Back to the "Multiple platform build/check report"
| Package 84/172 | OS | Arch | BUILD | CHECK | BUILD BIN |
limma2.6.2Gordon Smyth | Linux (SUSE 9.2) | x86_64 | OK | [ OK ] | |
| Linux (SUSE 9.2) | i686 | OK | OK | ||
| Solaris 2.9 | sparc | OK | OK | ||
| Linux (SUSE 10.0) | x86_64 | OK | OK | ||
| Windows Server 2003 | x86_64 | OK | OK | OK |
| Package: limma |
| Version: 2.6.2 |
| Command: /loc/biocbuild/1.8d/R/bin/R CMD check limma_2.6.2.tar.gz |
| RetCode: 0 |
| Time: 232.1 seconds |
| Status: OK |
| CheckDir: limma.Rcheck |
| Warnings: 0 |
* checking for working latex ... OK
* using log directory '/loc/biocbuild/1.8d/Rpacks/limma.Rcheck'
* using Version 2.3.1 (2006-06-01)
* checking for file 'limma/DESCRIPTION' ... OK
* this is package 'limma' version '2.6.2'
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking whether package 'limma' can be installed ... OK
* checking package directory ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for syntax errors ... OK
* checking R files for library.dynam ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking Rd files ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* creating limma-Ex.R ... OK
* checking examples ... OK
* checking tests ...
make[1]: Entering directory `/loc/biocbuild/1.8d/Rpacks/limma.Rcheck/tests'
Running 'limma-Tests.R'
Comparing 'limma-Tests.Rout' to 'limma-Tests.Rout.save' ...2,926d1
<
< > library(limma)
< >
< > set.seed(0); u <- runif(100)
< >
< > ### splitName
< >
< > x <- c("ab;cd;efg","abc;def","z","")
< > splitName(x)
< $Name
< [1] "ab;cd" "abc" "z" ""
<
< $Annotation
< [1] "efg" "def" "" ""
<
< >
< > ### removeext
< >
< > removeExt(c("slide1.spot","slide.2.spot"))
< [1] "slide1" "slide.2"
< > removeExt(c("slide1.spot","slide"))
< [1] "slide1.spot" "slide"
< >
< > ### printorder
< > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6),ndups=2,start="topright",npins=4)
< $printorder
< [1] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
< [19] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
< [37] 42 41 40 39 38 37 48 47 46 45 44 43 6 5 4 3 2 1
< [55] 12 11 10 9 8 7 18 17 16 15 14 13 24 23 22 21 20 19
< [73] 30 29 28 27 26 25 36 35 34 33 32 31 42 41 40 39 38 37
< [91] 48 47 46 45 44 43 6 5 4 3 2 1 12 11 10 9 8 7
< [109] 18 17 16 15 14 13 24 23 22 21 20 19 30 29 28 27 26 25
< [127] 36 35 34 33 32 31 42 41 40 39 38 37 48 47 46 45 44 43
< [145] 6 5 4 3 2 1 12 11 10 9 8 7 18 17 16 15 14 13
< [163] 24 23 22 21 20 19 30 29 28 27 26 25 36 35 34 33 32 31
< [181] 42 41 40 39 38 37 48 47 46 45 44 43 54 53 52 51 50 49
< [199] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
< [217] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
< [235] 96 95 94 93 92 91 54 53 52 51 50 49 60 59 58 57 56 55
< [253] 66 65 64 63 62 61 72 71 70 69 68 67 78 77 76 75 74 73
< [271] 84 83 82 81 80 79 90 89 88 87 86 85 96 95 94 93 92 91
< [289] 54 53 52 51 50 49 60 59 58 57 56 55 66 65 64 63 62 61
< [307] 72 71 70 69 68 67 78 77 76 75 74 73 84 83 82 81 80 79
< [325] 90 89 88 87 86 85 96 95 94 93 92 91 54 53 52 51 50 49
< [343] 60 59 58 57 56 55 66 65 64 63 62 61 72 71 70 69 68 67
< [361] 78 77 76 75 74 73 84 83 82 81 80 79 90 89 88 87 86 85
< [379] 96 95 94 93 92 91 102 101 100 99 98 97 108 107 106 105 104 103
< [397] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
< [415] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
< [433] 102 101 100 99 98 97 108 107 106 105 104 103 114 113 112 111 110 109
< [451] 120 119 118 117 116 115 126 125 124 123 122 121 132 131 130 129 128 127
< [469] 138 137 136 135 134 133 144 143 142 141 140 139 102 101 100 99 98 97
< [487] 108 107 106 105 104 103 114 113 112 111 110 109 120 119 118 117 116 115
< [505] 126 125 124 123 122 121 132 131 130 129 128 127 138 137 136 135 134 133
< [523] 144 143 142 141 140 139 102 101 100 99 98 97 108 107 106 105 104 103
< [541] 114 113 112 111 110 109 120 119 118 117 116 115 126 125 124 123 122 121
< [559] 132 131 130 129 128 127 138 137 136 135 134 133 144 143 142 141 140 139
< [577] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
< [595] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
< [613] 186 185 184 183 182 181 192 191 190 189 188 187 150 149 148 147 146 145
< [631] 156 155 154 153 152 151 162 161 160 159 158 157 168 167 166 165 164 163
< [649] 174 173 172 171 170 169 180 179 178 177 176 175 186 185 184 183 182 181
< [667] 192 191 190 189 188 187 150 149 148 147 146 145 156 155 154 153 152 151
< [685] 162 161 160 159 158 157 168 167 166 165 164 163 174 173 172 171 170 169
< [703] 180 179 178 177 176 175 186 185 184 183 182 181 192 191 190 189 188 187
< [721] 150 149 148 147 146 145 156 155 154 153 152 151 162 161 160 159 158 157
< [739] 168 167 166 165 164 163 174 173 172 171 170 169 180 179 178 177 176 175
< [757] 186 185 184 183 182 181 192 191 190 189 188 187
<
< $plate
< [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [223] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [260] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [334] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [371] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [408] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [445] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [519] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [556] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [593] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [667] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [704] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [741] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<
< $plate.r
< [1] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
< [26] 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 3
< [51] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
< [76] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2
< [101] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
< [126] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
