Gradle User Manual
Version 8.6

Version 8.6

Table of Contents

OVERVIEW
Gradle User Manual
The User Manual
RELEASES
Compatibility Matrix
The Feature Lifecycle
UPGRADING
Upgrading your build from Gradle 8.x to the latest
Upgrading your build from Gradle 7.x to 8.0
Upgrading your build from Gradle 6.x to 7.0
Upgrading your build from Gradle 5.x to 6.0
Upgrading your build from Gradle 4.x to 5.0
MIGRATING
Migrating Builds From Apache Maven
Migrating Builds From Apache Ant
GETTING STARTED
Getting Started
Installing Gradle
RUNNING GRADLE BUILDS
Command-Line Interface Reference
Gradle Wrapper Reference
Multi-Project Build Basics
Troubleshooting builds
CUSTOMIZING EXECUTION
Configuring the Build Environment
Gradle Daemon
File System Watching
Initialization Scripts
AUTHORING GRADLE BUILDS
LEARNING THE BASICS
Build Lifecycle
Gradle Directories
Using Tasks
Writing Build Scripts
Using Plugins
Working With Files
Logging
Avoiding traps

o o0 o U1 U

10

13

13

39

98
118
137
164
164
183
202
202
203
211
211
232
242
251
259
259
275
281
284
296
297
297
303
311
324
344
368
432
441

STRUCTURING INDIVIDUAL BUILDS

Structuring Projects with Gradle

Declaring Dependencies between Subprojects

Sharing Build Logic between Subprojects

Fine-Tuning the Project Layout

Configuration and Execution time
STRUCTURING SOFTWARE PRODUCTS

Structuring Large Projects

Multi-project Build Considerations and Optimizations

Composite Builds
AUTHORING SUSTAINABLE BUILDS

Organizing Gradle Projects

Best practices for authoring maintainable builds
DEVELOPING GRADLE TASKS

Authoring Tasks

Incremental build

Developing Custom Gradle Task Types

Lazy Configuration

Developing Parallel Tasks using the Worker API
DEVELOPING GRADLE PLUGINS

Developing Custom Gradle Plugins

Designing Gradle plugins

Implementing Gradle plugins

Testing Gradle plugins

Publishing Plugins to the Gradle Plugin Portal
OTHER DEVELOPING GRADLE TOPICS

Developing Custom Gradle Types

Shared Build Services

Dataflow Actions

Testing Build Logic with TestKit

Using Ant from Gradle
AUTHORING JVM BUILDS

Building Java & JVM projects

Testing in Java & JVM projects

Managing Dependencies of JVM Projects
JAVA TOOLCHAINS

Toolchains for JVM projects

Toolchain Resolver Plugins
JVM PLUGINS

The Java Library Plugin

The Application Plugin

445
445
453
459
470
470
471
471
471
471
482
482
489
501
501
536
580
615
645
660
660
682
688
714
730
740
740
750
759
763
777
795
795
824
865
870
870
890
892
892
906

The Java Platform Plugin 914

The Groovy Plugin 920
The Scala Plugin 930
WORKING WITH DEPENDENCIES 943
Dependency Management Terminology 943
LEARNINGS THE BASICS 947
Dependency Management 947
Declaring repositories 950
Declaring dependencies 990
Understanding the difference between libraries and applications 1018
View and Debug Dependencies 1019
Understanding dependency resolution 1027
Verifying dependencies 1035
DECLARING VERSIONS 1062
Declaring Versions and Ranges 1062
Declaring Rich Versions 1066
Handling versions which change over time 1069
Locking dependency versions 1081
CONTROLLING TRANSITIVES 1092
Upgrading versions of transitive dependencies 1092
Downgrading versions and excluding dependencies 1094
Sharing dependency versions between projects 1101
Aligning dependency versions 1129
Handling mutually exclusive dependencies 1138
Fixing metadata with component metadata rules 1142
Customizing resolution of a dependency directly 1172
Preventing accidental dependency upgrades 1192
PRODUCING AND CONSUMING VARIANTS OF LIBRARIES 1200
Declaring Capabilities of a Library 1200
Modeling library features 1205
Understanding variant selection 1218
Working with Variant Attributes 1237
Sharing outputs between projects 1245
Transforming dependency artifacts on resolution 1256
PUBLISHING LIBRARIES 1277
Publishing a project as module 1277
Understanding Gradle Module Metadata 1282
Signing artifacts 1287
Customizing publishing 1288
Maven Publish Plugin 1302

Ivy Publish Plugin 1324

OPTIMIZING BUILD TIMES
Improve the Performance of Gradle Builds
Configuration cache
Inspecting Gradle Builds
USING THE BUILD CACHE
Build Cache
Use cases for the build cache
Build cache performance
Important concepts
Caching Java projects
Caching Android projects
Debugging and diagnosing cache misses
Solving common problems
AUTHORING C++ /[SWIFT BUILDS
Building C++ projects
Testing in C++ projects
Building Swift projects
Testing in Swift projects
NATIVE PROJECTS USING THE SOFTWARE MODEL
Building native software
Implementing model rules in a plugin
GRADLE ON CI
Executing Gradle builds on Jenkins
Executing Gradle builds on TeamCity
Executing Gradle builds on GitHub Actions
Executing Gradle builds on Travis CI
REFERENCE
A Groovy Build Script Primer
Gradle Kotlin DSL Primer
Migrating build logic from Groovy to Kotlin
Gradle Plugin Reference
Gradle & Third-party Tools
LICENSE INFORMATION

License Information

1340
1340
1363
1411
1416
1416
1432
1434
1438
1444
1451
1453
1462
1474
1474
1484
1485
1494
1504
1504
1544
1545
1545
1548
1555
1562
1566
1566
1571
1609
1630
1633
1638
1638

OVERVIEW

Gradle User Manual

Gradle Build Tool

Gradle Build Tool is a fast, dependable, and adaptable open-source build
automation tool with an elegant and extensible declarative build language.

In this User Manual, Gradle Build Tool is abbreviated Gradle.

Why Gradle?

Gradle is a widely used and mature tool with an active community and a strong developer
ecosystem.

* Gradle is the most popular build system for the JVM and is the default system for Android and
Kotlin Multi-Platform projects. It has a rich community plugin ecosystem.

* Gradle can automate a wide range of software build scenarios using either its built-in
functionality, third-party plugins, or custom build logic.

* Gradle provides a high-level, declarative, and expressive build language that makes it easy to
read and write build logic.

» Gradle is fast, scalable, and can build projects of any size and complexity.

* Gradle produces dependable results while benefiting from optimizations such as incremental
builds, build caching, and parallel execution.

Gradle, Inc. provides a free service called Build Scan® that provides extensive information and
insights about your builds. You can view scans to identify problems or share them for debugging
help.

Supported Languages and Frameworks

Gradle supports Android, Java, Kotlin Multiplatform, Groovy, Scala, Javascript, and C/C++.

G § {0 K

Compatible IDEs

All major IDEs support Gradle, including Android Studio, Intelli] IDEA, Visual Studio Code, Eclipse,

https://en.wikipedia.org/wiki/Build_automation
https://en.wikipedia.org/wiki/Build_automation
https://scans.gradle.com/

and NetBeans.

® 8 0Sx

You can also invoke Gradle via its command-line interface (CLI) in your terminal or through your
continuous integration (CI) server.

Education
The Gradle User Manual is the official documentation for the Gradle Build Tool.

* Getting Started Tutorial — Learn Gradle basics and the benefits of building your App with
Gradle.

* Training Courses — Head over to the courses page to sign up for free Gradle training.

Support

* Forum — The fastest way to get help is through the Gradle Forum.

* Slack — Community members and core contributors answer questions directly on our Slack
Channel.

Licenses

Gradle Build Tool source code is open and licensed under the Apache License 2.0. Gradle user
manual and DSL reference manual are licensed under Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

The User Manual

Explore our guides and examples to use Gradle.

Releases

Information on Gradle releases and how to install Gradle is found on the Installation page.

Content
The Gradle User Manual is broken down into the following sections:

Running Gradle Builds

Learn Gradle basics and how to use Gradle to build your project.

Authoring Gradle Builds

Develop tasks and plugins to customize your build.

https://gradle.org/courses/
https://discuss.gradle.org/
https://gradle-community.slack.com/
https://gradle-community.slack.com/
https://github.com/gradle/gradle/blob/master/LICENSE
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Authoring JVM Builds

Use Gradle with your Java project.

Working with Dependencies

Add dependencies to your build.

Optimizing Builds

Use caches to optimize your build and understand the Gradle daemon, incremental builds and
file system watching.

Gradle on CI

Gradle integration with popular continuous integration (CI) servers.

Reference

1. Gradle’s API Javadocs
2. Gradle’s Groovy DSL
3. Gradle’s Kotlin DSL

4. Gradle’s Core Plugins

https://docs.gradle.org/8.6/javadoc/index.html
https://docs.gradle.org/8.6/dsl/index.html
https://docs.gradle.org/8.6/kotlin-dsl/index.html

RELEASES

Compatibility Matrix

The sections below describe Gradle’s compatibility with several integrations. Versions not listed
here may or may not work.

Java

A Java version between 8 and 21 is required to execute Gradle. Java 22 and later versions are not
yet supported.

Java 6 and 7 can be used for compilation but are deprecated for use with testing. Testing with Java 6
and 7 will not be supported in Gradle 9.0.

Any fully supported version of Java can be used for compilation or testing. However, the latest Java
version may only be supported for compilation or testing, not for running Gradle. Support is
achieved using toolchains and applies to all tasks supporting toolchains.

See the table below for the Java version supported by a specific Gradle release:

Table 1. Java Compatibility

Java version Support for Support for running Gradle
compiling/testing/...
8 N/A 2.0
9 N/A 4.3
10 N/A 4.7
11 N/A 5.0
12 N/A 5.4
13 N/A 6.0
14 N/A 6.3
15 6.7 6.7
16 7.0 7.0
17 7.3 7.3
18 7.5 7.5
19 7.6 7.6
20 8.1 8.3
21 8.4 8.5
Kotlin

Gradle is tested with Kotlin 1.6.10 through 2.0.0-Beta2. Beta and RC versions may or may not work.

Table 2. Embedded Kotlin version

Gradle version Embedded Kotlin version Kotlin Language version
5.0 1.3.10 1.3
5.1 1.3.11 1.3
5.2 1.3.20 1.3
5.3 1.3.21 1.3
5.5 1.3.31 1.3
5.6 1.3.41 1.3
6.0 1.3.50 1.3
6.1 1.3.61 1.3
6.3 1.3.70 1.3
6.4 1.3.71 1.3
6.5 1.3.72 1.3
6.8 1.4.20 1.3
7.0 1.4.31 14
7.2 1.5.21 14
7.3 1.5.31 14
7.5 1.6.21 14
7.6 1.7.10 14
8.0 1.8.10 1.8
8.2 1.8.20 1.8
8.3 1.9.0 1.8
8.4 1.9.10 1.8
8.5 1.9.20 1.8
Groovy

Gradle is tested with Groovy 1.5.8 through 4.0.0.

Gradle plugins written in Groovy must use Groovy 3.x for compatibility with Gradle and Groovy
DSL build scripts.

Android

Gradle is tested with Android Gradle Plugin 7.3 through 8.2. Alpha and beta versions may or may
not work.

The Feature Lifecycle

Gradle is under constant development. New versions are delivered on a regular and frequent basis
(approximately every six weeks) as described in the section on end-of-life support.

Continuous improvement combined with frequent delivery allows new features to be available to
users early. Early users provide invaluable feedback, which is incorporated into the development
process.

Getting new functionality into the hands of users regularly is a core value of the Gradle platform.

At the same time, API and feature stability are taken very seriously and considered a core value of
the Gradle platform. Design choices and automated testing are engineered into the development
process and formalized by the section on backward compatibility.

The Gradle feature lifecycle has been designed to meet these goals. It also communicates to users of
Gradle what the state of a feature is. The term feature typically means an API or DSL method or
property in this context, but it is not restricted to this definition. Command line arguments and
modes of execution (e.g. the Build Daemon) are two examples of other features.

Feature States
Features can be in one of four states:

1. Internal
2. Incubating
3. Public

4. Deprecated

1. Internal

Internal features are not designed for public use and are only intended to be used by Gradle itself.
They can change in any way at any point in time without any notice. Therefore, we recommend
avoiding the use of such features. Internal features are not documented. If it appears in this User
Manual, the DSL Reference, or the API Reference, then the feature is not internal.

Internal features may evolve into public features.

2. Incubating

Features are introduced in the incubating state to allow real-world feedback to be incorporated into
the feature before making it public. It also gives users willing to test potential future changes early
access.

A feature in an incubating state may change in future Gradle versions until it is no longer
incubating. Changes to incubating features for a Gradle release will be highlighted in the release
notes for that release. The incubation period for new features varies depending on the feature’s
scope, complexity, and nature.

Features in incubation are indicated. In the source code, all methods/properties/classes that are
incubating are annotated with incubating. This results in a special mark for them in the DSL and
API references.

If an incubating feature is discussed in this User Manual, it will be explicitly said to be in the
incubating state.

Feature Preview API

The feature preview API allows certain incubating features to be activated by adding
enableFeaturePreview('FEATURE') in your settings file. Individual preview features will be
announced in release notes.

When incubating features are either promoted to public or removed, the feature preview flags for
them become obsolete, have no effect, and should be removed from the settings file.

3. Public

The default state for a non-internal feature is public. Anything documented in the User Manual, DSL
Reference, or API reference that is not explicitly said to be incubating or deprecated is considered
public. Features are said to be promoted from an incubating state to public. The release notes for
each release indicate which previously incubating features are being promoted by the release.

A public feature will never be removed or intentionally changed without undergoing deprecation.
All public features are subject to the backward compatibility policy.

4. Deprecated

Some features may be replaced or become irrelevant due to the natural evolution of Gradle. Such
features will eventually be removed from Gradle after being deprecated. A deprecated feature may
become stale until it is finally removed according to the backward compatibility policy.

Deprecated features are indicated to be so. In the source code, all methods/properties/classes that
are deprecated are annotated with “@java.lang.Deprecated” which is reflected in the DSL and API
References. In most cases, there is a replacement for the deprecated element, which will be
described in the documentation. Using a deprecated feature will result in a runtime warning in
Gradle’s output.

The use of deprecated features should be avoided. The release notes for each release indicate any
features being deprecated by the release.

Backward compatibility policy

Gradle provides backward compatibility across major versions (e.g., 1.x, 2.x, etc.). Once a public
feature is introduced in a Gradle release, it will remain indefinitely unless deprecated. Once
deprecated, it may be removed in the next major release. Deprecated features may be supported
across major releases, but this is not guaranteed.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/Incubating.html

Release end-of-life Policy
Every day, a new nightly build of Gradle is created.

This contains all of the changes made through Gradle’s extensive continuous integration tests
during that day. Nightly builds may contain new changes that may or may not be stable.

The Gradle team creates a pre-release distribution called a release candidate (RC) for each minor or
major release. When no problems are found after a short time (usually a week), the release
candidate is promoted to a general availability (GA) release. If a regression is found in the release
candidate, a new RC distribution is created, and the process repeats. Release candidates are
supported for as long as the release window is open, but they are not intended to be used for
production. Bug reports are greatly appreciated during the RC phase.

The Gradle team may create additional patch releases to replace the final release due to critical bug
fixes or regressions. For instance, Gradle 5.2.1 replaces the Gradle 5.2 release.

Once a release candidate has been made, all feature development moves on to the next release for
the latest major version. As such, each minor Gradle release causes the previous minor releases in
the same major version to become end-of-life (EOL). EOL releases do not receive bug fixes or
feature backports.

For major versions, Gradle will backport critical fixes and security fixes to the last minor in the
previous major version. For example, when Gradle 7 was the latest major version, several releases
were made in the 6.x line, including Gradle 6.9 (and subsequent releases).

As such, each major Gradle release causes:

* The previous major version becomes maintenance only. It will only receive critical bug fixes
and security fixes.

