
Into the Core

A look at Tiny Core Linux

Lauri Kasanen et al

Into the Core: A look at Tiny Core Linux
Lauri Kasanen et al

Publication date 2013

Copyright © 2013 Lauri Kasanen

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Unported

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a

letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

Contributed chapters are copyrighted by their respective authors.

First edition

ISBN 978-952-93-3391-2

The ISBN is only valid for the printed edition. The PDF is not considered a published work in the sense

that it would need an ISBN.

i

Dedication & thanks

This book wouldn’t be possible without Robert Shingledecker,

without whom Tiny Core itself wouldn’t exist.

I would like to thank Andyj, Coreplayer2 and Richard A. Rost for

helpful comments and suggestions.

Chapter contributors to this book, in alphabetical order:

• Luiz Fernando Estevarengo

iii

Table of Contents

Preface .. ix

1. Conventions .. ix

I. Intro & basic use ... 1

1. Core concepts .. 3

1.1. Philosophies .. 3

1.2. Frugal install ... 4

1.3. Boot codes .. 5

1.4. USB and other external storage devices 5

1.5. Dependency checking and downloading 6

1.6. Modes of operation .. 6

1.7. The default mode: cloud/internet 6

1.8. Mount mode ... 7

1.9. Copy mode ... 8

1.10. Backup/restore & other persistence options 8

1.10.1. Backup/restore ... 9

1.10.2. Persistent home .. 9

1.11. Bottom line ... 10

2. Installing .. 11

2.1. With the official installer 11

2.1.1. Step 1: Source and destination 12

2.1.2. Step 2: File system type 13

2.1.3. Step 3: Boot codes 14

2.1.4. Step 4: Optional parts 15

2.1.5. Step 5: Good to go? 16

2.2. From Windows via core2usb 18

2.3. Manually ... 18

2.3.1. Step 1: Partitioning & formatting 19

2.3.2. Step 2: Files ... 20

2.3.3. Step 3: Bootloader 20

3. Basic package management via GUI 23

4. Basic package management via CLI 29

4.1. tce-load ... 30

4.2. Comparing package managers 32

5. Updating the base system ... 33

Into the Core

iv

6. Updating extensions .. 35

6.1. Apps .. 35

6.2. tce-update ... 36

7. Persistence ... 39

7.1. Backup .. 39

7.2. Persistent home/opt .. 40

7.3. Personal extension .. 41

7.4. Other data storage .. 41

7.5. Common setup .. 41

7.6. Summary ... 42

8. Managing extensions ... 43

8.1. MD5 checking .. 43

8.2. Check for orphans .. 43

8.3. Dependencies and deletions 43

8.4. Check onboot unneeded ... 44

8.5. Onboot/ondemand maintenance 44

9. Virtualization - Core as a guest .. 45

9.1. Qemu / KVM .. 45

9.2. Virtualbox ... 45

9.3. VMWare ... 46

9.4. HyperV ... 46

10. Bootcodes explained ... 47

10.1. tce - extensions directory 47

10.2. restore - backup location 48

10.3. waitusb - slow drive detection 48

10.4. swapfile - swap in a file 49

10.5. home and opt - persistence 49

10.6. lst - extension list ... 50

10.7. base - don’t load extensions 50

10.8. norestore - don’t load backup 50

10.9. safebackup - enable safe backup by default 51

10.10. showapps - verbose extension loading 51

10.11. iso - load extensions from an ISO file 51

10.12. vga - framebuffer resolution 52

10.13. xsetup - configure X during boot 52

10.14. lang - system locale .. 53

Into the Core

v

10.15. kmap - console keymap 53

10.16. text - boot to text mode 53

10.17. superuser - boot to text mode, as root 54

10.18. noicons - don’t display icons 54

10.19. noswap - don’t use the swap partition 54

10.20. nodhcp - don’t grab an IP address 54

10.21. noutc - BIOS is using local time 55

10.22. tz - timezone ... 55

10.23. pause - wait for a keypress before completing

boot .. 55

10.24. cron and syslog - start daemons 55

10.25. host - set host name .. 56

10.26. protect - use encrypted backup 56

10.27. secure - set password on boot 56

10.28. noautologin - disable automatic login 57

10.29. user - set the default username 57

10.30. desktop - specify window manager 57

10.31. laptop - force loading of laptop modules 57

10.32. noembed - use a separate tmpfs 58

10.33. nozswap - disable compressed swap in

RAM .. 58

10.34. xvesa - set resolution directly 58

10.35. mydata - use a different name for backup 59

10.36. blacklist - blacklist modules 59

10.37. multivt - setup multiple consoles 59

II. Advanced use .. 61

11. Remastering ... 63

11.1. Prerequisites .. 63

11.2. Unpacking ... 63

11.3. Packing ... 64

11.4. Creating an ISO image ... 65

12. Remastering with a separate image 67

12.1. Practice image .. 67

12.2. Booting with more than one initrd 68

13. Including extensions in the ISO 69

13.1. Example: including nano 69

Into the Core

vi

14. Creating a personal (data) extension 71

15. Creating an extension .. 73

15.1. Building less ... 73

15.2. Creating the extension directory tree 74

15.3. Packing up .. 75

16. Extension install scripts .. 77

16.1. Example: nano .. 77

17. Creating custom boot codes .. 79

III. Core internals .. 81

18. The TCZ format .. 83

18.1. Squashfs parameters ... 84

18.2. What’s inside? .. 85

19. The boot process ... 87

19.1. The first step: /init .. 87

19.2. Real Boot: init .. 88

19.3. Bootstrap: rcS ... 88

19.4. Main boot: tc-config ... 88

19.5. Bootsync.sh .. 90

19.6. Bootlocal.sh .. 90

19.7. Root’s login .. 90

19.8. Regular user .. 90

19.9. The X Window System .. 91

19.10. .X.d .. 91

20. The tce directory structure .. 93

20.1. Firstrun ... 94

20.2. Onboot.lst ... 94

20.3. Xwbar.lst .. 94

20.4. Ondemand scripts ... 95

21. Accompanying extension files .. 97

21.1. Dep files ... 97

21.2. Info files ... 98

21.3. List files .. 98

21.4. Md5 files .. 99

21.5. Tree files ... 99

21.6. Zsync files .. 100

IV. Projects .. 101

Into the Core

vii

22. Simple Web server .. 103

22.1. Custom CGI example ... 104

23. Automated network installer ... 105

23.1. Start files .. 105

23.2. The installer script .. 105

23.3. Packing up & testing .. 108

24. Private cloud .. 109

24.1. SSH ... 109

24.2. HTTPD ... 110

24.3. Connections, ports .. 111

24.4. Security considerations 111

24.5. Final result .. 112

25. A thin remote desktop client ... 115

25.1. Add the rdesktop extension and dependencies

to the ISO .. 115

25.2. Make the boot wait for getting an IP address 116

25.3. Fire up rdesktop when the system is up 117

25.4. Result .. 119

26. File hosting via FTP .. 121

26.1. Installing & configuration 121

26.2. Testing .. 123

26.3. Results .. 123

27. Network booting .. 125

27.1. Selecting the base image 126

27.2. Are separate extensions needed? 126

27.3. Other considerations ... 127

28. Bringing up old hardware - common gotchas 129

28.1. BIOS ... 129

28.2. Sound .. 130

28.3. VESA support .. 130

28.4. Networking ... 131

28.5. Bigger hard drives .. 131

28.6. Memory limitations .. 132

29. A Web kiosk ... 135

29.1. Selecting extensions ... 135

29.2. Configuring Core extensions 136

Into the Core

viii

29.2.1. iDesk icons .. 136

29.2.2. iDesk autoload ... 138

29.2.3. Firefox profile .. 138

29.2.4. Firefox autoload 139

29.2.5. Configuring Firefox 139

29.3. Creating our add-on .. 140

29.3.1. Folder and file structure 140

29.4. Shutdown considerations 146

29.5. Results .. 146

Index .. 149

ix

Preface

This book mainly targets those with some familiarity with Linux,

with no fear of the command line. A spirit of tinkering is advised,

but not necessary.

Reading the chapters in order is not necessary, so feel free to jump

to the interesting parts directly.

The book is current for the latest stable 4.x for the x86 architecture,

4.7.7 at the time of writing, though many of the principles apply to

other versions and architecture ports.

1. Conventions

This is a note.

This is a tip.

This is a warning.

Shell script looks like this:

$ echo Code to be typed into an unprivileged shell.

This is a comment.

$ echo This is a long line extended \

 into many lines. The backslash can be written \

 as is, the shell will understand it.

Part I. Intro & basic use

3

Chapter 1. Core concepts

This chapter is an edited version of the one available on

our web page.

On behalf of the Tiny Core Team, welcome. Please take the time

to read this document and understand the philosophies behind Tiny

Core.

One quick user beware: Tiny Core is not a turn-key operating

system. At least initially, almost all users will require internet access

to the online repository.

1.1. Philosophies

As a quick summary, Tiny Core loads itself into RAM from storage,

then mounts applications on storage, or installs applications to

RAM from storage. An extension is said to be loaded or installed

regardless of the method used (mount vs. copy to RAM).

Tiny Core is different because users are not encouraged to perform

a traditional, hard-drive installation of the operating system. Sure,

a hard drive installation is possible, but Tiny Core is designed to

run from a RAM copy created at boot time. Besides being fast, this

protects system files from changes and ensures a pristine system on

every reboot. Easy, fast, and simple renew-ability and stability are

principle goals of Tiny Core.

If this sounds similar to what many live CDs do, the techniques are

indeed similar and shared.

Frugal install

4

1.2. Frugal install

Frugal is the typical installation method for Tiny Core. That is, it

is not a traditional hard drive installation, which we call "scatter

mode", because all the files of the system are scattered all about

the disk. With frugal, you basically have the system in two files,

vmlinuz and core.gz, whose location is specified by the boot loader.

Any user files and extensions are stored outside the base OS.

Boot codes

5

1.3. Boot codes

Depending upon how Tiny Core is installed (GRUB, LILO, CD,

USB stick …), users have the option to use boot codes on each

reboot (CD, etc), or to store those codes in a boot configuration file

(GRUB, LILO, etc.).

Boot codes (boot arguments) affect how Tiny Core operates by

defining options at boot-time. There are lots of boot codes. To view

all the available options, peruse the boot code lists by pressing F2,

F3 or F4 at the CD boot prompt.

The boot code base is notable. Use base to simulate the default

mode and skip all application extension installing or mounting. This

is a useful tool for troubleshooting, extension building, upgrading

… and just checking out how fast Tiny Core can boot on your

hardware.

1.4. USB and other external storage
devices

Tiny Core can be instructed to search for data on external devices at

boot time: a USB pen drive, compact flash, or other portable media.

This need not be the boot media; in fact, for example it is common

to store user data on a hard disk, while booting from cd or USB.

Sometimes, hardware doesn’t wake up fast enough for Tiny Core’s

boot sequence. If the hardware doesn’t wake up in time, Tiny Core

will move on and finish booting without that data.

If you store data on external/slow media, it may be necessary to use

the boot code waitusb=5 or similar. This pauses the boot process

for five seconds, waiting for slow devices to register with the system

bus.

Dependency checking

and downloading

6

1.5. Dependency checking and
downloading

Tiny Core makes getting applications as easy as possible. The Apps

tool provides application details from individual .info files - this is

enlightening reading material when choosing applications. Always

read the .info files, and re-read them before upgrading to catch

changes and concerns.

Dependencies are the pieces (other applications, libraries) required

for an application. In short, the Tiny Core Apps tool will take care

of downloading and checking dependencies for you.

1.6. Modes of operation

The modes of operation mix up how Tiny Core loads, mounts,

and installs at boot time (see philosophies, above, if you want to

clarify what those three things mean here). Tiny Core has three main

modes:

• Default mode: cloud/internet

• Mount mode: TCZ/install

• Copy mode: TCZ/install + copy2fs.flg/lst

Again, some may say there is a "Traditional mode: install to a hard

drive", but that’s not really a mode at all. If you want to do it, go

right ahead. It’s just not one of the original goals of the project, so

expect to keep both pieces if it breaks.

1.7. The default mode: cloud/internet

By default, Tiny Core Linux operates like a cloud/internet client. In

default mode:

Mount mode

7

Tiny Core boots entirely into RAM. Users run the Apps tool to

browse the repository and download applications. Application

Extensions (downloaded applications) last only for the current

session. Tiny Core just uses as much RAM as possible.

Since Cloud/Internet Mode operates out of RAM, it runs fast.

Cloud/Internet Mode is nomadic and quick-booting. Application

extensions are lost on reboot, but only the system files have to be

restored. If you would like applications stored locally and set up on

each reboot, then consider the mount and copy modes.

1.8. Mount mode

This is the most widely used and recommended method for using

Tiny Core.

Applications are stored locally in a directory named tce on a

persistent store, e.g. a supported disk partition (ext2, ext3, ext4,

vfat). Applications are optionally mounted on reboot (see onboot.lst

in forum and wiki). Mounting applications saves RAM for other

uses.

Unless specified with a boot code of tce=xdyz Tiny Core will

search all drives on the computer and use the first /tce directory it

finds for storing/loading extensions.

Tiny Core uses the Apps tool to place application extensions in this

tce/ directory and to flag them as either "OnBoot" (mount at boot)

or "On Demand" (do not mount at boot, but create a special menu

section for easy access and display an icon if available).

Copy mode

8

1.9. Copy mode

The copy mode is a modification of the mount mode.

Selected application extensions are copied into RAM instead of

mounted. Applications can be RAM-loaded in bulk (copy2fs.flg),

selectively loaded into RAM (copy2fs.lst), or mounted. The Apps

program tracks installation/loading options (bulk copy, selective

copy, etc). Boot times are longer, since copying to RAM takes more

time than mounting, but runtime speed, especially first start, is

greatly faster.

Copy mode briefly extends the boot time to gain some of the RAM-

run speed of default mode and the persistence of a pure mount

mode.

In copy mode, it is important to note that extensions can be either

mounted or copied into RAM. The Apps program makes this

flexibility possible by keeping track of user selections.

It should be noted that using a bulk selection, that is, loading all

extensions to RAM, allows the storage to be unmounted, and the

system to avoid any corruption on power loss.

1.10. Backup/restore & other
persistence options

Aside from the mount mode and the tce directory of application

extensions, Tiny Core supports persistent/permanent:

• backup and restore of personal settings, and

• persistent /home and /opt directories.

Backup/restore

9

1.10.1. Backup/restore

Tiny Core includes the filetool utility for saving personal settings

and data. The text file /opt/.filetool.lst lists files and directories to

be backed up at power down and restored at reboot. The list may

be changed manually (using vi, nano, etc) or via the scripts in the

Tools menu; note that the entry for /opt/.filetool.lst should never

be removed from the list itself. Filetool also supports exclusion of

particular files via /opt/.xfiletool.lst.

By default, filetool.lst includes the entire home/tc directory, and

xfiletool.lst excludes some unnecessary caches and temporary

directories.

Filetool writes the backup file mydata.tgz. The location of

mydata.tgz can be initially set using the boot option restore=hdXY,

restore=hdXY/directory, or, after boot, by selecting Backup/

Restore from the Control Panel. If the restore code is not used, Tiny

Core will search for mydata.tgz in available root directories at boot.

Conversely, the boot option norestore ignores any existing backup

files, a useful tool for troubleshooting and upgrading.