< [151] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [176] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 8 8 8 8 8 8 8
< [201] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
< [226] 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 7 7 7 7 7 7 7 7 7
< [251] 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
< [276] 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 6 6 6 6 6 6 6 6 6
< [301] 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
< [326] 6 6 6 6 6 6 6 6 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5
< [351] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
< [376] 5 5 5 5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
< [401] 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
< [426] 12 12 12 12 12 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
< [451] 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
< [476] 11 11 11 11 11 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
< [501] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
< [526] 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
< [551] 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
< [576] 9 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
< [601] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 15
< [626] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
< [651] 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 14 14 14
< [676] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
< [701] 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 13 13 13 13
< [726] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
< [751] 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
<
< $plate.c
< [1] 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15
< [26] 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3
< [51] 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14
< [76] 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2
< [101] 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13
< [126] 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1
< [151] 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18
< [176] 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6
< [201] 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17
< [226] 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5
< [251] 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16
< [276] 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4
< [301] 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21
< [326] 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9
< [351] 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20
< [376] 20 19 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8
< [401] 7 7 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19
< [426] 19 24 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7
< [451] 12 12 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24
< [476] 24 23 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12
< [501] 11 11 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23
< [526] 23 22 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11
< [551] 10 10 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22
< [576] 22 3 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10
< [601] 15 15 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3
< [626] 3 2 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15
< [651] 14 14 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2
< [676] 2 1 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14
< [701] 13 13 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22 3 3 2 2 1
< [726] 1 6 6 5 5 4 4 9 9 8 8 7 7 12 12 11 11 10 10 15 15 14 14 13 13
< [751] 18 18 17 17 16 16 21 21 20 20 19 19 24 24 23 23 22 22
<
< $plateposition
< [1] "p1D03" "p1D03" "p1D02" "p1D02" "p1D01" "p1D01" "p1D06" "p1D06" "p1D05"
< [10] "p1D05" "p1D04" "p1D04" "p1D09" "p1D09" "p1D08" "p1D08" "p1D07" "p1D07"
< [19] "p1D12" "p1D12" "p1D11" "p1D11" "p1D10" "p1D10" "p1D15" "p1D15" "p1D14"
< [28] "p1D14" "p1D13" "p1D13" "p1D18" "p1D18" "p1D17" "p1D17" "p1D16" "p1D16"
< [37] "p1D21" "p1D21" "p1D20" "p1D20" "p1D19" "p1D19" "p1D24" "p1D24" "p1D23"
< [46] "p1D23" "p1D22" "p1D22" "p1C03" "p1C03" "p1C02" "p1C02" "p1C01" "p1C01"
< [55] "p1C06" "p1C06" "p1C05" "p1C05" "p1C04" "p1C04" "p1C09" "p1C09" "p1C08"
< [64] "p1C08" "p1C07" "p1C07" "p1C12" "p1C12" "p1C11" "p1C11" "p1C10" "p1C10"
< [73] "p1C15" "p1C15" "p1C14" "p1C14" "p1C13" "p1C13" "p1C18" "p1C18" "p1C17"
< [82] "p1C17" "p1C16" "p1C16" "p1C21" "p1C21" "p1C20" "p1C20" "p1C19" "p1C19"
< [91] "p1C24" "p1C24" "p1C23" "p1C23" "p1C22" "p1C22" "p1B03" "p1B03" "p1B02"
< [100] "p1B02" "p1B01" "p1B01" "p1B06" "p1B06" "p1B05" "p1B05" "p1B04" "p1B04"
< [109] "p1B09" "p1B09" "p1B08" "p1B08" "p1B07" "p1B07" "p1B12" "p1B12" "p1B11"
< [118] "p1B11" "p1B10" "p1B10" "p1B15" "p1B15" "p1B14" "p1B14" "p1B13" "p1B13"
< [127] "p1B18" "p1B18" "p1B17" "p1B17" "p1B16" "p1B16" "p1B21" "p1B21" "p1B20"
< [136] "p1B20" "p1B19" "p1B19" "p1B24" "p1B24" "p1B23" "p1B23" "p1B22" "p1B22"
< [145] "p1A03" "p1A03" "p1A02" "p1A02" "p1A01" "p1A01" "p1A06" "p1A06" "p1A05"
< [154] "p1A05" "p1A04" "p1A04" "p1A09" "p1A09" "p1A08" "p1A08" "p1A07" "p1A07"
< [163] "p1A12" "p1A12" "p1A11" "p1A11" "p1A10" "p1A10" "p1A15" "p1A15" "p1A14"
< [172] "p1A14" "p1A13" "p1A13" "p1A18" "p1A18" "p1A17" "p1A17" "p1A16" "p1A16"
< [181] "p1A21" "p1A21" "p1A20" "p1A20" "p1A19" "p1A19" "p1A24" "p1A24" "p1A23"
< [190] "p1A23" "p1A22" "p1A22" "p1H03" "p1H03" "p1H02" "p1H02" "p1H01" "p1H01"
< [199] "p1H06" "p1H06" "p1H05" "p1H05" "p1H04" "p1H04" "p1H09" "p1H09" "p1H08"
< [208] "p1H08" "p1H07" "p1H07" "p1H12" "p1H12" "p1H11" "p1H11" "p1H10" "p1H10"
< [217] "p1H15" "p1H15" "p1H14" "p1H14" "p1H13" "p1H13" "p1H18" "p1H18" "p1H17"
< [226] "p1H17" "p1H16" "p1H16" "p1H21" "p1H21" "p1H20" "p1H20" "p1H19" "p1H19"
< [235] "p1H24" "p1H24" "p1H23" "p1H23" "p1H22" "p1H22" "p1G03" "p1G03" "p1G02"
< [244] "p1G02" "p1G01" "p1G01" "p1G06" "p1G06" "p1G05" "p1G05" "p1G04" "p1G04"
< [253] "p1G09" "p1G09" "p1G08" "p1G08" "p1G07" "p1G07" "p1G12" "p1G12" "p1G11"