* The major version before the previous one to become end-of-life (EOL), and that release line
will not receive any new fixes.

UPGRADING

Upgrading your build from Gradle 8.x to the latest

This chapter provides the information you need to migrate your Gradle 8.x builds to the latest
Gradle release. For migrating from Gradle 4.x, 5., 6.X, or 7.%, see the older migration guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

(% Gradle Enterprise

= Summary

[Console log
Timeline

Wk Performance
Tests

s Projects

$2 Dependencies
22 Build dependencies
B Plugins

5 Custom values
8 switches
Infrastructure

“D See before and after

& Compare build scan

€ gradle clean kotlin-dsl-tooling-builders:platforniTest Dec 23, 2020 7:38:27 PM ES §= Buidsans | @O @

Using i istry to detect Java i ions has been
This is scheduled to be removed in Gradle 7.0.
/a Toolchains instead

10t

The KotlinDsIPluginOptions.experimentalWarning property has been deprecated.
This is scheduled to be removed in Gradle 8.0.
2 usages >

This is so you can see any deprecation warnings that apply to your build.

Alternatively, you can run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of

the APIL

3. Run gradle wrapper --gradle-version 8.6 to update the project to 8.6.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

Upgrading from 8.5 and earlier

Potential breaking changes

https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

Upgrade to JaCoCo 0.8.11

JaCoCo has been updated to 0.8.11.

DependencyAdder renamed to DependencyCollector

The incubating DependencyAdder interface has been renamed to DependencyCollector. A
getDependencies method has been added to the interface that returns all declared dependencies.

Deprecations

Deprecated calling registerFeature using the main source set

Calling registerfFeature on the java extension using the main source set is deprecated and will
change behavior in Gradle 9.0.

Currently, features created while calling usingSourceSet with the main source set are initialized
differently than features created while calling usingSourceSet with any other source set. Previously,
when using the main source set, new implementation, compileOnly, runtimeOnly, api, and
compileOnlyApi configurations were created, and the compile and runtime classpaths of the main
source set were configured to extend these configurations.

Starting in Gradle 9.0, the main source set will be treated like any other source set. With the java-
library plugin applied (or any other plugin that applies the java plugin), calling usingSourceSet with
the main source set will throw an exception. This is because the java plugin already configures a
main feature. Only if the java plugin is not applied will the main source set be permitted when
calling usingSourceSet.

Code that currently registers features with the main source set, like so:

https://www.jacoco.org/jacoco/trunk/doc/changes.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/dsl/DependencyCollector.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/JavaPluginExtension.html#registerFeature-java.lang.String-org.gradle.api.Action-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/JavaPluginExtension.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/FeatureSpec.html#usingSourceSet-org.gradle.api.tasks.SourceSet-

build.gradle.kts

plugins {
id("java-library")
}

java {
registerFeature("feature") {
usingSourceSet(sourceSets["main"])

}

build.gradle

plugins {
id("java-library")
}

java {
registerFeature("feature") {
usingSourceSet(sourceSets.main)

}

Should instead create a separate source set for the feature, and register the feature with that source
set:

build.gradle.kts

plugins {
id("java-library")
}

sourceSets {
create("feature")

java {
registerFeature("feature") {
usingSourceSet(sourceSets["feature"])

}

build.gradle

plugins {
id("java-library")
¥

sourceSets {
feature

java {
registerFeature("feature") {
usingSourceSet(sourceSets.feature)

}

Deprecated publishing artifact dependencies with explicit name to Maven repositories

Publishing dependencies with an explicit artifact with a name different from the dependency’s
artifactld to Maven repositories has been deprecated. This behavior is still permitted when
publishing to Ivy repositories. It will result in an error in Gradle 9.0.

Currently, when publishing to Maven repositories, Gradle will interpret the dependency below as if
it were declared with coordinates org:notfoo:1.0.

build.gradle.kts

dependencies {
implementation("org:foo0:1.0") {
artifact {
name = "notfoo"

}

build.gradle

dependencies {
implementation("org:foo0:1.0") {
artifact {
name = "notfoo"

}

Instead, this dependency should be declared as:

build.gradle.kts

dependencies {
implementation("org:notfoo:1.0")

}

build.gradle

dependencies {
implementation("org:notfoo:1.0")

}

Deprecated ArtifactIdentifier

The ArtifactIdentifier class has been deprecated for removal in Gradle 9.0.

Deprecate mutating DependencyCollector dependencies after observation

Starting in Gradle 9.0, mutating dependencies sourced from a DependencyCollector after those
dependencies have been observed will result in an error. The DependencyCollector interface is used
to declare dependencies within the test suites DSL.

Consider the following example where a test suite’s dependency is mutated after it is observed:

build.gradle.kts

plugins {
id("java-library")
}

testing.suites {
named<JvmTestSuite>("test") {
dependencies {
// Dependency is declared on a ‘DependencyCollector’
implementation("com:foo")

configurations.testImplementation {
// Calling ‘all‘ here realizes/observes all lazy sources, including the
‘DependencyCollector’®
// from the test suite block. Operations like resolving a configuration
similarly realize lazy sources.
dependencies.all {
if (this is ExternalDependency &% group == "com" && name == "foo" &&
version == null) {
// Dependency is mutated after observation
version {
require("2.0")

In the above example, the build logic uses iteration and mutation to try to set a default version for a
particular dependency if the version is not already set. Build logic like the above example creates
challenges in resolving declared dependencies, as reporting tools will display this dependency as if
the user declared the version as "2.0", even though they never did. Instead, the build logic can avoid
iteration and mutation by declaring a preferred version constraint on the dependency’s
coordinates. This allows the dependency management engine to use the version declared on the
constraint if no other version is declared.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/dsl/DependencyCollector.html

Consider the following example that replaces the above iteration with an indiscriminate preferred
version constraint:

build.gradle.kts

dependencies {
constraints {
testImplementation("com:foo") {
version {
prefer("2.0")

Upgrading from 8.4 and earlier

Potential breaking changes

Upgrade to Kotlin 1.9.20

The embedded Kotlin has been updated to Kotlin 1.9.20.

Changes to Groovy task conventions

The groovy-base plugin is now responsible for configuring source and target compatibility version
conventions on all GroovyCompile tasks.

If you are using this task without applying grooy-base, you will have to manually set compatibility
versions on these tasks. In general, the groovy-base plugin should be applied whenever working
with Groovy language tasks.

Provider.filter

The type of the argument passed to Provider.filter is changed from Predicate to Spec for a more
consistent API. This change should not affect anyone using Provider.filter with a lambda
expression. However, this might affect plugin authors if they don’t use SAM conversions to create a
lambda.

Deprecations

Deprecated members of the org.gradle.util package now report their deprecation

These members will be removed in Gradle 9.0:

 VersionNumber.parse(String)

 VersionNumber.compareTo(VersionNumber)

https://github.com/JetBrains/kotlin/releases/tag/v1.9.20

Deprecated depending on resolved configuration

When resolving a Configuration, it is sometimes possible to select that same configuration as a
variant. Configurations should be used for one purpose (resolution, consumption or dependency
declarations), so this can only occur when a configuration is marked as both consumable and
resolvable.

This can lead to confusing circular dependency graphs, as the configuration being resolved is used
for two different purposes.

To avoid this problem, plugins should mark all resolvable configurations as canBeConsumed=false or
use the resolvable(String) configuration factory method when creating configurations meant for
resolution.

In Gradle 9.0, consuming configurations in this manner will no longer be allowed and will result in
an error.

Including projects without an existing directory

Gradle will warn if a project is added to the build where the associated projectDir does not exist or
is not writable. Starting with version 9.0, Gradle will not run builds if a project directory is missing
or read-only. If you intend to dynamically synthesize projects make sure to create directories for
them as well:

settings.gradle.kts

include("project-without-directory")
project(":project-without-directory").projectDir.mkdirs()

settings.gradle

include 'project-without-directory'
project(":project-without-directory").projectDir.mkdirs()

Upgrading from 8.3 and earlier

Potential breaking changes
Upgrade to Kotlin 1.9.10

The embedded Kotlin has been updated to Kotlin 1.9.10.

XML parsing now requires recent parsers

Gradle 8.4 now configures XML parsers with security features enabled. If your build logic has

https://github.com/JetBrains/kotlin/releases/tag/v1.9.10

dependencies on old XML parsers that don’t support secure parsing, your build may now fail. If you
encounter a failure, check and update or remove any dependency on legacy XML parsers.

If you are unable to upgrade XML parsers coming from your build logic dependencies, you can
force the use of the XML parsers built into the JVM. For example, in Open]DK this can be done by
adding the following to gradle.properties:

systemProp.javax.xml.parsers.SAXParserFactory=com.sun.org.apache.xerces.internal.jaxp.
SAXParserFactoryImpl
systemProp.javax.xml.transform.TransformerFactory=com.sun.org.apache.xalan.internal.xs
ltc.trax.TransformerFactoryImpl
systemProp.javax.xml.parsers.DocumentBuilderFactory=com.sun.org.apache.xerces.internal
.jaxp.DocumentBuilderFactoryImpl

See the CVE-2023-42445 advisory for more details and ways to enable secure XML processing on
previous Gradle versions.

EAR plugin with customized JEE 1.3 descriptor

Gradle 8.4 forbids external XML entities when parsing XML documents. If you use the EAR plugin
and configure the application.xml descriptor via the EAR plugin’s DSL and customize the descriptor
using withXml {} and use asElement{} in the customization block, then the build will now fail for
security reasons.

https://github.com/gradle/gradle/security/advisories/GHSA-mrff-q8qj-xvg8

build.gradle.kts

plugins {
id("ear")
}
ear {
deploymentDescriptor {
version = "1.3"

withXml {
asElement()
}
}
}
build.gradle
plugins {
id("ear")
}
ear {
deploymentDescriptor {
version = "1.3"
withXml {
asElement()
}
}
}

If you happen to use asNode() instead of asElement() then nothing changes given asNode() simply
ignores external DTDs.

You can work around this by running your build with the javax.xml.accessExternalDTD system
property set to http.

On the command line, add this to your Gradle invocation:

-Djavax.xml.accessExternalDTD=http

To make this workaround persistent, add the following line to your gradle.properties:

systemProp.javax.xml.accessExternalDTD=http

Note that this will enable HTTP access to external DTDs for the whole build JVM. See the JAXP

https://docs.oracle.com/en/java/javase/13/security/java-api-xml-processing-jaxp-security-guide.html#GUID-8CD65EF5-D113-4D5C-A564-B875C8625FAC

documentation for more details.

Deprecations

Deprecated GeneratelMavenPom methods

The following methods on GenerateMavenPom are deprecated and will be removed in Gradle 9.0. They
were never intended to be public APL

» getVersionRangeMapper
» withCompileScopeAttributes

* withRuntimeScopeAttributes

Upgrading from 8.2 and earlier

Potential breaking changes

Deprecated Project.buildDir can cause script compilation failure

With the deprecation of Project.buildDir, buildscripts that are compiled with warnings as errors
could fail if the deprecated field is used.

See the deprecation entry for details.

TestLauncher API no longer ignores build failures

The TestlLauncher interface is part of the Tooling API, specialized for running tests. It is a logical
extension of the BuildLauncher that can only launch tasks. A discrepancy has been reported in their
behavior: if the same failing test is executed, BuildLauncher will report a build failure but
TestlLauncher won’t. Originally, this was a design decision in order to continue the execution and
run the tests in all test tasks and not stop at the first failure. At the same time, this behavior can be
confusing for users as they can experience a failing test in a successful build. To make the two APIs
more uniform, we made TestlLauncher also fail the build, which is a potential breaking change. To
continue the test execution even if a test task failed, Tooling API clients should explicitly pass
--continue to the build.

Fixed variant selection behavior with ArtifactView and ArtifactCollection

The dependency resolution APIs for selecting different artifacts or files
(Configuration.getIncoming().artifactView { } and Configuration.getIncoming().getArtifacts())
captured immutable copies of the underlying °Configuration’s attributes to use for variant
selection. If the "Configuration’s attributes were changed after these methods were called, the
artifacts selected by these methods could be unexpected.

Consider the case where the set of attributes on a Configuration is changed after an ArtifactView is
created.

https://docs.oracle.com/en/java/javase/13/security/java-api-xml-processing-jaxp-security-guide.html#GUID-8CD65EF5-D113-4D5C-A564-B875C8625FAC
https://docs.gradle.org/8.6/javadoc/org/gradle/api/publish/maven/tasks/GenerateMavenPom.html

build.gradle.kts

tasks {
myTask {
inputFiles.from(configurations.classpath.incoming.artifactView {
attributes {
// Add attributes to select a different type of artifact
}
}.files)
}
}

configurations {
classpath {
attributes {
// Add more attributes to the configuration

The inputFiles property of myTask uses an artifact view to select a different type of artifact from the
configuration classpath. Since the artifact view was created before the attributes were added to the
configuration, Gradle was not able to select the correct artifact.

Some builds may have worked around this by also putting the additional attributes into the artifact
view. This is no longer necessary.

Upgrade to Kotlin 1.9.0

The embedded Kotlin has been updated from 1.8.20 to Kotlin 1.9.0. The Kotlin language and API
levels for the Kotlin DSL are still set to 1.8 for backwards compatibility. See the release notes for
Kotlin 1.8.22 and Kotlin 1.8.21.

Kotlin 1.9 dropped support for Kotlin language and API level 1.3. If you build Gradle plugins written
in Kotlin with this version of Gradle and need to support Gradle <7.0 you need to stick to using the
Kotlin Gradle Plugin <1.9.0 and configure the Kotlin language and API levels to 1.3. See the
Compatibility Matrix for details about other versions.

Eager evaluation of Configuration attributes

Gradle 8.3 updates the org.gradle.libraryelements and org.gradle.jvm.version attributes of JVM
Configurations to be present at the time of creation, as opposed to previously, where they were only
present after the Configuration had been resolved or consumed. In particular, the value for
org.gradle.jvm.version relies on the project’s configured toolchain, meaning that querying the
value for this attribute will finalize the value of the project’s Java toolchain.

Plugins or build logic that eagerly queries the attributes of JVM configurations may now cause the

https://github.com/JetBrains/kotlin/releases/tag/v1.9.0
https://github.com/JetBrains/kotlin/releases/tag/v1.8.22
https://github.com/JetBrains/kotlin/releases/tag/v1.8.21

project’s Java toolchain to be finalized earlier than before. Attempting to modify the toolchain after
it has been finalized will result in error messages similar to the following:

The value for property 'implementation' is final and cannot be changed any further.
The value for property 'languageVersion' is final and cannot be changed any further.
The value for property 'vendor' is final and cannot be changed any further.

This situation may arise when plugins or build logic eagerly queries an existing JVM Configuration’s
attributes to create a new Configuration with the same attributes. Previously, this logic would have
omitted the two above noted attributes entirely, while now the same logic will copy the attributes
and finalize the project’s Java toolchain. To avoid early toolchain finalization, attribute-copying
logic should be updated to query the source Configuration’s attributes lazily:

build.gradle.kts

fun <T> copyAttribute(attribute: Attribute<T>, from: AttributeContainer, to:
AttributeContainer) =

to.attributeProvider<T>(attribute, provider {
from.getAttribute(attribute)!! })

val source = configurations["runtimeClasspath"].attributes
configurations {
create("customRuntimeClasspath") {
source.keySet().forEach { key ->
copyAttribute(key, source, attributes)
}

build.gradle

def source = confiqurations.runtimeClasspath.attributes
configurations {
customRuntimeClasspath {
source.keySet().each { key ->
attributes.attributeProvider(key, provider { source.getAttribute
(key) })
}
}

Deprecations

Deprecated Project.buildDir is to be replaced by Project.layout.buildDirectory

The Project.buildDir property is deprecated. It uses eager APIs and has ordering issues if the value
is read in build logic and then later modified. It could result in outputs ending up in different
locations.

It is replaced by a DirectoryProperty found at Project.layout.buildDirectory. See the ProjectlLayout
interface for details.