Further settings and configurations are stored or executed using /

home/tc/.xsession, /home/tc/.profile, /opt/bootlocal.sh, and /opt.

1.10.2. Persistent home

Just as Tiny Core offers persistence options for downloaded

application extensions, so does it for your home directory. These are

set using boot codes/options.

The bootcode home=hdXY will automatically setup /home/tc

to "bind" to /mnt/hdXY/home/tc. The home boot code lets Tiny

Core coexist with other Linux installations by inserting the tc user

directory under a pre-existing /home directory. Also, Tiny Core

cannot auto-detect a persistent home directory, so the home boot

option is always required.

Bottom line

10

The decision on whether to use the default backup, or to set up a

persistent home/opt directory depends on the amount of data you

intend to save, and the device you use for storage (USB flash and

SSDs may have limited write cycles, for instance).

1.11. Bottom line

If you have made it this far, congratulations! You’re ready to

get Tiny Core and get started. Browse the wiki, the forums, the

download pages, and join the community conversation.

Welcome from the Tiny Core Team.

11

Chapter 2. Installing

A Core install consists of three parts: a bootloader on some media,

the main image (kernel and core.gz) on some media, and the tce

directory on some media.

While these can all be on the same disk, they need not be; all three

can be on separate media if needed.

A Core install is completely nomadic, it doesn’t read any

settings from the install system.

This means you can install to a drive on one system, and

then move the drive to the target system without any

issues. This is useful for example for laptops that can’t

boot from CD or USB.

2.1. With the official installer

The official installer is included in the Core Plus edition, but can

also be downloaded separately to install from a TinyCore or a

command-line Core image (tc-install.tcz).

The command-line version, tc-install.sh, is not covered here, but it

follows the same prompts as the graphical version.

The GUI installer is a five-step process.

Step 1: Source

and destination

12

2.1.1. Step 1: Source and destination

In the first step, we need to select the install media, install type,

and the target. The installer may be able to detect the install media

automatically as in this image; if not, click on the "Path to core.gz"

text field to browse for the install media.

The three install types are frugal, USB-HDD, and USB-ZIP. Frugal

is the default type, it may be installed to a partition, and usually

works for bootable USB sticks too. USB-HDD uses the whole disk

and slightly different formatting, which may help the USB stick

boot on computers it otherwise wouldn’t. USB-ZIP is for older

BIOSes that needed ZIP-drive emulation in order to boot from USB.

Step 2: File

system type

13

If this is the only Linux system on the computer, select "Install boot

loader" and "Mark partition active" (the latter only if not using the

whole disk).

2.1.2. Step 2: File system type

Here we select the formatting, defaulting to ext4.

Step 3: Boot codes

14

2.1.3. Step 3: Boot codes

If you want to enter any boot codes, this is the place. By default you

don’t need any.

You can change these later by editing the bootloader

config file.

Step 4: Optional parts

15

2.1.4. Step 4: Optional parts

This page is only visible when installing from the Core Plus image.

You can choose to install some useful extensions here. They can be

installed afterwards too, this choice is not special or irreversible.

Step 5: Good to go?

16

2.1.5. Step 5: Good to go?

In the final step, the installer lets us review the choices before

starting. If everything’s in order, click Proceed.

Step 5: Good to go?

17

The installer will happily chug away, and assuming nothing out of

place happens, you’ll see a success screen like the one above. Ready

to reboot to Core?

From Windows

via core2usb

18

2.2. From Windows via core2usb

Core Team member bmarkus created a simple USB installer for

Windows users. It’s not recommended to use third-party installers

such as LiLi or Unetbootin, as they won’t create the third part of the

install (the tce directory), meaning more work for you.

This utility is available from http://core2usb.sf.net/. If you don’t

want to burn a CD, it’s a convenient one-click way to install Core to

USB.

2.3. Manually

A manual install can be done from any Linux distro. For advanced

users it’s often faster than burning a CD or otherwise installing via

the installer.

As the exact steps vary a lot depending on your program and host

distro choices, we’ll only cover the general parts here.

http://core2usb.sf.net/

Step 1: Partitioning

& formatting

19

2.3.1. Step 1: Partitioning & formatting

BIOS installations

Create a normal partition on the target disk using your favorite

program: for GUI we recommend Gparted, for command line

cfdisk; both should be available in all major distros.

The partition should be formatted with a Linux file system. We

recommend ext4 for general use. If the target is an USB stick or

other media with limited writes, you may want to use ext2 instead,

as journaling file systems do extra writes to preserve integrity.

If the target is a regular hard disk, it’s recommended to also create

and format a swap partition.

Using more exotic file systems like XFS needs either a

remaster or some other way to load the XFS support, in

order to access the XFS partition.

UEFI installations

Create a GPT EFI boot partition and a normal partition using your

favorite program: for GUI we recommend Gparted, for command

line gdisk; both should be available in all major distros.

The EFI partition should be formatted with vfat and the normal

partition should be formatted with a Linux file system.

Older Apple machines typically use 32-bit EFI whereas

more modern Apple machines and PC hardware use 64-

bit (U)EFI. This means that you will need to use either

core64 or corepure64 with 64-bit (U)EFI installations.

Step 2: Files

20

2.3.2. Step 2: Files

The latest Core files are available separately for your convenience

- no need to unpack them from the ISO file. Download core.gz

and vmlinuz from your closest mirror, from the directory

release/distribution_files. The link for the main mirror is http://

repo.tinycorelinux.net/4.x/x86/release/distribution_files/.

The usual location for the kernel and initrd is under /boot on the

target partition, but you can place them anywhere.

To hold your extensions, create a root directory called tce on the

target partition.

2.3.3. Step 3: Bootloader

Finally, you need to install a bootloader to the target disk’s MBR,

and point it to the kernel and initrd.

For BIOS installs, the syslinux family, lilo, grub 0.x, and grub 2

have been tested to work fine. For UEFI installs, only grub 2 has

been tested.

For a normal boot, no boot codes need to be added - the location

of the tce directory will be autodetected. If you anticipate having

multiple tce directories, then it’s recommended to specify which one

you want as a boot code.

For USB sticks, and other removable/slow media such as SD cards,

you might need to add the waitusb bootcode. It tells Core to wait

the given number of seconds to give slow devices time to register,

and optionally polls for a given partition label or UUID to proceed

as soon as the device shows up.

The syntax is waitusb=5 to wait five seconds, or

waitusb=20:LABEL=mydisk to wait up to twenty seconds for the

partition labeled "mydisk" to show up.

http://repo.tinycorelinux.net/4.x/x86/release/distribution_files/
http://repo.tinycorelinux.net/4.x/x86/release/distribution_files/

Step 3: Bootloader

21

Finally, you might want to limit the kernel’s boot output by adding

the quiet bootcode.

A typical grub 0.97 config file might look like this:

default 0

timeout 10

title Core

root (hd0,0)

kernel /boot/vmlinuz quiet waitusb=5

initrd /boot/core.gz

Likewise, a typical grub 2 config file (with the partition’s UUID

replaced):

search --no-floppy --fs-uuid --set=root "fdsf-gt434"

menuentry "Core" {

 linux /boot/vmlinuz quiet waitusb=5

 initrd /boot/core.gz

}

23

Chapter 3. Basic package
management via GUI

The first contact is often the graphical package manager, the Apps

tool. You can start it from the bottom launcher under the name

Apps, or if using an alternate window manager without wbar, under

the menu.

Let’s quickly go over the interface.

The two white main areas are for the content. On the left, once

connected, you will have a list of packages, while the right panel

displays the info you’ve selected from the four tabs.

The tabs are respectively the extension’s info file, the list of files in

the extension, the list of dependencies, and an analysis of the total

download size needed.

24

The drop-down menu on the bottom, currently saying "OnBoot",

defines what to do with the selected extension. The modes will be

covered later on in detail.

The tce bar displays the path to your current tce directory. If it’s the

default (RAM), it will be red; if it’s on permanent storage, it will

be green. The set button to the right lets you set the tce directory if

needed.

The URI bar shows the selected mirror.

The search drop-down menu lets you do three kinds of searches: by

name, by tag, and by the files it provides.

Finally, the main menu in the upper-left corner defines the mode of

action.

To start browsing, click on the Apps menu - remote - browse.

We can browse the full list, or get a list of search results with the

upper-right search bar. To return to the full list from a search results

list, click again on remote - browse.

25

With Ace of Penguins selected, we are shown the info file by

default. If we’re interested in the files, dependencies, or how much

we’d need to download, the tabs are now active.

Let’s go on to install it. But with which method?

Install methods

OnBoot

The default method. This extension will be installed, and added

to the onboot list, to be mounted on the following boots.

OnDemand

A loading script will be generated for this extension. Instead of

being loaded on boot, the icon/menu entry for this extension will

load the extension when you first need it.

This option speeds up your boot time, at the cost of making the

first start of the application slower.

26

Download + load

The extension will be downloaded and installed for this session

only. If you have set up your tce directory, it will reside there,

but since it is not added to the onboot list, it will not be loaded

after a reboot.

Download only

The extension will only be downloaded, nothing more will be

done.

Let’s pick OnBoot today, the default. Clicking on Go, a download

progress window will pop up, and soon we’re informed that the

install succeeded:

Should the install fail (network error, md5sum failure…), you will

be informed of the issue with a popup.

Let’s enjoy a well deserved game of penguin FreeCell now:

27

29

Chapter 4. Basic package
management via CLI

In this chapter we’ll go over the basic use of the command line

equivalent to Apps, tce-ab, and the direct interface, tce-load.

Starting tce-ab, we are greeted with a line-based interface:

$ tce-ab

tce-ab - Tiny Core Extension: Application Browser

S)earch P)rovides K)eywords Q)uit:

The three search options are the same as with the Apps program

(note that keywords = tags).

For example, doing a keyword search for "browser", we are greeted

with a list of extensions with a matching tag. Selecting the number

of the extension fires up the extension’s info file in the less viewer.

tce - Tiny Core Extension browser

 1. appbrowser-cli.tcz

 2. arora.tcz

 3. bonecho-gtk2.tcz

 4. bonecho.tcz

 5. chimera2.tcz

 6. chromium-browser-locale.tcz

 7. chromium-browser.tcz

 8. conkeror.tcz

 9. dillo2-doc.tcz

 10. dillo3-doc.tcz

 11. dillo3-ssl-doc.tcz

 12. dillo3-ssl.tcz

 13. dillo3.tcz

 14. dooble.tcz

 15. dwb.tcz

Enter selection (1 - 80) or (q)uit, (n)ext, \

(p)revious:

tce-load

30

After having read the info file and pressing q to quit less, tce-ab

gives us a set of choices on what to do with it:

A)bout I)nstall O)nDemand D)epends T)ree F)iles siZ)e \

L)ist S)earch P)rovides K)eywords Q)uit:

About brings us back to the info file, install and ondemand

have the same functions as with Apps, as do depends, files and

size. Displaying the tree file will show the recursive chart of

dependencies, used by the size function to calculate the necessary

download size.

List will return us to the selection list, and the search options will let

us to do a new search.

4.1. tce-load

Tce-load is the non-interactive tool used behind the scenes by the

boot process, Apps, and tce-ab.

Running it with the help option gives us a short overview of what it

does:

tce-load

31

$ tce-load -h

Usage: tce-load [-i -w -wi -wo -wil -ic -wic]{s} \

extensions

 -i Loads local extension

 -w Download extension only

 -wi Download and install extension

 -wo Download and create an ondemand item

 Adding -c to any -i option will force a one time \

 copy to file system

 Adding -l to any -i option indicates load only - \

 do not update onboot or ondemand

 Adding -s to any option will suppress OK message \

 used by apps GUI

Example usage:

 Load local extension:

 tce-load -i /mnt/hda1/tce/optional/nano.tcz

 Download into tce/optional directory, updates OnBoot

 and installs:

 tce-load -w -i nano.tcz

 Download only into tce/optional directory:

 tce-load -w nano.tcz

For example, if we already know the name of the extension needed,

we can ask for it to be downloaded and installed (the OnBoot

mode):

$ tce-load -wi ace-of-penguins

The tool will operate in the set tce directory, so unless given full

path, it will look there first. Suppose we had selected "Download

only" for Ace of Penguins before, and thus it was not installed for

this session. We could install it with:

$ tce-load -i ace-of-penguins

Just like most Core tools, tce-load and tce-ab are shell

scripts. As far as package managers go, they are fairly

simple and easy to understand.

You are encouraged to look under the hood.

Comparing

package managers

32

4.2. Comparing package managers

apt (deb) yum (rpm) tce-load (tcz)

Install a

package from

the repo

apt-get install

pkg

yum install pkg tce-load -wi

pkg

Install from a

local file

dpkg -i pkg yum localinstall

pkg

tce-load -i pkg

Search apt-cache

search pattern

yum search

pattern

tce-ab

List installed

packages

dpkg -l rpm -qa ls /usr/local/

tce.installed

33

Chapter 5. Updating the
base system

As new minor and patch versions are released, for example 4.7 and

4.7.1, how do we update to the latest core?

The process is usually as simple as downloading the latest vmlinuz

and core.gz, and replacing them on your boot media. This can be

done live from the system, as Tiny Core boots to RAM, and so you

can operate on the boot files in any way you wish.

After a reboot, you will be running the latest core code. To check

the running version, you can run the version command:

$ version

4.7.5

It is important to review the release notes for any items in your

backup that may need to be updated. Often there are tweaks to the

user files such as .profile, which you may have customized to your

needs; any such files are mentioned in the release notes.

The latest pristine copies of any user files can be found in /etc/skel.

If you have customized some of the files, please compare the latest

copy with your version to see if any changes need to be done.

With the base system updated, it’s recommended to update

extensions next.

35

Chapter 6. Updating
extensions

Extensions are usually updated more often than the base system.

As extension updates may require some action on your part, it is

recommended to view the info files of updated extensions before

doing the update. The Apps tool will let you do that, while the

command-line update is a batch one.

In both cases, the updated extensions are stored in a staging

directory, and the actual update will be applied on the next reboot.

This ensures that no running app will be interfered with by things

being changed from under it.

6.1. Apps

Starting with the GUI update method, fire up Apps, and select Apps

- Maintenance - Check for updates.

tce-update

36

After a short while, Apps will have the left panel populated with all

extensions with available updates, with the status from the check

displayed in the right panel.

If there is a newer Core version available, or some of the extensions

have been removed from the repository, this information will be

shown in the right panel.

Clicking on an item will show that extension’s info file: whether the

update is just a bog-standard version update, or whether some action

is required will be visible there.

To select all items for processing, pick the first one, hold shift, and

pick the last one. Clicking on "Process selected item(s)" will start

the update.

6.2. tce-update

Simply running sudo tce-update will do a batch update of all

extensions.

tce-update

37

However, if there is not enough space to store the updated

extensions, you will need to do an in-place update, which requires

a boot with the boot codes base norestore. These options cause no

extensions to be loaded, making it safe to write the files directly.

The script will warn you and exit, if the space is too tight to do a

normal update.

39

Chapter 7. Persistence

With the many options for making your data persistent and not

disappearing on power-off, it might be a bit confusing to decide

which to use. In this chapter we will go over all the options, listing

their pros and cons, and the most common setup.

7.1. Backup

The backup is on by default as long as you have set up a tce

directory. It will save all your personal files in your home directory,

and the system config files under /opt, excluding common browser

caches.

So all is well, right? The data is safe, restored on boot, saved on

power-off. However, as backup happens in those two spots, having

a large amount of data will slow down your boot and shutdown

process.