< [262] "p1G11" "p1G10" "p1G10" "p1G15" "p1G15" "p1G14" "p1G14" "p1G13" "p1G13"
< [271] "p1G18" "p1G18" "p1G17" "p1G17" "p1G16" "p1G16" "p1G21" "p1G21" "p1G20"
< [280] "p1G20" "p1G19" "p1G19" "p1G24" "p1G24" "p1G23" "p1G23" "p1G22" "p1G22"
< [289] "p1F03" "p1F03" "p1F02" "p1F02" "p1F01" "p1F01" "p1F06" "p1F06" "p1F05"
< [298] "p1F05" "p1F04" "p1F04" "p1F09" "p1F09" "p1F08" "p1F08" "p1F07" "p1F07"
< [307] "p1F12" "p1F12" "p1F11" "p1F11" "p1F10" "p1F10" "p1F15" "p1F15" "p1F14"
< [316] "p1F14" "p1F13" "p1F13" "p1F18" "p1F18" "p1F17" "p1F17" "p1F16" "p1F16"
< [325] "p1F21" "p1F21" "p1F20" "p1F20" "p1F19" "p1F19" "p1F24" "p1F24" "p1F23"
< [334] "p1F23" "p1F22" "p1F22" "p1E03" "p1E03" "p1E02" "p1E02" "p1E01" "p1E01"
< [343] "p1E06" "p1E06" "p1E05" "p1E05" "p1E04" "p1E04" "p1E09" "p1E09" "p1E08"
< [352] "p1E08" "p1E07" "p1E07" "p1E12" "p1E12" "p1E11" "p1E11" "p1E10" "p1E10"
< [361] "p1E15" "p1E15" "p1E14" "p1E14" "p1E13" "p1E13" "p1E18" "p1E18" "p1E17"
< [370] "p1E17" "p1E16" "p1E16" "p1E21" "p1E21" "p1E20" "p1E20" "p1E19" "p1E19"
< [379] "p1E24" "p1E24" "p1E23" "p1E23" "p1E22" "p1E22" "p1L03" "p1L03" "p1L02"
< [388] "p1L02" "p1L01" "p1L01" "p1L06" "p1L06" "p1L05" "p1L05" "p1L04" "p1L04"
< [397] "p1L09" "p1L09" "p1L08" "p1L08" "p1L07" "p1L07" "p1L12" "p1L12" "p1L11"
< [406] "p1L11" "p1L10" "p1L10" "p1L15" "p1L15" "p1L14" "p1L14" "p1L13" "p1L13"
< [415] "p1L18" "p1L18" "p1L17" "p1L17" "p1L16" "p1L16" "p1L21" "p1L21" "p1L20"
< [424] "p1L20" "p1L19" "p1L19" "p1L24" "p1L24" "p1L23" "p1L23" "p1L22" "p1L22"
< [433] "p1K03" "p1K03" "p1K02" "p1K02" "p1K01" "p1K01" "p1K06" "p1K06" "p1K05"
< [442] "p1K05" "p1K04" "p1K04" "p1K09" "p1K09" "p1K08" "p1K08" "p1K07" "p1K07"
< [451] "p1K12" "p1K12" "p1K11" "p1K11" "p1K10" "p1K10" "p1K15" "p1K15" "p1K14"
< [460] "p1K14" "p1K13" "p1K13" "p1K18" "p1K18" "p1K17" "p1K17" "p1K16" "p1K16"
< [469] "p1K21" "p1K21" "p1K20" "p1K20" "p1K19" "p1K19" "p1K24" "p1K24" "p1K23"
< [478] "p1K23" "p1K22" "p1K22" "p1J03" "p1J03" "p1J02" "p1J02" "p1J01" "p1J01"
< [487] "p1J06" "p1J06" "p1J05" "p1J05" "p1J04" "p1J04" "p1J09" "p1J09" "p1J08"
< [496] "p1J08" "p1J07" "p1J07" "p1J12" "p1J12" "p1J11" "p1J11" "p1J10" "p1J10"
< [505] "p1J15" "p1J15" "p1J14" "p1J14" "p1J13" "p1J13" "p1J18" "p1J18" "p1J17"
< [514] "p1J17" "p1J16" "p1J16" "p1J21" "p1J21" "p1J20" "p1J20" "p1J19" "p1J19"
< [523] "p1J24" "p1J24" "p1J23" "p1J23" "p1J22" "p1J22" "p1I03" "p1I03" "p1I02"
< [532] "p1I02" "p1I01" "p1I01" "p1I06" "p1I06" "p1I05" "p1I05" "p1I04" "p1I04"
< [541] "p1I09" "p1I09" "p1I08" "p1I08" "p1I07" "p1I07" "p1I12" "p1I12" "p1I11"
< [550] "p1I11" "p1I10" "p1I10" "p1I15" "p1I15" "p1I14" "p1I14" "p1I13" "p1I13"
< [559] "p1I18" "p1I18" "p1I17" "p1I17" "p1I16" "p1I16" "p1I21" "p1I21" "p1I20"
< [568] "p1I20" "p1I19" "p1I19" "p1I24" "p1I24" "p1I23" "p1I23" "p1I22" "p1I22"
< [577] "p1P03" "p1P03" "p1P02" "p1P02" "p1P01" "p1P01" "p1P06" "p1P06" "p1P05"
< [586] "p1P05" "p1P04" "p1P04" "p1P09" "p1P09" "p1P08" "p1P08" "p1P07" "p1P07"
< [595] "p1P12" "p1P12" "p1P11" "p1P11" "p1P10" "p1P10" "p1P15" "p1P15" "p1P14"
< [604] "p1P14" "p1P13" "p1P13" "p1P18" "p1P18" "p1P17" "p1P17" "p1P16" "p1P16"
< [613] "p1P21" "p1P21" "p1P20" "p1P20" "p1P19" "p1P19" "p1P24" "p1P24" "p1P23"
< [622] "p1P23" "p1P22" "p1P22" "p1O03" "p1O03" "p1O02" "p1O02" "p1O01" "p1O01"
< [631] "p1O06" "p1O06" "p1O05" "p1O05" "p1O04" "p1O04" "p1O09" "p1O09" "p1O08"
< [640] "p1O08" "p1O07" "p1O07" "p1O12" "p1O12" "p1O11" "p1O11" "p1O10" "p1O10"
< [649] "p1O15" "p1O15" "p1O14" "p1O14" "p1O13" "p1O13" "p1O18" "p1O18" "p1O17"
< [658] "p1O17" "p1O16" "p1O16" "p1O21" "p1O21" "p1O20" "p1O20" "p1O19" "p1O19"
< [667] "p1O24" "p1O24" "p1O23" "p1O23" "p1O22" "p1O22" "p1N03" "p1N03" "p1N02"
< [676] "p1N02" "p1N01" "p1N01" "p1N06" "p1N06" "p1N05" "p1N05" "p1N04" "p1N04"
< [685] "p1N09" "p1N09" "p1N08" "p1N08" "p1N07" "p1N07" "p1N12" "p1N12" "p1N11"
< [694] "p1N11" "p1N10" "p1N10" "p1N15" "p1N15" "p1N14" "p1N14" "p1N13" "p1N13"
< [703] "p1N18" "p1N18" "p1N17" "p1N17" "p1N16" "p1N16" "p1N21" "p1N21" "p1N20"
< [712] "p1N20" "p1N19" "p1N19" "p1N24" "p1N24" "p1N23" "p1N23" "p1N22" "p1N22"
< [721] "p1M03" "p1M03" "p1M02" "p1M02" "p1M01" "p1M01" "p1M06" "p1M06" "p1M05"
< [730] "p1M05" "p1M04" "p1M04" "p1M09" "p1M09" "p1M08" "p1M08" "p1M07" "p1M07"
< [739] "p1M12" "p1M12" "p1M11" "p1M11" "p1M10" "p1M10" "p1M15" "p1M15" "p1M14"
< [748] "p1M14" "p1M13" "p1M13" "p1M18" "p1M18" "p1M17" "p1M17" "p1M16" "p1M16"
< [757] "p1M21" "p1M21" "p1M20" "p1M20" "p1M19" "p1M19" "p1M24" "p1M24" "p1M23"
< [766] "p1M23" "p1M22" "p1M22"
<
< > printorder(list(ngrid.r=4,ngrid.c=4,nspot.r=8,nspot.c=6))
< $printorder
< [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
< [26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2
< [51] 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
< [76] 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4
< [101] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
< [126] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6
< [151] 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
< [176] 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8
< [201] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
< [226] 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10
< [251] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
< [276] 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12
< [301] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
< [326] 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14
< [351] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
< [376] 40 41 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
< [401] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
< [426] 42 43 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
< [451] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
< [476] 44 45 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
< [501] 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
< [526] 46 47 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
< [551] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
