample159 0.0663233797 0.0443809790
sample160 -0.0302644005 0.0404301362
sample161 0.0114712968 -0.0591083082
sample162 -0.1337090971 0.1398131317
sample163 0.1330120782 0.1688769243
sample164 -0.0150338138 0.0028375445
sample165 0.0076518841 -0.0164145789
sample166 0.0367791516 0.0630614243
sample167 0.1111989812 0.0030066421
sample168 -0.0672982961 0.0446266786
sample169 -0.0413003638 0.0224447071
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 0.0420463577 0.0867866059
sample2 0.0820849288 -0.0410968888
sample3 -0.0155964811 -0.0195186366
sample4 0.1001342695 -0.0410776453
sample5 0.0153479460 -0.0253257740
sample6 -0.0340240864 -0.0408223312
sample7 -0.0722601924 0.0002323977
sample8 0.0457617041 -0.0370006926
sample9 0.0086217301 0.0820184483
sample10 0.0423630532 -0.0083917670
sample11 -0.0022592593 0.0787764107
sample12 -0.0322076905 0.1479823435
sample13 0.0293968565 -0.0306742889
sample14 -0.0337431936 -0.0367508314
sample15 -0.0815559879 0.1275613909
sample16 -0.0508334549 0.0540604431
sample17 -0.0062556109 0.0041024881
sample18 -0.0705601657 -0.0351053292
sample19 0.0476784953 -0.0509595503
sample20 -0.0523025880 0.0715514091
sample21 0.0119248468 -0.0376087062
sample22 -0.0724456644 -0.0095634877
sample23 0.0992529592 0.0134298888
sample24 0.1595262389 0.0728684138
sample25 0.0920661817 -0.0749749350
sample26 0.0595566365 0.0848973624
sample27 -0.0826575140 -0.0086747526
sample28 0.0384832636 0.0440972715
sample29 -0.0777739611 0.1735298547
sample30 -0.1229474212 -0.0819018402
sample31 -0.0579752507 -0.0238646782
sample32 -0.0970366311 -0.0111435064
sample33 -0.1017580226 -0.0630452521
sample34 -0.0637903125 0.0377936259
sample35 -0.0790002972 -0.0229732440
sample36 -0.1224933073 -0.1274968261
sample37 -0.1798846748 -0.1673447932
sample38 -0.0466392096 0.0888153172
sample39 0.0168694521 0.0421536031
sample40 -0.1756417270 -0.1526662260
sample41 -0.0042467276 0.0004924528
sample42 0.0447826075 -0.0651501431
sample43 -0.0482292333 -0.0253533504
sample44 0.1986817297 -0.0545753846
sample45 0.0741916356 0.0054714193
sample46 -0.0478860221 -0.0007080396
sample47 -0.0608216066 0.0481615465
sample48 0.1381465216 0.0578300927
sample49 0.0530628721 -0.1405523582
sample50 0.0173649636 0.1602386053
sample51 -0.0462458853 0.0303473111
sample52 -0.0279997495 0.0280387919
sample53 -0.0667501310 0.0237700239
sample54 -0.0121812109 -0.0521354893
sample55 -0.0182392303 0.0221326648
sample56 0.0001307768 0.0030909316
sample57 -0.0316576942 0.0530190719
sample58 -0.0393891565 -0.0297801758
sample59 -0.1278271753 -0.0546540515
sample60 -0.1486965141 0.1069141959
sample61 -0.0793068740 0.0569790484
sample62 -0.1172821431 -0.0149211123
sample63 0.0028810710 0.1300524178
sample64 -0.0237297809 0.1073288445
sample65 0.0126543400 0.0589810357
sample66 0.0468233111 -0.0771066623
sample67 -0.1494285418 -0.0769877310
sample68 -0.0978022096 -0.0577363801
sample69 -0.0403090432 0.0156038271
sample70 -0.0221596583 0.0315436600
sample71 0.0546332327 -0.0272395045
sample72 -0.1107500699 -0.0537331335
sample73 -0.0906756839 0.0579957928
sample74 -0.0586514322 0.0121417508
sample75 -0.0390512258 0.0349278226
sample76 0.0022940179 -0.1676560114
sample77 0.0232101550 -0.2067300961
sample78 0.0929808646 -0.0434927982
sample79 0.1619383386 -0.0378102630
sample80 -0.0680392310 0.1424655952
sample81 0.0530726852 -0.0358347736
sample82 -0.0266849789 -0.0577449108
sample83 -0.1517241861 -0.0448570035
sample84 0.0570943762 -0.0273808507
sample85 -0.1086271795 -0.1228130362
sample86 -0.0833890930 -0.0442924794
sample87 -0.0022040195 -0.0943908522
sample88 0.0078275810 -0.1140504523
sample89 -0.0611007002 -0.0094589341
sample90 -0.0022941244 -0.0936254883
sample91 -0.0433769528 0.3205972101
sample92 0.1815220326 -0.0334666844
sample93 -0.0267653628 0.0614425801
sample94 -0.0181901028 0.0605088163
sample95 0.0720315643 -0.0013040641
sample96 0.0559673599 -0.0118787196
sample97 0.0217420407 0.0195417196
sample98 -0.0379198864 0.0588352766
sample99 0.0792506488 -0.0151262387
sample100 -0.0222100683 -0.0023322912
sample101 0.0387087200 0.1224225109
sample102 0.2094625816 -0.0516420982
sample103 -0.0138556363 0.0301047601
sample104 0.0807948876 -0.0162712458
sample105 0.0520492016 -0.1229660395
sample106 0.0192642353 -0.0185235167
sample107 -0.0319014478 0.0405120589
sample108 0.0140674510 0.0163422317
sample109 0.1831858436 0.0613023543
sample110 0.0292782803 -0.0199846510
sample111 0.1423175401 0.0327351962
sample112 -0.0426313680 -0.0029087025
sample113 0.0771931543 0.0268742710
sample114 0.0241569474 -0.0184080708
sample115 0.1958957279 0.0460148449
sample116 0.1394438228 -0.0530793595
sample117 0.1672312897 -0.1386522085
sample118 0.0448331858 -0.0117618016
sample119 0.0910196421 0.2217435627
sample120 0.0331404708 -0.0057270344
sample121 -0.0307517683 0.1392506252
sample122 0.0839836880 -0.0291983638
sample123 -0.0239674868 -0.0642167410
sample124 0.0909175960 0.0130430089
sample125 0.0065362311 -0.1092631027
sample126 -0.0935273988 0.1368276909
sample127 -0.0035405469 0.0292755003
sample128 0.0660349350 0.1018575780
sample129 -0.0693670623 -0.0695430246
sample130 -0.0008516736 -0.0669705407
sample131 -0.0431012124 0.0174061040
sample132 0.0637088383 0.0029383499
sample133 0.0289465044 -0.0390817336
sample134 -0.0446142842 0.0456332369
sample135 -0.0712343748 0.0521627632
sample136 -0.0596317916 0.0197291693
sample137 -0.0793175197 -0.0380637267
sample138 0.0973506152 -0.0454210200
sample139 -0.0539866405 -0.1534332065
sample140 -0.0850871676 0.0955804455
sample141 0.0192723439 -0.0554446463
sample142 0.0672294080 -0.0461313097
sample143 0.0303707455 -0.0519258571
sample144 0.0089350720 0.0145815357
sample145 0.0638875689 0.0122268763
sample146 -0.0585921865 0.0063074889
sample147 -0.0894146558 -0.1124625770
sample148 0.0216438891 -0.0615962380
sample149 0.0515317702 -0.0839902945
sample150 -0.0568229364 -0.0124472677
sample151 0.0789513903 -0.0261823995
sample152 0.0330693871 0.1306444955
sample153 0.1752063686 0.1497755501
sample154 -0.0421489053 -0.0037017136
sample155 -0.0680198592 0.0095703524
sample156 -0.0388949894 0.1057557950
sample157 -0.0314765204 0.0561364661
sample158 -0.0329630178 0.0353943629
sample159 0.0398461235 -0.1007368283
sample160 -0.0424906134 0.0108493088
sample161 0.0888340652 -0.0679692884
sample162 0.0027569708 0.1237848342
sample163 0.0126228043 0.0725440958
sample164 0.0566787171 -0.0458318318
sample165 0.0315331645 -0.0236359598
sample166 0.0612108768 -0.0425224830
sample167 -0.0142729572 0.0179307004
sample168 0.0169542663 -0.0769614864
sample169 -0.0675063582 0.0131499110
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 -0.0012331670 -1.635716e-01
sample2 -0.0724353217 -6.022123e-03
sample3 -0.0188459942 -1.080029e-01
sample4 0.0390143129 3.106568e-04
sample5 0.1774810626 -2.996429e-02
sample6 -0.0451446469 -3.455898e-02
sample7 -0.0226463479 -7.019216e-03
sample8 -0.1033684567 -9.857940e-03
sample9 0.1350014227 8.979113e-02
sample10 0.1259884412 -5.097937e-02
sample11 0.0979790932 7.086566e-02
sample12 -0.0863020996 -8.620322e-02
sample13 -0.1381401831 1.827998e-01
sample14 -0.0615074742 -2.642808e-02
sample15 0.0381600585 -3.101602e-02
sample16 -0.0048779406 1.271028e-03
sample17 -0.0788483235 -1.547605e-02
sample18 -0.0884189504 -3.795477e-02
sample19 0.0703043519 -1.084003e-01
sample20 -0.0025581342 7.975969e-02
sample21 0.0941596620 -4.126892e-02
sample22 -0.0550270857 -7.806618e-02
sample23 0.0679492816 -4.102077e-02
sample24 -0.1310969457 1.649282e-01
sample25 0.0113583566 -4.426900e-02
sample26 -0.1402948918 2.016460e-02
sample27 0.0261566059 1.589951e-03
sample28 -0.0724200791 5.850511e-02
sample29 -0.0330054762 2.062070e-03