The backup is ideal for when you have a small amount of data to

save, such as application config files or browser bookmarks. A few

ten megabytes of PDFs on the other hand will be slow.

The other angle is the number of writes. With backup, the storage

media is only written to on shutdown. This is excellent if the media

happens to be a device with limited writes, such as USB flash, SSD,

Compact Flash/Secure Digital memory card, or similar.

No action is needed to use backup as long as a tce directory is setup;

you will be asked in the shutdown dialog whether to do backup, and

the box is ticked by default.

If not doing backup is more common for you, you can

change the default to be unticked by adding the line

BACKUP=0 to your .profile.

Persistent home/opt

40

The backup is controlled by two files in /opt: .filetool.lst lists

everything to include, and .xfiletool.lst lists everything to exclude.

Exclusions will override inclusions.

For the syntax of these files, see the documentation on tar.

7.2. Persistent home/opt

If you have more data to store in these locations, for example

personal documents in /home or a third-party binary application in /

opt, it’s recommended to use persistence for these locations.

The file system on the partition needs to support linux permissions;

FAT and NTFS will not work.

However, every write to these locations will then go directly to the

device, so unless the device is a hard drive, you’ll need to weigh on

how often it is written. For the "big binary installed in /opt" case,

writes would be rare; but for the home directory, all kinds of apps

will have caches, configuration files, and other data there they will

update.

To make use of these options, you need to add a bootcode for each.

You may specify the device directly, via UUID, or via its label.

For example, to use the sda1 partition for home, and sda2 for opt,

the boot codes would be home=sda1 opt=sda2.

Using absolute names can be unreliable if there are multiple drives

present; how fast they initialize affects their naming. So if there are

multiple internal drives, or you wish to use an external drive, it’s

recommended to use either UUID or label.

With a partition labeled "HomeDrive", the home bootcode would

be home=LABEL=HomeDrive. With a partition’s UUID, the

bootcode would be home=UUID=f4t4-65467yg-6546.

Personal extension

41

You can view the attached drives' labels and UUIDs with

the blkid command.

When using either of these options, you need to remove

the corresponding directory from /opt/.filetool.lst.

Otherwise it is both backed up and stored directly,

removing any benefits of either.

7.3. Personal extension

If you have read-only data that needs to be in the file system, it’s

recommended to make a personal extension out of it instead of

keeping it in the backup.

For more details on this option, see the Creating extensions chapter.

7.4. Other data storage

In no way are you restricted to just these options; storing your data

is completely up to how you want to do it.

For example, say you have a few gigabytes of music stored in sda1/

music. You could add a symlink there to your home directory, file

manager, or many other ways; here, we’ll symlink it as /music, so

that it’s nicely accessible to any application.

If the drive is an internal one, with a stable name, you can just add

the symlink to your backup. The backup process will only save the

symlink, it will not descend into the pointed directory.

If the music drive’s name might change, it is better to create the

symlink in bootlocal.sh based on the drive’s label for example. For

more information on bootlocal.sh, see the Boot process chapter.

7.5. Common setup

With the alternatives listed, what is the common setup?

Summary

42

The common setup is one hard drive, persistent home, backup, and

optionally other links there.

To set this up on an installed system, you only need to add the

home=sda1 bootcode to your bootloader’s config file (where sda1

is your partition), and reboot. To see that it’s being used, type

mount.

7.6. Summary

Backup

• Happens on boot and shutdown

• Slow if you have lots of data

Persistent home/opt

• Direct writes

• No boot overhead

Personal extension

• Only static data

• Very little boot overhead

Any combinations are allowed.

43

Chapter 8. Managing
extensions

This chapter will detail the options under the Maintenance menu in

Apps.

8.1. MD5 checking

This option allows you to do a corruption check for downloaded

extensions. Many types of corruption are detected when trying to

install an extension, but for some types, it can be useful to do a

manual check.

8.2. Check for orphans

Orphans are extensions not found in the repository. They may

have been removed for various reasons, or they may be custom

extensions not submitted to the repository.

You aren’t required to take any action in case an extension was

removed from the mirrors; if it works for you, you can continue to

use it, but no updates will be coming.

8.3. Dependencies and deletions

This mode lets you view various reports on the dependencies of

all extensions present in the tce directory. Some may require the

reporting database to be build, those will be greyed out until the

helper database is built.

Check onboot

unneeded

44

One function in particular, update dep files, is occasionally needed.

Occasionally there’s server-side reorganization of the dependencies,

or an extension may be renamed, requiring you to update the

dependency files to avoid inconsistencies. After updating the .dep

files, it’s recommended to use the "Fetch missing dependencies", in

case a dependency was added, or an extension was renamed.

The other function, extension deletion, allows you to mark an

extension to be deleted on the next reboot. All of their dependencies

that aren’t needed by anything else will also be removed.

8.4. Check onboot unneeded

This option analyzes your onboot.lst to see if there are any

redundant items. For example, gtk2 is a dependency of Firefox, so if

you listed both gtk2 and Firefox, gtk2 would be redundant.

Having a compact list without such redundancies helps boot time.

8.5. Onboot/ondemand maintenance

These two modes allow you to add and remove extensions from the

onboot or ondemand lists. This comes in handy if you earlier chose

to have an extension be on demand, but now it would make more

sense to load it on boot, for example.

Onboot.lst is a plain text file, so you can edit it with an editor of

your choice in addition to the GUI method listed. Ondemand items

are generated scripts, so managing them manually is discouraged.

45

Chapter 9. Virtualization -
Core as a guest

Most virtual machines default to emulating actual, common

hardware. Core should run directly on any of those. However, some

default to server hardware, and many have special virtualization-

only hardware that can improve performance. This chapter explores

these gotchas.

9.1. Qemu / KVM

The premier open source virtualization solution, KVM, runs Core

splendidly. There’s built-in support for most of the virtio drivers,

helping the virtual machine reach faster performance.

To make use of the virtio network card, add -net nic,model=virtio -

net user to your Qemu command line. If you have a special network

setup (other than user), don’t add the -net user part.

To use a virtio disk, instead of the common -hda file, the syntax is

-drive file=file,if=virtio,media=disk. Use media=cdrom for ISO

images instead.

The default options to adjust the assigned RAM and CPU cores

work fine; -m 256 -smp 4 would give the VM 256 megabytes of

RAM and four cores.

The absolute pointer mode, enabled via -usb -usbdevice tablet,

does not work perfectly with Xvesa, but works fine when using

Xorg.

9.2. Virtualbox

Virtualbox shares some code with Qemu, and it can also use the

virtio network and block drivers; enable them from the settings.

VMWare

46

The mouse support in early Virtualbox 4 releases was broken with

Xvesa as far as we know; using Xorg or Virtualbox 3 instead are

workarounds.

In current Virtualbox 4 releases, disabling the absolute pointing

device and using the key-based switching allows the mouse to work

properly.

9.3. VMWare

VMWare’s virtualized network card and SCSI card are supported

(vmxnet3 and pvscsi). However, VMWare defaults to an emulated

SCSI card whose support is not built-in, but included in the scsi

extension - a catch 22 situation. In order to load extensions from a

SCSI drive, one would need to create a remaster that includes the

SCSI drivers, or to have a two-step boot with the SCSI drivers on an

IDE disk.

The best way is to choose the paravirtualized option for network and

SCSI card though, as they will work directly.

9.4. HyperV

Microsoft HyperV Linux support was still quite unstable during the

time of Core 4.x; it is not supported. HyperV is supported in the

coming 5.x versions.

47

Chapter 10. Bootcodes
explained

Boot codes are a way to configure the system, by giving it

information that needs to be available during boot. In this chapter

we will cover each in detail.

The Linux kernel also exposes a set of boot codes; these will not be

covered here.

When using the CD, you can enter them at the command line (with

the Core ISO) or by pressing tab (with the TinyCore or CorePlus

ISOs) at the desired menu item. On an installed system, they are

stored in your bootloader’s configuration file.

For example, with grub 0.97, the file is called menu.lst, and the

boot codes are stored on the kernel line:

kernel /boot/vmlinuz quiet showapps

If using extlinux, the file is called extlinux.cfg, and the codes are

stored in the APPEND line:

APPEND initrd=/boot/core.gz quiet showapps

10.1. tce - extensions directory

The tce bootcode specifies where to locate and store the extensions

and backup. If it’s not given, the system will scan all drives for a

first-level directory called /tce. Thus it may improve boot time to

specify where it is.

It needs to be given when there are multiple such directories (for

example to use your USB installation even on machines with Core

on the hard disk), or if the directory is not named tce.

restore -

backup location

48

The bootcode supports both labels and UUIDs (universal

identifiers), which are a necessity with USB drives, as you can’t tell

beforehand how the USB stick might get named.

Examples:

• tce=sda1

• tce=sda1/mydir

• tce=LABEL=mydisk

• tce=LABEL=mydisk/mydir

• tce=UUID=fho4-3436t

• tce=UUID=fho4-3436t/mydir

10.2. restore - backup location

If you wish to store the backup in a separate location (ie. not under

the tce directory), you need to use the restore bootcode.

Example:

• restore=sda1

10.3. waitusb - slow drive detection

Many USB drives are very slow to be detected. Even if plugged in

before boot, they may take ten seconds to initialize - longer than the

system would take to boot.

The waitusb bootcode allows you to tell the system to wait, either

for a specific drive, or a given number of seconds.

When waiting for a specific drive, both labels and UUIDs are

accepted.

swapfile -

swap in a file

49

Examples:

• waitusb=5

• waitusb=15:LABEL=mydisk

• waitusb=15:UUID=fho4-3436t

The first form waits five seconds in all cases. The second form waits

up to 15 seconds, continuing immediately if the drive with the label

"mydisk" shows up.

10.4. swapfile - swap in a file

In normal use, you would use a regular Linux swap partition.

However, if the system is installed to a fat32 partition, and you

cannot create a swap partition, you may use a swap file. It is created

with the GUI tool, and the bootcode is used to tell the system to use

it.

Examples:

• swapfile

• swapfile=sda1

The first form will scan for a swap file, the second will scan for it

only in the specified drive.

10.5. home and opt - persistence

The home and opt bootcodes let you keep the respective directories

on a persistent disk. Each bootcode takes either a drive name, a

label, or an UUID.

These options are covered in more detail in the persistence chapter.

lst - extension list

50

Examples:

• home=sda1

• home=LABEL=mydisk

• home=UUID=fho4-3436t

10.6. lst - extension list

By default, the system loads all extensions in the list onboot.lst.

Using the lst bootcode, you can tell the system to use another list.

The list is expected to be in the tce directory, just like onboot.lst.

This is used for example to load different setups via a boot menu: a

quick music environment wouldn’t need web browsers.

Example:

• lst=myfile.lst

10.7. base - don’t load extensions

In case you don’t want to load extensions, the base bootcode skips

them. It may be used as a restore option, as when combined with the

norestore option, no drives are mounted during the boot process.

Example:

• base

10.8. norestore - don’t load backup

To get a pristine environment without your settings, you can use the

norestore bootcode. It’s useful to see if something also happens in

a new configuration, for example. When combined with the base

bootcode, no drives are mounted during boot.

safebackup - enable

safe backup by default

51

Example:

• norestore

10.9. safebackup - enable safe backup
by default

While you can select the safe backup from the backup GUI, this

boot option forces it to always be used. The safe backup means that

a copy of your previous backup is made before doing a new backup.

Example:

• safebackup

10.10. showapps - verbose extension
loading

By default, the loaded extensions are not listed. This bootcode has

the system show each extension by name when loading it. It slightly

delays the boot, but it’s useful to find which extension has trouble

loading, if one has become corrupted, for example.

Example:

• showapps

10.11. iso - load extensions from an ISO
file

This boot option tells the system to load extensions from an ISO

file. It’s useful for some virtual setups, and the syslinux memdisk

option (as only DOS-based systems can read the memory disk after

boot).

vga - framebuffer

resolution

52

Examples:

• iso=sda1

• iso=sda1/dir/TinyCore-4.4.iso

10.12. vga - framebuffer resolution

640x480 800x600 1024x768 1280x1024

256 colors 769 771 773 775

16-bit 785 788 791 794

24-bit 786 789 792 795

By default, the system boots in VGA text mode (80x25). To get a

higher-resolution console, you can give one of the options above.

The framebuffer can also be used as a graphical fallback system

with the Xfbdev server, in case the normal VESA server fails to

work.

Example:

• vga=791

10.13. xsetup - configure X during boot

While the X setup script, xsetup, may be launched after boot too,

this bootcode tells the system to launch it during boot. The wizard

lets you choose the resolution and mouse settings.

Example:

• xsetup

lang - system locale

53

10.14. lang - system locale

If you have generated your preferred locale using the getlocale.tcz

extension, you can use this bootcode to enable it. With a custom

locale, numbers, dates and so on will be printed in your local

convention, and all applications that are translated to your language

will use that language.

If not set, the default C locale is used (US English, ASCII).

Example:

• lang=fi_FI

10.15. kmap - console keymap

If you have kmaps.tcz installed, you can use this bootcode to set

the default console keymap. The console keymap is also used by

the tiny X servers (Xvesa and Xfbdev), but not the larger X server

Xorg.

If not set, the default is used (US).

Example:

• kmap=qwerty/fi-latin9

10.16. text - boot to text mode

In case an X server is installed, do not boot to graphical mode. If an

X server is not installed, the system will always boot to text mode.

Example:

• text

superuser - boot to

text mode, as root

54

10.17. superuser - boot to text mode, as
root

Like the text bootcode above, but boots to a root shell.

Example:

• superuser

10.18. noicons - don’t display icons

This bootcode will disable the default icon bar, or optionally only

ondemand icons.

Examples:

• noicons

• noicons=ondemand

10.19. noswap - don’t use the swap
partition

By default, the system will use all Linux swap partitions

automatically. This bootcode will disable their use.

Example:

• noswap

10.20. nodhcp - don’t grab an IP
address

The system will use DHCP to get an IP address by default. If you

wish to set the IP manually, you can use this bootcode to skip the

DHCP process.

noutc - BIOS is

using local time

55

Example:

• nodhcp

10.21. noutc - BIOS is using local time

In case your BIOS is set to your local time and not UTC (GMT)

time, use this boot code.

Example:

• noutc

10.22. tz - timezone

This bootcode lets you manually specify your time zone.

Example:

• tz=GMT-8

10.23. pause - wait for a keypress
before completing boot

This bootcode lets you view the system boot messages more easily,

by waiting for an enter key press before completing the boot.

Example:

• pause

10.24. cron and syslog - start daemons

The cron and syslog bootcodes will start the respective daemon at

boot. By default neither is running.

host - set host name

56

Example:

• cron

• syslog

10.25. host - set host name

By default the host name is "box". This bootcode lets you set a

custom one.

Example:

• host=foo

10.26. protect - use encrypted backup

The default backup is a normal archive file. This option lets you

encrypt the backup using Blowfish with a 448-bit key, generated

from the given passphrase. If not using a persistent home, all your

custom configuration will be in the backup, so this option prevents

someone from reading your backup off the drive.

Example:

• protect

10.27. secure - set password on boot

If you need to set the password on boot, for example on a first run,

use this bootcode.

Example:

• secure

noautologin - disable

automatic login

57

10.28. noautologin - disable automatic
login

With this boot code, the system will not log in, but instead ask for

username and password.

Example:

• noautologin

10.29. user - set the default username

The default user is normally named tc. This bootcode lets you use a

different name.