< [576] 48 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
< [601] 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1
< [626] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
< [651] 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3
< [676] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
< [701] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 1 2 3 4 5
< [726] 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
< [751] 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
<
< $plate
< [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2
< [38] 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
< [75] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [112] 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1
< [149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
< [186] 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
< [223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [260] 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
< [297] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
< [334] 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
< [371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [408] 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
< [445] 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1
< [482] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2
< [519] 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
< [556] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [593] 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
< [630] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
< [667] 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2
< [704] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
< [741] 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
<
< $plate.r
< [1] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4
< [26] 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3
< [51] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3
< [76] 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2
< [101] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2
< [126] 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1
< [151] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5
< [176] 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8
< [201] 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8
< [226] 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7
< [251] 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7
< [276] 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6
< [301] 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10
< [326] 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9
< [351] 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9
< [376] 9 9 9 13 13 13 13 13 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12
< [401] 12 12 16 16 16 16 16 16 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12
< [426] 12 16 16 16 16 16 16 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11
< [451] 15 15 15 15 15 15 3 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15
< [476] 15 15 15 15 15 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14
< [501] 14 14 14 14 2 2 2 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14
< [526] 14 14 14 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13
< [551] 13 13 1 1 1 1 1 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13
< [576] 13 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16
< [601] 4 4 4 4 4 4 8 8 8 8 8 8 12 12 12 12 12 12 16 16 16 16 16 16 3
< [626] 3 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 3 3
< [651] 3 3 3 3 7 7 7 7 7 7 11 11 11 11 11 11 15 15 15 15 15 15 2 2 2
< [676] 2 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 2 2 2 2
< [701] 2 2 6 6 6 6 6 6 10 10 10 10 10 10 14 14 14 14 14 14 1 1 1 1 1
< [726] 1 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13 1 1 1 1 1 1
< [751] 5 5 5 5 5 5 9 9 9 9 9 9 13 13 13 13 13 13
<
< $plate.c
< [1] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
< [26] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5
< [51] 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9
< [76] 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13
< [101] 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17
< [126] 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21
< [151] 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 1
< [176] 5 9 13 17 21 1 5 9 13 17 21 1 5 9 13 17 21 2 6 10 14 18 22 2 6
< [201] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
< [226] 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14
< [251] 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18
< [276] 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22
< [301] 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2
< [326] 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6
< [351] 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10 14 18 22 2 6 10
< [376] 14 18 22 2 6 10 14 18 22 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
< [401] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
< [426] 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23
< [451] 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3
< [476] 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7
< [501] 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11
< [526] 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15
< [551] 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19 23 3 7 11 15 19
< [576] 23 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
< [601] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4
< [626] 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8
< [651] 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12
< [676] 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16
< [701] 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20
< [726] 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
< [751] 4 8 12 16 20 24 4 8 12 16 20 24 4 8 12 16 20 24
<
< $plateposition