sample30 -0.0228750331 -2.015345e-02
sample31 -0.0635070421 -6.670369e-02
sample32 0.0685099998 -4.955246e-02
sample33 -0.0777764932 -1.272070e-01
sample34 0.0157842079 -3.024311e-02
sample35 -0.0529627918 1.500981e-01
sample36 0.0070908002 2.025321e-01
sample37 -0.0442411778 1.802109e-01
sample38 -0.0781508370 -3.676299e-02
sample39 0.0120330062 -3.388883e-02
sample40 -0.0473283815 1.471581e-01
sample41 0.0228192202 -2.673459e-02
sample42 -0.0245361862 -7.960877e-02
sample43 0.1036362007 -8.229578e-02
sample44 -0.1012234789 7.049242e-02
sample45 0.0013726678 -2.451068e-02
sample46 -0.0558506441 2.948576e-03
sample47 -0.0380478711 4.554236e-02
sample48 0.0784340466 4.888892e-02
sample49 -0.0605168082 -1.162470e-02
sample50 0.0530082929 -2.737814e-02
sample51 0.1514645344 5.678261e-02
sample52 0.1860936012 1.246711e-01
sample53 -0.0064179721 -2.701060e-02
sample54 0.0697037560 -2.308412e-02
sample55 0.1633577707 1.366433e-02
sample56 0.1011483993 4.682134e-02
sample57 0.1730374403 1.609594e-01
sample58 -0.0071384892 -1.666951e-02
sample59 -0.0030458470 3.005375e-02
sample60 0.0215842207 2.665887e-01
sample61 0.1510585334 1.002384e-01
sample62 -0.0925531584 -4.845729e-02
sample63 -0.0596315455 -4.137108e-02
sample64 -0.0449227291 -2.600958e-03
sample65 0.0939382242 -4.406950e-02
sample66 0.1063397729 -5.710077e-02
sample67 -0.0201580787 2.361746e-01
sample68 0.0037208403 2.418541e-02
sample69 -0.0645162003 -1.155618e-01
sample70 -0.1013439748 -1.351780e-01
sample71 -0.0016466093 -2.976774e-02
sample72 0.0328895409 -2.835772e-02
sample73 0.0275080383 -5.148153e-02
sample74 0.1341718359 -7.895303e-02
sample75 0.0951576645 -3.943148e-02
sample76 -0.0864719936 3.035053e-02
sample77 -0.1035749499 -2.545325e-02
sample78 -0.1575647877 4.939476e-02
sample79 0.0189138393 4.874690e-02
sample80 0.1384142772 4.314447e-05
sample81 -0.0118846660 -6.357908e-02
sample82 -0.1675306634 3.533969e-02
sample83 -0.0065671156 -7.812498e-02
sample84 0.1486890661 -3.109096e-02
sample85 -0.0532720335 7.417987e-02
sample86 -0.1138474912 -1.820827e-05
sample87 0.0432865958 6.080499e-02
sample88 0.0433451201 1.402486e-01
sample89 0.0331204794 -1.395428e-02
sample90 -0.0607413478 -8.610386e-02
sample91 -0.0566263727 1.303770e-01
sample92 -0.0359580677 1.061605e-01
sample93 -0.0433646459 -4.443610e-02
sample94 -0.0477292133 -1.059571e-01
sample95 -0.0249595919 -3.980510e-02
sample96 0.0035217580 -9.293931e-02
sample97 -0.0066052012 -1.527234e-01
sample98 0.0020367062 -5.579516e-02
sample99 -0.0886621741 -3.728373e-02
sample100 -0.1091259606 -3.560401e-02
sample101 -0.0739723823 -4.317886e-02
sample102 0.0574455709 -2.784084e-02
sample103 0.0142733757 9.706345e-03
sample104 0.0710395590 4.068331e-02
sample105 0.0980829944 -3.452996e-02
sample106 -0.0254260496 3.628934e-02
sample107 -0.0160655047 -9.173398e-02
sample108 -0.0200988312 -2.379699e-02
sample109 -0.0389781932 1.692312e-02
sample110 -0.0326305249 2.988087e-02
sample111 0.0676935943 -6.038249e-02
sample112 0.0167883508 5.336924e-03
sample113 0.0969213952 -2.757702e-02
sample114 -0.0026397972 -9.209102e-02
sample115 -0.0308049558 1.603745e-02
sample116 -0.1240306380 1.272998e-01
sample117 0.0334728665 5.392663e-02
sample118 -0.1037152152 6.252440e-02
sample119 -0.1064170565 1.196217e-01
sample120 -0.0771357713 -1.004935e-01
sample121 -0.0129352324 3.181915e-02
sample122 0.0847487553 -5.568462e-02
sample123 -0.0041335515 7.693549e-03
sample124 -0.0583462208 -8.396475e-02
sample125 0.0634843251 -5.232567e-02
sample126 -0.0662582110 -1.091730e-01
sample127 -0.0865025619 -1.094172e-01
sample128 -0.0627822039 -1.471092e-02
sample129 -0.0336274588 -4.007775e-02
sample130 -0.0293518113 -8.046087e-02
sample131 -0.0469196794 -2.209388e-03
sample132 -0.0241745641 -1.248608e-01
sample133 0.0907303804 1.466698e-02
sample134 -0.0350841234 7.539660e-02
sample135 0.0001334879 9.185814e-03
sample136 -0.0335874807 -9.860182e-02
sample137 -0.0640147272 -7.554372e-02
sample138 0.0060964055 -1.742782e-02
sample139 -0.0592082759 5.615006e-02
sample140 0.0427988603 -1.099467e-02
sample141 0.0618793268 -9.301101e-02
sample142 0.0898552510 3.573325e-02
sample143 0.0817391072 8.880528e-02
sample144 0.0787754475 -3.821395e-02
sample145 0.1085819510 1.569461e-01
sample146 -0.0589555000 -4.373238e-02
sample147 -0.0495327911 7.278052e-03
sample148 0.1161590484 9.078145e-03
sample149 -0.0121575490 7.788461e-02
sample150 -0.0314511981 3.520220e-02
sample151 0.0575380950 -1.945392e-02
sample152 -0.0494540354 7.025565e-02
sample153 -0.0941338540 2.153270e-01
sample154 -0.0335928826 2.078824e-02
sample155 0.0690459043 -2.780362e-02
sample156 0.1039902300 -6.292489e-02
sample157 -0.0408645845 8.065530e-03
sample158 0.1018106341 7.817019e-03
sample159 -0.0281732528 -1.207259e-02
sample160 0.1643052860 2.977812e-03
sample161 0.0374330092 8.524589e-02
sample162 -0.0804538274 8.349637e-02
sample163 -0.0743232404 -1.406345e-02
sample164 0.1208804282 -2.139523e-02
sample165 0.1608115957 2.025159e-02
sample166 -0.0425947933 -2.660800e-02
sample167 -0.0226849508 -4.464258e-02
sample168 -0.0180737368 -7.471482e-04
sample169 0.0190780205 2.645426e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
10.10 0.32 10.42
|
STATegRa.Rcheck/tests_x64/STATEgRa_Example.omicsPCA.Rout
R version 4.1.1 (2021-08-10) -- "Kick Things"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> ###########################################
> ########### EXAMPLE OF THE OMICSPCA
> ###########################################
> require(STATegRa)
Loading required package: STATegRa
>
> # g_legend (not exported by STATegRa any more)
> ## code from https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
> g_legend<-function(a.gplot){
+ tmp <- ggplot_gtable(ggplot_build(a.gplot))
+ leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")
+ legend <- tmp$grobs[[leg]]
+ return(legend)}
>
> #########################
> ## PART 1. Load data
>
> ## Load data
> data(STATegRa_S3)
>
> ls()
[1] "Block1.PCA" "Block2.PCA" "ed.PCA" "g_legend"
>
> ## Create ExpressionSets
> # Block1 - Expression data
> B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
> # Block2 - miRNA expression data
> B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
>
> #########################
> ## PART 2. Model Selection
>
> require(grid)
Loading required package: grid
> require(gridExtra)
Loading required package: gridExtra
> require(ggplot2)
Loading required package: ggplot2
>
> ## Select the optimal components
> ms <- modelSelection(Input=list(B1,B2),Rmax=4,fac.sel="single%",varthreshold=0.03,center=TRUE,scale=TRUE,weight=TRUE)
Common components
[1] 2
Distinctive components
[[1]]
[1] 2
[[2]]
[1] 2
>
>
> #########################
> ## PART 3. Component Analysis
>
> ## 3.1 Component analysis of the three methods
> discoRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="DISCOSCA",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> jiveRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="JIVE",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
> o2plsRes <- omicsCompAnalysis(Input=list(B1,B2),Names=c("expr","mirna"),method="O2PLS",Rcommon=2,Rspecific=c(2,2),center=TRUE,
+ scale=TRUE,weight=TRUE)
>
> ## 3.2 Exploring scores structures
>
> # Exploring DISCO-SCA scores structure
> discoRes@scores$common ## Common scores
1 2
sample1 0.0781574235 -0.0431498891
sample2 -0.1192218202 0.0294093192
sample3 -0.0531412345 -0.0746839980
sample4 0.0292975383 -0.0005954832
sample5 0.0202091834 0.0110464291
sample6 0.1226089098 0.1053465283
sample7 0.1078927889 -0.0322479709
sample8 0.1782895585 0.1449366352
sample9 0.0468698181 -0.0455174509
sample10 -0.0036030360 0.0420113320
sample11 -0.0035566479 -0.0566293133
sample12 0.1006128856 0.0641379860