Note that, at this stage, Gradle will not print deprecation warnings if you still use Project.buildDir.
We know this is a big change and want to give time for authors of major plugins to move away from
its usage first.

The switch from a File to a DirectoryProperty requires adaptations in build logic. The main impact
is that you cannot use the property inside a String to expand it. Instead, you should leverage the dir
and file methods to compute the location you want.

Here is an example for creating a file, where the following:

build.gradle.kts

// Returns a java.io.File
file("$buildDir/myOutput.txt")

build.gradle

// Returns a java.io.File
file("$buildDir/myOQutput.txt")

should be replaced by:

https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/DirectoryProperty.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.file.ProjectLayout.html

build.gradle.kts
// Compatible with a number of Gradle lazy APIs that accept also java.io.File
val output: Provider<RegularFile> =

layout.buildDirectory.file("myOutput.txt")

// If you really need the java.io.File for a non lazy API
output.get().asFile

// 0Or a path for a lazy String based API
output.map { it.asFile.path }

build.gradle

// Compatible with a number of Gradle lazy APIs that accept also java.io.File
Provider<ReqularFile> output = layout.buildDirectory.file("myOutput.txt")

// 1f you really need the java.io.File for a non lazy API
output.get().asFile

// Or a path for a lazy String based API
output.map { it.asFile.path }

Here is another example for creating a directory, where the following:

build.gradle.kts

// Returns a java.io.File
file("$buildDir/outputLocation")

build.gradle

// Returns a java.io.File
file("$buildDir/outputlLocation")

should be replaced by:

build.gradle.kts

// Compatible with a number of Gradle APIs that accept a java.io.File
val output: Provider<Directory> = layout.buildDirectory.dir("outputLocation")

// If you really need the java.io.File for a non lazy API
output.get().asFile

// Or a path for a lazy String based API
output.map { it.asFile.path }

build.gradle

// Compatible with a number of Gradle APIs that accept a java.io.File
Provider<Directory> output = layout.buildDirectory.dir("outputLocation")

// If you really need the java.io.File for a non lazy API
output.get().asFile

// Or a path for a lazy String based API
output.map { it.asFile.path }

Deprecated ClientModule dependencies

(lientModule dependencies are deprecated and will be removed in Gradle 9.0.

Client module dependencies were originally intended to allow builds to override incorrect or
missing component metadata of external dependencies by defining the metadata locally. This
functionality has since been replaced by Component Metadata Rules.

Consider the following client module dependency example:

https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/ClientModule.html

build.gradle.kts

dependencies {
implementation(module("org:fo0:1.0") {
dependency("org:bar:1.0")
module("org:baz:1.0") {
dependency("com:example:1.0")
}
b

build.gradle

dependencies {
implementation module("org:fo0:1.0") {
dependency "org:bar:1.0"
module("org:baz:1.0") {
dependency "com:example:1.0"

}

This can be replaced with the following component metadata rule:

build-logic/src/main/kotlin/my-plugin.gradle.kts

@CacheableRule
abstract class AddDependenciesRule @Inject constructor(val dependencies:
List<String>) : ComponentMetadataRule {
override fun execute(context: ComponentMetadataContext) {
listOf("compile”, "runtime").forEach { base ->
context.details.withVariant(base) {
withDependencies {
dependencies.forEach {
add(it)
}

build.gradle.kts

dependencies {
components {
withModule<AddDependenciesRule>("org:foo") {

params(1istOf(
"org:bar:1.0",
"org:baz:1.0"
)

}
withModule<AddDependenciesRule>("org:baz") {
params(1istOf("com:example:1.0"))
}
}

implementation("org:fo0:1.0")

build-logic/src/main/groovy/my-plugin.gradle

abstract class AddDependenciesRule implements ComponentMetadataRule {

List<String> dependencies

AddDependenciesRule(List<String> dependencies) {
this.dependencies = dependencies

}

void execute(ComponentMetadataContext context) {
["compile”, "runtime"].each { base ->
context.details.withVariant(base) {
withDependencies {
dependencies.each {
add(it)
}

build.gradle

dependencies {
components {
withModule("org:foo", AddDependenciesRule) {

params([
"org:bar:1.0",
"org:baz:1.0"
D)

}
withModule("org:baz", AddDependenciesRule) {
params(["com:example:1.0"])
}
}

implementation "org:foo:1.0"

Earliest supported Develocity plugin version is 3.13.1

Starting in Gradle 9.0, the earliest supported Develocity plugin version is 3.13.1. The plugin versions

from 3.0 up to 3.13 will be ignored when applied.

Upgrade to version 3.13.1 or later of the Develocity plugin. You can find the latest available version
on the Gradle Plugin Portal. More information on the compatibility can be found here.

Upgrading from 8.1 and earlier

Potential breaking changes

Upgrade to Kotlin 1.8.20

The embedded Kotlin has been updated to Kotlin 1.8.20. For more information, see What’s new in
Kotlin 1.8.20.

Note that there is a known issue with Kotlin compilation avoidance that can cause OutOfMemory
exceptions in compileKotlin tasks if the compilation classpath contains very large JAR files. This
applies to builds applying the Kotlin plugin v1.8.20 or the kotlin-ds1 plugin.

You can work around it by disabling Kotlin compilation avoidance in your gradle.properties file:
kotlin.incremental.useClasspathSnapshot=false

See KT-57757 for more information.
Upgrade to Groovy 3.0.17
Groovy has been updated to Groovy 3.0.17.

Since the previous version was 3.0.15, the 3.0.16 changes are also included.

Upgrade to Ant 1.10.13

Ant has been updated to Ant 1.10.13.

Since the previous version was 1.10.11, the 1.10.12 changes are also included.

Upgrade to CodeNarc 3.2.0

The default version of CodeNarc has been updated to CodeNarc 3.2.0.

Upgrade to PMD 6.55.0

PMD has been updated to PMD 6.55.0.

Since the previous version was 6.48.0, all changes since then are included.

Upgrade to JaCoCo 0.8.9

JaCoCo has been updated to 0.8.9.

https://plugins.gradle.org/plugin/com.gradle.enterprise
https://plugins.gradle.org/plugin/com.gradle.enterprise
https://docs.gradle.com/enterprise/compatibility/#build_scans
https://github.com/JetBrains/kotlin/releases/tag/v1.8.20
https://kotlinlang.org/docs/whatsnew1820.html
https://kotlinlang.org/docs/whatsnew1820.html
https://youtrack.jetbrains.com/issue/KT-57757/
https://groovy-lang.org/changelogs/changelog-3.0.17.html
https://groovy-lang.org/changelogs/changelog-3.0.16.html
https://github.com/apache/ant/blob/rel/1.10.13/WHATSNEW
https://github.com/apache/ant/blob/rel/1.10.12/WHATSNEW
https://github.com/CodeNarc/CodeNarc/blob/v3.2.0/CHANGELOG.md#version-320----jan-2023
https://docs.pmd-code.org/pmd-doc-6.55.0/pmd_release_notes.html
https://www.jacoco.org/jacoco/trunk/doc/changes.html

Plugin compatibility changes

A plugin compiled with Gradle >= 8.2 that makes use of the Kotlin DSL functions Project.the<T>(),
Project.the(KClass) or Project.configure<T> {} cannot run on Gradle < 6.1.

Deferred or avoided configuration of some tasks

When performing dependency resolution, Gradle creates an internal representation of the
available Configurations. This requires inspecting all configurations and artifacts. Processing
artifacts created by tasks causes those tasks to be realized and configured.

This internal representation is now created more lazily, which can change the order in which tasks
are configured. Some tasks may never be configured.

This change may cause code paths that relied on a particular order to no longer function, such as
conditionally adding attributes to a configuration based on the presence of certain attributes.

This impacted the bnd plugin and JUnit5 build.

We recommend not modifying domain objects (configurations, source sets, tasks, etc) from
configuration blocks for other domain objects that may not be configured.

For example, avoid doing something like this:

configurations {
val myConfig = create("myConfig")
}

tasks.register("myTask") {
// This is not safe, as the execution of this block may not occur, or may
not occur in the order expected
configurations["myConfig"].attributes {
attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage::class.java,
Usage.JAVA_RUNTIME))

}
}

Deprecations

CompileOptions method deprecations
The following methods on CompileOptions are deprecated:
» getAnnotationProcessorGeneratedSourcesDirectory()

 setAnnotationProcessorGeneratedSourcesDirectory(File)

» setAnnotationProcessorGeneratedSourcesDirectory(Provider<File>)

Current usages of these methods should migrate to DirectoryProperty
getGeneratedSourceOutputDirectory()

https://docs.gradle.org/8.6/kotlin-dsl/gradle/org.gradle.kotlin.dsl/the.html
https://docs.gradle.org/8.6/kotlin-dsl/gradle/org.gradle.kotlin.dsl/the.html
https://docs.gradle.org/8.6/kotlin-dsl/gradle/org.gradle.kotlin.dsl/configure.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/Configuration.html
https://github.com/bndtools/bnd/issues/5695
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/compile/CompileOptions.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/compile/CompileOptions.html#getGeneratedSourceOutputDirectory--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/compile/CompileOptions.html#getGeneratedSourceOutputDirectory--

Using configurations incorrectly

Gradle will now warn at runtime when methods of Configuration are called inconsistently with the
configuration’s intended usage.

This change is part of a larger ongoing effort to make the intended behavior of configurations more
consistent and predictable, and to unlock further speed and memory improvements.

Currently, the following methods should only be called with these listed allowed usages:

* resolve() - RESOLVABLE configurations only

* files(Closure), files(Spec), files(Dependency:--), fileCollection(Spec), fileCollection(Closure),
fileCollection(Dependency:--) - RESOLVABLE configurations only

» getResolvedConfigurations() - RESOLVABLE configurations only

» defaultDependencies(Action) - DECLARABLE configurations only

* shouldResolveConsistentlyWith(Configuration) - RESOLVABLE configurations only

» disableConsistentResolution() - RESOLVABLE configurations only

» getDependencyConstraints() - DECLARABLE configurations only

* copy(), copy(Spec), copy(Closure), copyRecursive(), copyRecursive(Spec), copyRecursive(Closure) -

RESOLVABLE configurations only

Intended usage is noted in the Configuration interface’s Javadoc. This list is likely to grow in future
releases.

Starting in Gradle 9.0, using a configuration inconsistently with its intended usage will be
prohibited.

Also note that although it is not currently restricted, the getDependencies() method is really only
intended for use with DECLARABLE configurations. The getAllDependencies() method, which
retrieves all declared dependencies on a configuration and any superconfigurations, will not be
restricted to any particular usage.

Deprecated access to plugin conventions

The concept of conventions is outdated and superseded by extensions to provide custom DSLs.
To reflect this in the Gradle API, the following elements are deprecated:

» org.gradle.api.Project.getConvention()
* org.gradle.api.plugins.Convention
* org.gradle.api.internal.HasConvention

Gradle Core plugins still register their conventions in addition to their extensions for backwards
compatibility.

It is deprecated to access any of these conventions and their properties. Doing so will now emit a
deprecation warning. This will become an error in Gradle 9.0. You should prefer accessing the
extensions and their properties instead.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/Configuration.html--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/Project.html#getConvention--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/Convention.html

For specific examples see the next sections.

Prominent community plugins already migrated to using extensions to provide custom DSLs. Some
of them still registers conventions for backwards compatibility. Registering conventions does not
emit a deprecation warning yet to provide a migration window. Future Gradle versions will do.

Also note that Plugins compiled with Gradle « 8.1 that make use of the Kotlin DSL functions
Project.the<T>(), Project.the(KClass) or Project.configure<T> {} will emit a deprecation warning
when run on Gradle >= 8.2. To fix this these plugins should be recompiled with Gradle >= 8.2 or
changed to access extensions directly using extensions.getByType<T>() instead.

Deprecated base plugin conventions

The convention properties contributed by the base plugin have been deprecated and scheduled for
removal in Gradle 9.0. For the wider context see the section about plugin convention deprecation.

The conventions are replaced by the base { } configuration block backed by BasePluginExtension.
The old convention object defines the distsDirName, 1ibsDirName and archivesBaseName properties
with simple getter and setter methods. Those methods are available in the extension only to
maintain backwards compatibility. Build scripts should solely use the properties of type Property:

build.gradle.kts

plugins {
base

}

base {
archivesName.set("gradle")
distsDirectory.set(layout.buildDirectory.dir("custom-dist"))
libsDirectory.set(layout.buildDirectory.dir("custom-1ibs"))

build.gradle

plugins {
id 'base'

}

base {
archivesName = "gradle"
distsDirectory = layout.buildDirectory.dir('custom-dist")
libsDirectory = layout.buildDirectory.dir('custom-1ibs")

https://docs.gradle.org/8.6/kotlin-dsl/gradle/org.gradle.kotlin.dsl/the.html
https://docs.gradle.org/8.6/kotlin-dsl/gradle/org.gradle.kotlin.dsl/the.html
https://docs.gradle.org/8.6/kotlin-dsl/gradle/org.gradle.kotlin.dsl/configure.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.plugins.BasePluginExtension.html

Deprecated application plugin conventions

The convention properties contributed by the application plugin have been deprecated and
scheduled for removal in Gradle 9.0. For the wider context see the section about plugin convention
deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts

plugins {
application

}

applicationDefaultJvmArgs = 1istOf("-Dgreeting.lanquage=en") // Accessing a
convention

build.gradle

plugins {
id 'application’

}

applicationDefaultJvmArgs = ['-Dgreeting.language=en'] // Accessing a
convention

This should be changed to use the application { } configuration block, backed by JavaApplication,
instead:

https://docs.gradle.org/8.6/dsl/org.gradle.api.plugins.JavaApplication.html

build.gradle.kts

plugins {
application

}

application {
applicationDefaultJvmArgs = 1istOf("-Dgreeting.language=en")
¥

build.gradle

plugins {
id 'application’

}

application {
applicationDefaultJvmArgs = ['-Dgreeting.language=en']
}

Deprecated java plugin conventions

The convention properties contributed by the java plugin have been deprecated and scheduled for
removal in Gradle 9.0. For the wider context see the section about plugin convention deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts
plugins {

id("java")
}

configure<JavaPluginConvention> { // Accessing a convention
sourceCompatibility = JavaVersion.VERSION_18
¥

build.gradle
plugins {

id 'java'

}

sourceCompatibility = 18 // Accessing a convention

This should be changed to use the java { } configuration block, backed by JavaPluginExtension,
instead:

https://docs.gradle.org/8.6/dsl/org.gradle.api.plugins.JavaPluginExtension.html

build.gradle.kts

plugins {
id("java")
+

java {
sourceCompatibility = JavaVersion.VERSION_18
b

build.gradle

plugins {
id 'java'

}

java {
sourceCompatibility = JavaVersion.VERSION_18
}

Deprecated war plugin conventions

The convention properties contributed by the war plugin have been deprecated and scheduled for
removal in Gradle 9.0. For the wider context see the section about plugin convention deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts
plugins {
id("war")

}

configure<WarPluginConvention> { // Accessing a convention
webAppDirName = "src/main/webapp”

}

build.gradle
plugins {
id 'war'

}

webAppDirName = 'src/main/webapp' // Accessing a convention

Clients should configure the war task directly. Also, tasks.withType(War.class).configureEach(...) can
be used to configure each task of type War.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/DomainObjectCollection.html#withType-java.lang.Class-

build.gradle.kts

plugins {
id("war")

}

tasks.war {
webAppDirectory.set(file("src/main/webapp"))
b

build.gradle

plugins {
id 'war'

}

war {
webAppDirectory = file('src/main/webapp")
}

Deprecated ear plugin conventions

The convention properties contributed by the ear plugin have been deprecated and scheduled for
removal in Gradle 9.0. For the wider context see the section about plugin convention deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts
plugins {
id("ear")
}
configure<EarPluginConvention> { // Accessing a convention

appDirName = "src/main/app"

}

build.gradle
plugins {
id 'ear'

}

appDirName = 'src/main/app' // Accessing a convention

Clients should configure the ear task directly. Also, tasks.withType(Ear.class).configureEach(...) can
be used to configure each task of type Ear.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/DomainObjectCollection.html#withType-java.lang.Class-

build.gradle.kts

plugins {
id("ear")

}

tasks.ear {

appDirectory.set(file("src/main/app"))
b

build.gradle

plugins {
id 'ear'

}

ear {

appDirectory = file('src/main/app') // use application metadata found in
this folder

}

Deprecated project-report plugin conventions

The convention properties contributed by the project-reports plugin have been deprecated and

scheduled for removal in Gradle 9.0. For the wider context see the section about plugin convention
deprecation.

