Awami Nastaliq - Developer information

Welcome font developers!

We welcome other developers who wish to get involved in supporting and enhancing these fonts or who
want to modify them.

Permissions granted by the OFL

SILs fonts are licensed according to the terms of the SIL Open Font License. The OFL allows the fonts to be
used, studied, modified and redistributed freely as long as they are not sold by themselves. For details see
the OFL.txt and OFL-FAQ.txt files in the package.

Building the fonts from source code

Font sources are published in a Github project. The build process requires smith and project build
parameters are set in the wscript.

Font sources are in the UFO3 format with font family structures defined using designspace. There is no
OpenType code in this font, but the font does use the Graphite smart font technology.

The fonts are built using a completely free and open source workflow using industry-standard tools
(fonttools), a package of custom python scripts (pysilfont), and a build and packaging system (smith). The
whole toolchain is available as a Docker container.

Full instructions for setting up the tools and building SIL fonts are available on a dedicated web site: SIL Font
Development Guide.

Building

The Awami Nastliq project can be built from source using smith. This is done via the sequence:

smith distclean
smith configure
smith build -v -jl

Because of the complex kerning and collision avoidance logic, builds can take up to 15 minutes or longer,
depending on hardware.

Some useful smith build options
-v makes the output slightly more verbose, specifically including the "runner" information showing the actual
commands smith is executing.

-j controls parallel processing. Depending on your machine's memory, smith build sometimes fails due to
the intense computation requirements of the Awami build. If this occurs, -j1 or -j2 can be used to restrict
parallel processing, although this slows the build process somewhat. The number after the - j indicates the
number of tasks smith will try to do in parallel.

-d should normally be omitted when building the fonts. However, when developing/debugging a font using
Graide, the -d must be used to prevent some optimizations that are incompatible with Graide.

- -regOnly causes smith to build the Regular weight only. This is useful during development and debugging.


file:///smith/font-awami/documentation/pdf/https:/scripts.sil.org/OFL
file:///smith/font-awami/documentation/pdf/https:/github.com/silnrsi/font-awami
file:///smith/font-awami/documentation/pdf/https:/github.com/silnrsi/smith
file:///smith/font-awami/documentation/pdf/https:/github.com/silnrsi/smith/blob/master/wscript
file:///smith/font-awami/documentation/pdf/http:/unifiedfontobject.org/versions/ufo3/
file:///smith/font-awami/documentation/pdf/https:/github.com/fonttools/fonttools/tree/master/Doc/source/designspaceLib
file:///smith/font-awami/documentation/pdf/https:/github.com/fonttools/fonttools
file:///smith/font-awami/documentation/pdf/https:/github.com/silnrsi/pysilfont
file:///smith/font-awami/documentation/pdf/https:/github.com/silnrsi/smith
file:///smith/font-awami/documentation/pdf/https:/silnrsi.github.io/silfontdev/
file:///smith/font-awami/documentation/pdf/https:/silnrsi.github.io/silfontdev/
file:///smith/font-awami/documentation/pdf/https:/github.com/silnrsi/smith

Modifying the font

Project documentation

A good deal of developer documentation for the Awami Nastaliq font can be found at the Awami GitHub
repository.

Adding characters

Like most Nastalig fonts, Awami takes a "decomposition” approach, where initial, medial, and final forms are
constructed at rendering time from separate base glyphs and nuqtas and other inherent parts of characters.
This means that adding a new character will likely require only adding the isolate form along with its USV
encoding.

After adding new glyphs to the font, the shaping logic will need to be extended to handle them. The bulk of
the code is found in: - nastaliq_classes.gdh - nastaliq_cntxlClasses.gdh-nastaliq _shaping.gdh -
nastaliq rules.gdh.

A helpful approach is to do a global search through the code for a character with similar behavior and add
glyphs for the new character in all the corresponding places.

In addition, the following will need to be updated: - glyph_data. csv - should include all glyphs in the font; it
is used to set glyph order in the built font. - nastaliq_complexShapes.gdh - needs to include any glyphs
who shapes cannot be approximated by a simple polygon for the purposes of kerning, particularly those with
concave portions. - "Octabox" data will need to be updated for all the weights of the font; see below. -
ftml_test gen.py - should include the new character in order for it to be included in the automatically
generated test files.