sample13 -0.1174408048 0.0907489298
sample14 0.0981203239 0.0617736368
sample15 0.0085334109 -0.0087017516
sample16 0.0783148786 0.1581291749
sample17 -0.1483609869 0.0638582066
sample18 -0.0963086380 0.0556636836
sample19 -0.0217244157 -0.0720083220
sample20 -0.0635636577 -0.0779656138
sample21 -0.0201840088 0.1566391999
sample22 0.0218268383 -0.0764107812
sample23 0.0852042226 -0.0032683468
sample24 -0.1287169896 0.1924551792
sample25 -0.0430574045 -0.0456561056
sample26 -0.1453896639 0.0541515900
sample27 -0.0197489166 -0.1185661302
sample28 -0.1025336094 0.0650687657
sample29 0.0706018218 -0.0682991977
sample30 -0.1295627844 -0.0066775737
sample31 0.1147449110 0.1232683784
sample32 -0.0374311057 0.0380172929
sample33 0.0599515667 0.0136862372
sample34 -0.0984200920 0.0375318002
sample35 -0.0543098511 -0.0378110891
sample36 0.1403625256 -0.0343764368
sample37 0.0228941473 -0.0732857294
sample38 -0.0222077546 -0.0962596751
sample39 -0.0941738440 0.0215200501
sample40 0.0643800738 -0.0687881620
sample41 -0.0327638233 -0.1232188231
sample42 -0.0500431850 -0.0292470503
sample43 -0.0184498932 0.0233008718
sample44 0.1487899429 0.1171364472
sample45 -0.1050773855 0.1123205857
sample46 -0.1151196003 -0.1094031084
sample47 -0.0962593883 -0.0288466958
sample48 0.0004837653 -0.0310270695
sample49 0.1135208057 0.1213975558
sample50 -0.0123553344 -0.1740742337
sample51 0.0550530037 0.1258883563
sample52 0.0499121416 0.0728541937
sample53 0.1119773723 0.1588010280
sample54 -0.0360055672 0.0228574877
sample55 0.0210419008 0.0006730360
sample56 -0.0434169074 0.0633125678
sample57 0.0197824883 0.1150710686
sample58 0.0030439835 0.0326095887
sample59 0.0500252866 0.0129411487
sample60 0.0184278552 0.0136075787
sample61 0.0150299446 0.0635020706
sample62 -0.0304764257 -0.0201325264
sample63 0.1102252641 0.1285977583
sample64 0.1552588175 0.0971167137
sample65 -0.0058503000 0.0207116365
sample66 -0.0025605197 0.0424322493
sample67 0.1546634545 -0.0661726449
sample68 0.0536368922 -0.0923689498
sample69 0.0640330187 0.0081981579
sample70 0.0163517466 -0.0663230302
sample71 -0.0102537736 -0.1345918215
sample72 -0.0654196346 -0.0196125613
sample73 -0.1048556342 0.0220933755
sample74 0.0123799408 0.0586112064
sample75 0.0392077812 -0.0209757155
sample76 0.0648953295 -0.0524764766
sample77 0.1172922090 -0.0201185715
sample78 -0.1463067773 0.0708477763
sample79 0.0265211361 -0.1603299332
sample80 0.0279737006 -0.0214208915
sample81 0.0079211448 -0.0738447575
sample82 -0.1544236646 -0.0361469185
sample83 -0.0494211825 -0.0050056579
sample84 -0.0259038380 -0.0346546492
sample85 0.1116484129 -0.0031504631
sample86 -0.1306483320 -0.0377219564
sample87 -0.0554778226 -0.0459749626
sample88 -0.0301623655 0.0382196882
sample89 -0.1016866753 0.0694030530
sample90 0.0086819751 -0.0201319848
sample91 0.1578625016 -0.2097830664
sample92 0.0170937070 -0.1655797320
sample93 -0.0979806944 -0.0121513123
sample94 0.0131483944 -0.0114932283
sample95 0.0315682640 -0.0758854783
sample96 0.0024125600 -0.0470131865
sample97 0.0634545386 0.0270334002
sample98 -0.0359374788 -0.0135490084
sample99 -0.1009163011 0.1124785081
sample100 0.0551753060 0.0246488625
sample101 -0.0080119105 -0.1627365618
sample102 -0.0046443809 0.0095643905
sample103 -0.0472523347 -0.0940394035
sample104 0.0198159632 -0.0591087398
sample105 -0.0400237711 -0.0160909207
sample106 -0.0923808291 0.0369018768
sample107 -0.1019374062 0.0224953162
sample108 -0.0877091663 -0.0128833030
sample109 0.0864824689 -0.0900931176
sample110 -0.1223115470 -0.0096083991
sample111 0.0257354795 -0.0936160637
sample112 -0.0765286655 0.0270345151
sample113 0.0258803492 0.0377501699
sample114 0.0021138762 -0.0882012972
sample115 0.0303460566 -0.0723574298
sample116 0.0780508718 -0.0685059048
sample117 0.0536898405 -0.0911899506
sample118 0.0666651244 -0.0236228766
sample119 0.1021871563 -0.2324931676
sample120 0.0750216573 0.0243381687
sample121 -0.0756936289 0.0942949085
sample122 -0.0259627790 0.0731992222
sample123 -0.1037846374 -0.0369198624
sample124 0.0611208131 0.0421729500
sample125 -0.0738472725 0.0066950571
sample126 0.0972916243 0.0762635526
sample127 0.0824697500 -0.0096636741
sample128 -0.1249407358 0.0929317180
sample129 -0.0734067802 -0.0434366688
sample130 -0.0003502135 -0.0309852327
sample131 0.0930182721 0.0155934616
sample132 0.0736222977 0.0733034231
sample133 -0.0498397951 -0.0462436053
sample134 0.1644873555 0.0720002464
sample135 -0.0752297361 0.0003813791
sample136 0.0227145461 -0.0495508822
sample137 0.0564717091 -0.0288919966
sample138 0.0255988232 -0.0610851403
sample139 0.0621217729 0.0235803851
sample140 -0.0604152805 -0.0435597903
sample141 0.0246744038 0.0532650094
sample142 -0.0409560067 0.0316283347
sample143 -0.0077355137 -0.0476895318
sample144 0.0173240811 -0.0156777331
sample145 0.0485475024 0.1202773111
sample146 0.0419645310 -0.0811284384
sample147 -0.0977308628 -0.0274845315
sample148 0.0368256399 0.0803980448
sample149 -0.0072865862 -0.1532983642
sample150 0.1020825271 0.0624770971
sample151 0.0305399205 -0.0289273692
sample152 -0.0533594768 -0.0638307118
sample153 -0.0891626775 0.1799587931
sample154 -0.0727557701 -0.0834163313
sample155 -0.0880668770 -0.0220823343
sample156 -0.0276561213 -0.0326627100
sample157 -0.1155032235 0.0183614602
sample158 -0.0281507584 -0.0104940671
sample159 0.0663235853 0.0443839443
sample160 -0.0302643883 0.0404262742
sample161 0.0114715760 -0.0591021053
sample162 -0.1337086835 0.1398135802
sample163 0.1330124758 0.1688782196
sample164 -0.0150335943 0.0028419304
sample165 0.0076520378 -0.0164127052
sample166 0.0367794587 0.0630665698
sample167 0.1111988795 0.0030057201
sample168 -0.0672981499 0.0446280270
sample169 -0.0413005073 0.0224390238
> discoRes@scores$dist[[1]] ## Distinctive scores for Block 1
1 2
sample1 0.0420518641 0.0867862871
sample2 0.0820827022 -0.0410978713
sample3 -0.0155894868 -0.0195182073
sample4 0.1001336698 -0.0410787443
sample5 0.0153464966 -0.0253259827
sample6 -0.0340332283 -0.0408223187
sample7 -0.0722578085 0.0002332854
sample8 0.0457491078 -0.0370016916
sample9 0.0086251713 0.0820184934
sample10 0.0423596198 -0.0083923700
sample11 -0.0022545279 0.0787766188
sample12 -0.0322107999 0.1479824781
sample13 0.0293883812 -0.0306749049
sample14 -0.0337486529 -0.0367506749
sample15 -0.0815537553 0.1275623130
sample16 -0.0508461145 0.0540604673
sample17 -0.0062599794 0.0041023630
sample18 -0.0705642731 -0.0351047272
sample19 0.0476846036 -0.0509598280
sample20 -0.0522958018 0.0715522440
sample21 0.0119117419 -0.0376093539
sample22 -0.0724388275 -0.0095624386
sample23 0.0992532354 0.0134288037
sample24 0.1595107115 0.0728660368
sample25 0.0920695780 -0.0749757858
sample26 0.0595538092 0.0848965476
sample27 -0.0826478831 -0.0086734522
sample28 0.0384784789 0.0440966439
sample29 -0.0777666354 0.1735309261
sample30 -0.1229471063 -0.0819004558
sample31 -0.0579853543 -0.0238644601
sample32 -0.0970395216 -0.0111425643
sample33 -0.1017588603 -0.0630441822
sample34 -0.0637924382 0.0377942120
sample35 -0.0789983046 -0.0229722529
sample36 -0.1224939761 -0.1274953942
sample37 -0.1798818781 -0.1673425891
sample38 -0.0466297798 0.0888161527
sample39 0.0168687117 0.0421533584
sample40 -0.1756390165 -0.1526640862
sample41 -0.0042363387 0.0004929122
sample42 0.0447851525 -0.0651505274
sample43 -0.0482309656 -0.0253528955
sample44 0.1986706911 -0.0545779671
sample45 0.0741830299 0.0054702465
sample46 -0.0478765362 -0.0007071389
sample47 -0.0608186409 0.0481623176
sample48 0.1381491278 0.0578286785
sample49 0.0530512092 -0.1405533528
sample50 0.0173811384 0.1602389939
sample51 -0.0462568908 0.0303473892
sample52 -0.0280070248 0.0280388430
sample53 -0.0667630694 0.0237702179
sample54 -0.0121835210 -0.0521354279