The following code will now emit deprecation warnings:

build.gradle.kts

plugins {
‘project-report*

}

configure<ProjectReportsPluginConvention> {
projectReportDirName = "custom" // Accessing a convention

}

build.gradle
plugins {

id 'project-report’

}

projectReportDirName = "custom" // Accessing a convention

Configure your report task instead:

build.gradle.kts

plugins {
‘project-report*

}

tasks.withType<HtmlDependencyReportTask>() {

projectReportDirectory.set(project.layout.buildDirectory.dir("reports/custom”

))
}

build.gradle

plugins {
id 'project-report’

}

tasks.withType(HtmlDependencyReportTask) {
projectReportDirectory = project.layout.buildDirectory.dir(
"reports/custom")

}

Redundant configuration usage activation

Calling setCanBeConsumed(boolean) or setCanBeResolved(boolean) on a configuration that already
allows that usage is deprecated.

This deprecation is intended to help users identify unnecessary configuration usage modifications.
Configuration method deprecations
The following method on Configuration is deprecated for removal:
o getAll()
Obtain the set of all configurations from the project’s configurations container instead.

Relying on automatic test framework implementation dependencies

In some cases, Gradle will load JVM test framework dependencies from the Gradle distribution in
order to execute tests. This existing behavior can lead to test framework dependency version
conflicts on the test classpath. To avoid these conflicts, this behavior is deprecated and will be
removed in Gradle 9.0. Tests using TestNG are unaffected.

In order to prepare for this change in behavior, either declare the required dependencies explicitly,

https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/Configuration.html

or migrate to Test Suites, where these dependencies are managed automatically.

Test Suites

Builds that use test suites will not be affected by this change. Test suites manage the test framework
dependencies automatically and do not require dependencies to be explicitly declared. See the user
manual for further information on migrating to test suites.

Manually declaring dependencies

In the absence of test suites, dependencies must be manually declared on the test runtime
classpath:

o If using JUnit 5, an explicit runtimeOnly dependency on junit-platform-launcher is required in
addition to the existing implementation dependency on the test engine.
o If using JUnit 4, only the existing implementation dependency on junit 4 is required.

 If using JUnit 3, a test runtimeOnly dependency on junit 4 is required in addition to a compileOnly
dependency on junit 3.

jvm_test_suite_plugin.html
jvm_test_suite_plugin.html
jvm_test_suite_plugin.html

build.gradle.kts

dependencies {
// If using JUnit Jupiter
testImplementation("org.junit.jupiter:junit-jupiter:5.9.2")
testRuntimeOnly("org.junit.platform:junit-platform-Tlauncher")

// If using JUnit Vintage

testCompileOnly("junit:junit:4.13.2")
testRuntimeOnly("org.junit.vintage:junit-vintage-engine:5.9.2")
testRuntimeOnly("org.junit.platform:junit-platform-Tlauncher")

// If using JUnit 4
testImplementation("junit:junit:4.13.2")

// If using JUnit 3
testCompileOnly("junit:junit:3.8.2")
testRuntimeOnly("junit:junit:4.13.2")

build.gradle

dependencies {
// If using JUnit Jupiter
testImplementation 'org.junit.jupiter:junit-jupiter:5.9.2'
testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

// If using JUnit Vintage

testCompileOnly 'junit:junit:4.13.2'

testRuntimeOnly 'org.junit.vintage:junit-vintage-engine:5.9.2'
testRuntimeOnly 'org.junit.platform:junit-platform-launcher'

// If using JUnit 4
testImplementation 'junit:junit:4.13.2"

// If using JUnit 3
testCompileOnly 'junit:junit:3.8.2'
testRuntimeOnly 'junit:junit:4.13.2'

BuildIdentifier and ProjectComponentSelector method deprecations

The following methods on BuildIdentifier are deprecated:

* getName()
e isCurrentBuild()

You could use these methods to distinguish between different project components with the same
name but from different builds. However, for certain composite build setups, these methods do not
provide enough information to guarantee uniqueness.

Current usages of these methods should migrate to BuildIdentifier.getBuildPath().

Similarly, the method ProjectComponentSelector.getBuildName() is deprecated. Use
ProjectComponentSelector.getBuildPath() instead.

Upgrading from 8.0 and earlier

CACHEDIR.TAG files are created in global cache directories

Gradle now emits a CACHEDIR.TAG file in some global cache directories, as specified in Cache
marking.

This may cause these directories to no longer be searched or backed up by some tools. To disable it,
use the following code in an init script in the Gradle User Home:

init.gradle.kts

beforeSettings {
caches {
// Disable cache marking for all caches
markingStrategy.set(MarkingStrategy.NONE)

init.gradle

beforeSettings { settings ->
settings.caches {
// Disable cache marking for all caches
markingStrategy = MarkingStrategy.NONE

https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/component/BuildIdentifier.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/component/ProjectComponentSelector.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/component/BuildIdentifier.html#getBuildPath--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/component/ProjectComponentSelector.html#getBuildPath--

Configuration cache options renamed

In this release, the configuration cache feature was promoted from incubating to stable, and as
such, all properties originally mentioned in the feature documentation (which had an unsafe part in
their names, e.g. org.gradle.unsafe.configuration-cache) were renamed, in some cases, by just
removing the unsafe bit.

Incubating property Finalized property
org.gradle.unsafe.configuration-cache org.gradle.configuration-cache
org.gradle.unsafe.configuration-cache-problems org.gradle.configuration-cache.problems*

org.gradle.unsafe.configuration-cache.max- org.gradle.configuration-cache.max-problems
problems

Note that the original org.gradle.unsafe.configuration-cache: - properties continue to be honored
in this release, and no warnings will be produced if they are used, but they will be deprecated and
removed in a future release.

Potential breaking changes

Kotlin DSL scripts emit compilation warnings

Compilation warnings from Kotlin DSL scripts are printed to the console output. For example, the
use of deprecated APIs in Kotlin DSL will emit warnings each time the script is compiled.

This is a potentially breaking change if you are consuming the console output of Gradle builds.

Configuring Kotlin compiler options with the kotlin-ds1 plugin applied

If you are configuring custom Kotlin compiler options on a project with the kotlin-dsl plugin
applied you might encounter a breaking change.

In previous Gradle versions, the kotlin-dsl plugin was adding required compiler arguments on
afterEvaluate {}. Now that the Kotlin Gradle Plugin provides lazy configuration properties, our
kotlin-dsl plugin switched to adding required compiler arguments to the lazy properties directly.
As a consequence, if you were setting freeCompilerArgs the kotlin-dsl plugin is now failing the
build because its required compiler arguments are overridden by your configuration.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/Project.html#afterEvaluate-org.gradle.api.Action-

build.gradle.kts

plugins {
‘kotlin-dsl®
}

tasks.withType(KotlinCompile::class).configureEach {
kotlinOptions { // Deprecated non-lazy configuration options
freeCompilerArgs = 1istOf("-Xcontext-receivers")

}

With the configuration above you would get the following build failure:

* What went wrong

Execution failed for task ':compileKotlin'.

> Kotlin compiler arguments of task ':compileKotlin' do not work for the ‘kotlin-dsl®
plugin. The 'freeCompilerArgs' property has been reassigned. It must instead be
appended to. Please use 'freeCompilerArgs.addA11(\"your\", \"args\")' to fix this.

You must change this to adding your custom compiler arguments to the lazy configuration
properties of the Kotlin Gradle Plugin in order for them to be appended to the ones required by the
kotlin-dsl plugin:

build.gradle.kts

plugins {
‘kotlin-ds1®
}

tasks.withType(KotlinCompile::class).configureEach {
compilerOptions { // New lazy configuration options
freeCompilerArgs.addA11("-Xcontext-receivers")

}

If you were already adding to freeCompilerArgs instead of setting its value, then you should not
experience a build failure.

New API introduced may clash with existing Gradle DSL code

When a new property or method is added to an existing type in the Gradle DSL, it may clash with

names already in use in user code.
When a name clash occurs, one solution is to rename the element in user code.

This is a non-exhaustive list of API additions in 8.1 that may cause name collisions with existing
user code.

 JavaExec.getJvmArguments()

» JavaExecSpec.getJvmArguments()

Using unsupported API to start external processes at configuration time is no longer allowed with the
configuration cache enabled

Since Gradle 7.5, using Project.exec, Project.javaexec, and standard Java and Groovy APIs to run
external processes at configuration time has been considered an error only if the feature preview
STABLE_CONFIGURATION_CACHE was enabled. With the configuration cache promotion to a stable
feature in Gradle 8.1, this error is detected regardless of the feature preview status. The
configuration cache chapter has more details to help with the migration to the new provider-based
APIs to execute external processes at configuration time.

Builds that do not use the configuration cache, or only start external processes at execution time
are not affected by this change.

Deprecations

Mutating core plugin configuration usage

The allowed usage of a configuration should be immutable after creation. Mutating the allowed
usage on a configuration created by a Gradle core plugin is deprecated. This includes calling any of
the following Configuration methods:

» setCanBeConsumed(boolean)

» setCanBeResolved(boolean)

These methods now emit deprecation warnings on these configurations, except for certain special
cases which make allowances for the existing behavior of popular plugins. This rule does not yet
apply to detached configurations or configurations created in buildscripts and third-party plugins.
Calling setCanBeConsumed(false) on apiElements or runtimeElements is not yet deprecated in order to
avoid warnings that would be otherwise emitted when using select popular third-party plugins.

This change is part of a larger ongoing effort to make the intended behavior of configurations more
consistent and predictable, and to unlock further speed and memory improvements in this area of
Gradle.

The ability to change the allowed usage of a configuration after creation will be removed in Gradle
9.0.

Reserved configuration names

Configuration names "detachedConfiguration" and "detachedConfigurationX" (where X is any
integer) are reserved for internal use when creating detached configurations.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/JavaExec.html#getJvmArguments--
https://docs.gradle.org/8.6/javadoc/org/gradle/process/JavaExecSpec.html#getJvmArguments--

The ability to create non-detached configurations with these names will be removed in Gradle 9.0.

Calling select methods on the JavaPluginExtension without the java component present

Starting in Gradle 8.1, calling any of the following methods on JavaPluginExtension without the
presence of the default java component is deprecated:

e withJavadocJar()

e withSourcesJar()

e consistentResolution(Action)
This java component is added by the JavaPlugin, which is applied by any of the Gradle JVM plugins
including:

* java-library

e application

* groovy

* scala

Starting in Gradle 9.0, calling any of the above listed methods without the presence of the default
java component will become an error.

WarPlugin#configureConfiguration(ConfigurationContainer)

Starting in Gradle 8.1, calling WarPlugin#configureConfiguration(ConfigurationContainer) is
deprecated. This method was intended for internal use and was never intended to be used as part
of the public interface.

Starting in Gradle 9.0, this method will be removed without replacement.

Relying on conventions for custom Test tasks

By default, when applying the java plugin, the testClassesDirs‘and ‘classpath of all Test tasks have
the same convention. Unless otherwise changed, the default behavior is to execute the tests from
the default test TestSuite by configuring the task with the classpath and testClassesDirs from the
test suite. This behavior will be removed in Gradle 9.0.

While this existing default behavior is correct for the use case of executing the default unit test
suite under a different environment, it does not support the use case of executing an entirely
separate set of tests.

If you wish to continue including these tests, use the following code to avoid the deprecation
warning in 8.1 and prepare for the behavior change in 9.0. Alternatively, consider migrating to test
suites.

java_plugin.html
jvm_test_suite_plugin.html

build.gradle.kts

val test by testing.suites.existing(JvmTestSuite::class)
tasks.named<Test>("myTestTask") {
testClassesDirs = files(test.map { it.sources.output.classesDirs })
classpath = files(test.map { it.sources.runtimeClasspath })

build.gradle

tasks.myTestTask {
testClassesDirs = testing.suites.test.sources.output.classesDirs
classpath = testing.suites.test.sources.runtimeClasspath

Modifying Gradle Module Metadata after a publication has been populated

Altering the GMM (e.g., changing a component configuration variants) after a Maven or Ivy
publication has been populated from their components is now deprecated. This feature will be
removed in Gradle 9.0.

Eager population of the publication can happen if the following methods are called:

* Maven
o MavenPublication.getArtifacts()
. Ivy
o IvyPublication.getArtifacts()
o IvyPublication.getConfigurations()
o IvyPublication.configurations(Action)

Previously, the following code did not generate warnings, but it created inconsistencies between
published artifacts:

publishing_gradle_module_metadata.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/publish/maven/MavenPublication.html#getArtifacts--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/publish/ivy/IvyPublication.html#getArtifacts--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/publish/ivy/IvyPublication.html#getConfigurations--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/publish/ivy/IvyPublication.html#configurations(Action)--

build.gradle.kts

publishing {
publications {
create<MavenPublication>("maven") {
from(components["java"])
}
create<IvyPublication>("ivy") {
from(components["java"])

}
}
// These calls eagerly populate the Maven and Ivy publications

(publishing.publications["maven"] as MavenPublication).artifacts
(publishing.publications["ivy"] as IvyPublication).artifacts

val javaComponent = components["java"] as AdhocComponentWithVariants
javaComponent.withVariantsFromConfiguration(configurations["apiElements"]) {
skip() }
javaComponent.withVariantsFromConfiguration(configurations["runtimeElements"]

) { skip() }

build.gradle

publishing {
publications {
maven(MavenPublication) {
from components.java

}
ivy(IvyPublication) {
from components.java

}

// These calls eagerly populate the Maven and Ivy publications

publishing.publications.maven.artifacts
publishing.publications.ivy.artifacts

components.java.withVariantsFromConfiguration(configurations.apiElements) {

skip() }
components.java.withVariantsFromConfiguration(configurations.runtimeElements)

{ skip() }

In this example, the Maven and Ivy publications will contain the main JAR artifacts for the project,
whereas the GMM module file will omit them.

Running tests on JVM versions 6 and 7

Running JVM tests on JVM versions older than 8 is deprecated. Testing on these versions will
become an error in Gradle 9.0

Applying Kotlin DSL precompiled scripts published with Gradle < 6.0

Applying Kotlin DSL precompiled scripts published with Gradle < 6.0 is deprecated. Please use a
version of the plugin published with Gradle >= 6.0.

Applying the kotlin-dsl together with Kotlin Gradle Plugin < 1.8.0

Applying the kotlin-dsl together with Kotlin Gradle Plugin < 1.8.0 is deprecated. Please let Gradle
control the version of kotlin-dsl by removing any explicit kot1in-ds1l version constraints from your
build logic. This will let the kotlin-dsl plugin decide which version of the Kotlin Gradle Plugin to
use. If you explicitly declare which version of the Kotlin Gradle Plugin to use for your build logic,
update it to >= 1.8.0.

Accessing libraries or bundles from dependency version catalogs in the plugins {} block of a Kotlin script

Accessing libraries or bundles from dependency version catalogs in the plugins {} block of a Kotlin
script is deprecated. Please only use versions or plugins from dependency version catalogs in the

https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-latest-specification.md

plugins {} block.

Using ValidatePlugins task without a Java Toolchain

Using a task of type ValidatePlugins without applying the Java Toolchains plugin is deprecated, and
will become an error in Gradle 9.0.

To avoid this warning, please apply the plugin to your project:

build.gradle.kts

plugins {
id("jdk-toolchains")
}

build.gradle

plugins {
id 'jdk-toolchains'
}

The Java Toolchains plugin is applied automatically by the Java plugin, so you can also apply it to
your project and it will fix the warning.