< [1] "p1D01" "p1D05" "p1D09" "p1D13" "p1D17" "p1D21" "p1H01" "p1H05" "p1H09"
< [10] "p1H13" "p1H17" "p1H21" "p1L01" "p1L05" "p1L09" "p1L13" "p1L17" "p1L21"
< [19] "p1P01" "p1P05" "p1P09" "p1P13" "p1P17" "p1P21" "p2D01" "p2D05" "p2D09"
< [28] "p2D13" "p2D17" "p2D21" "p2H01" "p2H05" "p2H09" "p2H13" "p2H17" "p2H21"
< [37] "p2L01" "p2L05" "p2L09" "p2L13" "p2L17" "p2L21" "p2P01" "p2P05" "p2P09"
< [46] "p2P13" "p2P17" "p2P21" "p1C01" "p1C05" "p1C09" "p1C13" "p1C17" "p1C21"
< [55] "p1G01" "p1G05" "p1G09" "p1G13" "p1G17" "p1G21" "p1K01" "p1K05" "p1K09"
< [64] "p1K13" "p1K17" "p1K21" "p1O01" "p1O05" "p1O09" "p1O13" "p1O17" "p1O21"
< [73] "p2C01" "p2C05" "p2C09" "p2C13" "p2C17" "p2C21" "p2G01" "p2G05" "p2G09"
< [82] "p2G13" "p2G17" "p2G21" "p2K01" "p2K05" "p2K09" "p2K13" "p2K17" "p2K21"
< [91] "p2O01" "p2O05" "p2O09" "p2O13" "p2O17" "p2O21" "p1B01" "p1B05" "p1B09"
< [100] "p1B13" "p1B17" "p1B21" "p1F01" "p1F05" "p1F09" "p1F13" "p1F17" "p1F21"
< [109] "p1J01" "p1J05" "p1J09" "p1J13" "p1J17" "p1J21" "p1N01" "p1N05" "p1N09"
< [118] "p1N13" "p1N17" "p1N21" "p2B01" "p2B05" "p2B09" "p2B13" "p2B17" "p2B21"
< [127] "p2F01" "p2F05" "p2F09" "p2F13" "p2F17" "p2F21" "p2J01" "p2J05" "p2J09"
< [136] "p2J13" "p2J17" "p2J21" "p2N01" "p2N05" "p2N09" "p2N13" "p2N17" "p2N21"
< [145] "p1A01" "p1A05" "p1A09" "p1A13" "p1A17" "p1A21" "p1E01" "p1E05" "p1E09"
< [154] "p1E13" "p1E17" "p1E21" "p1I01" "p1I05" "p1I09" "p1I13" "p1I17" "p1I21"
< [163] "p1M01" "p1M05" "p1M09" "p1M13" "p1M17" "p1M21" "p2A01" "p2A05" "p2A09"
< [172] "p2A13" "p2A17" "p2A21" "p2E01" "p2E05" "p2E09" "p2E13" "p2E17" "p2E21"
< [181] "p2I01" "p2I05" "p2I09" "p2I13" "p2I17" "p2I21" "p2M01" "p2M05" "p2M09"
< [190] "p2M13" "p2M17" "p2M21" "p1D02" "p1D06" "p1D10" "p1D14" "p1D18" "p1D22"
< [199] "p1H02" "p1H06" "p1H10" "p1H14" "p1H18" "p1H22" "p1L02" "p1L06" "p1L10"
< [208] "p1L14" "p1L18" "p1L22" "p1P02" "p1P06" "p1P10" "p1P14" "p1P18" "p1P22"
< [217] "p2D02" "p2D06" "p2D10" "p2D14" "p2D18" "p2D22" "p2H02" "p2H06" "p2H10"
< [226] "p2H14" "p2H18" "p2H22" "p2L02" "p2L06" "p2L10" "p2L14" "p2L18" "p2L22"
< [235] "p2P02" "p2P06" "p2P10" "p2P14" "p2P18" "p2P22" "p1C02" "p1C06" "p1C10"
< [244] "p1C14" "p1C18" "p1C22" "p1G02" "p1G06" "p1G10" "p1G14" "p1G18" "p1G22"
< [253] "p1K02" "p1K06" "p1K10" "p1K14" "p1K18" "p1K22" "p1O02" "p1O06" "p1O10"
< [262] "p1O14" "p1O18" "p1O22" "p2C02" "p2C06" "p2C10" "p2C14" "p2C18" "p2C22"
< [271] "p2G02" "p2G06" "p2G10" "p2G14" "p2G18" "p2G22" "p2K02" "p2K06" "p2K10"
< [280] "p2K14" "p2K18" "p2K22" "p2O02" "p2O06" "p2O10" "p2O14" "p2O18" "p2O22"
< [289] "p1B02" "p1B06" "p1B10" "p1B14" "p1B18" "p1B22" "p1F02" "p1F06" "p1F10"
< [298] "p1F14" "p1F18" "p1F22" "p1J02" "p1J06" "p1J10" "p1J14" "p1J18" "p1J22"
< [307] "p1N02" "p1N06" "p1N10" "p1N14" "p1N18" "p1N22" "p2B02" "p2B06" "p2B10"
< [316] "p2B14" "p2B18" "p2B22" "p2F02" "p2F06" "p2F10" "p2F14" "p2F18" "p2F22"
< [325] "p2J02" "p2J06" "p2J10" "p2J14" "p2J18" "p2J22" "p2N02" "p2N06" "p2N10"
< [334] "p2N14" "p2N18" "p2N22" "p1A02" "p1A06" "p1A10" "p1A14" "p1A18" "p1A22"
< [343] "p1E02" "p1E06" "p1E10" "p1E14" "p1E18" "p1E22" "p1I02" "p1I06" "p1I10"
< [352] "p1I14" "p1I18" "p1I22" "p1M02" "p1M06" "p1M10" "p1M14" "p1M18" "p1M22"
< [361] "p2A02" "p2A06" "p2A10" "p2A14" "p2A18" "p2A22" "p2E02" "p2E06" "p2E10"
< [370] "p2E14" "p2E18" "p2E22" "p2I02" "p2I06" "p2I10" "p2I14" "p2I18" "p2I22"
< [379] "p2M02" "p2M06" "p2M10" "p2M14" "p2M18" "p2M22" "p1D03" "p1D07" "p1D11"
< [388] "p1D15" "p1D19" "p1D23" "p1H03" "p1H07" "p1H11" "p1H15" "p1H19" "p1H23"
< [397] "p1L03" "p1L07" "p1L11" "p1L15" "p1L19" "p1L23" "p1P03" "p1P07" "p1P11"
< [406] "p1P15" "p1P19" "p1P23" "p2D03" "p2D07" "p2D11" "p2D15" "p2D19" "p2D23"
< [415] "p2H03" "p2H07" "p2H11" "p2H15" "p2H19" "p2H23" "p2L03" "p2L07" "p2L11"
< [424] "p2L15" "p2L19" "p2L23" "p2P03" "p2P07" "p2P11" "p2P15" "p2P19" "p2P23"
< [433] "p1C03" "p1C07" "p1C11" "p1C15" "p1C19" "p1C23" "p1G03" "p1G07" "p1G11"
< [442] "p1G15" "p1G19" "p1G23" "p1K03" "p1K07" "p1K11" "p1K15" "p1K19" "p1K23"
< [451] "p1O03" "p1O07" "p1O11" "p1O15" "p1O19" "p1O23" "p2C03" "p2C07" "p2C11"
< [460] "p2C15" "p2C19" "p2C23" "p2G03" "p2G07" "p2G11" "p2G15" "p2G19" "p2G23"
< [469] "p2K03" "p2K07" "p2K11" "p2K15" "p2K19" "p2K23" "p2O03" "p2O07" "p2O11"
< [478] "p2O15" "p2O19" "p2O23" "p1B03" "p1B07" "p1B11" "p1B15" "p1B19" "p1B23"
< [487] "p1F03" "p1F07" "p1F11" "p1F15" "p1F19" "p1F23" "p1J03" "p1J07" "p1J11"
< [496] "p1J15" "p1J19" "p1J23" "p1N03" "p1N07" "p1N11" "p1N15" "p1N19" "p1N23"
< [505] "p2B03" "p2B07" "p2B11" "p2B15" "p2B19" "p2B23" "p2F03" "p2F07" "p2F11"
< [514] "p2F15" "p2F19" "p2F23" "p2J03" "p2J07" "p2J11" "p2J15" "p2J19" "p2J23"
< [523] "p2N03" "p2N07" "p2N11" "p2N15" "p2N19" "p2N23" "p1A03" "p1A07" "p1A11"
< [532] "p1A15" "p1A19" "p1A23" "p1E03" "p1E07" "p1E11" "p1E15" "p1E19" "p1E23"
< [541] "p1I03" "p1I07" "p1I11" "p1I15" "p1I19" "p1I23" "p1M03" "p1M07" "p1M11"
< [550] "p1M15" "p1M19" "p1M23" "p2A03" "p2A07" "p2A11" "p2A15" "p2A19" "p2A23"
< [559] "p2E03" "p2E07" "p2E11" "p2E15" "p2E19" "p2E23" "p2I03" "p2I07" "p2I11"
< [568] "p2I15" "p2I19" "p2I23" "p2M03" "p2M07" "p2M11" "p2M15" "p2M19" "p2M23"
< [577] "p1D04" "p1D08" "p1D12" "p1D16" "p1D20" "p1D24" "p1H04" "p1H08" "p1H12"
< [586] "p1H16" "p1H20" "p1H24" "p1L04" "p1L08" "p1L12" "p1L16" "p1L20" "p1L24"
< [595] "p1P04" "p1P08" "p1P12" "p1P16" "p1P20" "p1P24" "p2D04" "p2D08" "p2D12"
< [604] "p2D16" "p2D20" "p2D24" "p2H04" "p2H08" "p2H12" "p2H16" "p2H20" "p2H24"
< [613] "p2L04" "p2L08" "p2L12" "p2L16" "p2L20" "p2L24" "p2P04" "p2P08" "p2P12"
< [622] "p2P16" "p2P20" "p2P24" "p1C04" "p1C08" "p1C12" "p1C16" "p1C20" "p1C24"
< [631] "p1G04" "p1G08" "p1G12" "p1G16" "p1G20" "p1G24" "p1K04" "p1K08" "p1K12"
< [640] "p1K16" "p1K20" "p1K24" "p1O04" "p1O08" "p1O12" "p1O16" "p1O20" "p1O24"
< [649] "p2C04" "p2C08" "p2C12" "p2C16" "p2C20" "p2C24" "p2G04" "p2G08" "p2G12"
< [658] "p2G16" "p2G20" "p2G24" "p2K04" "p2K08" "p2K12" "p2K16" "p2K20" "p2K24"
< [667] "p2O04" "p2O08" "p2O12" "p2O16" "p2O20" "p2O24" "p1B04" "p1B08" "p1B12"