Example:

• user=john

10.30. desktop - specify window
manager

If only one window manager is installed, that one will be used. If

you have multiple window managers installed, this bootcode will let

you specify which one to load.

Example:

• desktop=fluxbox

10.31. laptop - force loading of laptop
modules

Usually these modules are autodetected, but if your laptop does not

load the modules (AC, battery, and PCMCIA), you can add this

bootcode to force-load them.

noembed - use

a separate tmpfs

58

Example:

• laptop

10.32. noembed - use a separate tmpfs

This is an advanced option that changes where in RAM Core is run

from. By default, Core uses the tmpfs setup by the kernel; with this

bootcode, Core will setup a new tmpfs file system, and use that

instead.

Using this bootcode temporarily doubles the RAM use, as both

copies are kept in RAM at once during boot. As an extra copy is

made, it also slows the boot time. It allows GNU df to detect the

free space in /, used by some proprietary software installers.

Example:

• noembed

10.33. nozswap - disable compressed
swap in RAM

By default, Core uses a RAM compression technique allowing

you to use more RAM than you actually have. If you experience

problems with this, the nozswap bootcode lets you disable this.

Example:

• nozswap

10.34. xvesa - set resolution directly

This bootcode lets you specify the resolution for Xvesa directly.

mydata - use a different

name for backup

59

Example:

• xvesa=800x600x32

10.35. mydata - use a different name for
backup

By default, the backup is named mydata.tgz. Using this boot code

you can use a different name.

Example:

• mydata=command.com

10.36. blacklist - blacklist modules

Occasionally a module for your hardware is loaded, but you don’t

want it to load. In these cases, you can blacklist it.

One prominent example is the PC speaker. Some people love the

beeps, others hate them. To blacklist multiple modules, you can use

either multiple blacklist bootcodes, or give a comma-separated list.

Examples:

• blacklist=pcspkr

• blacklist=pcspkr,e100

10.37. multivt - setup multiple consoles

By default, the system saves RAM by only setting up one console.

Using this option, the more common amount of six consoles gets

setup.

multivt - setup

multiple consoles

60

Example:

• multivt

Part II. Advanced use

63

Chapter 11. Remastering
Remastering is the process of editing the initrd image. Producing a

new ISO image is not necessary, but is often useful if you intend to

burn the result to a CD or to test easily in a virtual machine.

This chapter covers the process of remastering manually. There

exists a helper extension, EZRemaster, but that one will not be

covered here.

You typically only need to remaster if you need to edit any of the

early boot scripts, or if intending to create a stand-alone image for

a specific deployment that runs entirely in RAM. As updating a

remastered image to a newer Core version can be a hassle, a method

for that is covered in the next chapter.

11.1. Prerequisites

You need a Linux distribution with the required programs available:

cpio, tar, gzip, advdef, and mkisofs. This need not be Tiny Core

itself, but remastering inside Tiny Core is the most tested option.

For remastering on Core, install the extensions advcomp.tcz and

optionally mkisofs-tools.tcz if creating an ISO image.

11.2. Unpacking

First, we’ll extract the kernel and initrd image from the latest Core

ISO.

$ sudo mkdir /mnt/tmp

$ sudo mount TinyCore-current.iso /mnt/tmp -o loop,ro

$ cd /mnt/tmp

$ cp boot/vmlinuz boot/tinycore.gz /tmp

$ sudo umount /mnt/tmp

If you are going to create an ISO image, instead of copying only

these two files, copy everything:

Packing

64

$ sudo mkdir /mnt/tmp

$ sudo mount TinyCore-current.iso /mnt/tmp -o loop,ro

$ cp -a /mnt/tmp/boot /tmp

$ mv /tmp/boot/tinycore.gz /tmp

$ sudo umount /mnt/tmp

With the files copied into /tmp, we’ll be unpacking the initrd image

next.

$ sudo mkdir /tmp/extract

$ cd /tmp/extract

$ zcat /tmp/tinycore.gz | sudo cpio -i -H newc -d

Please note the use of sudo where needed; root rights are required

to preserve permissions correctly. If your host distribution sets non-

default flags for /tmp, you may also need to change the permissions

of the /tmp/extract directory - it needs to be root:root 755 in order

to produce a bootable image.

Now, with the initrd image laid bare before our eyes, feel free to do

any edits, additions, or removals needed.

11.3. Packing

With the modifications done, these steps create the initrd image

from the extracted directory tree:

$ cd /tmp/extract

$ sudo find | sudo cpio -o -H newc | \

 gzip -2 > ../tinycore.gz

$ cd /tmp

$ advdef -z4 tinycore.gz

The image is compressed using gzip’s level 2 to save time.

Advdef is used to re-compress the image with a slightly better

implementation, producing a smaller image that is faster to boot.

Creating an ISO image

65

11.4. Creating an ISO image

The following commands create a bootable ISO image, ready to be

burned or booted in a virtual machine:

$ cd /tmp

$ mv tinycore.gz boot

$ mkdir newiso

$ mv boot newiso

$ mkisofs -l -J -r -V TC-custom -no-emul-boot \

 -boot-load-size 4 \

 -boot-info-table -b boot/isolinux/isolinux.bin \

 -c boot/isolinux/boot.cat -o TC-remastered.iso newiso

Optionally clean-up the temp dir

$ rm -rf newiso

67

Chapter 12. Remastering
with a separate image

In order to better keep track of which files are modified or added,

and to enable easier updating to a newer Core, it’s recommended to

use the method outlined in this chapter.

However, if you need to remove something from the image, for

example to fit in tight memory constraints, this method will not

work. It is only suitable for adding or changing files.

There are specific characteristics in the kernel’s cpio loader that

aren’t present in the userspace utility: it allows you to load several

images, either separately or concatenated together, and if the same

file exists in more than one image, the later version overwrites the

former.

This allows us to keep all our changes in a separate initrd image,

making it easy to update to a newer Core version (literally only

replacing core.gz and checking our modifications are up to date).

For the sake of an example, let’s create a separate image that

changes the login message.

12.1. Practice image

The login message is stored in /etc/issue. Therefore we need to

create an image that contains the exact same path, with the contents

we want to see.

$ cd /tmp

$ sudo mkdir -p ex/etc

$ echo "I believe!" | sudo tee ex/etc/issue

Now our new directory tree should look like this:

Booting with more

than one initrd

68

ex/

`-- etc/

 `-- issue

1 directory, 1 file

Let’s pack it up like we would a normal remaster.

$ cd /tmp/ex

$ sudo find | sudo cpio -o -H newc | \

 gzip 2 > ../myimg.gz

$ advdef -z4 ../myimg.gz

To see whether the image works, boot it as outlined in the next

section, and log out. Your new login text should be visible above the

login prompt.

12.2. Booting with more than one initrd

Many bootloaders allow you to submit more than one image

separately. For example, the syslinux family uses this syntax:

initrd=/boot/core.gz,/boot/myimg.gz

That is, you have the new image in the same directory as the main

image, and place it after the original one, separated by a comma.

If using a bootloader that only supports one initrd (GRUB legacy,

some of the DOS-based loaders, etc), you will need to cat the

images together. This process is not easily reversible in userspace,

so keep a separated copy of your new image around to do updates

with.

$ cat core.gz myimg.gz > new.gz

69

Chapter 13. Including
extensions in the ISO

This chapter will introduce the method of including extensions in an

ISO image.

The Tiny Core and Core Plus ISOs are examples of this method - a

bare Core plus extensions on the disc.

Since a CD is read-only, most of the operations you can perform on

a normal tce directory cannot be done. For this reason, the directory

is renamed cde when included in an ISO image.

The specifics of directory structure are exactly the same as for the

tce directory.

13.1. Example: including nano

Since this example involves downloading dependencies, it’s easiest

to do on Core itself. Install advcomp.tcz and mkisofs-tools.tcz for

the required programs.

First, copy the contents of the source ISO image:

$ sudo mkdir /mnt/tmp

$ sudo mount TinyCore-current.iso /mnt/tmp -o loop,ro

$ cp -a /mnt/tmp /tmp/newiso

$ sudo umount /mnt/tmp

Download nano into your tce directory:

$ tce-load -w nano

Copy nano and its dependencies to the cde directory, to be placed in

the new ISO image:

Example:

including nano

70

$ cd /etc/sysconfig/tcedir/optional

$ tce-fetch nano.tcz.tree

$ for file in `cat nano.tcz.tree`; do

$ cp ${file}* /tmp/newiso/cde/optional

$ done

Add it to onboot.lst, so it gets installed on boot.

$ echo nano.tcz >> /tmp/newiso/cde/onboot.lst

Create the ISO image, ready to be burned or booted in a virtual

machine:

$ cd /tmp

$ mkisofs -l -J -r -V TC-custom -no-emul-boot \

 -boot-load-size 4 \

 -boot-info-table -b boot/isolinux/isolinux.bin \

 -c boot/isolinux/boot.cat -o TC-remastered.iso newiso

$ rm -rf newiso

When you boot this new ISO image, the nano editor will be

available for use (installed on boot from the image).

In the above example, nano is mounted from the CD,

meaning you can’t eject the CD while running. The

normal mechanism for loading the extensions to RAM

can be used if this is desired: create an empty file called

copy2fs.flg in the cde directory.

71

Chapter 14. Creating a
personal (data) extension

When you have a set of unchanging data that needs to be stored

outside your home directory, it’s recommended to create an

extension out of it rather than add it to the backup (where it would

add to your boot and shutdown times).

The extension completely mirrors the resulting file system tree,

so that if we want to see /usr/share/mydir, our extension should

contain usr/share/mydir.

For an example, say you downloaded an icon theme from gnome-

look.org. Icon themes should be installed to /usr/share/icons/name

for a system-wide installation. It’s a great example of this type of

data: unchanging, and needs to be outside the home directory.

First, we’ll create the tree we want to see inside the extension, in a

temporary directory. We’ll do this as root, so that system directories

get the proper permissions and ownership.

$ sudo su

$ cd /tmp

$ mkdir myextension

$ cd myextension

$ mkdir -p usr/share/icons

Then, assuming the icon theme was unpacked to /tmp/gold

(containing /tmp/gold/16x16 and other icon directories), move it to

the proper place:

$ sudo su # Still as root

$ mv /tmp/gold /tmp/myextension/usr/share/icons

Now we’re ready to create an extension out of this directory tree. If

you haven’t already loaded the squashfs-tools-4.x.tcz extension, do

so now.

72

$ cd /tmp

$ mksquashfs myextension myicons.tcz

Our mksquashfs has been changed to use custom

defaults. If using a mksquashfs binary from elsewhere,

you need to add the options -b 4k -no-xattrs for the

same result.

Your personal extension is now ready. All it takes now is to move

it to your tce directory, and to set it as OnBoot (if you need it every

boot).

$ cd /tmp

$ mv -v myicons.tcz /etc/sysconfig/tcedir/optional

Adding it to onboot.lst. Skip if you want it

OnDemand or not in any list at all

(manual loading only)

$ cd /etc/sysconfig/tcedir

$ echo myicons.tcz >> onboot.lst

You can install it right now with tce-load -i myicons, or you can

reboot to test whether it gets properly loaded on boot. Once the

extension is loaded, you should see the icons in /usr/share/icons,

and be able to use them in apps.

73

Chapter 15. Creating an
extension

Creating an extension with binaries is no different from one

containing mere data, like in the previous chapter. This chapter will

mainly focus on the specifics of binaries, following the process from

compiling to organizing them according to conventions.

By way of example, we’ll be compiling less, a command-line

document viewer. The process is no different for graphical

applications, no actions are needed to make them have proper icons

or menu items. Core follows the common FreeDesktop icon and

menu standards.

To start, install the main development extension, compiletc.tcz.

This meta-extension will install the GCC toolchain and system

headers for you, corresponding to build-essential on Debian

systems, and other names on other distributions.

15.1. Building less

Less uses the common Autotools build framework: "./configure

&& make && make install". Other build systems (cmake, custom

makefiles, and so on) will require different steps; consult the

program’s install documentation if unsure.

As less needs ncurses to build, install it and its headers, ncurses-

dev.tcz. We assume you have the latest less source downloaded and

unpacked to /tmp.

At this point, you would set the environment variables

CFLAGS, CXXFLAGS and LDFLAGS. These variables

affect the compiler and linker optimization, and vary by

the target.

Creating the extension

directory tree

74

If building an extension for yourself, you may use any

values; if building for the repository, see the wiki for the

latest recommended values for your architecture. It’s OK

to leave them empty for your own extensions.

$ cd /tmp

$ cd less-458 # Latest version at the time

Check the default options are OK

$./configure --help | more

They are OK for less. Go with the defaults.

$./configure

The process should run without errors.

If not, google for the error message.

#

Next, build less:

$ make

15.2. Creating the extension directory
tree

While still in the less-458 directory, we’ll use the Autotools support

for installing to a destination directory, not to the running system

(which would be lost on reboot).

Again as root, so that system directory

permissions and ownership is correct.

$ sudo make DESTDIR=/tmp/destless install

Taking a look in this temporary directory, the tree looks like this:

Packing up

75

usr/

`-- local/

 |-- bin/

 | |-- less*

 | |-- lessecho*

 | `-- lesskey*

 `-- share/

 `-- man/

 `-- man1/

 |-- less.1

 |-- lessecho.1

 `-- lesskey.1

6 directories, 6 files

We see that less installed three binaries, and three manual pages,

all in the proper locations. As network access is quite common, it’s

conventional to remove manual pages and other documentation

from extensions, or to have them in a separate -doc extension, so

that the main extension can be smaller.

In this case, let’s remove the man pages:

$ cd /tmp/destless

$ sudo rm -rf usr/local/share

It’s also recommended to remove debugging symbols from the

binaries, likewise for smaller size:

$ cd /tmp/destless/usr/local/bin

$ sudo strip -g *

15.3. Packing up

Creating a squashfs archive from the ready-made directory tree is

the same as with a data-only extension: one simple invocation.

$ cd /tmp

$ mksquashfs destless myless.tcz

77

Chapter 16. Extension install
scripts

Extensions may optionally include a script to be run after they’re

loaded. This is often used to make a default configuration file

writable, or to work around some application that doesn’t recognize

its plugins if they are symlinks instead of real files.

These install scripts live in the /usr/local/tce.installed directory.

They are named after the extension’s file name, so for myext-

foo.tcz the install script needs to be named myext-foo.

Install scripts run as root.

The install scripts should be owned by tc:staff and have executable

permissions. The tce.installed directory should be owned by

root:staff and have 775 permissions.

Faulty permissions for the tce.installed directory may

break extension loading.

16.1. Example: nano

For an example, let’s take a look at what kind of install script would

be needed for the nano editor.

Nano ships with a system-wide default configuration file. If the

user loads the nano extension to RAM, the file will be writable, and

nothing needs to be done; but what about the other case, default

mounting?

In that case, the file would be a symlink to a read-only file, not

what we want. So in the install script, we need to detect if the

configuration file is a symlink, and if so, copy the real file in its

place.

Example: nano

78

As the install scripts are run before the backup is restored, we never

overwrite any custom configuration the user has done.

#!/bin/sh

CONFDIR=/usr/local/etc

[-h $CONFDIR/nanorc] && \

 rm -f $CONFDIR/nanorc && \

 cp -a /tmp/tcloop/nano/$CONFDIR/nanorc \

 $CONFDIR

If the config file is a symlink,

remove it, and copy the real file

in its place.