Deprecated members of the org.gradle.util package now report their deprecation

These members will be removed in Gradle 9.0.

WrapUtil.toDomainObjectSet(::*)

GUtil.toCamelCase(")

GUtil.toLowerCase(::*)
* ConfigureUtil
Deprecated JVM vendor IBM Semeru

The enum constant JvmVendorSpec.IBM_SEMERU is now deprecated and will be removed in Gradle 9.0.

Please replace it by its equivalent JvmVendorSpec.IBM to avoid warnings and potential errors in the
next major version release.

Setting custom build layout on StartParameter and GradleBuild

Following the related previous deprecation of the behaviour in Gradle 7.1, it is now also deprecated
to use related StartParameter and GradleBuild properties. These properties will be removed in

https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html
toolchains.html
java_plugin.html
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/GradleBuild.html

Gradle 9.0.
Setting custom build file using buildFile property in GradleBuild task has been deprecated.

Please use the dir property instead to specify the root of the nested build. Alternatively, consider
using one of the recommended alternatives for GradleBuild task as suggested in Avoid using the
GradleBuild task type section.

Setting custom build layout wusing StartParameter methods setBuildFile(File) and
setSettingsFile(File) as well as the counterpart getters getBuildFile() and getSettingsFile() have been
deprecated.

Please use standard locations for settings and build files:

* settings file in the root of the build

* build file in the root of each subproject

Deprecated org.gradle.cache.cleanup property

The org.gradle.cache.cleanup property in gradle.properties under Gradle User Home has been
deprecated. Please use the cache cleanup DSL instead to disable or modify the cleanup
configuration.

Since the org.gradle.cache.cleanup property may still be needed for older versions of Gradle, this
property may still be present and no deprecation warnings will be printed as long as it is also
configured via the DSL. The DSL value will always take preference over the
org.gradle.cache.cleanup property. If the desired configuration is to disable cleanup for older
versions of Gradle (using org.gradle.cache.cleanup), but to enable cleanup with the default values
for Gradle versions at or above Gradle 8, then cleanup should be configured to use
Cleanup.DEFAULT:

cache-settings.gradle

if (GradleVersion.current() >= GradleVersion.version('8.0')) {
apply from: "gradle8/cache-settings.gradle”
}

cache-settings.gradle.kts

if (GradleVersion.current() >= GradleVersion.version("8.0")) {
apply(from = "gradle8/cache-settings.gradle")
}

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.GradleBuild.html#org.gradle.api.tasks.GradleBuild:buildFile
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.GradleBuild.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.GradleBuild.html#org.gradle.api.tasks.GradleBuild:dir
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.GradleBuild.html
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#setBuildFile-java.io.File-
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#setSettingsFile-java.io.File-
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#getBuildFile--
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#getSettingsFile--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/cache/Cleanup.html#DEFAULT

gradle8/cache-settings.gradle

beforeSettings { settings ->
settings.caches {
cleanup = Cleanup.DEFAULT

gradle8/cache-settings.gradle.kts

beforeSettings {
caches {
cleanup.set(Cleanup.DEFAULT)

Deprecated using relative paths to specify Java executables

Using relative file paths to point to Java executables is now deprecated and will become an error in
Gradle 9. This is done to reduce confusion about what such relative paths should resolve against.

Calling Task.getConvention(), Task.getExtensions() from a task action

Calling Task.getConvention(), Task.getExtensions() from a task action at execution time is now
deprecated and will be made an error in Gradle 9.0.

See the configuration cache chapter for details on how to migrate these usages to APIs that are
supported by the configuration cache.

Deprecated running test task successfully when no test executed

Running the Test task successfully when no test was executed is now deprecated and will become
an error in Gradle 9. Note that it is not an error when no test sources are present, in this case the
test task is simply skipped. It is only an error when test sources are present, but no test was
selected for execution. This is changed to avoid accidental successful test runs due to erroneous
configuration.

Changes in the IDE integration

Workaround for false positive errors shown in Kotlin DSL plugins {} block using version catalog is not
needed anymore

Version catalog accessors for plugin aliases in the plugins {} block aren’t shown as errors in Intelli]
IDEA and Android Studio Kotlin script editor anymore.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/Task.html#getConvention--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/Task.html#getExtensions--

If you were using the @Suppress("DSL_SCOPE_VIOLATION") annotation as a workaround, you can now
remove it.

If you were using the Gradle Libs Error Suppressor Intelli] IDEA plugin, you can now uninstall it.
After upgrading Gradle to 8.1 you will need to clear the IDE caches and restart.

Also see the deprecated usages of version catalogs in the Kotlin DSL plugins {} block above.

Upgrading your build from Gradle 7.x to 8.0

This chapter provides the information you need to migrate your Gradle 7.x builds to Gradle 8.0. For
migrating from Gradle 6.x or earlier, complete the older migration guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

(7 Gradle Enterprise € + eradle clean kotlin-dsl-tooling-builders:platforniTest Dec 23, 2020 7:38:27 PM ES $= Budseans | @ @

= Summary

[Console log

(Deprecations

Timeline

istry to detect Java i ions has been

Wk performance The KotlinDsIPluginOptions.experimentalWarning property has been deprecated.
Tests This is scheduled to be removed in Gradle 8.0.

2 usages >
&b Projects

$2 Dependencies

22 Build dependencies
B Plugins

5 Custom values

8 switches

Infrastructure

“D See before and after
& Compare build scan

This is so that you can see any deprecation warnings that apply to your build.

Alternatively, you can run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the API.

3. Run gradle wrapper --gradle-version 8.6 to update the project to 8.6.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

https://plugins.jetbrains.com/plugin/18949-gradle-libs-error-suppressor
https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

Upgrading from 7.6 and earlier

Warnings that are now errors

Referencing tasks in an included build with finalizedBy, mustRunAfter or shouldRunAfter

Referencing tasks contained in an included build with any of the following methods now results in
an execution time error:

» finalizedBy
e mustRunAfter

e shouldRunAfter

Creating TAR trees from resources without backing files

Creating a TAR tree from a resource with no backing file is no longer supported. Instead, convert
the resource to a file and use project.tarTree() on the file. For more information, see TAR trees
from resources without backing files.

Using invalid Java toolchain specifications

Usage of invalid Java toolchain specifications is no longer supported. Related build errors can be
avoided by making sure that language version is set on all toolchain specifications. See user manual
for more information.

Using automatic toolchain downloading without having a repository configured

Automatic toolchain downloading without explicitly providing repositories to use is no longer
supported. See user manual for more information.

Changing test framework after setting test framework options is now an error

When configuring the built-in test task for Java, Groovy, and Scala projects, Gradle no longer allows
you to change the test framework used by the Test task after configuring options. This was
deprecated since it silently discarded configuration in some cases.

The following code example now produces an error:

test {
options {
}
useJUnitPlatform()
+

Instead, you can:

* set the test framework before configuring options

* migrate to the JVM Test Suite Plugin

jvm_test_suite_plugin.pdf#jvm_test_suite_plugin

test {
// select test framework before configuring options
useJUnitPlatform()
options {

}

Additionally, setting the test framework multiple times to the same framework now accumulates
any options that might be set on the framework. Previously, each time the framework was set, it
would cause the framework options to be overwritten.

The following code now results in both the "foo" and "bar" tags to be included for the test task:

test {
useJUnitPlatform {
includeTags("foo")

}
tasks.withType(Test).configureEach {
// previously, this would overwrite the included tags to only include "bar"
useJUnitPlatform {
includeTags("bar")

Removed APIs

Legacy ArtifactTransform API

The legacy ArtifactTransform API has been removed. For more information, see Registering artifact
transforms extending ArtifactTransform.

Legacy IncrementalTaskInputs API

The legacy IncrementalTaskInputs API has been removed. For more information, see
IncrementalTaskInputs type is deprecated. This change also affects Kotlin Gradle Plugin and
Android Gradle Plugin. With Gradle 8.0 you should use Kotlin Gradle Plugin 1.6.10 or later and
Android Gradle Plugin 7.3.0 with android.experimental.legacyTransform.forceNonIncremental=true
property or later.

Legacy AntlrSourceVirtualDirectory API

The legacy Ant1lrSourceVirtualDirectory API has been removed. This change affects the ant1r plugin.
In Gradle 8.0 and above, use the Ant1lrSourceDirectorySet source set extension instead.

JvmPluginsHelper

A deprecated configureDocumentationVariantWithArtifact method of the JvmPluginsHelper class
which did not require a FileResolver has been removed. This was an internal API, but may have

been accessed by plugins. Supply a FileResolver to the overloaded version of this method instead.

Groovydoc API Cleanup

The deprecated isIncludePrivate property of the Groovydoc task type has been removed. Use the
access property along with the GroovydocAccess#PRIVATE constant instead.

JavaApplication API Cleanup

The deprecated mainClassName property of the JavaApplication interface has been removed. Use the
mainClass property instead.

DefaultDomainObjectSet API Cleanup

The deprecated DefaultDomainObjectSet(Class) constructor has been removed. This was an internal
API, but may have been used by plugins.

JacocoPluginExtension API Cleanup

The deprecated reportsDir property of the JacocoPluginExtension has been removed. Use the
reportsDirectory property instead.

DependencyInsightReportTask API Cleanup

The deprecated legacyShowSinglePathToDependnecy property of the DependencyInsightReportTask task
type has been removed. Use the showSinglePathToDependency property instead.

Report and TestReport API Cleanup

The deprecated destination, and enabled properties of the Report type have been removed. Use the
outputLocation and required properties instead.

The deprecated testResultDirs property of the TestReport task type has been removed. Use the
testResults property instead.

JacocoMerge Task Removed

The deprecated JacocolMerge task type has been removed. The same functionality is also available on
the JacocoReport task.

JavaExec API Cleanup

The deprecated main property of the JavaExec task type has been removed. Use the mainClass
property instead.

AbstractExecTask API Cleanup

The deprecated execResult getter property of the AbstractExecTask task type has been removed. Use
the executionResult getter property instead.

AbstractTestTask API Cleanup

The deprecated binResultsDir property of the AbstractTestTask task type has been removed. Use the
binaryResultsDirectory property instead.

SourceDirectorySet API Cleanup

The deprecated outputDir property of the SourceDirectorySet type has been removed. Use the
destinationDirectory property instead.

VersionCatalog API Cleanup

The deprecated findDependency(String) method and dependencyAliases property of the
VersionCatalog type have been removed. Use the findLibrary(String) method and libraryAliases
property instead.

The deprecated alias(String) method of the VersionCatalogBuilder type has been removed. Use the
library(String, String, String) or plugin(String, String) methods instead.

WorkerExecutor API Cleanup

The deprecated submit(Class, Action) method of the WorkerExecutor interface has been removed.
Instead, obtain a WorkQueue via the noIsolation(), classLoaderIsolation(), and processIsolation(),
methods and use the submit(Class, Action) method on the WorkQueue instead.

DependencySubstitution API Cleanup

The deprecated with(ComponentSelector) method of the DependencySubstitution type’s inner
Substitution type’s has been removed. Use the using(ComponentSelector) method instead.

AbstractArchiveTask API Cleanup

The deprecated appendix, archiveName, archivePath, baseName, classifier, destinationDir, extension
and version properties of the AbstractArchiveTask task type have been removed. Use the
archiveAppendix, archiveFileName , archiveFile, archiveBaseName, archiveClassifier,
destinationDirectory, archiveExtension and archiveVersion properties instead.

IdeaModule API Cleanup

The deprecated testSourceDirs and testResourceDirs properties of the IdeaModule type have been
removed. This affects the org.gradle.plugins.ide.idea.model.IdeaModule type, not the
org.gradle.tooling.model.idea.IdeaModule type. Use the testSources and testResources properties
instead.

AbstractCompile API Deprecations

The previously deprecated destinationDir property of the AbstractCompile remains deprecated, and
will now emit a deprecation warning upon use. It is now scheduled for removal in Gradle 9.0. Use
the destinationDirectory property instead.

ResolvedComponentResult API Cleanup

The deprecated getVariant method of the ResolvedComponentResult interface has been removed. Use
the getVariants method instead.

Code quality plugins API Cleanup

The deprecated antBuilder property of the Checkstyle, CodeNarc and Pmd task types has been
removed. Use the Project type’s ant property instead.

Usage API Cleanup

The deprecated public fields JAVA_API_CLASSES, JAVA_API_JARS, JAVA_RUNTIME_CLASSES,
JAVA_RUNTIME_JARS and JAVA_RUNTIME_RESOURCES of the Usage type have been removed. The values are
available in the internal JavaEcosystemSupport class for compatibility with previously published
modules, but should not be used for any new publishing.

ExternalDependency API Cleanup

The deprecated setForce(boolean) method of the ExternalDependency interface has been removed.
Use the version(Action) method to configure strict versions instead.

Build-scan method removed from Kotlin DSL

The deprecated build-scan plugin application method has been removed from the Kotlin DSL. Use
the gradle-enterprise method instead.

Configuration extension methods removed from Kotlin DSL

The Kotlin DSL added specialized extension methods for NamedDomainObjectProvider<Configuration>
that are available when looking up a configuration by name. These extensions allowed builds to
access some properties of a Configuration when using an instance of
NamedDomainObjectProvider<Configuration> directly:

configurations.compileClasspath.files // equivalent to
configurations.compileClasspath.get().files
configurations.compileClasspath.singleFile // equivalent to
configurations.compileClasspath.get().singleFile

All of these extensions have been removed from the API, but the methods are still available for
plugins compiled against older versions of Gradle.

* NamedDomainObjectProvider<Configuration>.addToAntBuilder

* NamedDomainObjectProvider<Configuration>.all

* NamedDomainObjectProvider<Configuration>.allArtifacts

* NamedDomainObjectProvider<Configuration>.allDependencies

» NamedDomainObjectProvider<Configuration>.allDependencyConstraints

* NamedDomainObjectProvider<Configuration>.artifacts

NamedDomainObjectProvider<Configuration>.asFileTree
NamedDomainObjectProvider<Configuration>.asPath
NamedDomainObjectProvider<Configuration>.attributes
NamedDomainObjectProvider<Configuration>.buildDependencies
NamedDomainObjectProvider<Configuration>.contains
NamedDomainObjectProvider<Configuration>.copy
NamedDomainObjectProvider<Configuration>.copyRecursive
NamedDomainObjectProvider<Configuration>.defaultDependencies
NamedDomainObjectProvider<Configuration>.dependencies
NamedDomainObjectProvider<Configuration>.dependencyConstraints
NamedDomainObjectProvider<Configuration>.description
NamedDomainObjectProvider<Configuration>.exclude
NamedDomainObjectProvider<Configuration>.excludeRules
NamedDomainObjectProvider<Configuration>.extendsFrom
NamedDomainObjectProvider<Configuration>.fileCollection
NamedDomainObjectProvider<Configuration>.files
NamedDomainObjectProvider<Configuration>.filter
NamedDomainObjectProvider<Configuration>.getTaskDependencyFromProjectDependency
NamedDomainObjectProvider<Configuration>.hierarchy
NamedDomainObjectProvider<Configuration>.incoming
NamedDomainObjectProvider<Configuration>.isCanBeConsumed
NamedDomainObjectProvider<Configuration>.isCanBeResolved
NamedDomainObjectProvider<Configuration>.isEmpty
NamedDomainObjectProvider<Configuration>.isTransitive
NamedDomainObjectProvider<Configuration>.isVisible
NamedDomainObjectProvider<Configuration>.minus
NamedDomainObjectProvider<Configuration>.outgoing
NamedDomainObjectProvider<Configuration>.plus
NamedDomainObjectProvider<Configuration>.resolutionStrategy
NamedDomainObjectProvider<Configuration>.resolve
NamedDomainObjectProvider<Configuration>.resolvedConfiguration
NamedDomainObjectProvider<Configuration>.setDescription
NamedDomainObjectProvider<Configuration>.setExtendsFrom
NamedDomainObjectProvider<Configuration>.setTransitive

NamedDomainObjectProvider<Configuration>.singleFile

* NamedDomainObjectProvider<Configuration>.state

* NamedDomainObjectProvider<Configuration>.withDependencies

You should prefer to directly reference the methods from Configuration.