< [676] "p1B16" "p1B20" "p1B24" "p1F04" "p1F08" "p1F12" "p1F16" "p1F20" "p1F24"
< [685] "p1J04" "p1J08" "p1J12" "p1J16" "p1J20" "p1J24" "p1N04" "p1N08" "p1N12"
< [694] "p1N16" "p1N20" "p1N24" "p2B04" "p2B08" "p2B12" "p2B16" "p2B20" "p2B24"
< [703] "p2F04" "p2F08" "p2F12" "p2F16" "p2F20" "p2F24" "p2J04" "p2J08" "p2J12"
< [712] "p2J16" "p2J20" "p2J24" "p2N04" "p2N08" "p2N12" "p2N16" "p2N20" "p2N24"
< [721] "p1A04" "p1A08" "p1A12" "p1A16" "p1A20" "p1A24" "p1E04" "p1E08" "p1E12"
< [730] "p1E16" "p1E20" "p1E24" "p1I04" "p1I08" "p1I12" "p1I16" "p1I20" "p1I24"
< [739] "p1M04" "p1M08" "p1M12" "p1M16" "p1M20" "p1M24" "p2A04" "p2A08" "p2A12"
< [748] "p2A16" "p2A20" "p2A24" "p2E04" "p2E08" "p2E12" "p2E16" "p2E20" "p2E24"
< [757] "p2I04" "p2I08" "p2I12" "p2I16" "p2I20" "p2I24" "p2M04" "p2M08" "p2M12"
< [766] "p2M16" "p2M20" "p2M24"
<
< >
< > ### merge.rglist
< >
< > R <- G <- matrix(11:14,4,2)
< > rownames(R) <- rownames(G) <- c("a","a","b","c")
< > RG1 <- new("RGList",list(R=R,G=G))
< > R <- G <- matrix(21:24,4,2)
< > rownames(R) <- rownames(G) <- c("b","a","a","c")
< > RG2 <- new("RGList",list(R=R,G=G))
< > merge(RG1,RG2)
< An object of class "RGList"
< $R
< [,1] [,2] [,3] [,4]
< a 11 11 22 22
< a 12 12 23 23
< b 13 13 21 21
< c 14 14 24 24
<
< $G
< [,1] [,2] [,3] [,4]
< a 11 11 22 22
< a 12 12 23 23
< b 13 13 21 21
< c 14 14 24 24
<
< > merge(RG2,RG1)
< An object of class "RGList"
< $R
< [,1] [,2] [,3] [,4]
< b 21 21 13 13
< a 22 22 11 11
< a 23 23 12 12
< c 24 24 14 14
<
< $G
< [,1] [,2] [,3] [,4]
< b 21 21 13 13
< a 22 22 11 11
< a 23 23 12 12
< c 24 24 14 14
<
< >
< > ### background correction
< > RG <- new("RGList", list(R=c(1,2,3,4),G=c(1,2,3,4),Rb=c(2,2,2,2),Gb=c(2,2,2,2)))
< > backgroundCorrect(RG)
< An object of class "RGList"
< $R
< [1] -1 0 1 2
<
< $G
< [1] -1 0 1 2
<
< > backgroundCorrect(RG, method="half")
< An object of class "RGList"
< $R
< [1] 0.5 0.5 1.0 2.0
<
< $G
< [1] 0.5 0.5 1.0 2.0
<
< > backgroundCorrect(RG, method="minimum")
< An object of class "RGList"
< $R
< [,1]
< [1,] 0.5
< [2,] 0.5
< [3,] 1.0
< [4,] 2.0
<
< $G
< [,1]
< [1,] 0.5
< [2,] 0.5
< [3,] 1.0
< [4,] 2.0
<
< > backgroundCorrect(RG, offset=5)
< An object of class "RGList"
< $R
< [1] 4 5 6 7
<
< $G
< [1] 4 5 6 7
<
< >
< > ### normalizeWithinArrays
< >
< > library(sma)
< > data(MouseArray)
< > MA <- normalizeWithinArrays(mouse.data, mouse.setup, method="robustspline")
< > MA$M[1:5,]
< [,1] [,2] [,3] [,4] [,5] [,6]
< [1,] -0.21539109 -0.79670669 -0.55011008 0.14243756 -0.3933328 0.86741957
< [2,] 0.06449435 0.16873653 0.26020426 0.92440874 0.6640048 1.30672583
< [3,] -0.23149571 -0.66662065 -0.68092134 -0.09651125 -0.4205728 -0.31124721
< [4,] -0.20090146 -0.09709476 -0.28354313 0.32830186 0.1916112 -0.09738907
< [5,] -0.86822005 -0.13192148 -0.08634807 -0.01017014 0.2763200 -0.22570480
< > MA <- normalizeWithinArrays(mouse.data, mouse.setup)
< > MA$M[1:5,]
< [,1] [,2] [,3] [,4] [,5] [,6]
< [1,] -0.22006681 -0.85229101 -0.61528102 0.07080387 -0.4017245 0.8790516
< [2,] 0.06720908 0.11711457 0.21083609 0.99616190 0.6494259 1.3351120
< [3,] -0.23069447 -0.71229077 -0.72631373 -0.12375213 -0.4262350 -0.3237170
< [4,] -0.17262990 -0.06186499 -0.28347377 0.27201473 0.2028371 -0.1018497
< [5,] -0.83900000 -0.09643457 -0.08877846 -0.06550247 0.2807478 -0.2229941
< >
< > ### normalizeBetweenArrays
< >
< > MA <- normalizeBetweenArrays(MA,method="scale")
< > MA$M[1:5,]
< [,1] [,2] [,3] [,4] [,5] [,6]
< [1,] -0.22060913 -0.97047013 -0.7132995 0.05299212 -0.4035381 0.8835727
< [2,] 0.06737471 0.13335374 0.2444237 0.74556284 0.6523577 1.3419787
< [3,] -0.23126298 -0.81105738 -0.8420205 -0.09262048 -0.4281592 -0.3253819
< [4,] -0.17305532 -0.07044322 -0.3286331 0.20358545 0.2037528 -0.1023735
< [5,] -0.84106756 -0.10980624 -0.1029215 -0.04902437 0.2820152 -0.2241410
< > MA$A[1:5,]
< [,1] [,2] [,3] [,4] [,5] [,6]
< [1,] 11.332980 11.198841 11.337353 9.693899 11.196822 10.506374
< [2,] 11.245664 11.074098 11.051345 10.931562 11.273305 10.008818
< [3,] 10.113995 10.923628 12.322088 9.875351 11.096463 10.829522
< [4,] 8.390963 9.019036 8.720987 9.774672 8.826249 9.113240
< [5,] 8.684837 9.017042 8.406961 9.477079 8.739632 8.557627
< > MA <- normalizeBetweenArrays(MA,method="quantile")
< > MA$M[1:5,]
< [,1] [,2] [,3] [,4] [,5] [,6]
< [1,] -0.31703694 -0.9938725 -0.5791881 0.03617137 -0.3769488 0.9820991
< [2,] 0.03923233 0.1066559 0.2312904 0.76612052 0.6368203 1.4728996
< [3,] -0.27566044 -0.8580353 -0.7504079 -0.08854074 -0.4200884 -0.2960210
< [4,] -0.11946685 -0.1095793 -0.2985336 0.15876207 0.2612499 -0.1006169
< [5,] -0.67628732 -0.1634459 -0.0938785 -0.05338925 0.3477450 -0.2227479
< > MA$A[1:5,]
< [,1] [,2] [,3] [,4] [,5] [,6]
< [1,] 11.478807 11.311915 11.142829 9.749722 11.137385 10.56415
< [2,] 11.369349 11.191410 10.896307 10.893490 11.205219 10.04138
< [3,] 10.124225 11.010219 12.026393 9.906701 11.045121 10.91363
< [4,] 8.521087 8.771148 8.810923 9.817860 8.681051 9.06633
< [5,] 8.772261 8.766051 8.538890 9.580934 8.567045 8.55471
< >
< > ### unwrapdups
< >
< > M <- matrix(1:12,6,2)
< > unwrapdups(M,ndups=1)
< [,1] [,2]
< [1,] 1 7
< [2,] 2 8
< [3,] 3 9
< [4,] 4 10
< [5,] 5 11
< [6,] 6 12
< > unwrapdups(M,ndups=2)
< [,1] [,2] [,3] [,4]
< [1,] 1 2 7 8
< [2,] 3 4 9 10
< [3,] 5 6 11 12
< > unwrapdups(M,ndups=3)
< [,1] [,2] [,3] [,4] [,5] [,6]
< [1,] 1 2 3 7 8 9
< [2,] 4 5 6 10 11 12
< > unwrapdups(M,ndups=2,spacing=3)
< [,1] [,2] [,3] [,4]
< [1,] 1 4 7 10
< [2,] 2 5 8 11
< [3,] 3 6 9 12
< >
< > ### trigammaInverse
< >
< > trigammaInverse(c(1e-6,NA,5,1e6))
< [1] 1.000000e+06 NA 4.961687e-01 1.000001e-03
< >
< > ### lm.series, contrasts.fit, ebayes
< >
< > M <- matrix(rnorm(10*6,sd=0.3),10,6)
< > M[1,1:3] <- M[1,1:3] + 2
< > design <- cbind(First3Arrays=c(1,1,1,0,0,0),Last3Arrays=c(0,0,0,1,1,1))
< > fit <- lm.series(M,design=design)
< > contrast.matrix <- cbind(First3=c(1,0),Last3=c(0,1),"Last3-First3"=c(-1,1))
< > fit2 <- contrasts.fit(fit,contrasts=contrast.matrix)
< > eb <- ebayes(fit2)
< >
< > eb$t
< First3 Last3 Last3-First3
< [1,] 13.01360810 0.8094614 -8.62963489