sample55 -0.0182396191 0.0221328567
sample56 0.0001251524 0.0030907211
sample57 -0.0316683094 0.0530190249
sample58 -0.0393920225 -0.0297798519
sample59 -0.1278292393 -0.0546527006
sample60 -0.1486986666 0.1069157658
sample61 -0.0793126669 0.0569796980
sample62 -0.1172799442 -0.0149197536
sample63 0.0028720241 0.1300519508
sample64 -0.0237369888 0.1073287666
sample65 0.0126534244 0.0589808293
sample66 0.0468191822 -0.0771073150
sample67 -0.1494262947 -0.0769859012
sample68 -0.0977956452 -0.0577350092
sample69 -0.0403087061 0.0156042408
sample70 -0.0221526200 0.0315441286
sample71 0.0546442563 -0.0272396543
sample72 -0.1107486785 -0.0537318474
sample73 -0.0906761604 0.0579967261
sample74 -0.0586558599 0.0121421988
sample75 -0.0390491791 0.0349283159
sample76 0.0022962345 -0.1676558693
sample77 0.0232095838 -0.2067302934
sample78 0.0929750761 -0.0434940355
sample79 0.1619505663 -0.0378115108
sample80 -0.0680363449 0.1424664062
sample81 0.0530788543 -0.0358351081
sample82 -0.0266819780 -0.0577444805
sample83 -0.1517234667 -0.0448553157
sample84 0.0570968951 -0.0273813597
sample85 -0.1086291079 -0.1228118500
sample86 -0.0833857513 -0.0442914246
sample87 -0.0022016679 -0.0943906730
sample88 0.0078220946 -0.1140506684
sample89 -0.0611061182 -0.0094584838
sample90 -0.0022927057 -0.0936253925
sample91 -0.0433576537 0.3205983591
sample92 0.1815344545 -0.0334681300
sample93 -0.0267628977 0.0614429269
sample94 -0.0181875960 0.0605090577
sample95 0.0720380424 -0.0013046029
sample96 0.0559718010 -0.0118791731
sample97 0.0217410281 0.0195413917
sample98 -0.0379175721 0.0588357432
sample99 0.0792421082 -0.0151274659
sample100 -0.0222117661 -0.0023321321
sample101 0.0387239661 0.1224226304
sample102 0.2094613267 -0.0516444240
sample103 -0.0138475329 0.0301052281
sample104 0.0807990019 -0.0162719401
sample105 0.0520493480 -0.1229665523
sample106 0.0192611018 -0.0185238413
sample107 -0.0319017378 0.0405123491
sample108 0.0140692283 0.0163421311
sample109 0.1831935723 0.0613006367
sample110 0.0292791208 -0.0199849275
sample111 0.1423258041 0.0327339461
sample112 -0.0426334354 -0.0029083173
sample113 0.0771902415 0.0268732968
sample114 0.0241647073 -0.0184080391
sample115 0.1959020158 0.0460129352
sample116 0.1394478961 -0.0530806719
sample117 0.1672365663 -0.1386537470
sample118 0.0448345252 -0.0117622226
sample119 0.0910401216 0.2217433220
sample120 0.0331391237 -0.0057274805
sample121 -0.0307579381 0.1392506564
sample122 0.0839776811 -0.0291995228
sample123 -0.0239648487 -0.0642163450
sample124 0.0909148639 0.0130418711
sample125 0.0065349980 -0.1092631873
sample126 -0.0935314830 0.1368284581
sample127 -0.0035386527 0.0292755686
sample128 0.0660291246 0.1018565616
sample129 -0.0693636076 -0.0695421103
sample130 -0.0008491607 -0.0669704246
sample131 -0.0431024948 0.0174065154
sample132 0.0637036342 0.0029374068
sample133 0.0289497113 -0.0390818943
sample134 -0.0446207737 0.0456334665
sample135 -0.0712336453 0.0521635501
sample136 -0.0596267327 0.0197299894
sample137 -0.0793150146 -0.0380627636
sample138 0.0973551651 -0.0454218861
sample139 -0.0539907705 -0.1534327013
sample140 -0.0850823520 0.0955815283
sample141 0.0192678573 -0.0554450337
sample142 0.0672259513 -0.0461321498
sample143 0.0303732244 -0.0519260362
sample144 0.0089365673 0.0145814882
sample145 0.0638761671 0.0122257635
sample146 -0.0585851181 0.0063083982
sample147 -0.0894132289 -0.1124614952
sample148 0.0216361337 -0.0615967481
sample149 0.0515428788 -0.0839903531
sample150 -0.0568287569 -0.0124468643
sample151 0.0789533853 -0.0261831720
sample152 0.0330758132 0.1306443484
sample153 0.1751920874 0.1497730357
sample154 -0.0421419266 -0.0037009677
sample155 -0.0680175844 0.0095711804
sample156 -0.0388908118 0.1057563333
sample157 -0.0314769749 0.0561367629
sample158 -0.0329619785 0.0353947598
sample159 0.0398413084 -0.1007374182
sample160 -0.0424941291 0.0108496405
sample161 0.0888373737 -0.0679700713
sample162 0.0027468553 0.1237843525
sample163 0.0126095629 0.0725433851
sample164 0.0566779092 -0.0458324617
sample165 0.0315336782 -0.0236362554
sample166 0.0612054177 -0.0425233648
sample167 -0.0142729897 0.0179308371
sample168 0.0169500435 -0.0769618125
sample169 -0.0675081662 0.0131505792
> discoRes@scores$dist[[2]] ## Distinctive scores for Block 2
1 2
sample1 -0.0012329531 -1.635717e-01
sample2 -0.0724349879 -6.021203e-03
sample3 -0.0188460475 -1.080037e-01
sample4 0.0390145414 3.114623e-04
sample5 0.1774811698 -2.996382e-02
sample6 -0.0451444303 -3.455856e-02
sample7 -0.0226466416 -7.020222e-03
sample8 -0.1033679977 -9.856707e-03
sample9 0.1350011592 8.979097e-02
sample10 0.1259887419 -5.097847e-02
sample11 0.0979788216 7.086532e-02
sample12 -0.0863018991 -8.620317e-02
sample13 -0.1381401071 1.828008e-01
sample14 -0.0615073810 -2.642802e-02
sample15 0.0381598852 -3.101668e-02
sample16 -0.0048776574 1.271894e-03
sample17 -0.0788480816 -1.547550e-02
sample18 -0.0884188715 -3.795487e-02
sample19 0.0703044475 -1.084004e-01
sample20 -0.0025585775 7.975868e-02
sample21 0.0941601960 -4.126731e-02
sample22 -0.0550273570 -7.806752e-02
sample23 0.0679495460 -4.102001e-02
sample24 -0.1310962392 1.649311e-01
sample25 0.0113585385 -4.426860e-02
sample26 -0.1402945736 2.016548e-02
sample27 0.0261560829 1.588346e-03
sample28 -0.0724198594 5.850598e-02
sample29 -0.0330058802 2.060745e-03
sample30 -0.0228752699 -2.015436e-02
sample31 -0.0635067799 -6.670331e-02
sample32 0.0685099624 -4.955274e-02
sample33 -0.0777765239 -1.272079e-01
sample34 0.0157842429 -3.024314e-02
sample35 -0.0529633054 1.500971e-01
sample36 0.0070900324 2.025306e-01
sample37 -0.0442421131 1.802087e-01
sample38 -0.0781511477 -3.676428e-02
sample39 0.0120331965 -3.388838e-02
sample40 -0.0473292571 1.471560e-01
sample41 0.0228189242 -2.673561e-02
sample42 -0.0245360147 -7.960866e-02
sample43 0.1036362853 -8.229577e-02
sample44 -0.1012228429 7.049465e-02
sample45 0.0013732365 -2.450900e-02
sample46 -0.0558510236 2.947304e-03
sample47 -0.0380481331 4.554169e-02
sample48 0.0784342187 4.888986e-02
sample49 -0.0605163711 -1.162348e-02
sample50 0.0530079048 -2.737940e-02
sample51 0.1514646600 5.678350e-02
sample52 0.1860935187 1.246718e-01
sample53 -0.0064176940 -2.700989e-02
sample54 0.0697038389 -2.308387e-02
sample55 0.1633576991 1.366442e-02
sample56 0.1011485168 4.682210e-02
sample57 0.1730374199 1.609604e-01
sample58 -0.0071384697 -1.666955e-02
sample59 -0.0030461882 3.005279e-02
sample60 0.0215834705 2.665877e-01
sample61 0.1510583533 1.002385e-01
sample62 -0.0925534099 -4.845849e-02
sample63 -0.0596311569 -4.137017e-02
sample64 -0.0449225708 -2.600555e-03
sample65 0.0939383852 -4.406906e-02
sample66 0.1063400937 -5.709987e-02
sample67 -0.0201590575 2.361726e-01
sample68 0.0037202887 2.418379e-02
sample69 -0.0645161159 -1.155622e-01
sample70 -0.1013440031 -1.351789e-01
sample71 -0.0016467983 -2.976846e-02
sample72 0.0328892872 -2.835863e-02
sample73 0.0275080020 -5.148188e-02
sample74 0.1341719765 -7.895278e-02
sample75 0.0951575603 -3.943186e-02
sample76 -0.0864722086 3.034988e-02
sample77 -0.1035749568 -2.545355e-02
sample78 -0.1575643907 4.939602e-02
sample79 0.0189137005 4.874678e-02
sample80 0.1384140451 4.261953e-05
sample81 -0.0118846444 -6.357933e-02
sample82 -0.1675308266 3.533908e-02
sample83 -0.0065673551 -7.812617e-02
sample84 0.1486891671 -3.109054e-02
sample85 -0.0532724671 7.417877e-02
sample86 -0.1138477488 -1.921638e-05
sample87 0.0432863863 6.080471e-02
sample88 0.0433450318 1.402491e-01
sample89 0.0331205835 -1.395399e-02
sample90 -0.0607412774 -8.610416e-02
sample91 -0.0566273181 1.303746e-01
sample92 -0.0359582610 1.061604e-01
sample93 -0.0433646358 -4.443636e-02
sample94 -0.0477291251 -1.059574e-01
sample95 -0.0249595760 -3.980526e-02