Potential breaking changes

JavaForkOptions getJvmArgs() and getAllJvmArgs() return immutable lists

The lists of JVM arguments retrieved from the JavaForkOptions interface are now immutable.

Previously, modifications of the returned list were silently ignored.

Nullable annotations better reflect actual nullability of API

In some APIs, nullability was not correctly annotated and APIs that did allow null or returned null
were marked as non-null. In Java or Groovy, this mismatch did not cause problems at compile time.
In Kotlin, this mismatch made valid code difficult to write because the language would not allow
you to pass null.

One particular example was returning null from a Provider#map or Provider#flatMap. In both APIs,
Gradle allows you to return null, but in the Kotlin DSL this was considered illegal.

This correction may cause compilation errors in code that expected non-null.

Plugins, tasks and extension classes are abstract

Most public classes for plugins, tasks and extensions have been made abstract. This was done to
make it easier to remove boilerplate from Gradle’s implementation.

Plugins that are affected by this change should make their classes abstract as well. Gradle uses
runtime class decoration to implement abstract methods as long as the object is instantiated via
ObjectFactory or some other automatic mechanism (like managed properties). Those methods
should never be directly implemented.

Wrapper task configuration

If gradle-wrapper.properties contains the distributionSha256Sum property, you must specify a sum.
You can specify a sum in the wrapped task configuration or with the --gradle-distribution-sha256
-sum task option.

Changes in the AbstractCodeQualityPlugin class

The deprecated AbstractCodeQualityPlugin.getJavaPluginConvention() method was removed in
Gradle 8.0. You should use JavaPluginExtension instead.

Remove implicit --add-opens for Gradle workers

Before Gradle 8.0, Gradle workers on JDK9+ automatically opened JDK modules java.base/java.util
and java.base/java.lang by passing --add-opens CLI arguments. This enabled code executed in a
Gradle worker to perform deep reflection on JDK internals without warning or failing. Workers no

longer use these implicit arguments.
This affects all internal Gradle workers, which are used for a variety of tasks:

 code-quality plugins (Checkstyle, CodeNarc, Pmd)

* ScalaDoc

* AntlrTask

* JVM compiler daemons

* tasks executed using process isolation via the Worker API

New warnings and errors may appear in any tools, extensions, or plugins that perform deep
reflection into JDK internals with the worker API.

These errors can be resolved by updating the violating code or dependency. Updates may include:

* code-quality tools
* annotation processors

* any Gradle plugins which use the worker API

For some examples of possible error or warning outputs which may arise due to this change, see
Removes implicit --add-opens for test workers.

SourceSet classesDirs no longer depends upon the entire SourceSet as a task dependency

Prior to Gradle 8.0, the task dependencies for SourceSetOutput.classesDirs included tasks that did
not produce class files. This meant that a task which depends on classesDirs would also depend on
classes, processResources, and any other task dependency added to SourceSetOutput. This behavior
was potentially an error because the classesDirs property did not contain the output for
processResources. Since 8.0, this implicit dependency is removed. Now, depending on classesDirs
only executes the tasks which directly produce files in the classes directories.

Consider the following buildscript:

plugins {
id 'java-library'
}
// Task lists all files in the given classFiles FileCollection
tasks.register("listClassFiles", ListClassFiles) {
classFiles.from(java.sourceSets.main.output.classesDirs)

}

Previously, the listClassFiles task depended on compilelava, processResources, and classes. Now,
only compilelava is a task dependency of listClassFiles.

If a task in your build relied on the previous behavior, you can instead use the entire
SourceSetQOutput as an input, which contains all classes and resources.

If that is not feasible, you can restore the previous behavior by adding more task dependencies to

worker_api.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.SourceSetOutput.html#org.gradle.api.tasks.SourceSetOutput:classesDirs
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.SourceSetOutput.html

classesDirs:

java {
sourceSets {
main {
output.classesDirs.builtBy(output)
}
}
}

Minimal supported Kotlin Gradle Plugin version changed

Gradle 7.x supports Kotlin Gradle Plugin 1.3.72 and above. Kotlin Gradle Plugin versions above
1.6.21 are not tested with Gradle 7.x. Gradle 8.x supports Kotlin Gradle Plugin 1.6.10 and above. You
can use a lower Kotlin language version by modifying the language version and api version setting
in the Kotlin compilation tasks.

Minimal supported Android Gradle Plugin version changed

Gradle 7.x supports Android Gradle Plugin (AGP) 4.1 and above. AGP versions above 7.3 are not
tested with Gradle 7.x. Gradle 8.x supports AGP 8 and above. Gradle 8.x supports AGP 7.3 and above
if you configure the following property:

android.experimental.legacyTransform.forceNonIncremental=true

Change to AntBuilder parent class

Previously, org.gradle.api.AntBuilder extended the deprecated groovy.util.AntBuilder class. It now
extends groovy.ant.AntBuilder.

PluginDeclaration is not serializable

org.gradle.plugin.devel.PluginDeclaration is not serializable anymore. If you need to serialize it,
you can convert it into your own, serializable class.

Gradle does not use equals for serialized values in up-to-date checks

Gradle now does not try to use equals when comparing serialized values in up-to-date checks. For
more information see Relying on equals for up-to-date checks is deprecated.

Task and transform validation warnings introduced in Gradle 7.x are now errors

Gradle introduced additional task and artifact transform validation warnings in the Gradle 7.x
series. Those warnings are now errors in Gradle 8.0 and will fail the build.

Warnings that became errors:

* An input file collection that can’t be resolved.

* An input or output file or directory that cannot be read. See Declaring input or output

directories which contain unreadable content.
* Using a java.io.File as the @InputArtifact of an artifact transform.

* Using an input with an unknown implementation. See Cannot use an input with an unknown
implementation.

» Missing dependencies between tasks. See Implicit dependencies between tasks.

* Converting files to a classpath where paths contain file separator.

Gradle does not ignore empty directories for file-trees with @SkipWhenEmpty

Previously Gradle used to detect if an input file collection annotated with @SkipWhenEmpty consisted
only of file trees and then ignored directories automatically. To ignore directories in Gradle 8.0 and
later, the input property needs to be explicitly annotated with @IgnoreEmptyDirectories. For more
information see File trees and empty directory handling.

Format of JavaVersion has changed for Java 9 and Java 10

The string format of the JavaVersion has changed to match the official Java versioning. Starting
from Java 9, the language version must not contain the 1. prefix. This affects the format of the
sourceCompatiblity and targetCompatibility properties on the JavaCompile task and JavaExtension.
The old format is still supported when resolving the JavaVersion from a string.

Gradle 7.6 Gradle 8.0
1.8 1.8

1.9 9

1.10 10

1 1

Precompiled script plugins use strict Kotlin DSL accessor generation by default

In precompiled script plugins, type safe Kotlin DSL accessor generation now fails the build if a
plugin fails to apply.

Starting in Gradle 7.6, builds could enable this behavior with the
org.gradle.kotlin.dsl.precompiled.accessors.strict system property. This behavior is now default.
The property has been deprecated and its usage should be removed. You can find more information
about this property below.

Init scripts are applied to buildSrc builds

Init scripts specified using --init-script are now applied to buildSrc builds. In previous releases
these were applied to included builds but not “buildSrc builds.

This behavior is now consistent for buildSrc and included builds.

Gradle no longer runs the build task for buildSrc builds

When Gradle builds the output of buildSrc it runs only the tasks that produce that output, which is
typically the jar task. In previous releases Gradle would run the build task.

validation_problems.pdf#implementation_unknown
validation_problems.pdf#implementation_unknown
validation_problems.pdf#implicit_dependency

This means that the tests of buildSrc and its subprojects are not built and executed automatically
and must now be explicitly requested.

This behavior is now consistent for buildSrc and included builds.

You can run the tests for buildSrc in the same way as projects in included builds, for example by
running gradle buildSrc:build.

buildFinished { } hook for buildSrc runs after all tasks have executed

The buildFinished {} hook for buildSrc now runs after all tasks have completed. In previous
releases this hook would run immediately after the tasks for buildSrc completed and before any
requested tasks started.

This behavior is now consistent for buildSrc and included builds.

Changes to paths of included builds

In order to handle conflicts between nested included build names better, Gradle now uses the
directory hierarchy of included builds to assign the build path. If you are running tasks from the
command line in nested included builds, then you may need to adjust your invocation.

For example, if you have the following hierarchy:

—— settings.gradle.kts
L—— nested

—— settings.gradle.kts
L—— nestedNested
L—— settings.gradle.kts

settings.gradle.kts

includeBuild("nested")

nested/settings.gradle.kts

includeBuild("nestedNested")

—— settings.gradle
l—— nested

—— settings.gradle
L—— nestedNested

L—— settings.gradle

settings.gradle

includeBuild("nested")

nested/settings.gradle

includeBuild("nestedNested")

Before Gradle 8.0, you ran gradle :nestedNested:compilelava. In Gradle 8.0 the invocation changes
to gradle :nested:nestedNested:compileJava.

Adding jst.ejb with the eclipse wtp plugin now removes the jst.utility facet

The eclipse wtp plugin adds the jst.utility facet to java projects. Now, adding the jst.ejb facet
implicitly removes the jst.utility facet:

eclipse {

wtp {
facet {
facet name: 'jst.ejb', version: '3.2'
}
}

Simplifying PMD custom rules configuration

Previously, you had to explicitly configure PMD to ignore default rules with ruleSets = []. In the
Gradle 8.0, setting ruleSetConfig or ruleSetFiles to a non-empty value implicitly ignores default
rules.

Report getOutputLocation return type changed from Provider to Property

The outputlLocation property of the Report now returns a value of type Property<? extends
FileSystemLocation>. Previously, outputlLocation returned a value of type Provider<? extends
FileSystemLocation>.

This change makes the Report API more internally consistent, and allows for more idiomatic
configuration of reporting tasks.

The former, now @Deprecated usage:

tasks.named('test') {
reports.junitXml.setDestination(layout.buildDirectory.file('reports/my-report-old
').get().asFile) // DEPRECATED

}

can be replaced with:

tasks.named('test') {
reports.junitXml.outputlocation = layout.buildDirectory.dir('reports/my-report")

Many built-in and custom reports, such as those used by JUnit, implement this interface. Plugins
compiled against an earlier version of Gradle containing the previous method signature may need
to be recompiled to be used with newer versions of Gradle containing the new signature.

Removed external plugin validation plugin

The incubating plugin ExternalPluginValidationPlugin has been removed. Use the java-gradle-
plugin's validatePlugins task to validate plugins under development.

https://docs.gradle.org/8.6/dsl/org.gradle.api.reporting.Report.html#org.gradle.api.reporting.Report
java_gradle_plugin.html
java_gradle_plugin.html

Reproducible archives can change compared to past versions

Gradle changes the compression library used for creating archives from an Ant based one to
Apache Commons Compress™. As a consequence archives created from the same content, are
unlikely to end up identical byte-by-byte to their older versions, created with the old library.

Upgrade to Kotlin 1.8.10

The embedded Kotlin has been updated to Kotlin 1.8.10. Also see Kotlin 1.8.0 release notes. For more
information, see the release notes for Kotlin

* 1.7.20

e 1.7.21

e 1.8.0

Updated the Kotlin DSL to Kotlin API Level 1.8

Previously, the Kotlin DSL used Kotlin API level 1.4. Starting with Gradle 8.0, the Kotlin DSL uses
Kotlin API level 1.8. This change brings all the improvements made to the Kotlin language and
standard library since Kotlin 1.4.0.

For information about breaking and nonbreaking changes in this upgrade, see the following links
to the Kotlin documentation:

* Kotlin 1.5 language / standard library

* Kotlin 1.6 language / standard library

* Kotlin 1.7 language / standard library

* Kotlin 1.8 language / standard library
Note that the Kotlin Gradle Plugin 1.8.0 started using Java toolchains. It is recommended you

configure a toolchain instead of defining Java sourceCompatibility/targetCompatibility in Kotlin
projects.

Also note that the Kotlin Gradle Plugin 1.8.0 introduced compilerOptions with lazy configuration
properties as a replacement for kotlinOptions which did not support lazy configuration. It is
recommended you configure Kotlin compilation using compilerOptions instead of kot1inOptions.

kot1inDs1PluginOptions.jvmTarget is deprecated

Previously, you could use kotlinDs1PluginOptions.jvmTarget to configure which JVM target should
be used for compiling code when using the kotlin-dsl plugin.

Starting with Gradle 8.0, kotlinDs1PluginOptions.jvmTarget is deprecated. You should configure a
Java Toolchain instead.

If you already have a Java Toolchain configured and kotlinDs1PluginOptions.jvmTarget unset then
Gradle 8.0 will now use the Java Toolchain as the JVM target instead of the previous default target
(1.8).

https://commons.apache.org/proper/commons-compress/
https://github.com/JetBrains/kotlin/releases/tag/v1.8.10
https://github.com/JetBrains/kotlin/releases/tag/v1.8.0
https://github.com/JetBrains/kotlin/releases/tag/v1.7.20
https://github.com/JetBrains/kotlin/releases/tag/v1.7.21
https://github.com/JetBrains/kotlin/releases/tag/v1.8.0
https://kotlinlang.org/docs/whatsnew15.html#language-features
https://kotlinlang.org/docs/whatsnew15.html#standard-library
https://kotlinlang.org/docs/whatsnew16.html#language
https://kotlinlang.org/docs/whatsnew16.html#standard-library
https://kotlinlang.org/docs/whatsnew17.html#language
https://kotlinlang.org/docs/whatsnew17.html#standard-library
https://kotlinlang.org/docs/whatsnew18.html#language
https://kotlinlang.org/docs/whatsnew18.html#standard-library

Java Base Plugin now sets Jar, War, and Ear destination directory defaults

Previously, the base plugin configured the destinationDirectory of Jar, War, and Ear tasks to the
directory specified by BasePluginExtension#getLibsDirectory. In Gradle 8.0, java-base handles this
configuration. No changes are required for projects that already apply the java-base plugin directly
or indirectly through the java, application, java-library, or other JVM ecosystem plugins.

Upload Task should not be used

The Upload task remains deprecated and is now scheduled for removal in Gradle 9.0. Although this
type remains, it is no longer functional and will throw an exception upon running. It is preserved
solely to avoid breaking plugins. Use the tasks in the maven-publish or ivy-publish plugins instead.

Configurations no longer allowed as Dependencies

Adding a Configuration as a dependency in the dependencies DSL block, or programmatically using
the DependencyHandler classes' doAdd(Configuration, Object, Closure) method, is no longer allowed
and will fail with an exception. To replicate many aspects of this behavior, extend configurations
using the extendsFrom(Configuration) method on Configuration instead.

Deprecated for consumption configurations are now non-consumable
The following configurations were never meant to be consumed:
» The antlr configuration created by the Ant1rPlugin

» The zinc configuration created by the ScalaBasePlugin

* The providedCompile and providedRuntime configurations created by the WarPlugin

These configurations were deprecated for consumption and are now no longer consumable.
Attempting to consume them will result in an error.

Identical consumable configurations are now an error

If a project has multiple consumable configurations that share the same attributes and capabilities
declaration, the build will fail when publishing or resolving as a dependency that project. This was
previously deprecated.

The outgoingVariants report will warn about this for impacted configurations.

Toolchain-based tasks for JVM projects

Starting with Gradle 8.0, all core Java tasks that have toolchain support are now using toolchains
unconditionally. If JavaBasePlugin is applied, the convention value for tool properties on the task is
defined by the toolchain configured on the java extension. In case no toolchains are explicitly
configured, the toolchain corresponding to the JVM running Gradle is used.

Similarly, tasks from the Groovy and Scala plugins also rely on toolchains to determine on which
JVM they are executed.