Generating octaboxes

"Octaboxes" are polygons that approximate the shape of the glyphs; these are used for kerning and fixing
collisions. There is an octabox JSON file for each font weight. Whenever new glyphs are added or glyph
shapes are signficantly modified, the octaboxes should be regenerated.

Before any octabox can be updated, the ttf file for the corresponding font must be in the results/ folder, so
you first need to build the fonts (see above). Then the command to update a single octabox is:

octalap -j 0 -q -o source/graphite/octabox AwamiNastaliq-WEIGHT.json results/AwamiNastaliq-WEIGHT. tt

where WEIGHT is Regular, Bold, etc. As given above, the command must be run from the root of the project.
The command must be executed for each weight, and each will take several minutes to execute.

Alternatively, there is a script in the tools/ folder called run_octalap which, if run from the tools/ folder,
will update all the octaboxes:

cd tools
./run_octalap

In order to use the newly generated octaboxes the font must then be rebuilt.

Auto-generated test files

The project includes a Python program tools/scripts/ftml test gen.py that can generates test datain a
form of XML called FTML (see below). A variety of test files can be built, covering various combinations of
base characters and diacritics: - basicforms - only one character of each shape class is included, no
diacritics - allbasechars - all base characters, no diacritics - basic_somediac - only one character of each
shape class with one lower and one upper diacritics - basic_alldiac - only one character of each shape
class with all diacritics - allbasecharforms - all characters and diacritics are included (this creates a huge
file!)

The test file builder is called as follows:


file:///smith/font-awami/documentation/pdf/https:/github.com/silnrsi/font-awami/documentation/developer
file:///smith/font-awami/documentation/pdf/https:/github.com/silnrsi/font-awami/documentation/developer

python3 tools/scripts/ftml test gen.py
which generates files for all five modes, or

python3 tools/scripts/ftml test gen.py -m MODE
These files are not automatically generated by the build.

Modifying ftml_test_gen.py

When new characters are added to the font, they should be added to ftml_test gen.py. - Assign the
character a short code and associated it with the USV the char name to usv() function. - Add details
about the character to the _group name_format() or _diac_group name_format() function. - Add the
code to the appropriate list in the expand sequences() or insert diacritics() function.

tools/ftml.xsl can be used to view ftml documents directly in Firefox (which supports both Graphite
rendering).

Viewing FTML test files
The ftml.xs1 file is used to view the FTML files in Firefox. Firefox is needed to both handle the XSL
transforms as well as provide Graphite render.

However, in order for Firefox to access the .xsl file, you need to relax its "strict URI" policy by going to
about:config and setting security.fileuri.strict_origin_policy to false.

Once you have this setting in effect, you can load the FTML documents directly into Firefox and see the built
font rendered.

Contributing to the project

We warmly welcome contributions to the fonts, such as new glyphs, enhanced smart font code, or bug fixes.
The brief overview of contributing changes is a good place to begin. The next step is to contact us by
responding to an existing issue or creating an issue in the Github repository and expressing your interest. We
can then work together to plan and integrate your contributions.

To enable us to accept contributions in a way that honors your contribution and respects your copyright while
preserving long-term flexibility for open source licensing, you would also need to agree to the SIL
International Contributor License Agreement for Font Software (v1.0) prior to sending us your contribution.
To read more about this requirement and find out how to submit the required form, please visit the CLA
information page.

Awami Nastaliq project


file:///smith/font-awami/documentation/pdf/http:/kb.mozillazine.org/Security.fileuri.strict_origin_policy
file:///smith/font-awami/documentation/pdf/https:/silnrsi.github.io/silfontdev/en-US/Contributing_Changes.html
file:///smith/font-awami/documentation/pdf/https:/software.sil.org/fontcla
file:///smith/font-awami/documentation/pdf/https:/software.sil.org/fontcla
https://software.sil.org/awami/

	Awami Nastaliq - Developer information
	Welcome font developers!
	Permissions granted by the OFL
	Building the fonts from source code
	Building
	Some useful smith build options


	Modifying the font
	Project documentation
	Adding characters
	Generating octaboxes
	Auto-generated test files
	Modifying ftml_test_gen.py
	Viewing FTML test files


	Contributing to the project