sample96 0.0035219098 -9.293928e-02
sample97 -0.0066048554 -1.527230e-01
sample98 0.0020366799 -5.579552e-02
sample99 -0.0886615745 -3.728216e-02
sample100 -0.1091259107 -3.560421e-02
sample101 -0.0739726647 -4.318006e-02
sample102 0.0574461495 -2.783903e-02
sample103 0.0142730853 9.705506e-03
sample104 0.0710395190 4.068352e-02
sample105 0.0980831437 -3.452950e-02
sample106 -0.0254259239 3.628987e-02
sample107 -0.0160653352 -9.173394e-02
sample108 -0.0200987617 -2.379692e-02
sample109 -0.0389780570 1.692362e-02
sample110 -0.0326304821 2.988111e-02
sample111 0.0676937668 -6.038210e-02
sample112 0.0167883427 5.336939e-03
sample113 0.0969217208 -2.757597e-02
sample114 -0.0026398376 -9.209160e-02
sample115 -0.0308047175 1.603828e-02
sample116 -0.1240307219 1.273000e-01
sample117 0.0334729113 5.392714e-02
sample118 -0.1037152964 6.252430e-02
sample119 -0.1064177029 1.196201e-01
sample120 -0.0771354929 -1.004932e-01
sample121 -0.0129350658 3.181980e-02
sample122 0.0847492585 -5.568317e-02
sample123 -0.0041336857 7.693155e-03
sample124 -0.0583457739 -8.396384e-02
sample125 0.0634844684 -5.232538e-02
sample126 -0.0662580880 -1.091733e-01
sample127 -0.0865024543 -1.094176e-01
sample128 -0.0627817149 -1.470955e-02
sample129 -0.0336276567 -4.007864e-02
sample130 -0.0293517725 -8.046119e-02
sample131 -0.0469197720 -2.209774e-03
sample132 -0.0241740371 -1.248598e-01
sample133 0.0907303176 1.466701e-02
sample134 -0.0350842133 7.539662e-02
sample135 0.0001333312 9.185349e-03
sample136 -0.0335876140 -9.860280e-02
sample137 -0.0640149013 -7.554476e-02
sample138 0.0060964896 -1.742761e-02
sample139 -0.0592084566 5.614966e-02
sample140 0.0427985758 -1.099557e-02
sample141 0.0618796578 -9.301034e-02
sample142 0.0898554592 3.573424e-02
sample143 0.0817389102 8.880524e-02
sample144 0.0787754801 -3.821391e-02
sample145 0.1085821712 1.569477e-01
sample146 -0.0589558124 -4.373368e-02
sample147 -0.0495330601 7.277145e-03
sample148 0.1161592936 9.079145e-03
sample149 -0.0121579700 7.788368e-02
sample150 -0.0314512575 3.520212e-02
sample151 0.0575382251 -1.945350e-02
sample152 -0.0494542207 7.025535e-02
sample153 -0.0941332376 2.153299e-01
sample154 -0.0335932207 2.078722e-02
sample155 0.0690457560 -2.780413e-02
sample156 0.1039901576 -6.292527e-02
sample157 -0.0408645782 8.065514e-03
sample158 0.1018105242 7.816866e-03
sample159 -0.0281730413 -1.207203e-02
sample160 0.1643053017 2.978123e-03
sample161 0.0374329204 8.524612e-02
sample162 -0.0804535142 8.349763e-02
sample163 -0.0743227698 -1.406217e-02
sample164 0.1208806121 -2.139456e-02
sample165 0.1608115913 2.025194e-02
sample166 -0.0425944433 -2.660709e-02
sample167 -0.0226849479 -4.464283e-02
sample168 -0.0180735472 -7.465841e-04
sample169 0.0190778929 2.645401e-02
> # Exploring O2PLS scores structure
> o2plsRes@scores$common[[1]] ## Common scores for Block 1
[,1] [,2]
sample1 -0.0572060227 -1.729087e-02
sample2 0.0875245208 1.112588e-02
sample3 0.0403482602 -3.168994e-02
sample4 -0.0218345996 4.052760e-06
sample5 -0.0150905011 4.795041e-03
sample6 -0.0924362933 4.511003e-02
sample7 -0.0793066751 -1.243823e-02
sample8 -0.1342997187 6.215220e-02
sample9 -0.0338886944 -1.854401e-02
sample10 0.0020547173 1.749421e-02
sample11 0.0037275602 -2.364116e-02
sample12 -0.0753094533 2.772698e-02
sample13 0.0856160091 3.679963e-02
sample14 -0.0737457307 2.668452e-02
sample15 -0.0062111746 -3.554864e-03
sample16 -0.0602355268 6.675115e-02
sample17 0.1086768843 2.524534e-02
sample18 0.0702999472 2.231671e-02
sample19 0.0173785882 -3.024846e-02
sample20 0.0484173812 -3.310904e-02
sample21 0.0124657042 6.517144e-02
sample22 -0.0140989936 -3.159137e-02
sample23 -0.0627028403 -5.393710e-04
sample24 0.0919972100 7.909297e-02
sample25 0.0326998483 -1.945206e-02
sample26 0.1064741246 2.120849e-02
sample27 0.0166058995 -4.964993e-02
sample28 0.0743504770 2.614211e-02
sample29 -0.0511008491 -2.782647e-02
sample30 0.0962250842 -3.974893e-03
sample31 -0.0869563008 5.250819e-02
sample32 0.0271858919 1.552005e-02
sample33 -0.0448364581 6.243160e-03
sample34 0.0718415218 1.469396e-02
sample35 0.0403086451 -1.632629e-02
sample36 -0.1036402827 -1.304320e-02
sample37 -0.0159385744 -3.036525e-02
sample38 0.0182198369 -4.034805e-02
sample39 0.0690363619 8.058350e-03
sample40 -0.0467312750 -2.810325e-02
sample41 0.0263674438 -5.171216e-02
sample42 0.0374578960 -1.268634e-02
sample43 0.0132336869 9.536642e-03
sample44 -0.1119154428 5.028683e-02
sample45 0.0759639367 4.587903e-02
sample46 0.0871885519 -4.670385e-02
sample47 0.0721490571 -1.288540e-02
sample48 0.0005086144 -1.290565e-02
sample49 -0.0858177028 5.173760e-02
sample50 0.0118992665 -7.276215e-02
sample51 -0.0426446855 5.306205e-02
sample52 -0.0381605826 3.086785e-02
sample53 -0.0855757630 6.730043e-02
sample54 0.0261723092 9.184260e-03
sample55 -0.0156418304 4.682404e-04
sample56 0.0307831193 2.597550e-02
sample57 -0.0157242103 4.829381e-02
sample58 -0.0031174404 1.359898e-02
sample59 -0.0373001859 5.868397e-03
sample60 -0.0142609099 5.831654e-03
sample61 -0.0122255144 2.663579e-02
sample62 0.0228002942 -8.692265e-03
sample63 -0.0833127581 5.473229e-02
sample64 -0.1166548159 4.196500e-02
sample65 0.0038808902 8.568590e-03
sample66 0.0011561811 1.766612e-02
sample67 -0.1129311062 -2.608702e-02
sample68 -0.0382526429 -3.804045e-02
sample69 -0.0476502440 4.003241e-03
sample70 -0.0110329882 -2.752719e-02
sample71 0.0096850282 -5.627056e-02
sample72 0.0487124704 -8.800131e-03
sample73 0.0773058132 8.239864e-03
sample74 -0.0102488176 2.454957e-02
sample75 -0.0286613976 -8.387293e-03
sample76 -0.0472655595 -2.129315e-02
sample77 -0.0865043074 -7.296820e-03
sample78 0.1070293698 2.818346e-02
sample79 -0.0165060681 -6.659721e-02
sample80 -0.0206765949 -8.712112e-03
sample81 -0.0050943615 -3.079175e-02
sample82 0.1153622361 -1.647054e-02
sample83 0.0367979217 -2.538114e-03
sample84 0.0199463070 -1.468961e-02
sample85 -0.0827122185 -2.709824e-04
sample86 0.0969487314 -1.699897e-02
sample87 0.0421957457 -1.965953e-02
sample88 0.0215934743 1.566050e-02
sample89 0.0751559502 2.811652e-02
sample90 -0.0057328000 -8.283795e-03
sample91 -0.1134005268 -8.603522e-02
sample92 -0.0101689918 -6.894992e-02
sample93 0.0725967502 -6.003176e-03
sample94 -0.0096878852 -4.693081e-03
sample95 -0.0223502239 -3.139636e-02
sample96 -0.0013232863 -1.963604e-02
sample97 -0.0476541710 1.183660e-02
sample98 0.0269546160 -5.978398e-03
sample99 0.0728179461 4.597884e-02
sample100 -0.0413398038 1.079347e-02
sample101 0.0087536994 -6.796076e-02
sample102 0.0032509529 3.932612e-03
sample103 0.0360342395 -3.973263e-02
sample104 -0.0141722563 -2.453107e-02
sample105 0.0294940465 -7.140722e-03
sample106 0.0686472054 1.462895e-02
sample107 0.0748635927 8.401339e-03
sample108 0.0650175850 -6.211942e-03
sample109 -0.0628017242 -3.681224e-02
sample110 0.0905513691 -5.169053e-03
sample111 -0.0176679473 -3.884777e-02
sample112 0.0570870472 1.066018e-02
sample113 -0.0200110554 1.596044e-02
sample114 -0.0001474542 -3.679272e-02
sample115 -0.0213333038 -2.991667e-02
sample116 -0.0567675453 -2.785636e-02
sample117 -0.0379865990 -3.752078e-02
sample118 -0.0484878786 -9.173691e-03
sample119 -0.0713511831 -9.598634e-02
sample120 -0.0555093586 1.089843e-02
sample121 0.0542443861 3.861344e-02
sample122 0.0178575357 3.027138e-02
sample123 0.0775020581 -1.636852e-02
sample124 -0.0460701050 1.814758e-02
sample125 0.0543846585 2.075898e-03
sample126 -0.0729417144 3.276659e-02
sample127 -0.0609509157 -3.270814e-03
sample128 0.0908136899 3.758801e-02
sample129 0.0552445878 -1.879062e-02
sample130 0.0007128089 -1.294308e-02
sample131 -0.0693311345 7.357082e-03
sample132 -0.0556565156 3.126995e-02
sample133 0.0375870104 -1.977240e-02
sample134 -0.1229130924 3.159495e-02