< [2,] -0.08220793 -0.2496031 -0.11836624
< [3,] 0.53689924 0.1037124 -0.30630936
< [4,] -0.64950290 -0.6643004 -0.01046340
< [5,] -0.12967606 -0.6044961 -0.33574846
< [6,] 1.00443329 0.1749033 -0.58656627
< [7,] -0.41799559 -0.3567558 0.04330306
< [8,] 0.04763415 1.7686344 1.21693097
< [9,] -1.82026162 0.6205108 1.72588671
< [10,] -1.66163020 2.0938216 2.65550546
< > eb$s2.prior
< [1] 0.07549435
< > eb$s2.post
< [1] 0.07549435 0.07549435 0.07549435 0.07549435 0.07549435 0.07549435
< [7] 0.07549435 0.07549435 0.07549435 0.07549435
< > eb$df.prior
< [1] Inf
< > eb$lods
< First3 Last3 Last3-First3
< [1,] 76.894615 -4.836703 29.863710
< [2,] -7.551544 -5.007910 -7.137158
< [3,] -7.411171 -5.022793 -7.097495
< [4,] -7.344554 -4.898476 -7.144066
< [5,] -7.546529 -4.920386 -7.088102
< [6,] -7.051826 -5.017066 -6.973142
< [7,] -7.467789 -4.989149 -7.143189
< [8,] -7.553783 -4.122674 -6.408184
< [9,] -5.902688 -4.914721 -5.663877
< [10,] -6.178115 -3.760000 -3.639805
< > eb$p.value
< First3 Last3 Last3-First3
< [1,] 1.023910e-38 0.41824980 6.154813e-18
< [2,] 9.344814e-01 0.80289433 9.057775e-01
< [3,] 5.913372e-01 0.91739759 7.593691e-01
< [4,] 5.160134e-01 0.50649808 9.916516e-01
< [5,] 8.968227e-01 0.54551387 7.370606e-01
< [6,] 3.151698e-01 0.86115561 5.574950e-01
< [7,] 6.759503e-01 0.72127462 9.654600e-01
< [8,] 9.620078e-01 0.07695490 2.236305e-01
< [9,] 6.871917e-02 0.53492156 8.436780e-02
< [10,] 9.658694e-02 0.03627587 7.918965e-03
< > eb$var.prior
< [1] 123.7528665 0.4556155 108.4630118
< >
< > ### toptable
< >
< > toptable(fit)
< M t P.Value adj.P.Val B
< 1 2.064402265 13.01360810 1.023910e-38 1.023910e-37 76.894615
< 9 -0.288755599 -1.82026162 6.871917e-02 3.219565e-01 -5.902688
< 10 -0.263591244 -1.66163020 9.658694e-02 3.219565e-01 -6.178115
< 6 0.159337391 1.00443329 3.151698e-01 7.879245e-01 -7.051826
< 4 -0.103033320 -0.64950290 5.160134e-01 9.620078e-01 -7.344554
< 3 0.085170539 0.53689924 5.913372e-01 9.620078e-01 -7.411171
< 7 -0.066308362 -0.41799559 6.759503e-01 9.620078e-01 -7.467789
< 5 -0.020571048 -0.12967606 8.968227e-01 9.620078e-01 -7.546529
< 2 -0.013040982 -0.08220793 9.344814e-01 9.620078e-01 -7.551544
< 8 0.007556402 0.04763415 9.620078e-01 9.620078e-01 -7.553783
< >
< > ### duplicateCorrelation
< >
< > cor.out <- duplicateCorrelation(M)
<
< Attaching package: 'statmod'
<
<
< The following object(s) are masked from package:limma :
<
< matvec vecmat
<
< > cor.out$consensus.correlation
< [1] -0.1300222
< > cor.out$atanh.correlations
< [1] -0.3496702 -0.3528761 0.1320187 -0.7957172 0.7124326
< >
< > ### gls.series
< >
< > fit <- gls.series(M,design,correlation=cor.out$cor)
< > fit$coefficients
< First3Arrays Last3Arrays
< [1,] 1.02568064 0.04440632
< [2,] -0.00893139 -0.04446419
< [3,] 0.06938317 -0.03407404
< [4,] -0.02937598 0.11198606
< [5,] -0.27617342 0.21529287
< > fit$stdev.unscaled
< First3Arrays Last3Arrays
< [1,] 0.3807838 0.3807838
< [2,] 0.3807838 0.3807838
< [3,] 0.3807838 0.3807838
< [4,] 0.3807838 0.3807838
< [5,] 0.3807838 0.3807838
< > fit$sigma
< [1] 0.7880432 0.2880540 0.1997484 0.2750895 0.2621346
< > fit$df.residual
< [1] 10 10 10 10 10
< >
< > ### mrlm
< >
< > fit <- mrlm(M,design)
< > fit$coef
< [,1] [,2]
< [1,] 2.064402265 0.23453509
< [2,] -0.013040982 -0.15267834
< [3,] -0.030835828 0.01645232
< [4,] -0.103033320 -0.10538070
< [5,] -0.020571048 -0.09589370
< [6,] 0.159337391 0.02774563
< [7,] -0.066308362 -0.05659364
< [8,] 0.007556402 0.38166839
< [9,] -0.288755599 0.09843418
< [10,] -0.263591244 0.33215155
< > fit$stdev.unscaled
< [,1] [,2]
< [1,] 0.5773503 0.7315593
< [2,] 0.5773503 0.6511403
< [3,] 0.6269590 0.5773503
< [4,] 0.5773503 0.5773503
< [5,] 0.5773503 0.5773503
< [6,] 0.5773503 0.5773503
< [7,] 0.5773503 0.5773503
< [8,] 0.5773503 0.6527609
< [9,] 0.5773503 0.5773503
< [10,] 0.5773503 0.5773503
< > fit$sigma
< [1] 0.0755165 0.1410025 0.3087025 0.1390960 0.3289335 0.1719261 0.4295126
< [8] 0.1197697 0.3906706 0.2267115
< > fit$df.residual
< [1] 4 4 4 4 4 4 4 4 4 4
< >
< > # Similar to Mette Langaas 19 May 2004
< > set.seed(123)
< > narrays <- 9
< > ngenes <- 5
< > mu <- 0
< > alpha <- 2
< > beta <- -2
< > epsilon <- matrix(rnorm(narrays*ngenes,0,1),ncol=narrays)
< > X <- cbind(rep(1,9),c(0,0,0,1,1,1,0,0,0),c(0,0,0,0,0,0,1,1,1))
< > dimnames(X) <- list(1:9,c("mu","alpha","beta"))
< > yvec <- mu*X[,1]+alpha*X[,2]+beta*X[,3]
< > ymat <- matrix(rep(yvec,ngenes),ncol=narrays,byrow=T)+epsilon
< > ymat[5,1:2] <- NA
< > fit <- lmFit(ymat,design=X)
< > test.contr <- cbind(c(0,1,-1),c(1,1,0),c(1,0,1))
< > dimnames(test.contr) <- list(1:3,c("alpha-beta","mu+alpha","mu+beta"))
< > fit2 <- contrasts.fit(fit,contrasts=test.contr)
< > eBayes(fit2)
< An object of class "MArrayLM"
< $coefficients
< alpha-beta mu+alpha mu+beta
< [1,] 3.537333 1.677465 -1.859868
< [2,] 4.355578 2.372554 -1.983024
< [3,] 3.197645 1.053584 -2.144061
< [4,] 2.697734 1.611443 -1.086291
< [5,] 3.502304 2.051995 -1.450309
<
< $stdev.unscaled
< alpha-beta mu+alpha mu+beta
< [1,] 0.8164966 0.5773503 0.5773503
< [2,] 0.8164966 0.5773503 0.5773503
< [3,] 0.8164966 0.5773503 0.5773503
< [4,] 0.8164966 0.5773503 0.5773503
< [5,] 1.1547005 0.8368633 0.8368633
<
< $sigma
< [1] 1.3425032 0.4647155 1.1993444 0.9428569 0.9421509
<
< $df.residual
< [1] 6 6 6 6 4
<
< $cov.coefficients
< alpha-beta mu+alpha mu+beta
< alpha-beta 0.6666667 3.333333e-01 -3.333333e-01
< mu+alpha 0.3333333 3.333333e-01 5.551115e-17
< mu+beta -0.3333333 5.551115e-17 3.333333e-01
<
< $method
< [1] "ls"
<
< $design
< mu alpha beta
< 1 1 0 0
< 2 1 0 0
< 3 1 0 0
< 4 1 1 0
< 5 1 1 0
< 6 1 1 0
< 7 1 0 1
< 8 1 0 1
< 9 1 0 1
<
< $Amean
< [1] 0.2034961 0.1954604 -0.2863347 0.1188659 0.1784593
<
< $contrasts
< alpha-beta mu+alpha mu+beta
< 1 0 1 1
< 2 1 1 0
< 3 -1 0 1
<
< $df.prior
< [1] 9.306153
<
< $s2.prior
< [1] 0.923179
<
< $var.prior
< [1] 17.33142 17.33142 12.26855
<
< $proportion
< [1] 0.01
<
< $s2.post
< [1] 1.2677996 0.6459499 1.1251558 0.9097727 0.9124980
<
< $t
< alpha-beta mu+alpha mu+beta
< [1,] 3.847656 2.580411 -2.860996