#

This is a no-op on copy2fs installs.

79

Chapter 17. Creating custom
boot codes

Often it can be useful to set up custom boot codes to handle

different cases. For example, a rescue USB stick might have a boot

menu with several options: text boot, GUI boot, stress test…

The contents of the boot command line are visible in /proc/cmdline.

Our shell functions collection, tc-functions, contains helper

functions you can use in your scripts.

Example script, perhaps called from user tc's .profile:

#!/bin/sh

Include the helper functions

. /etc/init.d/tc-functions

checkbootparam checks for the presence

getbootparam gets the argument from "param=arg"

if $(checkbootparam stress); then

 type=$(getbootparam stresstype)

 case $type in

 cpu)

 # CPU testing here

 ;;

 ram)

 # RAM testing

 ;;

 *)

 echo Unknown test $type

 sleep 20

 ;;

 esac

fi

If the boot code "stress" is present, the script checks another boot

code, "stresstype=foo", for which type of stress test to run.

80

This is a slightly contrived example to show the likely

flow control.

In a real-life stress test bootcode, you wouldn’t waste

space by using two separate boot codes for the same

thing, but instead would check for the presence of the

same boot code.

If using isolinux with gfxboot, the boot menu might look like this:

Part III. Core internals

83

Chapter 18. The TCZ format
If one had to put it in a single sentence, TCZ could be described as

"a loop-mounted squashfs 4.x archive, with specified parameters,

usually symlinked into the main file system".

With a mounted archive, we get to keep the bulk on the

storage media, compressed and read-only (safe from

the usual methods of corruption). Contrasting this to the

majority of distros, which unpack the files but usually

can’t detect a change or corruption in a file, the TCZ

method is more fail-safe.

That however only scratches the surface. In this chapter, we’ll be

looking to the design decisions behind it, and the gory details to its

inner workings. The accompanying files are covered elsewhere; we

shall only focus on TCZ here.

Starting from the installation method, the archive can either be

mounted and symlinked, or its contents can be copied to the file

system (usually RAM) for faster execution. The mount-and-symlink

method is necessary in order to get the files in expected locations,

while still keeping the data compressed and on the storage media,

not extracted in RAM. The default is to mount.

It’s often questioned why Core eschews the many union file

systems, unlike most other live distributions. The reason for that

is twofold: first, they tend to be unstable (buggy). There are quite

a lot of mysterious crashes, and worse, disappearing files reported

on the 'net for the various union file systems. Secondly, the system

requirements for such a setup are higher. It would require more

RAM to store the setup, and it would have more overhead per file

access.

Why squashfs then, one might ask? The various mountable formats

were compared in the earlier days, during the 1.x and 2.x time

frame. Here are the various pros and cons:

Squashfs parameters

84

Cramfs

• limited capacity, no time stamps, limited uid support

• supported in kernel

Zisofs

• a minimum size of 512KB - overhead for many smaller

extensions

• supported in kernel

Mounting tar/zip archives via FUSE

• the overhead of FUSE

Squashfs came with full support for file attributes, good

compression, and fully in-kernel support with good performance.

After a few tries it was an easy decision.

18.1. Squashfs parameters

At the time, only gzip compression was supported, but since then

the new options of LZO and XZ have been evaluated.

LZO created slightly bigger extensions, but its speed advantage

was not seen in our use - the CPU could keep up fine with gzip

compression, bottle-necked by the hard drive reading speed.

XZ, while nicely improving the compression ratio, comes with

the downsides of LZMA: for each extension, it needs to keep the

full dictionary in RAM. This means up to 1 MB extra RAM use

per extension, depending on the exact settings used when creating

the extension. The decompression was also measurably slower

compared to gzip, no longer being able to be masked by the IO

speed.

What’s inside?

85

Therefore, our original decision to go with gzip compression for

squashfs archives was still the correct one.

A run of similar tests was made to find the ideal block size for

squashfs. While the larger blocks improved compression, squashfs

keeps a few blocks cached in RAM per mount, so the compression

had to be carefully balanced with the RAM requirement.

Unsurprisingly, the smallest block size, 4 KB, showed the best

RAM behavior. The impact to compression and by proxy the

reading speed was small enough, that this size was settled for.

Current versions of Core refuse to load extensions created with

other parameters.

18.2. What’s inside?

The contents of a TCZ extension are nothing magic: it’s the direct

file system tree that can be found when you install an application or

library. Let’s take a look at lxterminal.tcz.

usr/local/bin/lxterminal

usr/local/share/applications/lxterminal.desktop

usr/local/share/lxterminal/lxterminal-preferences.ui

usr/local/share/lxterminal/lxterminal.conf

usr/local/share/pixmaps/lxterminal.png

It contains the main binary, lxterminal; the FreeDesktop

standard .desktop file, specifying its icon and placement in any

menus; the program’s icon; and the program’s private data. Nothing

extra.

The leading directories are there by necessity, but since

they’re uninteresting in this context, we skip them here.

This is what you would find under /tmp/somewhere after doing a

"make install DESTDIR=/tmp/somewhere". Often documentation

and development headers are further split to other extensions, for

lower overhead to those who only want to use the extension.

What’s inside?

86

Using the regular paths, with writable directories, means that most

applications "just work".

There’s power in simplicity.

87

Chapter 19. The boot
process

At the high level, common distros' boot process consists of two

parts: the initial RAM disk loads the storage drivers and finds the

disk where the rest is stored; then the file system on the disk takes

over, loading your services and applications.

Core is different, in that it never leaves the first stage. We fully

run in the initial RAM disk, never leaving for a spinning disk (or a

network mount, etc). There are other methods of "running in RAM"

too, such as those used by Puppy, Knoppix, and DSL, which all do a

variation of the usual method - they create a new, bigger RAM area,

and move to it, letting the new part finish the boot.

While the newer technology is called initial RAM FS

(initramfs), not initial RAM disk (initrd), the terms will

be used interchangeably here, always referring to the

newer method.

19.1. The first step: /init

Once the kernel has booted itself and unpacked our initramfs

archive, it hands off control to a specific file, /init. This can be any

executable, in our case it is a short shell script.

Real Boot: init

88

The tasks given for this very first program are only those not doable

later as easily. It changes the allocated RAM space for /, optionally

changing some options for init (a different program), and if a

fallback setup is desired, does an old-style move of allocating new

RAM space, copying the data there, and moving to it.

As this 16-line script finishes, it gives off control to the real init.

This is the program that controls boot, shutdown, and reboot. It’s

the one that takes care of all your dead zombies, and listens for the

user’s ctrl-alt-del key-presses. It sets up the number of terminals

requested, and fires up a login prompt program on each. Common

options here are SysVinit, upstart, systemd, and busybox init. Core

uses busybox init.

19.2. Real Boot: init

Busybox init is a BSD-style one, meaning it does not have

runlevels, but runs one script on boot. At this point it does very

little, giving control to our main boot script, tc-config (via rcS).

19.3. Bootstrap: rcS

The rcS script sets up some system mount points, and passes control

to tc-config.

The first few initialization lines of tc-config were separated into rcS,

to ease remaster maintenance. As one example, the Plymouth boot

splash can be started from there.

19.4. Main boot: tc-config

The tc-config boot script is responsible for bringing up your

hardware, acting on most boot codes, and making it possible for

extensions to be loaded.

Main boot: tc-config

89

The order of events inside this script:

1. Check boot options

2. Fire up udev, start cold-plugging devices

3. Wait for slow USB devices if requested

4. Setup compressed swap in RAM, unless requested not to

5. Scan the available partitions, and create /etc/fstab with the

results

6. Start up the system logger if requested

7. Setup language, timezone, clock, and hostname

8. Setup the requested username

9. If an extension server was requested over AoE, NBD, NFS,

TFTP, or HTTP, handle it

10. If a virtual (loop) drive was requested, mount it

11. Setup persistent home and/or opt, if requested

12. Load laptop modules if requested

13. Enable swap if possible

14. Fire up extension loading

15. Fire up backup restore

16. Start bootsync.sh

After this sequence of events, the control moves to traditional

userspace.

Bootsync.sh

90

19.5. Bootsync.sh

This is the entry point for all items you need to run on boot, while

the boot waits for them to complete. If you need network access

later, this might be a good place to wait for the network to come up.

This script launches bootlocal.sh, backgrounded.

19.6. Bootlocal.sh

This is the entry point for all items that don’t need to be waited for.

This may include loading some non-essential module (ISA sound

cards, for example), or starting some server.

19.7. Root’s login

Once bootsync.sh is complete (and while bootlocal.sh happily does

its own thing in the background, on another CPU core if there is

one), init regains control.

As the boot is now complete from init’s point of view, it feels safe

to launch up all requested terminals. By default, this is only the first

terminal, but with the multivt bootcode, you can request six.

The first terminal is configured to do an automatic login to root,

only once. If you log out, this terminal will present a login prompt.

Root’s login script is setup to do one of two things: if automatic

login was disabled, it logs out, and otherwise, it passes the control

up to our regular user, named tc by default.

19.8. Regular user

Now we’re more in the regular distro territory: the normal user’s

login script does nothing out of the ordinary. If an X server is

available, and a text-only boot was not requested, X is started.

The X Window System

91

19.9. The X Window System

The shipped .xsession file sets up the default background, starts

any X-dependant programs you’ve configured, and starts up the

configured window manager.

These parts only apply if you have the GUI extensions loaded

(Xlibs, Xprogs, an X server, and a window manager). A command-

line-only boot ends at user tc’s login.

19.10. .X.d

This is the final part of the boot process. After starting up the

window manager, the .xsession script sources and executes every

file found in this directory (~/.X.d).

This is used to start up any programs that need X to run. For

example, if you want to start a browser automatically on every boot,

this is your location.

93

Chapter 20. The tce
directory structure

Looking inside the tce directory, there are a variety of files: control

files in plain text, and extensions as compressed archives. In this

chapter we’ll introduce the meaning and format of these control

files.

Here’s a typical tce directory:

.:

firstrun

onboot.lst

ondemand/

optional/

xwbar.lst

./ondemand:

ace-of-penguins

./optional:

ace-of-penguins.tcz

ace-of-penguins.tcz.md5.txt

nano.tcz

nano.tcz.dep

nano.tcz.md5.txt

ncurses-common.tcz

ncurses-common.tcz.md5.txt

ncurses.tcz

ncurses.tcz.dep

ncurses.tcz.md5.txt

upgrade/

./optional/upgrade:

ncurses.tcz

ncurses.tcz.dep

ncurses.tcz.md5.txt

Firstrun

94

Starting from the top level, we have two directories: ondemand/

for the ondemand scripts (they install the extension, and optionally

launch the program if one could be identified), and optional/ for

keeping the extensions.

The optional/upgrade/ is a temporary directory, meaning these

extension updates were downloaded this session, and will be applied

on reboot.

This leaves us with the top-level plain text files.

20.1. Firstrun

This is an empty marker, whose existence means that the first-

run dialog has been run and shouldn’t be run again. The first-run

dialog is run on the launch of Apps, asking whether you’d like to

automatically choose the best mirror available.

The mirror chooser utility can be later on launched from the menu,

if needed.

20.2. Onboot.lst

This is the plain text file containing a list of all extensions that

should be loaded on boot. The files should be listed without paths,

and are looked for only in the optional/ directory.

This file may be managed via Apps or via your favorite text editor.

Example onboot.lst file:

nano.tcz

ace-of-penguins.tcz

20.3. Xwbar.lst

This file is formatted according to the wbar config file format. It

lists the blocks that should not be included in wbar, the zooming

quick-launch bar included by default.

Ondemand scripts

95

Due to the format, it’s preferred to edit this file via the tc-wbarconf

utility, but hand-crafted edits are possible.

Example xwbar.lst file:

i: /usr/local/share/pixmaps/exit.png

t: Exit

c: exec exittc

20.4. Ondemand scripts

If you install an extension as OnDemand, a script will be generated

for it under the ondemand/ directory. If the extension can be

detected as containing a single program, the script will also launch

the program; if not, it will merely load the extension when called.

If the extension is detected as containing a single icon for the single

program, this icon will copied to the ondemand/ directory, and will

be shown in wbar just like if the program were installed on boot.

Upon clicking this icon, the generated script is called, and the icon

is removed, replaced by the application’s real icon.

These scripts are included in the window manager’s menu whether

or not they contain an icon or a program.

Example ondemand script:

#!/bin/sh

ondemand -e nano.tcz

97

Chapter 21. Accompanying
extension files

Alongside a typical extension there are a set of meta-data files.

Unlike the popular deb and rpm formats, the meta-data is not

kept inside the archive itself. This allows meta-data updates

without changing the main archive, which may be several hundred

megabytes large.

While extension updates do take advantage of delta downloads

via the zsync program, the amount of data transferred would still

be several times larger if the meta-data were included in the main

extension archive.

The accompanying files are:

• dep: direct dependencies

• info: size, license, author, updates, and usage information

• list: file list

• md5.txt: checksum

• tree: recursive list of dependencies

• zsync: used for delta updates

21.1. Dep files

These are plain text files listing the direct dependencies for the

extension. As dependency resolution is recursive, these extensions

may have dependencies of their own, and so the .dep files are

usually quite small.

nano.tcz.dep:

ncurses.tcz

Info files

98

21.2. Info files

Modeled after the .lsm format used in old software archives, the

info file identifies the extension and its main properties: size,

description, creator, license, and so on.

Often the comments field includes usage instructions specific to

Core, and the change-log field may include required actions for the

update, so it’s advised to read the info file for any extension you

install/update.

nano.tcz.info:

Title: nano.tcz

Description: Nano editor

Version: 2.2.6

Author: Various

Original-site: http://www.nano-editor.org/

Copying-policy: GPL

Size: 88K

Extension_by: Curaga

Tags: Nano editor

Comments: The most essential component of any

 unix system, and my personal favourite

 editor: Nano!

-

 Has most advanced options enabled,

 color syntax highlighting, multibuffer,

 suspend etc.

-

Change-log: 2008/07/05 - First version

 2008/12/09 - Update to 2.0.9,

 this time in /usr/local

 2009/10/05 - Removed user.tar.gz

Current: 2011/05/25 - Update to 2.2.6

21.3. List files

This is a free-form list of files included in the extension. It can be

created using find, unsquashfs, or other tools.

Md5 files

99

nano.tcz.list:

usr/local/bin/nano

usr/local/bin/rnano

usr/local/etc/nanorc

usr/local/etc/nanorc.sample

usr/local/share/nano/asm.nanorc

usr/local/share/nano/c.nanorc

usr/local/share/nano/groff.nanorc

usr/local/share/nano/html.nanorc

usr/local/share/nano/java.nanorc

usr/local/share/nano/man.nanorc

usr/local/share/nano/mutt.nanorc

usr/local/share/nano/nanorc.nanorc

usr/local/share/nano/patch.nanorc

usr/local/share/nano/perl.nanorc

usr/local/share/nano/pov.nanorc

usr/local/share/nano/python.nanorc

usr/local/share/nano/ruby.nanorc

usr/local/share/nano/sh.nanorc

usr/local/share/nano/tex.nanorc

usr/local/tce.installed/nano

21.4. Md5 files

These are checksum files, obtained directly from the md5sum

utility.

nano.tcz.md5.txt:

02e231701c2d272f81cda33f16eace11 nano.tcz

21.5. Tree files

These are files generated by the server, containing a flattened

listing of all dependencies for the extension. They are available for

convenience, and used for functions like the size tab in Apps, or for

copying an extension and all its dependencies.

nano.tcz.tree:

Zsync files

100

nano.tcz

 ncurses.tcz

 ncurses-common.tcz

21.6. Zsync files

These are binary files generated by the zsyncmake utility. They

are hosted server-side to enable delta downloads for faster, lower-

bandwidth extension updates.