sample135 0.0555550315 -5.563250e-04
sample136 -0.0159768414 -2.046339e-02
sample137 -0.0412337694 -1.151652e-02
sample138 -0.0180604476 -2.526505e-02
sample139 -0.0465649201 1.040683e-02
sample140 0.0452288969 -1.876279e-02
sample141 -0.0189142561 2.247042e-02
sample142 0.0297545566 1.280524e-02
sample143 0.0064292003 -1.997706e-02
sample144 -0.0124284903 -6.369733e-03
sample145 -0.0377141491 5.066743e-02
sample146 -0.0296240067 -3.344465e-02
sample147 0.0726083535 -1.239968e-02
sample148 -0.0284795794 3.389732e-02
sample149 0.0082261455 -6.399305e-02
sample150 -0.0765013197 2.704021e-02
sample151 -0.0220567356 -1.178159e-02
sample152 0.0403422737 -2.714879e-02
sample153 0.0629117719 7.425085e-02
sample154 0.0551622927 -3.548984e-02
sample155 0.0654439133 -1.005306e-02
sample156 0.0209310714 -1.390213e-02
sample157 0.0851522597 6.577150e-03
sample158 0.0208354599 -4.663078e-03
sample159 -0.0498794349 1.913257e-02
sample160 0.0216074437 1.656579e-02
sample161 -0.0075742328 -2.455676e-02
sample162 0.0963663017 5.705881e-02
sample163 -0.1009542191 7.174224e-02
sample164 0.0109881996 1.026806e-03
sample165 -0.0053146157 -6.772855e-03
sample166 -0.0275757357 2.673084e-02
sample167 -0.0825048036 2.278863e-03
sample168 0.0486147429 1.793843e-02
sample169 0.0302506727 8.984253e-03
> o2plsRes@scores$common[[2]] ## Common scores for Block 2
[,1] [,2]
sample1 -0.0621842115 -1.364509e-02
sample2 0.0944623785 9.720892e-03
sample3 0.0406196267 -2.236338e-02
sample4 -0.0229316496 -3.932487e-04
sample5 -0.0157330047 3.231033e-03
sample6 -0.0945794025 3.120720e-02
sample7 -0.0854427118 -1.052880e-02
sample8 -0.1376625920 4.286608e-02
sample9 -0.0377115311 -1.415134e-02
sample10 0.0035244506 1.280825e-02
sample11 0.0016639987 -1.717895e-02
sample12 -0.0781403168 1.884368e-02
sample13 0.0938400516 2.838858e-02
sample14 -0.0759839772 1.810989e-02
sample15 -0.0068340837 -2.705361e-03
sample16 -0.0590150849 4.757848e-02
sample17 0.1178805097 2.040526e-02
sample18 0.0767858320 1.756604e-02
sample19 0.0157112113 -2.172867e-02
sample20 0.0485318300 -2.327033e-02
sample21 0.0185928176 4.777095e-02
sample22 -0.0191358702 -2.329775e-02
sample23 -0.0672994194 -1.535656e-03
sample24 0.1047476642 5.935707e-02
sample25 0.0329844953 -1.358036e-02
sample26 0.1154952052 1.741529e-02
sample27 0.0133849853 -3.590922e-02
sample28 0.0821554039 2.042376e-02
sample29 -0.0567643690 -2.123848e-02
sample30 0.1016073931 -1.134728e-03
sample31 -0.0880396372 3.670548e-02
sample32 0.0300363338 1.182406e-02
sample33 -0.0467252272 3.739254e-03
sample34 0.0783666394 1.203777e-02
sample35 0.0424227097 -1.118559e-02
sample36 -0.1107646166 -1.143464e-02
sample37 -0.0191667664 -2.246060e-02
sample38 0.0155968095 -2.909621e-02
sample39 0.0746847148 7.148218e-03
sample40 -0.0517028178 -2.137267e-02
sample41 0.0234979494 -3.723018e-02
sample42 0.0388797356 -8.557228e-03
sample43 0.0149555568 7.210002e-03
sample44 -0.1150305613 3.461805e-02
sample45 0.0846146236 3.486020e-02
sample46 0.0884426404 -3.246853e-02
sample47 0.0748644971 -8.083045e-03
sample48 -0.0012033198 -9.403647e-03
sample49 -0.0872662737 3.616245e-02
sample50 0.0066941314 -5.284863e-02
sample51 -0.0411777630 3.791830e-02
sample52 -0.0379355780 2.180834e-02
sample53 -0.0851639886 4.751761e-02
sample54 0.0288006248 7.184424e-03
sample55 -0.0164920835 5.919925e-05
sample56 0.0355115616 1.951043e-02
sample57 -0.0141146068 3.492409e-02
sample58 -0.0015636132 9.862883e-03
sample59 -0.0390656483 3.590929e-03
sample60 -0.0139454780 3.963030e-03
sample61 -0.0106410274 1.919705e-02
sample62 0.0236748439 -5.922677e-03
sample63 -0.0846790877 3.839102e-02
sample64 -0.1202581015 2.846469e-02
sample65 0.0050548584 6.328644e-03
sample66 0.0028013072 1.291807e-02
sample67 -0.1231623009 -2.112565e-02
sample68 -0.0437782161 -2.845072e-02
sample69 -0.0501199692 2.053469e-03
sample70 -0.0140278645 -2.027157e-02
sample71 0.0057489505 -4.085977e-02
sample72 0.0511212704 -5.522408e-03
sample73 0.0828141409 7.431582e-03
sample74 -0.0085959456 1.772951e-02
sample75 -0.0312180394 -6.636869e-03
sample76 -0.0519051781 -1.640191e-02
sample77 -0.0925924762 -6.907800e-03
sample78 0.1163971046 2.251122e-02
sample79 -0.0240906926 -4.887766e-02
sample80 -0.0221327065 -6.730703e-03
sample81 -0.0072114968 -2.254399e-02
sample82 0.1204416674 -9.907422e-03
sample83 0.0386739485 -1.171663e-03
sample84 0.0195988488 -1.033806e-02
sample85 -0.0877680171 -1.725057e-03
sample86 0.1023541048 -1.062501e-02
sample87 0.0425213089 -1.356865e-02
sample88 0.0244788514 1.180820e-02
sample89 0.0804276691 2.188588e-02
sample90 -0.0074639871 -6.140721e-03
sample91 -0.1278832404 -6.485140e-02
sample92 -0.0162199697 -5.048358e-02
sample93 0.0769344893 -3.045135e-03
sample94 -0.0104345587 -3.593172e-03
sample95 -0.0260058453 -2.330475e-02
sample96 -0.0025018700 -1.433516e-02
sample97 -0.0492358305 7.774183e-03
sample98 0.0279220220 -3.862141e-03
sample99 0.0813921923 3.487339e-02
sample100 -0.0428797405 7.112807e-03
sample101 0.0032855240 -4.940743e-02
sample102 0.0038439317 2.938008e-03
sample103 0.0358511139 -2.831881e-02
sample104 -0.0162784000 -1.815061e-02
sample105 0.0314853405 -4.656633e-03
sample106 0.0726456731 1.192390e-02
sample107 0.0807342975 7.508627e-03
sample108 0.0688338003 -3.336161e-03
sample109 -0.0694151950 -2.800146e-02
sample110 0.0961218924 -2.111997e-03
sample111 -0.0217900036 -2.864702e-02
sample112 0.0599954082 8.820317e-03
sample113 -0.0195006577 1.128215e-02
sample114 -0.0032126533 -2.682851e-02
sample115 -0.0251101087 -2.221077e-02
sample116 -0.0625141551 -2.137258e-02
sample117 -0.0440473375 -2.806256e-02
sample118 -0.0532042630 -7.590494e-03
sample119 -0.0848603028 -7.133574e-02
sample120 -0.0588832131 6.937326e-03
sample121 0.0613899126 2.915307e-02
sample122 0.0218424338 2.241775e-02
sample123 0.0809008460 -1.051759e-02
sample124 -0.0472109313 1.239887e-02
sample125 0.0583180947 2.521167e-03
sample126 -0.0753941872 2.256455e-02
sample127 -0.0649774209 -3.496964e-03
sample128 0.1000212216 2.908091e-02
sample129 0.0568033049 -1.269016e-02
sample130 -0.0002370832 -9.419675e-03
sample131 -0.0727030877 4.091672e-03
sample132 -0.0566219024 2.179861e-02
sample133 0.0384172955 -1.372840e-02
sample134 -0.1280862736 2.077912e-02
sample135 0.0592633273 6.106685e-04
sample136 -0.0187635410 -1.521173e-02
sample137 -0.0449958970 -9.152840e-03
sample138 -0.0211348699 -1.875415e-02
sample139 -0.0482882861 6.729304e-03
sample140 0.0468926306 -1.285498e-02
sample141 -0.0186248693 1.605439e-02
sample142 0.0328031246 9.887746e-03
sample143 0.0052919839 -1.445666e-02
sample144 -0.0140067923 -4.867248e-03
sample145 -0.0361804310 3.625323e-02
sample146 -0.0345286735 -2.493652e-02
sample147 0.0765025670 -7.714769e-03
sample148 -0.0276016641 2.420589e-02
sample149 0.0027545308 -4.653007e-02
sample150 -0.0792296010 1.831289e-02
sample151 -0.0245894512 -8.991738e-03
sample152 0.0409796547 -1.907063e-02
sample153 0.0734301757 5.528780e-02
sample154 0.0557740684 -2.487723e-02
sample155 0.0689436560 -6.127635e-03
sample156 0.0212272938 -9.747423e-03
sample157 0.0911931194 6.355708e-03
sample158 0.0220840645 -3.016357e-03
sample159 -0.0513244242 1.304175e-02
sample160 0.0246213576 1.248444e-02
sample161 -0.0100369130 -1.805391e-02
sample162 0.1078802043 4.337260e-02
sample163 -0.1017965082 5.047171e-02
sample164 0.0119430799 9.593002e-04
sample165 -0.0063708014 -5.032148e-03
sample166 -0.0283181180 1.899222e-02
sample167 -0.0872832229 1.516582e-04
sample168 0.0540714512 1.397701e-02
sample169 0.0328432652 7.104347e-03
> o2plsRes@scores$dist[[1]] ## Distinctive scores for Block 1
[,1] [,2]
sample1 0.0133684846 2.195848e-02
sample2 0.0254157197 -1.058416e-02
sample3 -0.0049551479 -4.840017e-03