< [2,] 6.637308 5.113018 -4.273553
< [3,] 3.692066 1.720376 -3.500994
< [4,] 3.464003 2.926234 -1.972606
< [5,] 3.175181 2.566881 -1.814221
<
< $p.value
< alpha-beta mu+alpha mu+beta
< [1,] 1.529450e-03 0.0206493481 0.0117123495
< [2,] 7.144893e-06 0.0001195844 0.0006385076
< [3,] 2.109270e-03 0.1055117477 0.0031325769
< [4,] 3.381970e-03 0.0102514264 0.0668844448
< [5,] 7.124839e-03 0.0230888584 0.0922478630
<
< $lods
< alpha-beta mu+alpha mu+beta
< [1,] -1.013417 -3.702133 -3.0332393
< [2,] 3.981496 1.283349 -0.2615911
< [3,] -1.315036 -5.168621 -1.7864101
< [4,] -1.757103 -3.043209 -4.6191869
< [5,] -2.257358 -3.478267 -4.5683738
<
< $F
< [1] 7.421911 22.203107 7.608327 6.227010 5.060579
<
< $F.p.value
< [1] 5.581800e-03 2.988923e-05 5.080726e-03 1.050148e-02 2.320274e-02
<
< >
< > ### uniquegenelist
< >
< > uniquegenelist(letters[1:8],ndups=2)
< [1] "a" "c" "e" "g"
< > uniquegenelist(letters[1:8],ndups=2,spacing=2)
< [1] "a" "b" "e" "f"
< >
< > ### classifyTests
< >
< > tstat <- matrix(c(0,5,0, 0,2.5,0, -2,-2,2, 1,1,1), 4, 3, byrow=TRUE)
< > classifyTestsF(tstat)
< TestResults matrix
< [,1] [,2] [,3]
< [1,] 0 1 0
< [2,] 0 0 0
< [3,] -1 -1 1
< [4,] 0 0 0
< > FStat(tstat)
< [1] 8.333333 2.083333 4.000000 1.000000
< attr(,"df1")
< [1] 3
< attr(,"df2")
< [1] Inf
< > classifyTestsT(tstat)
< TestResults matrix
< [,1] [,2] [,3]
< [1,] 0 1 0
< [2,] 0 0 0
< [3,] 0 0 0
< [4,] 0 0 0
< > classifyTestsP(tstat)
< TestResults matrix
< [,1] [,2] [,3]
< [1,] 0 1 0
< [2,] 0 1 0
< [3,] 0 0 0
< [4,] 0 0 0
< >
OK
make[1]: Leaving directory `/loc/biocbuild/1.8d/Rpacks/limma.Rcheck/tests'
OK
* checking package vignettes in 'inst/doc' ... OK
* creating limma-manual.tex ... OK
* checking limma-manual.tex ... OK
limma.Rcheck/00install.out:
* Installing *source* package 'limma' ...
** R
** inst
** preparing package for lazy loading
** help
>>> Building/Updating help pages for package 'limma'
Formats: text html latex example
01Introduction text html latex
02classes text html latex
03reading text html latex
04Background text html latex
05Normalization text html latex
06linearmodels text html latex
07SingleChannel text html latex
08Tests text html latex
09Diagnostics text html latex
10Other text html latex
LargeDataObject text html latex example
PrintLayout text html latex example
TestResults text html latex example
anova-method text html latex
arrayWeights text html latex example
arrayWeightsQuick text html latex example
asMatrixWeights text html latex example
asdataframe text html latex
asmalist text html latex
asmatrix text html latex
auROC text html latex example
avedups text html latex
backgroundcorrect text html latex example
blockDiag text html latex example
bwss text html latex
bwss.matrix text html latex
cbind text html latex example
changelog text html latex
channel2M text html latex example
classifytests text html latex example
contrasts.fit text html latex example
controlStatus text html latex example
convest text html latex example
decideTests text html latex
dim text html latex example
dimnames text html latex
dnormexp text html latex
dupcor text html latex example
ebayes text html latex example
exprset2 text html latex
fitfdist text html latex
fitted.MArrayLM text html latex
geneSetTest text html latex example
getColClasses text html latex example
getSpacing text html latex example
getlayout text html latex example
gls.series text html latex
gridspotrc text html latex
heatdiagram text html latex example
helpMethods text html latex example
imageplot text html latex example
imageplot3by2 text html latex
intraspotCorrelation text html latex example
isfullrank text html latex example
isnumeric text html latex example
kooperberg text html latex example
limmaUsersGuide text html latex example
lm.series text html latex
lmFit text html latex example
lmscFit text html latex example
loessfit text html latex example
m.spot text html latex
ma3x3 text html latex example
makeContrasts text html latex example
makeunique text html latex example
malist text html latex
marraylm text html latex
matvec text html latex example
mdplot text html latex
merge text html latex example
modelMatrix text html latex example
modifyWeights text html latex example
mrlm text html latex
normalizeMedianAbsValues text html latex example
normalizeRobustSpline text html latex example
normalizeWithinArrays text html latex example
normalizebetweenarrays text html latex example
normalizeprintorder text html latex example
normalizequantiles text html latex
normexp text html latex
normexpfit text html latex example
normexpsignal text html latex example
plotDensities text html latex example
plotFB text html latex
plotma text html latex example
plotma3by2 text html latex
plotprinttiploess text html latex
poolvar text html latex example
printHead text html latex
printorder text html latex example
protectMetachar text html latex example
qqt text html latex example
qualwt text html latex example
read.maimages text html latex example
read.matrix text html latex
read.series text html latex
readGPRHeader text html latex
readImaGeneHeader text html latex example
readSpotTypes text html latex
readTargets text html latex
readgal text html latex example
removeext text html latex example
residuals.MArrayLM text html latex
rg.genepix text html latex
rg.quantarray text html latex
rg.series.spot text html latex
rg.spot text html latex
rglist text html latex
splitName text html latex example
squeezeVar text html latex example
subsetting text html latex example
summary text html latex
targetsA2C text html latex example
tmixture text html latex
toptable text html latex example
trigammainverse text html latex example
trimWhiteSpace text html latex example
uniquegenelist text html latex example
unwrapdups text html latex example
venn text html latex example
volcanoplot text html latex example
weightedmedian text html latex example
writefit text html latex
wtVariables text html latex example
zscore text html latex example
** building package indices ...
* DONE (limma)