We also host zsync files for the main ISO images, enabling you to

download newer versions rather quickly and cheaply.

Part IV. Projects

103

Chapter 22. Simple Web
server

By Luiz Fernando Estevarengo AKA Zendrael

Building a simple web server is really easy with Core and Busybox

HTTPD. This server is tiny and fast, although it does not run some

server-side pages, you can run CGI scripts - you can even write a

shell script to act like a CGI.

Install the busybox-httpd.tcz extension via Apps or by the command

line, OnBoot so that it’s loaded every time the computer boots up.

To start it each boot, include this line in /opt/bootlocal.sh:

/usr/local/httpd/sbin/httpd -p 85 \

 -h /home/tc/public_html -u tc:staff

We’re specifying that the server will run on port 85, will load files

stored in the public_html folder under my user, and will run as the

user tc with group staff. This is a conf-less method so you don’t

need a config file.

By default, Busybox-HTTPD doesn’t list files in directories, it will

always look for an index.html file. If you prefer to have a directory

listing feature, you must add a CGI script for it, also provided by the

extension:

$ mkdir -p /home/tc/public_html/cgi-bin

$ cp /usr/local/httpd/index.cgi \

 /home/tc/public_html/cgi-bin

Make sure it has proper permissions

$ chmod 755 /home/tc/public_html/cgi-bin/index.cgi

A quick reboot later, it’s ready to go, serving files over the web!

Custom CGI example

104

22.1. Custom CGI example

If you want to control the system via a web browser, or to read

statistics for example, you can write custom CGI scripts in the shell.

Here’s a hello world CGI shell script:

#!/bin/sh

echo -e "Content-type: text/html\r\n\r\n"

echo "<h1>Hello world!</h1>"

When placed in the cgi-bin directory, named as hello.sh, and given

executable permission, you can point your browser to localhost/cgi-

bin/hello.sh to test it.

105

Chapter 23. Automated
network installer

In this chapter, we’ll build a PXE-bootable image that partitions and

formats the local disk, installs a bootloader, and unpacks a preset

tarball to the new partition.

It may be used for quick mass installations, or booted from a CD/

USB as a conventional automated installer.

What the image installs is not specified here; it need not be Core.

23.1. Start files

We need to download the kernel and main initrd, vmlinuz and

core.gz, from any mirror. The installer logic will be placed in an

additional initrd.

This procedure may be performed from any linux distribution; the

downloaded extension has no dependencies, so it is easy to do with

a web browser if necessary.

Download the syslinux extension:

$ tce-load -w syslinux

23.2. The installer script

We’ll include an installer script in the new initrd, and call it from

bootsync.sh, so that its output is visible on screen.

The installer script

106

$ sudo su

When editing the main system files, it's best to be

root, so that permissions and ownership are correct.

$ cd /tmp

$ mkdir -p initrd/opt

$ cp /opt/bootsync.sh initrd/opt

$ editor initrd/opt/bootsync.sh

Add a call to your script to the end, making sure the network is up

before starting it:

count=0

echo -n Waiting for the network...

while ["$count" -lt 60]; do

 ifconfig eth0 | grep -q inet && break

 sleep 1

 count=$((count + 1))

 echo -n .

done

/opt/installer.sh

Create the installer script, marking it as executable:

$ sudo su

When editing the main system files, it's best to be

root, so that permissions and ownership are correct.

$ cd /tmp/initrd/opt

$ touch installer.sh

$ chmod a+x installer.sh

$ editor installer.sh

Here’s the example contents:

The installer script

107

#!/bin/sh

TARGET=/dev/sda

out() {

 sync; sync

 poweroff

}

Check there is a disk

fdisk -l $TARGET 2>&1 | grep -q bytes

["$?" -ne 0] && echo "No disk found" && \

 sleep 10 && out

Zero out the partition table

dd if=/dev/zero of=$TARGET bs=512 count=1

Partition it to two

Swap is set up at 256 Mb, rest for ext4

fdisk $TARGET << EOF

n

p

1

+256M

t

82

n

p

2

w

EOF

mkswap ${TARGET}1

mkfs.ext4 ${TARGET}2

cat /usr/local/share/syslinux/mbr.bin > $TARGET

Packing up & testing

108

Mount it, grab the tarball

mkdir /mnt/target

mount ${TARGET}2 /mnt/target

cd /mnt/target

wget http://my-url.com/files.tgz

tar xvf files.tgz

rm files.tgz

Install extlinux

mkdir -p boot/extlinux

extlinux -i /mnt/target/boot/extlinux

cd /

umount /mnt/target

Done!

clear

echo Success.

sleep 5

out

We’ll also need to unpack the syslinux extension to this new initrd.

To do this on Core, install the squashfs-tools-4.x extension.

$ sudo su

$ cd /tmp

$ unsquashfs syslinux.tcz

$ cp -a squashfs-root/* initrd

23.3. Packing up & testing

Let’s pack our new initrd image up:

$ cd /tmp/initrd

$ sudo find | sudo cpio -o -H newc | \

 gzip 2 > ../myimg.gz

$ advdef -z4 ../myimg.gz

Try booting the new image in a virtual machine with a hard drive

attached - the whole process should be quite fast.

109

Chapter 24. Private cloud

Cloud is such a buzzword. It means everything and nothing.

For the purposes of this chapter, it means you set up an old

computer at home, sharing your files, letting you access them from

anywhere, including your phone.

Since file serving takes little CPU, any old clunker ought to be of

use; if the power demands matter, we recommend re-purposing a

thin client or a laptop, as they often use only 15-25W.

Most file sharing protocols are insecure; it’s not recommended to

expose SMB or NFS to the internet. We’ll be setting up two servers:

busybox httpd giving passworded read-only access to our files, and

a SSH server giving secure read-write access.

We assume you have installed Core to the computer, and have

persistence set up. For this example, we’ll be sharing the files on

sda1/files.

It’s assumed there’s a NAT router between the box and the internet;

it will handle port forwarding and firewalling. It’s assumed the data

disk is the same as where Core is installed; otherwise, it needs to be

mounted in bootlocal.sh.

24.1. SSH

For SSH, we have the choice of using dropbear, or the OpenSSH

server. If SFTP is required, you’ll need OpenSSH; for this example,

we’ll assume shell and scp are enough, and will pick dropbear.

Install your selected SSH server extension, OnBoot.

For file access, we’ll create a separate user that has no other rights.

His home directory shall be the files directory.

HTTPD

110

$ sudo adduser -H -h /mnt/sda1/files johndoe

-H: don't create directory

-h: path to home directory

We need to give our new user write access to files

$ sudo chown -R johndoe /mnt/sda1/files

To start dropbear on boot, add the following line to /opt/

bootlocal.sh:

/etc/init.d/dropbear start

To save our new user, their password, and the SSH host keys, add

these lines to the backup in /opt/.filetool.lst:

etc/passwd

etc/shadow

etc/group

etc/dropbear

Generate the host keys now, and run a backup:

$ sudo /etc/init.d/dropbear start

$ backup

24.2. HTTPD

There is a pre-compiled extension for busybox httpd, busybox-

httpd.tcz. If you need to customize it, busybox is fairly easy to

compile.

Start by creating the config file for it:

$ sudo su

$ echo "/:foo:bar" > /mnt/sda1/httpd.conf

This file disallows all access without the given username (foo) and

password (bar).

To start it on boot, add the following to /opt/bootlocal.sh:

Connections, ports

111

/usr/local/httpd/sbin/httpd -u nobody:nogroup \

 -r "Private." -c /mnt/sda1/httpd.conf \

 -h /mnt/sda1/files

As busybox httpd doesn’t support file listings natively, it comes

with a CGI program to do it instead. Copy it to the proper place:

$ mkdir /mnt/sda1/files/cgi-bin

$ cp /usr/local/httpd/index.cgi /mnt/sda1/files/cgi-bin

Make sure it has proper permissions

$ chmod 755 /mnt/sda1/files/cgi-bin/index.cgi

24.3. Connections, ports

Many routers have a DynDNS (or other such service) client built-in.

These services give you a DNS address even if your IP is not stable,

as it often is not in home connections.

As your NAT router handles port forwarding, you get to decide

which ports to redirect to your cloud’s ports 22 (SSH) and 80

(HTTP). It’s not recommended to use the port 22 publicly, as that’s

painting a target on your door - there are automated bots trying to

attack every server with port 22 open. Even though using a non-

standard SSH port is mere security by obscurity, it’s not humans

that move is intended to deter, but automatic bots and scripts.

For the HTTP port, most phones let you use a port other than 80, but

using a port other than the common ones (80, 443, or 8080) may be

blocked by some 3G networks.

24.4. Security considerations

HTTP and HTTP authentication is insecure. Anyone can snoop your

username, password, and data - don’t use a sensitive one for these

credentials, or download sensitive files over the HTTP connection.

Final result

112

It’s however a balance with usability. Most devices support

HTTP and HTTP authentication; SSH access can be considered

considerably more luxurious.

As the router is assumed to handle firewalling, no firewall is

installed on the box in this example. Adding one would be an

additional defense layer, but its advantage in practice would be

small in this scenario.

Using a heavier HTTP server would allow SSL connections, giving

slightly better protection for the read-only access. However SSH

with public key authentication is recommended for sensitive data.

The HTTP server is run as nobody, without any kind of write access

to the system. Along with the simplicity of busybox, it’s unlikely

for there to be a remote exploit for it. A chroot may be added on top

to isolate the server from the core system; though the valuable data

would be inside the chroot.

HTTP server logging would be available by adding the -v -f

options to the start line, preventing the server from daemonizing

and requesting verbose output. Redirecting stderr to a file would

preserve the logs. Remember in this case to have the httpd server be

the last line in bootlocal.sh, as the lines after it wouldn’t execute.

24.5. Final result

You have your own personal cloud humming over there, giving

you access to your data all over the world. Sharing subfolders with

specific passwords, say holiday pictures to far-living family, is just

one config change away.

Assuming your end-device allows it, you have secure upload,

download and shell; otherwise, you have read-only HTTP access.

Final result

113

The required extensions + the CGI script total about 120kb of disk

space. Both servers use about 500kb of RAM. The overhead over

Core itself is small enough not to matter; if the computer has enough

RAM to run a shell, it can run this scenario. A Pentium with 32mb

of RAM would be adequate.

115

Chapter 25. A thin remote
desktop client

In this chapter, we’ll build an ISO image that automatically

launches a RDP session to a pre-determined target.

Overview of steps:

1. Grab the latest TinyCore ISO (X is needed)

2. Add the rdesktop extension and dependencies to the ISO

3. Make the boot wait for getting an IP address

4. Fire up rdesktop when the system is up

To start with, download the latest TinyCore ISO from your closest

mirror.

25.1. Add the rdesktop extension and
dependencies to the ISO

In order to easily get the extensions we need, we’ll be doing the

remaster inside the fresh TinyCore ISO we just downloaded. Start it

either in a virtual machine, or on real hardware.

With our environment up, download the rdesktop and gconv

extensions:

$ tce-load -w rdesktop glibc_gconv

The gconv extension contains the data files for converting text

between character sets; it’s an optional dependency of rdesktop.

As we’re running in the cloud mode, all extensions will be kept

in RAM, in /tmp/tce. With a fresh image, only rdesktop and its

dependencies will be there.

Make the boot wait for

getting an IP address

116

Let’s mount and copy the ISO we booted from:

The CD might already be mounted, but just in case:

$ sudo mount /dev/sr0

$ cp -a /mnt/sr0 /tmp/newiso

The copy might warn about not being able to keep the file

ownership; this warning is harmless.

Copy rdesktop and its dependencies to the cde directory on the new

ISO:

$ cd /tmp/tce/optional

$ sudo cp * /tmp/newiso/cde/optional

Add it to onboot.lst, so it gets installed on boot.

$ chmod u+w /tmp/newiso/cde/onboot.lst

$ echo rdesktop.tcz >> /tmp/newiso/cde/onboot.lst

$ echo glibc_gconv.tcz >> /tmp/newiso/cde/onboot.lst

If you want to disable wbar in the new image, edit the new

onboot.lst and remove the wbar.tcz line.

Now that the extensions have been copied, we can install the

extensions needed to create the ISO:

$ tce-load -wi advcomp mkisofs-tools

25.2. Make the boot wait for getting an
IP address

A normal Core boot does not wait for the network to be up;

however, for a dedicated RDP client, that’s what we want to happen.

To make the boot wait for it, we need to add the commands to one

of the synchronous files. Since this is a system-wide resource we’re

waiting for, /opt/bootsync.sh is our target.

We’ll include our customizations in a new initrd file:

Fire up rdesktop

when the system is up

117

$ sudo su

When editing the main system files, it's best to be

root, so that permissions and ownership are correct.

$ cd /tmp

$ mkdir -p initrd/opt

$ cp /opt/bootsync.sh initrd/opt

$ editor initrd/opt/bootsync.sh

Paste the following piece of script to the end of the file:

count=0

echo -n Waiting for the network...

while ["$count" -lt 60]; do

 ifconfig eth0 | grep -q inet && break

 sleep 1

 count=$((count + 1))

 echo -n .

done

This piece of script will wait up to 60 seconds, checking if the first

wired network card has an IP address, and if it does, breaking out of

the loop.

25.3. Fire up rdesktop when the system
is up

We’ll add a file to the default user’s .X.d directory. This script piece

will run rdesktop in a loop, popping up an error message if it fails

for some reason.

Given that no writable disk will be mounted, the system can be

safely turned off via the physical power button. If this is to run on a

set of dedicated terminals, it might also be useful to add a cron job

to turn the system off at preset hours.

Fire up rdesktop

when the system is up

118

$ sudo su

When editing the main system files, it's best to be

root, so that permissions and ownership are correct.

$ cd /tmp/initrd

$ mkdir -p etc/skel/.X.d

$ cd etc/skel/.X.d

$ editor rdesktop

Add the desired rdesktop command line to the file:

while [1]; do

 rdesktop -u user 10.0.2.2:7777 2> /tmp/rderr

 ["$?" -ne 0] && popup `cat /tmp/rderr`

done

This starts up rdesktop, directing errors to a file, and if the launch

fails, show the errors to the user with a popup message.

Let’s pack our new initrd image up:

$ cd /tmp/initrd

$ sudo find | sudo cpio -o -H newc | \

 gzip 2 > ../myimg.gz

$ advdef -z4 ../myimg.gz

Let’s place the initrd on the ISO, and have it be used:

$ cd /tmp/newiso/boot

$ sudo mv /tmp/myimg.gz .

$ sudo sed -i 's@core.gz@&,/boot/myimg.gz@g' \

 isolinux/isolinux.cfg

If you’d like to tweak the boot menu, or set other boot options, edit

isolinux.cfg now.

Finally, create the ISO image:

$ cd /tmp

$ sudo mkisofs -l -J -r -V TC-custom -no-emul-boot \

 -boot-load-size 4 \

 -boot-info-table -b boot/isolinux/isolinux.bin \

 -c boot/isolinux/boot.cat -o TC-remastered.iso newiso

Result

119

25.4. Result

Our new ISO image boots gracefully to the desktop, waiting for the

network to be up, running the RDP client in a loop.