sample4 0.0310390570 -1.063929e-02
sample5 0.0046941318 -6.488426e-03
sample6 -0.0107406753 -1.026702e-02
sample7 -0.0225157631 2.624712e-04
sample8 0.0141320952 -9.505821e-03
sample9 0.0029681280 2.078210e-02
sample10 0.0131729174 -2.275042e-03
sample11 -0.0004164298 1.994019e-02
sample12 -0.0095211620 3.759883e-02
sample13 0.0091018604 -7.953956e-03
sample14 -0.0106557524 -9.181659e-03
sample15 -0.0249924121 3.262724e-02
sample16 -0.0156216400 1.375700e-02
sample17 -0.0019382446 1.073994e-03
sample18 -0.0221072481 -8.703592e-03
sample19 0.0146917619 -1.311712e-02
sample20 -0.0160353760 1.826290e-02
sample21 0.0035947899 -9.616341e-03
sample22 -0.0225060762 -2.532589e-03
sample23 0.0310000683 3.033060e-03
sample24 0.0499544372 1.809450e-02
sample25 0.0284442301 -1.932558e-02
sample26 0.0188220043 2.146985e-02
sample27 -0.0257763219 -1.999228e-03
sample28 0.0120888648 1.125834e-02
sample29 -0.0236482520 4.426726e-02
sample30 -0.0385486305 -2.055935e-02
sample31 -0.0181539336 -5.877838e-03
sample32 -0.0302630460 -2.607192e-03
sample33 -0.0319565715 -1.562628e-02
sample34 -0.0197970124 9.906813e-03
sample35 -0.0247412713 -5.434440e-03
sample36 -0.0386259060 -3.190394e-02
sample37 -0.0566199273 -4.192574e-02
sample38 -0.0142060273 2.259644e-02
sample39 0.0053589035 1.076485e-02
sample40 -0.0552546493 -3.819896e-02
sample41 -0.0013089975 9.278818e-05
sample42 0.0137252142 -1.664652e-02
sample43 -0.0151259626 -6.290953e-03
sample44 0.0617391754 -1.442883e-02
sample45 0.0231410886 1.163143e-03
sample46 -0.0148898209 -1.384176e-04
sample47 -0.0187252536 1.221690e-02
sample48 0.0432839432 1.416671e-02
sample49 0.0160818605 -3.588745e-02
sample50 0.0059333545 4.067003e-02
sample51 -0.0142914866 7.776270e-03
sample52 -0.0086339952 7.208917e-03
sample53 -0.0207386980 6.272432e-03
sample54 -0.0039856719 -1.316934e-02
sample55 -0.0056217017 5.692315e-03
sample56 0.0000123292 8.978290e-04
sample57 -0.0095805555 1.324253e-02
sample58 -0.0124160295 -7.326376e-03
sample59 -0.0400195442 -1.349736e-02
sample60 -0.0460063358 2.770091e-02
sample61 -0.0245266456 1.470710e-02
sample62 -0.0366022783 -3.437352e-03
sample63 0.0013742171 3.288796e-02
sample64 -0.0070599859 2.739588e-02
sample65 0.0041201911 1.498268e-02
sample66 0.0143173351 -1.968812e-02
sample67 -0.0467477531 -1.929938e-02
sample68 -0.0306751978 -1.436184e-02
sample69 -0.0125317217 4.130407e-03
sample70 -0.0068071487 8.080857e-03
sample71 0.0169170264 -7.027348e-03
sample72 -0.0346909749 -1.333770e-02
sample73 -0.0280506153 1.493843e-02
sample74 -0.0182611498 3.294697e-03
sample75 -0.0120563964 8.974612e-03
sample76 0.0001437236 -4.253184e-02
sample77 0.0065330299 -5.252886e-02
sample78 0.0288278141 -1.127782e-02
sample79 0.0503961481 -1.023318e-02
sample80 -0.0207693429 3.648391e-02
sample81 0.0163562768 -9.074596e-03
sample82 -0.0084317129 -1.478976e-02
sample83 -0.0474097918 -1.103126e-02
sample84 0.0177181395 -7.191197e-03
sample85 -0.0342718548 -3.082360e-02
sample86 -0.0261671791 -1.089491e-02
sample87 -0.0009486358 -2.411514e-02
sample88 0.0020528931 -2.894615e-02
sample89 -0.0189361111 -2.638639e-03
sample90 -0.0009863658 -2.390075e-02
sample91 -0.0124352695 8.153234e-02
sample92 0.0564264106 -8.909537e-03
sample93 -0.0081461774 1.570851e-02
sample94 -0.0054896581 1.547251e-02
sample95 0.0224073150 -4.374348e-04
sample96 0.0173528924 -3.050441e-03
sample97 0.0067948115 5.008237e-03
sample98 -0.0116030825 1.498764e-02
sample99 0.0246422688 -4.054795e-03
sample100 -0.0069420745 -4.846343e-04
sample101 0.0124923691 3.091503e-02
sample102 0.0650835386 -1.367400e-02
sample103 -0.0042741828 7.855985e-03
sample104 0.0250591040 -4.171938e-03
sample105 0.0157516368 -3.121990e-02
sample106 0.0060593853 -5.101693e-03
sample107 -0.0098329626 1.044506e-02
sample108 0.0044269853 4.142036e-03
sample109 0.0572473486 1.517542e-02
sample110 0.0090474827 -5.119868e-03
sample111 0.0444263015 7.983232e-03
sample112 -0.0131765484 -9.696342e-04
sample113 0.0241047399 6.706740e-03
sample114 0.0074558775 -4.728652e-03
sample115 0.0611851433 1.117210e-02
sample116 0.0432646951 -1.380556e-02
sample117 0.0516750066 -3.575617e-02
sample118 0.0139942100 -3.279138e-03
sample119 0.0291722987 5.587946e-02
sample120 0.0103515853 -1.690016e-03
sample121 -0.0091396331 3.552116e-02
sample122 0.0260431679 -7.583975e-03
sample123 -0.0076666389 -1.628489e-02
sample124 0.0283466326 3.127845e-03
sample125 0.0016472378 -2.770692e-02
sample126 -0.0286529417 3.489336e-02
sample127 -0.0010224500 7.483214e-03
sample128 0.0209049296 2.572016e-02
sample129 -0.0218184878 -1.755347e-02
sample130 -0.0005009620 -1.697978e-02
sample131 -0.0134032968 4.637390e-03
sample132 0.0198526786 5.723983e-04
sample133 0.0088812957 -9.988115e-03
sample134 -0.0137484514 1.172591e-02
sample135 -0.0220314568 1.347465e-02
sample136 -0.0185173353 5.168079e-03
sample137 -0.0248352123 -9.472788e-03
sample138 0.0301635767 -1.175283e-02
sample139 -0.0173576929 -3.872592e-02
sample140 -0.0262157762 2.456863e-02
sample141 0.0058369763 -1.420854e-02
sample142 0.0207886071 -1.188764e-02
sample143 0.0092832598 -1.324238e-02
sample144 0.0028442140 3.627979e-03
sample145 0.0199749569 2.862202e-03
sample146 -0.0182236697 1.726556e-03
sample147 -0.0282519995 -2.825595e-02
sample148 0.0065435868 -1.572917e-02
sample149 0.0158233820 -2.159451e-02
sample150 -0.0177383738 -3.020633e-03
sample151 0.0245166984 -6.888241e-03
sample152 0.0107259913 3.314630e-02
sample153 0.0550963965 3.758760e-02
sample154 -0.0131452472 -8.153903e-04
sample155 -0.0211742574 2.642246e-03
sample156 -0.0117803505 2.698265e-02
sample157 -0.0096167165 1.433840e-02
sample158 -0.0101754772 9.137620e-03
sample159 0.0120662931 -2.565236e-02
sample160 -0.0132238202 2.916023e-03
sample161 0.0274491966 -1.748284e-02
sample162 0.0012482909 3.152261e-02
sample163 0.0042031315 1.830701e-02
sample164 0.0174896157 -1.175915e-02
sample165 0.0097517662 -6.119019e-03
sample166 0.0190134679 -1.121582e-02
sample167 -0.0044140836 4.665585e-03
sample168 0.0049689168 -1.941822e-02
sample169 -0.0209802098 3.498729e-03
> o2plsRes@scores$dist[[2]] ## Distinctive scores for Block 2
[,1] [,2]
sample1 -0.0515543627 -0.0305856787
sample2 -0.0144993256 0.0236342950
sample3 -0.0371833108 -0.0140263348
sample4 0.0068945388 -0.0132539692
sample5 0.0215035333 -0.0663338101
sample6 -0.0187055152 0.0088773016
sample7 -0.0061521552 0.0064029054
sample8 -0.0210874459 0.0334652901
sample9 0.0516865043 -0.0291142799
sample10 0.0059440366 -0.0527217447
sample11 0.0393010793 -0.0200624712
sample12 -0.0420837100 0.0131331362
sample13 0.0333252565 0.0818552509
sample14 -0.0190062644 0.0160202175
sample15 -0.0030968049 -0.0189230681
sample16 -0.0004452158 0.0018880102
sample17 -0.0185848615 0.0240170131
sample18 -0.0273093598 0.0230213640
sample19 -0.0217761111 -0.0445894441
sample20 0.0245820821 0.0159812738
sample21 0.0034527644 -0.0400016054
sample22 -0.0340789054 0.0039289109
sample23 -0.0010344929 -0.0310161212
sample24 0.0289468503 0.0760962436
sample25 -0.0119098496 -0.0122798760
sample26 -0.0181001057 0.0517892852
sample27 0.0050465417 -0.0086515844
sample28 0.0057491502 0.0358830107
sample29 -0.0051104246 0.0116605117
sample30 -0.0103085904 0.0039678538
sample31 -0.0319929858 0.0090606113
sample32 -0.0036232521 -0.0328202010
sample33 -0.0534742153 0.0024751837
sample34 -0.0067495749 -0.0111000311
sample35 0.0378745721 0.0465929296
sample36 0.0647886800 0.0359987924
sample37 0.0488441236 0.0492906912
sample38 -0.0251514062 0.0197110110
sample39 -0.0085428066 -0.0105117852
sample40 0.0379324087 0.0440810741
sample41 -0.0044199152 -0.0128820644
sample42 -0.0292553573 -0.0067045265
sample43 -0.0077829155 -0.0510178219
sample44 0.0045122248 0.0479660309