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.AbstractArchiveTask.html#org.gradle.api.tasks.bundling.AbstractArchiveTask:destinationDirectory
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.War.html
https://docs.gradle.org/8.6/dsl/org.gradle.plugins.ear.Ear.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.plugins.BasePluginExtension.html#org.gradle.api.plugins.BasePluginExtension:libsDirectory

Scala compilation target

With the toolchain changes described above, Scala compilation tasks are now always provided with
a target or release parameter. The exact parameter and value depend on toolchain usage, or not,
and Scala version.

See the Scala plugin documentation for details.

pluginBundle dropped in Plugin Publish plugin

Gradle 8 no longer supports the pluginBundle extension. Its functionality has been merged into the
gradlePlugin block. These changes require recent versions of the Plugin Publish plugin (1.0.+).
Documentation on configuring plugin publication can be found both on the Portal and in the user
manual.

Upgrading from 7.5 and earlier

Updates to Attribute Disambiguation Rules related methods

The AttributeSchema.setAttributeDisambiquationPrecedence(List) and
AttributeSchema.getAttributeDisambiguationPrecedence() methods now accept and return List
instead of Collection to better indicate that the order of the elements in those collection is
significant.

Strict Kotlin DSL precompiled script plugins accessors generation

Type safe Kotlin DSL accessors generation for precompiled script plugins does not fail the build by
default if a plugin requested in such precompiled scripts fails to be applied. Because the cause could
be environmental and for backwards compatibility reasons, this behaviour hasn’t changed yet.

Back in Gradle 7.1 the :generatePrecompiledScriptPluginAccessors task responsible for the accessors
generation has been marked as non-cacheable by default. The
org.gradle.kotlin.dsl.precompiled.accessors.strict system property was introduced in order to
offer an opt-in to a stricter mode of operation that fails the build when a plugin application fails,
and enable the build cache for that task.

Starting with Gradle 7.6, non-strict accessors generation for Kotlin DSL precompiled script plugins
has been deprecated. This will change in Gradle 8.0. Strict accessor generation will become the
default. To opt in to the strict behavior, set the 'org.gradle.kotlin.dsl.precompiled.accessors.strict'
system property to true.

This can be achieved persistently in the gradle.properties file in your build root directory:

systemProp.org.gradle.kotlin.dsl.precompiled.accessors.strict=true

Potential breaking changes

https://plugins.gradle.org/plugin/com.gradle.plugin-publish/1.1.0
https://plugins.gradle.org/docs/publish-plugin
https://docs.gradle.org/8.6/javadoc/org/gradle/api/attributes/AttributesSchema.html#setAttributeDisambiguationPrecedence(List)--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/attributes/AttributesSchema.html#getAttributeDisambiguationPrecedence()--

Upgrade to Kotlin 1.7.10

The embedded Kotlin has been updated to Kotlin 1.7.10.

Gradle doesn’t ship with the kotlin-gradle-plugin but the upgrade to 1.7.10 can bring the new
version. For example when you use the kotlin-dsl plugin.

The kotlin-gradle-plugin version 1.7.10 changes the type hierarchy of the KotlinCompile task type. It
doesn’t extend from AbstractCompile anymore. If you used to select Kotlin compilation tasks by
AbstractCompile you need to change that to KotlinCompile.

For example, this

tasks.named<AbstractCompile>("compileKotlin")

needs to be changed to

tasks.named<KotlinCompile>("compileKotlin")

In the same vein, if you used to filter tasks by AbstractCompile you won’t obtain the Kotlin
compilation tasks anymore:

tasks.withType<AbstractCompile>().configureEach {
/] ...
¥

needs to be changed to

tasks.withType<AbstractCompile>().configureEach {

/] ...

}

tasks.withType<KotlinCompile>().configureEach {
/] ...

¥

Upgrade to Groovy 3.0.13

Groovy has been updated to Groovy 3.0.13.

Since the previous version was 3.0.10, the 3.0.11 and 3.0.12 changes are also included.

Upgrade to CodeNarc 3.1.0

The default version of CodeNarc has been updated to 3.1.0.

https://github.com/JetBrains/kotlin/releases/tag/v1.7.10
https://groovy-lang.org/changelogs/changelog-3.0.13.html
https://groovy-lang.org/changelogs/changelog-3.0.11.html
https://groovy-lang.org/changelogs/changelog-3.0.12.html
https://github.com/CodeNarc/CodeNarc/blob/master/CHANGELOG.md#version-310----jun-2022

Upgrade to PMD 6.48.0

PMD has been updated to PMD 6.48.0.

Configuring a non-existing executable now fails

When configuring an executable explicitly for JavaCompile or Test tasks, Gradle will now emit an
error if this executable does not exist. In the past, the task would be executed with the default
toolchain or JVM running the build.

Changes to dependency declarations in Test Suites

As part of the ongoing effort to evolve Test Suites, dependency declarations in the Test Suites
dependencies block are now strongly typed. This will help make this incubating API more
discoverable and easier to use in an IDE.

In some cases, this requires syntax changes. For example, build scripts that previously added Test
Suite dependencies with the following syntax:

testing {
suites {
register<JvmTestSuite>("integrationTest") {
dependencies {
implementation(project)
}
}
}
}

will now fail to compile, with a message like:

None of the following functions can be called with the arguments supplied:

public operator fun DependencyAdder.invoke(dependencyNotation: CharSequence): Unit
defined in org.gradle.kotlin.dsl

public operator fun DependencyAdder.invoke(dependency: Dependency): Unit defined in
org.gradle.kotlin.dsl

public operator fun DependencyAdder.invoke(files: FileCollection): Unit defined in
org.gradle.kotlin.dsl

public operator fun DependencyAdder.invoke(dependency: Provider<out Dependency>): Unit
defined in org.gradle.kotlin.dsl

public operator fun DependencyAdder.invoke(externalModule: ProviderConvertible<out
MinimalExternalModuleDependency>): Unit defined in org.gradle.kotlin.dsl

To fix this, replace the reference to project with a call to project():

https://pmd.github.io/pmd-6.48.0/pmd_release_notes.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.ForkOptions.html#org.gradle.api.tasks.compile.ForkOptions:executable
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:executable
jvm_test_suite_plugin.pdf#sec:differences_with_top_level_dependencies

testing {
suites {
register<JvmTestSuite>("integrationTest") {
dependencies {
implementation(project())

}
}
}
}

Other syntax effected by this change includes:

* You cannot use Provider<String> as a dependency declaration.
* You cannot use a Map as a dependency declaration for Kotlin or Java.

* You cannot use a bundle as a dependency declaration directly
(implementation(libs.bundles.testing)). Use implementation.bundle(libs.bundles.testing)
instead.

For more information, see the updated declare an additional test suite example in the JVM Test
Suite Plugin section of the user guide and the DependencyAdder page in the DSL reference.

Deprecations

Usage of invalid Java toolchain specifications is now deprecated

Along with the Java language version, the Java toolchain DSL allows configuring other criteria such
as specific vendors or VM implementations. Starting with Gradle 7.6, toolchain specifications that
configure other properties without specifying the language version are considered invalid. Invalid
specifications are deprecated and will become build errors in Gradle 8.0.

See more details about toolchain configuration in the user manual.

Deprecated members of the org.gradle.util package now report their deprecation

These members will be removed in Gradle 9.0.

* ClosureBackedAction

* CollectionUtils

* Configureltil

* DistributionLocator

* GFileUtils

* GradleVersion.getBuildTime()
* GradleVersion.getNextMajor()
* GradleVersion.getRevision()

e GradleVersion.isValid()

jvm_test_suite_plugin.pdf#sec:declare_an_additional_test_suite
https://docs.gradle.org/8.6/dsl/org.gradle.api.artifacts.dsl.DependencyAdder.html

* GUtI1

* NameMatcher

* NameValidator

* RelativePathUtil

o TextUtil

» SingleMessagelogger
* VersionNumber

o WrapUtil

Internal DependencyFactory was renamed

The internal org.gradle.api.internal.artifacts.dsl.dependencies.DependencyFactory type was
renamed to org.gradle.api.internal.artifacts.dsl.dependencies.DependencyFactoryInternal. As an
internal type, it should not be used, but for compatibility reasons the inner ClassPathNotation type
is still available. This name for the type is deprecated and will be removed in Gradle 8.0. The public
API for this is on DependencyHandler, with methods such as localGroovy() providing the same
functionality.

Replacement collections in org.gradle.plugins.ide.idea.model.IdeaModule

The testResourcesDirs and testSourcesDirs fields and their getters and setters have been
deprecated. Replace usages with the now stable getTestSources() and getTestResources() methods
and their respective setters. These new methods return and are backed by
ConfigurableFileCollection instances for improved flexibility of use. Gradle now warns upon usage
of these deprecated methods. They will be removed in a future version of Gradle.

Replacement methods in org.gradle.api.tasks.testing.TestReport

The getDestinationDir(), setDestinationDir(File), and getTestResultDirs() and
setTestResultDirs(Iterable) methods have been deprecated. Replace usages with the now stable
getDestinationDirectory() and getTestResults() methods and their associated setters. These
deprecated elements will be removed in a future version of Gradle.

Deprecated implicit references to outer scope methods in some configuration blocks

Prior to Gradle 7.6, Groovy scripts permitted access to root project configure methods within
named container configure methods that throw “MissingMethodException's. Consider the
following snippets for examples of this behavior:

Gradle permits access to the top-level repositories block from within the configurations block
when the provided closure is otherwise an invalid configure closure for a Configuration. In this
case, the repositories closure executes as if it were called at the script-level, and creates an
unconfigured repositories Configuration:

configurations {
repositories {

mavenCentral()
}
someConf {
canBeConsumed = false
canBeResolved = false
}

The behavior also applies to closures which do not immediately execute. In this case, afterResolve
only executes when the resolve task runs. The distributions closure is a valid top-level script
closure. But it is an invalid configure closure for a Configuration. This example creates the conf
Configuration immediately. During resolve task execution, the distributions block executed as if it
were declared at the script-level:

configurations {
conf.incoming.afterResolve {
distributions {
myDist {
contents {}
}

}

task resolve {
dependsOn configurations.conf
doFirst {
configurations.conf.files() // Trigger ‘afterResolve®

}

As of Gradle 7.6, this behavior is deprecated. Starting with Gradle 8.0, this behavior will be
removed. Instead, Gradle will throw the underlying MissingMethodException. To mitigate this
change, consider the following solutions:

configurations {
conf.incoming.afterResolve {
// Fully qualify the reference.
project.distributions {
myDist {
contents {}
}

configurations {
conf

}

// Extract the script-level closure to the script root scope.
configurations.conf.incoming.afterResolve {
distributions {
myDist {
contents {}
}

Upgrading from 7.4 and earlier

IncrementalTaskInputs type is deprecated

The IncrementalTaskInputs type was used to implement incremental tasks, that is to say tasks that
can be optimized to run on a subset of changed inputs instead of the whole input. This type had a
number of drawbacks. In particular using this type it was not possible to determine what input a
change was associated with.

You should now use the InputChanges type instead. Please refer to the userguide section about
implementing incremental tasks for more details.

Potential breaking changes

Version catalog only accepts a single TOML import file

Only a single file will be accepted when using a from import method. This means that notations,
which resolve to multiple files (e.g. the Project.files(java.lang.Object...) method, when more then
one file is passed) will result in a build failure.

Updates to default tool integration versions

* Checkstyle has been updated to Checkstyle 8.45.1.
» JaCoCo has been updated to 0.8.8.

Classpath file generated by the eclipse plugin has changed

Project dependencies defined in test configurations get the test=true classpath attribute. All source
sets and dependencies defined by the JVM Test Suite plugin are also marked as test code by default.
You can now customize test source sets and dependencies via the eclipse plugin DSL:

https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://checkstyle.sourceforge.io/releasenotes.html#Release_8.45.1
https://www.jacoco.org/jacoco/trunk/doc/changes.html

eclipse {
classpath {
testSourceSets = [sourcesSets.test, sourceSets.myTestSourceSet]
testConfigurations = [configuration.myTestConfiguration]

Alternatively, you can adjust or remove classpath attributes in the
eclipse.classpath.file.whenMerged { } block.

Signing plugin defaults to gpg instead of gpg2 when using the GPG command

The signature plugin’s default executable when using the GPG command changed from gpg2 to gpg.
The change was motivated as GPG 2.x became stable, and distributions started to migrate by not
linking the gpg2 executable.

In order to set the old default, the executable can be manually defined in gradle.properties:

signing.gnupg.executable=gpg2

mustRunAfter constraints no longer violated by finalizedBy dependencies

In previous Gradle versions, mustRunAfter constraints between regular tasks and finalizer task
dependencies would not be honored.

For a concrete example, consider the following task graph definition:

signing_plugin.html#sec:using_gpg_agent

tasks {
register("dockerTest") {
dependsOn("dockerUp") // dependsOn createContainer mustRunAfter
removeContainer
finalizedBy("dockerStop") // dependsOn removeContainer

}

register("dockerUp") {
dependsOn("createContainer")

}

register("dockerStop") {
dependsOn("removeContainer™)

}

register("createContainer") {
mustRunAfter ("removeContainer")

}

register("removeContainer") {

}

The relevant constraints are:

» dockerStop is a finalizer of dockerTest so it must be run after dockerTest;
* removeContainer is a dependency of dockerStop so it must be run before dockerStop;

e createContainer must run after removeContainer;

Prior to Gradle 7.5, gradle dockerTest would yield the following order of execution, in violation of
the mustRunAfter constraint between :createContainer and :removeContainer

Task :createContainer UP-TO-DATE
Task :dockerUp UP-TO-DATE

Task :dockerTest UP-TO-DATE

Task :removeContainer UP-TO-DATE
Task :dockerStop UP-TO-DATE

vV V V V V

Starting with Gradle 7.5, mustRunAfter constraints are fully honored yielding the following order of
execution:

Task :removeContainer UP-TO-DATE
Task :createContainer UP-TO-DATE
Task :dockerUp UP-TO-DATE

Task :dockerTest UP-TO-DATE

Task :dockerStop UP-TO-DATE

vV V V V V

Updates to bundled Gradle dependencies

* Groovy has been updated to Groovy 3.0.11.

Scala Zinc version updated to 1.6.1

Zinc is the Scala incremental compiler that allows Gradle to always compile the minimal set of files
needed by the current file changes. It takes into account which methods are being used and which
have changed, which means it’s much more granular than just interfile dependencies.

Zinc version has been updated to the newest available one in order to benefit from all the recent
bugfixes. Due to that, if you use zincVersion setting it’s advised to remove it and only use the default
version, because Gradle will only be able to compile Scala code with Zinc versions set to 1.6.x or
higher.

Removes implicit --add-opens for test workers

Prior to Gradle 7.5, JDK modules java.base/java.util and java.base/java.lang were automatically
opened in test workers on JDK9+ by passing --add-opens CLI arguments. This meant any tests were
able to perform deep reflection on JDK internals without warning or failing. This caused tests to be
unreliable by allowing code to pass when it would otherwise fail in a production environment.