Booting the image in KVM takes under one second.

The ISO image is approximately 17 Mb in size, and the system uses

35 Mb of RAM when running. It’s recommended to add about 5-20

Mb to that to account for different resolutions and drivers, putting

the required RAM for this image at 55 Mb (64 Mb rounded to the

nearest common size).

121

Chapter 26. File hosting via
FTP

Often you might need somebody to send you a bigger file, which is

untenable over plain old e-mail. The common alternatives nowadays

are third-party hosters such as Mega and Mediafire, or cloud

services such as those from Microsoft, Google, or Dropbox.

The downside to these third-party services (besides the obvious

reliance on a third party - if they go down, you can’t get to your

file) is that they’re not compatible with all browsers, occasionally

seemingly break at random, and sometimes host intrusive ads. They

also cannot be automated easily, or require personal information to

upload/download.

To this end, we’ll be setting up a FTP server with anonymous

uploads, and a read-only downloads section. FTP can be easily

scripted, and it tends to be more efficient at serving files than HTTP.

Please keep in mind that FTP works over plain text; don’t store

confidential data here, or use any secure passwords for the

authenticated content.

It’s assumed the data drive is mounted on boot. We’ll be using sda1

in this example.

26.1. Installing & configuration

We’ll be using a small server called BFTPD. Install bftpd.tcz

onboot, and add this line to /opt/bootlocal.sh:

bftpd -d -c /mnt/sda1/bftpd.conf

Copy the supplied example config file to the drive, and open it in

your favorite editor:

Installing &

configuration

122

$ cp /usr/local/etc/bftpd.conf.sample \

 /mnt/sda1/bftpd.conf

$ editor /mnt/sda1/bftpd.conf

The entries we’ll consider now are HELLO_STRING, QUIT_MSG

(cosmetic messages), the ALLOWCOMMAND ones, the

USERLIMIT ones, and the user sections.

Once the hello and quit messages are to your liking, check that

the only allowed command is STOR - users aren’t allowed to

delete files, or to send site commands (special server-dependent

commands).

You might want to limit the connections with the USERLIMIT

variables, in particular USERLIMIT_SINGLEUSER that stops a

single user being logged in many times at once.

In the user section, the default file sets up the anonymous login as

redirecting to the system user ftp. This fits us well. However, we

want anonymous logins to be enabled, and the user to be restricted

to our data drive, so remove the DENY_LOGIN variable from the

user ftp section, making the section look like this:

user ftp {

 #Any password fits.

 ANONYMOUS_USER="yes"

 CHANGE_UID="yes"

}

The next steps are creating the ftp user, backing up the user files,

and creating the upload and download directories with appropriate

permissions.

Testing

123

$ sudo adduser -h /mnt/sda1 -D -H ftp

Their home dir is /mnt/sda1,

they don't have a password, and

the directory will be created manually.

Add the user files to the backup.

This can also be done via the GUIs if desired.

$ echo "etc/passwd" >> /opt/.filetool.lst

$ echo "etc/shadow" >> /opt/.filetool.lst

$ echo "etc/group" >> /opt/.filetool.lst

$ cd /mnt/sda1

$ mkdir upload download

$ sudo chown ftp upload

$ chmod o-w download

$ sudo chmod g+w upload

Anything placed in the download dir

is read-only via FTP.

As a sanity check before rebooting, start the server in no-fork mode

to see that there are no typos in the config file, or other issues:

$ sudo bftpd -D -c /mnt/sda1/bftpd.conf

If there are no errors, press ctrl-C

26.2. Testing

After a reboot, our FTP server should be running. Check that it’s

present in the running processes list by running ps, and that it’s

listening by running netstat -l -t.

A command-line FTP client is available in the inetutils extension,

but you can use any browser or FTP client to test the uploads and

downloads.

26.3. Results

You now have a convenient place to store files from anywhere. The

server requires about 500kb of RAM per logged-in user.

125

Chapter 27. Network booting

Core can easily be booted via the network (PXE). This may be used

to have many diskless computers, for example as stand-alone web

browser stations, or as thin clients that rely on the server for some

needs; or as a distribution method for an installer, recovery setup, or

anything else you can come up with.

Core is also capable of being the boot server, but it’s not required;

you may use any system with TFTP, PXE (DHCP), and HTTP/NFS/

other file sharing protocol as the server, from CentOS to Debian to

even Windows. We don’t recommend that last option though.

Core includes a quick setup wizard for testing PXE booting, tc-

terminal-server. It allows you to quickly setup one machine as a

mothership, sharing the base image, to test if the other computers

on your network (and the network itself) work for PXE booting. For

more permanent setups, it’s not recommended to use the wizard.

As the server setups vary wildly, we won’t go into the configuration

details of any specific one in this chapter. Instead we cover the

available options, helping you decide which setup fits your needs

the best.

Steps

a. Selecting the base image

b. Are separate extensions needed?

c. Other considerations

Selecting the

base image

126

27.1. Selecting the base image

For thin clients, the obvious option is to use the shipped image, the

normal core.gz and kernel. However, if the clients are to be stand-

alone, it might make sense to create a remaster instead, holding

your modifications in a second initrd (pxelinux is capable of using

multiple initrds).

The constraints of the clients also factor in. If they are low in RAM,

a remaster where everything is in RAM may prove unfeasible;

in this situation, you may trade performance for lower RAM use

by mounting extensions from the server. It does increase network

demands, but as the extensions are then not copied to client RAM,

only cached in the file system cache, it can save a lot of RAM.

27.2. Are separate extensions needed?

If the extensions are integrated into the initrd, as in the above

section, then you can skip this section.

Core supports several ways of loading extensions over the network.

Some of these (NFS, NBD, AOE) mount the share over the network,

using the extensions remotely from the server; the others (TFTP,

HTTP) download the extensions over the given protocol to RAM,

then mount them from there.

Considering the latter option, one might ask what’s the difference

to just having them in the initrd in the first place. After all, in both

cases they are downloaded from the server into the client’s RAM.

The difference is in boot speed: TFTP, even when tuned to use high

block sizes, is a slow protocol - using HTTP may improve transfer

speeds greatly.

The other part is the more even access pattern: if everything were in

one initrd, that client would make one big request; if each extension

was requested individually, the network requests would be more

spread out over time.

Other considerations

127

One may also combine the mount-a-share approaches with

having extensions OnDemand. This combination would allow

for very quick boot speeds, and less network usage, as the bigger

applications would only be requested once the user starts them.

You’re not limited to the mentioned protocols. If there’s

a Linux client for your file protocol, you can include

just that client and the extension downloading logic in

the initrd, allowing you to use more exotic protocols to

download or mount extensions from the server.

27.3. Other considerations

The extensions are usually read-only from the clients' end, making

it easy to upgrade in one place, at the server, and a reboot of the

client is all that’s needed. Often some data needs to be RW though,

perhaps home directories over NFS, perhaps some other shared

folder for common data.

The memory use needs to be considered. A diskless client may have

little recourse when its RAM runs out. While Core ships the zram

module by default, allowing you to over-commit the RAM by about

20%, you may still need swap.

Swapping over the network is not advised; it’s not yet quite stable

in the current kernels, and doing it over the network may cause

too much congestion. As a backup, you might consider letting the

clients have HDDs, but only as swap partitions.

129

Chapter 28. Bringing up old
hardware - common gotchas

Older hardware often carries limitations. This chapter lists some of

them, and what you can do about them.

One might question the point in doing so, particularly if electricity

costs in the area are high. However, getting some use of old

hardware can be fruitful, often free of any immediate costs, and

helps reduce electronic waste.

The power use of old computers is not high in comparison to

modern desktop computers, so if you have a job they can perform,

the power costs may not create a big enough offset to pay for a new

computer.

The power usage of old computers is surprisingly low compared to

modern 500W power guzzlers; a first-generation Pentium may run

in 60W full, less than the new power guzzler runs at idle.

28.1. BIOS

The firmware, most often buggy, and coincidentally, most often not

user-replaceable beyond flashing an image from the manufacturer,

may carry a number of limitations.

Even if claiming to support a boot method (USB, CD, PXE, floppy),

that support might be buggy. BIOSes from the USB 1 era will often

only boot from USB with the USB-ZIP emulation mode.

Should the BIOS not support booting from a CD, and a PXE setup is

inconvenient, we recommend removing the hard disk, and installing

to it on another computer. Core does not read any info from the

installing computer, so the resulting install will work just fine when

moved to the target. Alternatively, Smart Boot Manager may be

used to chain-load the CD from the floppy drive.

Sound

130

If the target has integrated graphics, the BIOS often controls

the amount of RAM to assign to the graphics card. This amount

limits the resolutions you can use, and the acceleration that can be

available. If you have the choice, use a minimum of 16 MB.

Some BIOSes, notably Dell ones with Intel graphics, either don’t

offer that choice, or only offer very small choices. On these

machines the only way around the limit is to use Xorg with the fully

accelerated driver, as it can control the RAM allocation regardless

of the BIOS. With Xvesa or the framebuffer, you might be limited

to 640x480 at a low color depth.

28.2. Sound

Core offers two sound systems: ALSA and OSS. OSS doesn’t

support any ISA cards, so if the sound card is connected via the ISA

bus (either as an extension card, or by an integrated ISA bus on the

motherboard), your only choice is ALSA.

ISA sound cards often cannot be automatically detected. In these

cases, you will need to find out the name of the sound module, and

to add a modprobe call to bootlocal.sh. Often you might need to

also pass the card’s parameters (IRQ, DMA address) as options to

the driver module.

28.3. VESA support

Some older graphics cards don’t have proper support for the VESA

standard. This means that the standard Xvesa server might display at

a wrong resolution, with wrong colors, or fail to start altogether.

In these cases, the options are the framebuffer, and Xorg. To use a

framebuffer resolution, you need to add the vga=791 bootcode to

your bootloader’s config file (where 791 is a number specifying the

resolution and color depth - this particular one is 1024x768 at 16bit

color depth), and to install the Xfbdev server instead of Xvesa.

Networking

131

Table of common VESA resolutions:

640x480 800x600 1024x768 1280x1024

256 colors 769 771 773 775

16-bit 785 788 791 794

24-bit 786 789 792 795

Should the framebuffer also fail, or if non-VESA resolutions are

needed, you’ll need to install Xorg with a suitable driver.

There doesn’t exist a Xorg driver for all cards - check

online before trying.

28.4. Networking

ISA network cards have the same downsides as ISA sound cards:

you may need to manually modprobe the correct driver, and to pass

the card’s details as driver parameters.

PCMCIA network cards should work automatically, as long as

the PCMCIA bus itself is recognized. You can use the lspcmcia

command to list any attached cards to see if they are recognized.

Should the computer not have a network card, Linux supports

various other ways to move data in addition to plain old ethernet.

You can harness infrared, the serial or parallel port, or even the

sound card to move data (yes, even to browse the internet!) as long

as you have another computer that can act as a router.

28.5. Bigger hard drives

The IDE bus will usually accept drives as large as you can buy, up

to terabytes, even on computers that were sold with 10 GB drives.

The possible issue with these is that the BIOS cannot read past a

certain size, even though Linux can.

Memory limitations

132

The solution to this issue is to create a separate boot partition at

the beginning of the disk, making sure the BIOS can read all of

it. The common BIOS limits are 137 GB, 8.5 GB, and 528 MB,

so by making your boot partition be less than 500 MB in size you

guarantee that the BIOS will be able to read it.

For Core, the boot partition only needs to contain the boot loader,

kernel, and core.gz. Any personal data and extensions can reside on

different partitions.

28.6. Memory limitations

Of all the limits, RAM might be the hardest to overcome. While

used RAM sticks of the older technologies can be bought for cheap,

the computer may not be able to take much (each motherboard has a

maximum amount). A large swap partition is recommended (at least

100 MB).

As long as there’s enough RAM to boot Core itself (28 MB in text

mode, 48 MB in GUI at the time of writing), a lot can be done

through selecting lightweight programs. Instead of the latest Firefox

or Chrome, consider an older version of Opera; if Javascript support

is not needed, Dillo; if text is enough, lynx or links.

Some versions of Links can display images. It is a very

lightweight browser if the features are enough.

Likewise, for playing music, eschew the complex GUI players like

Amarok in favor of simpler ones like XMMS, or command-line

ones like mpg123 or mplayer.

To write documents, Ted is a lightweight RTF editor. Older

OpenOffice may be considered for more complex documents.

Memory limitations

133

Should the target not have enough RAM to run Core itself, there are

some things you can do to help the situation with a remaster. The

base image contains a couple megabytes of drivers: by removing

those the target doesn’t need, you can lower the required RAM.

Using text mode is a given.

Depending on the situation, zram may or may not be useful. With

very little RAM, the compressed swap in RAM might actually act

counter-intuitively, not leaving enough to run the desired program,

causing constant swapping. You can disable it with the bootcode

nozswap.

135

Chapter 29. A Web kiosk

By Luiz Fernando Estevarengo AKA Zendrael

A kiosk machine is essentially a terminal to access the web: any

website, just one website, or perhaps a web app. It does not run any

kind of app other than the web browser.

With Core, we can build a simple kiosk with little effort, a bunch of

extensions and the creation of an add-on to our browser of choice.

We assume persistent home/opt are not used, and that the home dir

is under backup. This enables a clean slate on each reboot.

29.1. Selecting extensions

Starting with an installed TinyCore, you will need:

• firefox.tcz (our browser)

• idesk.tcz (for the screen icons)

• liberation-fonts-ttf.tcz (many sites are designed for Microsoft

fonts)

• openbox.tcz (deals better with our add-on later)

Load all these extensions OnBoot.

If you want to let the user do more on the web, you can also use

alsa.tcz, getflash.tcz, and your choice of Firefox add-ons.

For a better looking experience, you may want to have a gtk2 theme

engine loaded with a theme of your choice. This will not be covered

as it depends on your preferences.

Configuring

Core extensions

136

29.2. Configuring Core extensions

29.2.1. iDesk icons

What happens if our user, for some reason, closes the browser

or it crashes? We must have an easy way to restart the browser,

preferably with a visual clue, like an icon in the desktop. iDesk lets

us do this with icons that can not be changed, deleted or moved on

the desktop.

You may also choose to use the included wbar; or to

not have icons at all, but to run Firefox in a loop (so that

when the previous instance closes, a new one is started).

Inside your home directory create one file, .ideskrc which will

contain the iDesk configuration; and one directory, where your

icons will be kept, .idesktop:

$ touch .ideskrc

$ mkdir .idesktop

$ editor .ideskrc

Edit the .ideskrc config file to reflect the colors of your desktop and

some grid options:

iDesk icons

137

table Config

 FontName: sans

 FontSize: 10

 FontColor: #ffffff

 Locked: false

 Transparency: 50

 Shadow: true

 ShadowColor: #000000

 ShadowX: 1

 ShadowY: 2

 Bold: false

 ClickDelay: 100

 IconSnap: true

 SnapWidth: 55

 SnapHeight: 100

 SnapOrigin: BottomRight

 SnapShadow: true

 SnapShadowTrans: 200

 CaptionOnHover: false

end

table Actions

 Lock: control right doubleClk

 Reload: middle doubleClk

 Drag: false

 EndDrag: left singleClk

 Execute[0]: left doubleClk

 Execute[1]: right doubleClk

end

Now, inside the .idesktop directory we will create the file that

contains the information of our icon, to restart the browser should it

crash or should the user close it:

$ cd .idesktop

$ touch kiosk.lnk

$ editor kiosk.lnk

With this content:

iDesk autoload

138

table Icon

 Caption: Web

 Icon: .idesktop/web.png

 X: 100

 Y: 100

 Command[0]: firefox

end

Note the icon mentioned in the .idesktop folder. You can use any

icon you want; to use the Firefox icon, you can copy it from /usr/

local/share/pixmaps.