sample45 -0.0074444298 -0.0051116726
sample46 -0.0088025512 0.0196186661
sample47 0.0076696301 0.0215947965
sample48 0.0290108585 -0.0175568376
sample49 -0.0141754858 0.0184717099
sample50 0.0006282201 -0.0233054373
sample51 0.0441995177 -0.0410022921
sample52 0.0715329391 -0.0399499475
sample53 -0.0095954087 -0.0029140909
sample54 0.0048933768 -0.0281884386
sample55 0.0327325487 -0.0532290012
sample56 0.0323068984 -0.0256595538
sample57 0.0806603122 -0.0286748097
sample58 -0.0064792049 -0.0006945349
sample59 0.0088958941 0.0067389649
sample60 0.0874124612 0.0431964341
sample61 0.0577604571 -0.0326112099
sample62 -0.0313318464 0.0224391756
sample63 -0.0233625220 0.0125110562
sample64 -0.0086426068 0.0148770341
sample65 0.0025256193 -0.0404466327
sample66 0.0006014071 -0.0471576264
sample67 0.0706087042 0.0516228406
sample68 0.0082301011 0.0033109509
sample69 -0.0475076743 0.0001452708
sample70 -0.0600773716 0.0089986962
sample71 -0.0096321627 -0.0050761187
sample72 -0.0031773546 -0.0166221542
sample73 -0.0113700517 -0.0191726684
sample74 -0.0014179662 -0.0608101325
sample75 0.0041911740 -0.0399981269
sample76 -0.0055326449 0.0353114263
sample77 -0.0260214459 0.0305731380
sample78 -0.0119267436 0.0632236007
sample79 0.0186017239 0.0027402910
sample80 0.0241047889 -0.0472697181
sample81 -0.0220288317 -0.0079577210
sample82 -0.0180751258 0.0639051029
sample83 -0.0256671713 -0.0125898269
sample84 0.0161392598 -0.0567222449
sample85 0.0139988188 0.0322763454
sample86 -0.0198382995 0.0389225776
sample87 0.0266270281 -0.0032979996
sample88 0.0515677078 0.0117902495
sample89 0.0014022125 -0.0140510488
sample90 -0.0375949749 0.0044004551
sample91 0.0310397965 0.0440610926
sample92 0.0270570567 0.0324380452
sample93 -0.0215009202 0.0063993941
sample94 -0.0415702912 -0.0037692077
sample95 -0.0168416047 0.0010019120
sample96 -0.0285582661 -0.0187991000
sample97 -0.0490843868 -0.0266760748
sample98 -0.0171579033 -0.0112897471
sample99 -0.0271316525 0.0232395583
sample100 -0.0301789816 0.0305498693
sample101 -0.0264371151 0.0170723968
sample102 0.0012767734 -0.0248949597
sample103 0.0055214687 -0.0030040587
sample104 0.0251346074 -0.0165212671
sample105 0.0062424215 -0.0400309901
sample106 0.0069768684 0.0154982315
sample107 -0.0315912602 -0.0118883820
sample108 -0.0109690679 0.0023637162
sample109 -0.0014762845 0.0165583675
sample110 0.0036971063 0.0168260726
sample111 -0.0071624739 -0.0345651461
sample112 0.0046098120 -0.0048009350
sample113 0.0082236008 -0.0383233357
sample114 -0.0293642209 -0.0165595240
sample115 -0.0003260453 0.0135805368
sample116 0.0183575759 0.0665377581
sample117 0.0227640036 -0.0012287760
sample118 0.0015695248 0.0472617382
sample119 0.0190084932 0.0590034062
sample120 -0.0449645755 0.0072755697
sample121 0.0077307184 0.0104738937
sample122 -0.0027132063 -0.0394983138
sample123 0.0016959300 0.0028593594
sample124 -0.0365091615 0.0040382925
sample125 -0.0053658663 -0.0316029164
sample126 -0.0458032408 0.0019165544
sample127 -0.0494064872 0.0088209044
sample128 -0.0155454766 0.0186819802
sample129 -0.0184340400 0.0038684312
sample130 -0.0303640987 -0.0052225766
sample131 -0.0088697422 0.0156339713
sample132 -0.0433916471 -0.0154075483
sample133 0.0204029276 -0.0282209049
sample134 0.0175513332 0.0262883962
sample135 0.0029009925 0.0017003151
sample136 -0.0367997573 -0.0072249751
sample137 -0.0348600323 0.0075400273
sample138 -0.0044063824 -0.0053752428
sample139 0.0073103935 0.0308956174
sample140 0.0039925654 -0.0167019605
sample141 -0.0184093462 -0.0387953445
sample142 0.0268670676 -0.0239229634
sample143 0.0421049126 -0.0110888235
sample144 0.0017253664 -0.0341766012
sample145 0.0681741320 -0.0073526377
sample146 -0.0239965222 0.0118396767
sample147 -0.0063453522 0.0183130585
sample148 0.0230825251 -0.0379753037
sample149 0.0223298673 0.0188909118
sample150 0.0055709108 0.0174179009
sample151 0.0039177786 -0.0233533275
sample152 0.0134325667 0.0302344591
sample153 0.0511990309 0.0730230140
sample154 0.0006698324 0.0154177486
sample155 0.0032926626 -0.0288651601
sample156 -0.0016463495 -0.0474657733
sample157 -0.0045857599 0.0154934573
sample158 0.0201775524 -0.0332982124
sample159 -0.0086909001 0.0073496711
sample160 0.0295437331 -0.0555734536
sample161 0.0332754288 0.0033779619
sample162 0.0121954537 0.0433540412
sample163 -0.0173490933 0.0227219128
sample164 0.0143374783 -0.0453542590
sample165 0.0343612593 -0.0511194536
sample166 -0.0157536004 0.0094621170
sample167 -0.0179654624 -0.0006982358
sample168 -0.0033829919 0.0060747155
sample169 0.0116231468 -0.0015112800
>
> ## 3.3 Plotting VAF
>
> # DISCO-SCA plotVAF
> plotVAF(discoRes)
>
> # JIVE plotVAF
> plotVAF(jiveRes)
>
>
> #########################
> ## PART 4. Plot Results
>
> # Scores for common part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. JIVE
> plotRes(object=jiveRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block=NULL,color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
>
> # Scores for common part. O2PLS.
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="scores",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common part. O2PLS.
> plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="common",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
>
> # Scores for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="scores",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for distinctive part. DISCO-SCA
> plotRes(object=discoRes,comps=c(1,1),what="scores",type="individual",
+ combined=TRUE,block=NULL,color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
>
> # Combined plot of scores for common and distinctive part. O2PLS (two plots one for each block)
> p1 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Combined plot of scores for common and distinctive part. DISCO (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="scores",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> legend <- g_legend(p1)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ legend,heights=c(6/7,1/7))
>
> # Loadings for common part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Loadings for distinctive part. DISCO-SCA. (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="loadings",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> # Combined plot for loadings from common and distinctive part (two plots one for each block)
> p1 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="expr",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,1),what="loadings",type="both",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,
+ labels=NULL,background=TRUE,palette=NULL,pointSize=4,
+ labelSize=NULL,axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
> ## Plot scores and loadings togheter: Common components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Common components O2PLS
> p1 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=o2plsRes,comps=c(1,2),what="both",type="common",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
> ## Plot scores and loadings togheter: Distintive components DISCO-SCA
> p1 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="expr",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> p2 <- plotRes(object=discoRes,comps=c(1,2),what="both",type="individual",
+ combined=FALSE,block="mirna",color="classname",shape=NULL,labels=NULL,
+ background=TRUE,palette=NULL,pointSize=4,labelSize=NULL,
+ axisSize=NULL,titleSize=NULL)
> grid.arrange(arrangeGrob(p1+theme(legend.position="none"),
+ p2+theme(legend.position="none"),nrow=1),
+ heights=c(6/7,1/7))
>
>
>
>
> proc.time()
user system elapsed
13.32 0.50 13.81
|
|
STATegRa.Rcheck/examples_i386/STATegRa-Ex.timings
|
STATegRa.Rcheck/examples_x64/STATegRa-Ex.timings
|