29.2.2. iDesk autoload

As iDesk will serve to show an icon for our browser, we need to

start it in a suitable place. So, in the ~/.X.d/ directory we will create

a file to start it up:

$ mkdir -p ~/.X.d

$ cd ~/.X.d

$ echo "idesk &" > idesk

29.2.3. Firefox profile

We will create a custom profile to handle the kiosk. Open and close

Firefox at least once so that the default profile gets created.

Open up a terminal and type:

$ cd ~/.mozilla/firefox

$ ls

You will find a directory like j08765.default and a file named

profiles.ini. We will change the profile name to a more convenient

one, and set it in the ini file:

$ mv *.default kiosk.default

$ editor profiles.ini

Then change the Path in profiles.ini to kiosk.default as follows:

Firefox autoload

139

[General]

StartWithLastProfile=1

[Profile0]

Name=kiosk

IsRelative=1

Path=kiosk.default

Start and close Firefox to see that the moved profile is working.

29.2.4. Firefox autoload

We will need to have Firefox loaded as soon as our kiosk runs X.

Here we follow the same way that we used for idesk:

$ cd ~/.X.d

$ echo "firefox &" > firefox

29.2.5. Configuring Firefox

To make the best of our kiosk, we will setup it to use less space on

the screen, and avoid some troubles with ads. Open up Firefox, right

click the menu bar and uncheck the Menu Bar item. Then, go to the

Firefox menu and access the Add-ons manager.

The add-ons we will use are:

• Movable Firefox Button

• Ad-block Plus

Install both by searching for them in the search box, and then restart

as required.

Next, we will do some coding with XUL and Javascript.

Creating our add-on

140

29.3. Creating our add-on

Firefox add-ons are easy to build and can be used without the need

to upload them to the Mozilla website. We will create an add-on to

create a clock button, and to control the behavior of Firefox on the

screen every time it loads.

29.3.1. Folder and file structure

Start by creating the files and folders:

$ cd ~/.mozilla/firefox/kiosk.default/extensions

$ mkdir -p clock@kiosk.com/chrome

$ cd clock@kiosk.com

$ touch install.rdf chrome.manifest

$ cd chrome

$ touch clock.xul clock.js clock.css

The resulting file structure will look like this:

clock@kiosk.com/

 chrome.manifest

 install.rdf

 chrome/

 clock.css

 clock.js

 clock.xul

The manifest and the rdf files will set up our add-on to be viewed

and loaded by Firefox. The chrome directory (which doesn’t have

anything to do with Google Chrome or Chromium browser) will

hold the add-on files. Edit each of them with its contents:

Folder and

file structure

141

chrome.manifest

content clock chrome/

long line

style chrome://global/content/customizeToolbar.xul \

chrome://clock/content/clock.css

another long line

overlay chrome://browser/content/browser.xul \

chrome://clock/content/clock.xul

Please note the line continuations - this is not a shell script, so the

long lines will need to be intact. Remove the \ line continuation

sign, and put the following line on the same line.

Folder and

file structure

142

install.rdf

<?xml version="1.0"?>

<RDF

 xmlns="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:em="http://www.mozilla.org/2004/em-rdf#">

 <Description

 about="urn:mozilla:install-manifest"

 em:name="clock"

 em:description="Clock for Kiosk"

 em:creator="Zendrael"

 em:id="clock@kiosk.com"

 em:version="1.0"

 em:homepageURL="http://www.zendrael.com/kiosk"

 em:iconURL="chrome://clock/content/icon.png">

 <em:targetApplication><!-- Firefox -->

 <Description

 em:id="{ec8030f7-c20a-464f-9b0e-13a3a9e97384}"

 em:minVersion="5.0"

 em:maxVersion="99" />

 </em:targetApplication>

 <em:file>

 <Description

 about="urn:mozilla:extension:clock"

 em:package="content/clock/" />

 </em:file>

 </Description>

</RDF>

Folder and

file structure

143

chrome/clock.css

/* let the buttons be smaller */

.clean {

 padding: 0px;

 margin: 0px;

}

/* remove arrow from buttons */

.clean .toolbarbutton-menu-dropmarker {

 display: none !important;

}

#osStatus-button-clock {

 padding-top: 5px;

 margin-right: 3px;

}

#appmenu-toolbar-button

 .toolbarbutton-menu-dropmarker {

 display: none !important;

}

toolbar:not([mode="text"]) #appmenu-toolbar-button

 > .toolbarbutton-icon,

toolbar:not([mode="text"]) #appmenu-button

 > .button-box .button-icon {

 list-style-image:

 url("moz-icon://stock/system-run?size=16")

 !important;

}

toolbar[mode="icons"] #appmenu-toolbar-button

 > .toolbarbutton-text,

toolbar[mode="icons"] #appmenu-button

 > .button-box .button-text {

 display: none;

}

Folder and

file structure

144

chrome/clock.js

// Start main window without borders

// Note the long line

document.getElementById("main-window").\

 setAttribute("hidechrome","true");

/*

 function clock

 show the time and date

*/

function getClock(){

 var obj = \

 document.getElementById("osStatus-button-clock");

 var now = new Date();

 var hours = now.getHours();

 var minutes = now.getMinutes();

 var seconds = now.getSeconds();

 var timeValue = ""+ hours;

 timeValue +=

 ((minutes<10) ? ":0" : ":") + minutes;

 //set date

 var month = now.getMonth() + 1;

 var day = now.getDate();

 var year = now.getFullYear();

 var dateValue = day + "/" + month + "/" + year;

 obj.setAttribute("value", timeValue);

 obj.setAttribute("tooltiptext", dateValue);

}

//set timeout events, updating clock

setInterval("getClock()", 1000);

Folder and

file structure

145

chrome/clock.xul

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/css"

 href="chrome://clock/content/clock.css"?>

<!DOCTYPE overlay >

<overlay id="custombutton-overlay"

 xmlns="http://www.mozilla.org/keymaster/ \

 gatekeeper/there.is.only.xul">

<script type="application/javascript"

 src="chrome://clock/content/clock.js"/>

<!-- Firefox -->

<toolbarpalette id="BrowserToolbarPalette">

 <toolbaritem id="osStatusItems"

 label="OS Status Items">

 <label id="osStatus-button-clock"/>

 </toolbaritem>

</toolbarpalette>

<!-- button details -->

<label id="osStatus-button-clock"

 value="00:00"

 tooltiptext="00/00/0000"

 class="toolbarbutton-1 \

 chromeclass-toolbar-additional clean"

 crop="none" orient="horizontal" dir="reverse"

 />

</overlay>

Note the two line continuations here too - the mozilla.org link needs

to be without spaces.

Now, start Firefox. It may ask if you want to install our clock

extension: do so.

Shutdown

considerations

146

After a restart, nothing will change; we need to right-click the

toolbar and go to Customize. In the window we will find our clock

add-on. Drag it to the right side of the + button in the same bar that

tabs appear.

Restart and close Firefox once more.

29.4. Shutdown considerations

It’s desirable to be able to turn off our system by the power switch,

making the kiosk more reliable in the event of power loss.

To do this, enable copy2fs via the Toggle default install to file

system option in Apps. Now all extensions are loaded to RAM.

As the final step, we will unmount the disk after the boot has

completed. This will prevent any corruption from getting to the disk,

enabling clean shutdowns via the power switch.

Add the following to /opt/bootlocal.sh, replacing sda1 with your

drive:

umount /mnt/sda1

29.5. Results

Turning this from a HD-based install to a PXE-based one

would let you have an easily managed fleet of diskless

web kiosks.

Reboot the system and you will get Firefox taking all the desktop

without the title bar and with the clock working. Our kiosk is now

ready!

At the time of writing, the Firefox version was 21. The install used

about 54 Mb of space. When just started, displaying the default

Firefox homepage, the RAM usage was 232 Mb.

Results

147

The exact requirements depend on the web pages you intend to

allow, but 256 Mb would be tight. 512 Mb of RAM would be

recommended for this use.

149

Index

B
bootlocal.sh, 90

bootsync.sh, 90

C
cde directory, 69

core2usb, 18

D
dep file, 97

Download + load, 26

Download only, 26

F
firstrun, 94

frugal install, 4

H
HyperV, 46

I
info file, 98

init, 87

initramfs, 87

initrd, 87

K
KVM, 45

L
list file, 98

M
md5 file, 99

O
OnBoot, 25

onboot.lst, 94

OnDemand, 25

Q
Qemu, 45

R
remaster, 63

T
tc-config, 88

tc-install, 11

tce-ab, 29

tce-load, 30

tce-update, 36

TCZ format, 83

tree file, 99

V
Virtualbox, 45

VMWare, 46

X
xwbar.lst, 95

Z
zsync file, 100

	Into the Core
	Table of Contents
	Preface
	1. Conventions

	Part I. Intro & basic use
	Chapter 1. Core concepts
	1.1. Philosophies
	1.2. Frugal install
	1.3. Boot codes
	1.4. USB and other external storage devices
	1.5. Dependency checking and downloading
	1.6. Modes of operation
	1.7. The default mode: cloud/internet
	1.8. Mount mode
	1.9. Copy mode
	1.10. Backup/restore & other persistence options
	1.10.1. Backup/restore
	1.10.2. Persistent home

	1.11. Bottom line

	Chapter 2. Installing
	2.1. With the official installer
	2.1.1. Step 1: Source and destination
	2.1.2. Step 2: File system type
	2.1.3. Step 3: Boot codes
	2.1.4. Step 4: Optional parts
	2.1.5. Step 5: Good to go?

	2.2. From Windows via core2usb
	2.3. Manually
	2.3.1. Step 1: Partitioning & formatting
	BIOS installations
	UEFI installations

	2.3.2. Step 2: Files
	2.3.3. Step 3: Bootloader

	Chapter 3. Basic package management via GUI
	Chapter 4. Basic package management via CLI
	4.1. tce-load
	4.2. Comparing package managers

	Chapter 5. Updating the base system
	Chapter 6. Updating extensions
	6.1. Apps
	6.2. tce-update

	Chapter 7. Persistence
	7.1. Backup
	7.2. Persistent home/opt
	7.3. Personal extension
	7.4. Other data storage
	7.5. Common setup
	7.6. Summary

	Chapter 8. Managing extensions
	8.1. MD5 checking
	8.2. Check for orphans
	8.3. Dependencies and deletions
	8.4. Check onboot unneeded
	8.5. Onboot/ondemand maintenance

	Chapter 9. Virtualization - Core as a guest
	9.1. Qemu / KVM
	9.2. Virtualbox
	9.3. VMWare
	9.4. HyperV

	Chapter 10. Bootcodes explained
	10.1. tce - extensions directory
	10.2. restore - backup location
	10.3. waitusb - slow drive detection
	10.4. swapfile - swap in a file
	10.5. home and opt - persistence
	10.6. lst - extension list
	10.7. base - don’t load extensions
	10.8. norestore - don’t load backup
	10.9. safebackup - enable safe backup by default
	10.10. showapps - verbose extension loading
	10.11. iso - load extensions from an ISO file
	10.12. vga - framebuffer resolution
	10.13. xsetup - configure X during boot
	10.14. lang - system locale
	10.15. kmap - console keymap
	10.16. text - boot to text mode
	10.17. superuser - boot to text mode, as root
	10.18. noicons - don’t display icons
	10.19. noswap - don’t use the swap partition
	10.20. nodhcp - don’t grab an IP address
	10.21. noutc - BIOS is using local time
	10.22. tz - timezone
	10.23. pause - wait for a keypress before completing boot
	10.24. cron and syslog - start daemons
	10.25. host - set host name
	10.26. protect - use encrypted backup
	10.27. secure - set password on boot
	10.28. noautologin - disable automatic login
	10.29. user - set the default username
	10.30. desktop - specify window manager
	10.31. laptop - force loading of laptop modules
	10.32. noembed - use a separate tmpfs
	10.33. nozswap - disable compressed swap in RAM
	10.34. xvesa - set resolution directly
	10.35. mydata - use a different name for backup
	10.36. blacklist - blacklist modules
	10.37. multivt - setup multiple consoles

	Part II. Advanced use
	Chapter 11. Remastering
	11.1. Prerequisites
	11.2. Unpacking
	11.3. Packing
	11.4. Creating an ISO image

	Chapter 12. Remastering with a separate image
	12.1. Practice image
	12.2. Booting with more than one initrd

	Chapter 13. Including extensions in the ISO
	13.1. Example: including nano

	Chapter 14. Creating a personal (data) extension
	Chapter 15. Creating an extension
	15.1. Building less
	15.2. Creating the extension directory tree
	15.3. Packing up

	Chapter 16. Extension install scripts
	16.1. Example: nano

	Chapter 17. Creating custom boot codes

	Part III. Core internals
	Chapter 18. The TCZ format
	18.1. Squashfs parameters
	18.2. What’s inside?

	Chapter 19. The boot process
	19.1. The first step: /init
	19.2. Real Boot: init
	19.3. Bootstrap: rcS
	19.4. Main boot: tc-config
	19.5. Bootsync.sh
	19.6. Bootlocal.sh
	19.7. Root’s login
	19.8. Regular user
	19.9. The X Window System
	19.10. .X.d

	Chapter 20. The tce directory structure
	20.1. Firstrun
	20.2. Onboot.lst
	20.3. Xwbar.lst
	20.4. Ondemand scripts

	Chapter 21. Accompanying extension files
	21.1. Dep files
	21.2. Info files
	21.3. List files
	21.4. Md5 files
	21.5. Tree files
	21.6. Zsync files

	Part IV. Projects
	Chapter 22. Simple Web server
	22.1. Custom CGI example

	Chapter 23. Automated network installer
	23.1. Start files
	23.2. The installer script
	23.3. Packing up & testing

	Chapter 24. Private cloud
	24.1. SSH
	24.2. HTTPD
	24.3. Connections, ports
	24.4. Security considerations
	24.5. Final result

	Chapter 25. A thin remote desktop client
	25.1. Add the rdesktop extension and dependencies to the ISO
	25.2. Make the boot wait for getting an IP address
	25.3. Fire up rdesktop when the system is up
	25.4. Result

	Chapter 26. File hosting via FTP
	26.1. Installing & configuration
	26.2. Testing
	26.3. Results

	Chapter 27. Network booting
	27.1. Selecting the base image
	27.2. Are separate extensions needed?
	27.3. Other considerations

	Chapter 28. Bringing up old hardware - common gotchas
	28.1. BIOS
	28.2. Sound
	28.3. VESA support
	28.4. Networking
	28.5. Bigger hard drives
	28.6. Memory limitations

	Chapter 29. A Web kiosk
	29.1. Selecting extensions
	29.2. Configuring Core extensions
	29.2.1. iDesk icons
	29.2.2. iDesk autoload
	29.2.3. Firefox profile
	29.2.4. Firefox autoload
	29.2.5. Configuring Firefox

	29.3. Creating our add-on
	29.3.1. Folder and file structure

	29.4. Shutdown considerations
	29.5. Results

	Index