These implicit arguments have been removed and are no longer added by default. If your code or
any of your dependencies are performing deep reflection into JDK internals during test execution,
you may see the following behavior changes:

Before Java 16, new build warnings are shown. These new warnings are printed to stderr and will
not fail the build:

WARNING: An illegal reflective access operation has occurred

WARNING: Illegal reflective access by
com.google.inject.internal.cglib.core.ReflectUtils$2 (file:/.../testng-5.12.1.jar) to
<method>

WARNING: Please consider reporting this to the maintainers of
com.google.inject.internal.cglib.core.ReflectUtils$2

WARNING: Use --illegal-access=warn to enable warnings of further illegal reflective
access operations

WARNING: A1l illegal access operations will be denied in a future release

With Java 16 or higher, exceptions are thrown that fail the build:

https://groovy-lang.org/releasenotes/groovy-3.0.html

// Thrown by TestNG
java.lang.reflect.InaccessibleObjectException: Unable to make <method> accessible:
module java.base does not "opens java.lang" to unnamed module @1€92bd61

at
java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleObject.ja
va:354)

at
java.base/java.lang.reflect.AccessibleObject.checkCanSetAccessible(AccessibleObject.ja
va:297)

at java.base/java.lang.reflect.Method.checkCanSetAccessible(Method.java:199)

at java.base/java.lang.reflect.Method.setAccessible(Method.java:193)

// Thrown by ProjectBuilder
org.gradle.api.GradleException: Could not inject synthetic classes.

at
org.gradle.initialization.DefaultlLegacyTypesSupport.injectEmptyInterfacesIntoClassload
er(DefaultLegacyTypesSupport.java:91)

at
org.gradle.testfixtures.internal.ProjectBuilderImpl.getGlobalServices(ProjectBuilderIm
pl.java:182)

at
org.gradle.testfixtures.internal.ProjectBuilderImpl.createProject(ProjectBuilderImpl.j
ava:111)

at org.gradle.testfixtures.ProjectBuilder.build(ProjectBuilder.java:120)

Caused by: java.lang.RuntimeException: java.lang.IllegalAccessException: module
java.base does not open java.lang to unnamed module @1e92bd61

In most cases, these errors can be resolved by updating the code or dependency performing the
illegal access. If the code-under-test or the newest version of the dependency in question performs
illegal access by design, the old behavior can be restored by opening the java.base/java.lang and
java.base/java.util modules manually with --add-opens:

tasks.withType(Test).configureEach {
jvmArgs(["--add-opens=java.base/java.lang=ALL-UNNAMED",
"--add-opens=java.base/java.util=ALL-UNNAMED"]

If you are developing Gradle plugins, ProjectBuilder relies on reflection in the java.base/java.lang
module. Gradle will automatically add the appropriate --add-opens flag to tests when the java-
gradle-plugin plugin is applied.

If you are using TestNG, versions prior to 5.14.6 perform illegal reflection. Updating to at least
5.14.6 should fix the incompatibility.

Checkstyle tasks use toolchains and execute in parallel by default

The Checkstyle plugin now uses the Gradle worker API to run Checkstyle as an external worker
process. Multiple Checkstyle tasks may now run in parallel within a project.

Some projects will need to increase the amount of memory available to Checkstyle to avoid out of
memory errors. You can increase the maximum memory for the Checkstyle process by setting the
maxHeapSize for the Checkstyle task. By default, the process will start with a maximum heap size of
512MB.

We also recommend to update Checkstyle to version 9.3 or later.

Missing files specified with relative paths when running Checkstyle

Gradle 7.5 consistently sets the current working directory for the Checkstyle task to
$GRADLE _USER_HOME/workers. This may cause problems with custom Checkstyle tasks or Checkstyle
configuration files that assume a different directory for relative paths.

Previously, Gradle selected the current working directory based on the directory where you ran
Gradle. If you ran Gradle in:

* the root directory of a project: Gradle uses the root directory as the current working directory.

* a nested directory of a project: Gradle uses the root directory of the subproject as the current

working directory.

In version 7.5 and above, Gradle consistently sets the current working directory for the Checkstyle
task to $GRADLE_USER_HOME/workers.

Deprecations

Converting files to a classpath where paths contain file separator

Java has the concept of a path separator which is used to separate individual paths in a list of paths,
for example in a classpath string. The individual paths must not contain the path separator.
Consequently, using @FileCollection.getAsPath() for files with paths that contain a path separator
has been deprecated, and it will be an error in Gradle 8.0 and later. Using a file collection with
paths which contain a path separator may lead to incorrect builds, since Gradle doesn’t find the
files as inputs, or even to build failures when the path containing the path separator is illegal on the
operating system.

dependencyInsight --singlepath option is deprecated

For consistency, this was changed to --single-path. The API method has remained the same, this
only affects the CLIL

Groovydoc includePrivate property is deprecated

There is a new access property that allows finer control over what is included in the Groovydoc.

checkstyle_plugin.pdf#checkstyle_plugin
checkstyle_plugin.pdf#sec:checkstyle_customize_memory
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/FileCollection.html#getAsPath--
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html#org.gradle.api.tasks.javadoc.Groovydoc:access

Provider-based API must be used to run external processes at the configuration time

Using Project.exec, Project.javaexec, and standard Java and Groovy APIs to run external processes
at the configuration time is now deprecated when the configuration cache is enabled. It will be an
error in Gradle 8.0 and later. Gradle 7.5 introduces configuration cache-compatible ways to execute
and obtain output of an external process with the provider-based APIs or a custom implementation
of the ValueSource interface. The configuration cache chapter has more details to help with the
migration to the new APIs.

Upgrading from 7.3 and earlier

Potential breaking changes

Updates to default tool integration versions

* PMD has been updated to PMD 6.39.0.

Deprecations

AdoptOpen]DK toolchain download

Following the move from AdoptOpen]DK to Adoptium, under the Eclipse foundation, it is no longer
possible to download an AdoptOpen]DK build from their end point. Instead, an Eclipse Temurin or
IBM Semeru build is returned.

Gradle 7.4+ will now emit a deprecation warning when the AdoptOpen]JDK vendor is specified in
the toolchain specification and it is used by auto provisioning. If you must use AdoptOpen]DK, you
should turn off auto-download. If an Eclipse Temurin or IBM Semeru build works for you, specify
JvmVendorSpec.ADOPTIUM or JvmVendorSpec.IBM as the vendor or leave the vendor unspecified.

File trees and empty directory handling

When using @SkipWhenEmpty on an input file collection, Gradle skips the task when it determines that
the input is empty. If the input file collection consists only of file trees, Gradle ignores directories
for the emptiness check. Though when checking for changes to the input file collection, Gradle only
ignores directories when the @IgnoreEmptyDirectories annotation is present.

Gradle will now ignore directories for both the @SkipWhenEmpty check and for determining changes
consistently. Until Gradle 8.0, Gradle will detect if an input file collection annotated with
@SkipWhenEmpty consists only of file trees and then ignore directories automatically. Moreover,
Gradle will issue a deprecation warning to advise the user that the behavior will change in Gradle
8.0, and that the input property should be annotated with @IgnoreEmptyDirectories. To ignore
directories in Gradle 8.0 and later, the input property needs to be annotated with
@IgnoreEmptyDirectories.

Finally, using @InputDirectory implies @IgnoreEmptyDirectories, so no changes are necessary when
using this annotation. The same is true for inputs.dir() when registering an input directory via the
runtime API.

https://docs.gradle.org/8.6/dsl/org.gradle.api.provider.ProviderFactory.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/provider/ValueSource.html
https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.39.0
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/IgnoreEmptyDirectories.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/InputDirectory.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskInputs.html#dir-java.lang.Object-

Using LazyPublishArtifact without a FileResolver is deprecated

When using a LazyPublishArtifact without a FileResolver, a different file resolution strategy is used,
which duplicates some logic in the FileResolver.

To improve consistency, LazyPublishArtifact should be used with a FileResolver, and will require it
in the future.

This also affects other internal APIs that use LazyPublishArtifact, which now also have deprecation
warnings where needed.

TAR trees from resources without backing files

It is possible to create TAR trees from arbitrary resources. If the resource is not created via
project.resources, then it may not have a backing file. Creating a TAR tree from a resource with no
backing file has been deprecated. Instead, convert the resource to a file and use project.tarTree()
on the file. To convert the resource to a file you can use a custom task or use dependency
management to download the file via a URL. This way, Gradle is able to apply optimizations like up-
to-date checks instead of re-running the logic to create the resource every time.

Unique attribute sets

The set of Attributes associated with a consumable configuration within a project, must be unique
across all other configurations within that project which share the same set of Capabilitys.

This will be checked at the end of configuring variant configurations, as they are locked against
further mutation.

If the set of attributes is shared across configurations, consider adding an additional attribute to
one of the variants for the sole purpose of disambiguation.

Provider#forUseAtConfigurationTime() has been deprecated

Provider#forUseAtConfigurationTime is now deprecated and scheduled for removal in Gradle 9.0.
Clients should simply remove the call.

The call was mandatory on providers of external values such as system properties, environment
variables, Gradle properties and file contents meant to be used at configuration time together with
the configuration cache feature.

Starting with version 7.4 Gradle will implicitly treat an external value used at configuration time as
a configuration cache input.

Clients are also free to use standard Java APIs such as System#getenv to read environment variables,
System#igetProperty to read system properties as well as Gradle APIs such as
Project#property(String) and Project#findProperty(String) to read Gradle properties at
configuration time. The Provider based APIs are still the recommended way to connect external
values to task inputs for maximum configuration cache reuse.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/attributes/Attribute.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/capabilities/Capability.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/provider/Provider.html#forUseAtConfigurationTime--
https://docs.gradle.org/8.6/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:systemProperty(java.lang.String)
https://docs.gradle.org/8.6/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:environmentVariable(java.lang.String)
https://docs.gradle.org/8.6/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:environmentVariable(java.lang.String)
https://docs.gradle.org/8.6/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:gradleProperty(java.lang.String)
https://docs.gradle.org/8.6/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:fileContents(org.gradle.api.file.RegularFile)
https://docs.gradle.org/8.6/dsl/org.gradle.api.provider.ProviderFactory.html#org.gradle.api.provider.ProviderFactory:systemProperty(java.lang.String)
https://docs.gradle.org/8.6/javadoc/org/gradle/api/Project.html#findProperty-java.lang.String-

ConfigurableReportisetDestination(org.gradle.api.provider.Provider<java.io.File>) has been deprecated

ConfigurableReport#isetDestination(org.gradle.api.provider.Provider<java.io.File>) is now
deprecated and scheduled for removal in Gradle 8.0.

Use Report#getOutputlocation().set(::+) instead.

Task execution listeners and events

The Gradle configuration cache does not support listeners and events that have direct access to Task
and Project instances, which allows Gradle to execute tasks in parallel and to store the minimal
amount of data in the configuration cache. In order to move towards an API that is consistent
whether the configuration cache is enabled or not, the following APIs are deprecated and will be
removed or be made an error in Gradle 8.0:

* Interface TaskExecutionListener

* Interface TaskActionListener

* Method TaskExecutionGraph.addTaskExecutionListener()

* Method TaskExecutionGraph.removeTaskExecutionListener()

* Method TaskExecutionGraph.beforeTask()

» Method TaskExecutionGraph.afterTask()

* Registering TaskExecutionListener, TaskActionListener, TestListener, TestOutputListener via

Gradle.addListener()

See the configuration cache chapter for details on how to migrate these usages to APIs that are
supported by the configuration cache.

Build finished events

Build finished listeners are not supported by the Gradle configuration cache. And so, the following
API are deprecated and will be removed in Gradle 8.0:

¢ Method Gradle.buildFinished()
¢ Method BuildListener.buildFinished()

See the configuration cache chapter for details on how to migrate these usages to APIs that are
supported by the configuration cache.

Calling Task.getProject() from a task action

Calling Task.getProject() from a task action at execution time is now deprecated and will be made
an error in Gradle 8.0. This method can be used during configuration time, but it is recommended
to avoid doing this.

See the configuration cache chapter for details on how to migrate these usages to APIs that are
supported by the configuration cache.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/reporting/ConfigurableReport.html#setDestination-org.gradle.api.provider.Provider-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/reporting/Report.html#getOutputLocation--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/execution/TaskExecutionListener.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/execution/TaskActionListener.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/execution/TaskExecutionGraph.html#addTaskExecutionListener-org.gradle.api.execution.TaskExecutionListener-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/execution/TaskExecutionGraph.html#removeTaskExecutionListener-org.gradle.api.execution.TaskExecutionListener-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/execution/TaskExecutionGraph.html#beforeTask-org.gradle.api.Action-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/execution/TaskExecutionGraph.html#afterTask-org.gradle.api.Action-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/invocation/Gradle.html#addListener-java.lang.Object-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/invocation/Gradle.html#buildFinished-org.gradle.api.Action-
https://docs.gradle.org/8.6/javadoc/org/gradle/BuildListener.html#buildFinished-org.gradle.BuildResult-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/Task.html#getProject--

Calling Task.getTaskDependencies() from a task action

Calling Task.getTaskDependencies() from a task action at execution time is now deprecated and will
be made an error in Gradle 8.0. This method can be used during configuration time, but it is
recommended to avoid doing this.

See the configuration cache chapter for details on how to migrate these usages to APIs that are
supported by the configuration cache.

Using a build service from a task without the corresponding Task.usesService declaration

Gradle needs the information so it can properly honor the build service lifecycle and its usage
constraints.

This will become an error in a future Gradle version.

Check the Shared Build Services documentation for more information.

VersionCatalog and VersionCatalogBuilder deprecations

Some methods in VersionCatalog and VersionCatalogBuilder are now deprecated and scheduled for
removal in Gradle 8.0. Specific replacements can be found in the JavaDoc of the affected methods.

These methods were changed to improve the consistency between the libs.versions.toml file and
the API classes.

Upgrading from 7.2 and earlier

Potential breaking changes

Updates to bundled Gradle dependencies

 Kotlin has been updated to Kotlin 1.5.31.
* Groovy has been updated to Groovy 3.0.9.
* Ant has been updated to Ant 1.10.11 to fix CVE-2021-36373 and CVE-2021-36374.

* Commons compress has been updated to Commons-compress 1.21 to fix CVE-2021-35515, CVE-
2021-35516, CVE-2021-35517 and CVE-2021-36090.

Application order of plugins in the plugins block

The order in which plugins in the plugins block were actually applied was inconsistent and
depended on how a plugin was added to the class path.

Now the plugins are always applied in the same order they are declared in the plugins block which
in rare cases might change behavior of existing builds.

Effects of exclusion on substituted dependencies in dependency resolution

Prior to this version, a dependency substitution target could not be excluded from a dependency
graph. This was caused by checking for exclusions prior to performing the substitution. Now Gradle
will also check for exclusion on the substitution result.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/Task.html#getTaskDependencies--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/artifacts/VersionCatalog.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/initialization/dsl/VersionCatalogBuilder.html
https://github.com/JetBrains/kotlin/releases/tag/v1.5.31
https://groovy-lang.org/changelogs/changelog-3.0.9.html
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.10.11.html
https://github.com/advisories/GHSA-q5r4-cfpx-h6fh
https://github.com/advisories/GHSA-5v34-g2px-j4fw
https://commons.apache.org/proper/commons-compress/
https://github.com/advisories/GHSA-7hfm-57qf-j43q
https://github.com/advisories/GHSA-crv7-7245-f45f
https://github.com/advisories/GHSA-crv7-7245-f45f
https://github.com/advisories/GHSA-xqfj-vm6h-2x34
https://github.com/advisories/GHSA-mc84-pj99-q6hh

Version catalog

Generated accessors no longer give access to the type unsafe API. You have to use the version
catalog extension instead.

Toolchain support in Scala

When using toolchains in Scala, the -target option of the Scala compiler will now be set
automatically. This means that using a version of Java that cannot be targeted by a version of Scala
will result in an error. Providing this flag in the compiler options will disable this behaviour and
allow to use a higher Java version to compile for a lower bytecode target.

Declaring input or output directories which contain unreadable content

For up-to-date checks Gradle relies on tracking the state of the inputs and the outputs of a task.
Gradle used to ignore unreadable files in the input or outputs to support certain use-cases, although
it cannot track their state. Declaring input or output directories on tasks which contain unreadable
content has been deprecated and these use-cases are now supported by declaring the task to be
untracked. Use the @UntrackedTask annotation or the Task.doNotTrackState() method to declare a
task as untracked.

When you are using a Copy task for copying single files into a directory which contains unreadable
files, use the method Task.doNotTrackState().

Upgrading from 7.1 and earlier

Potential breaking changes

Security changes to application start scripts and Gradle wrapper scripts

Due to CVE-2021-32751, gradle, gradlew and start scripts generated by Gradle’s application plugin
have been updated to avoid situations where these scripts could be used for arbitrary code
execution when an attacker is able to change environment variables.

You can use the latest version of Gradle to generate a gradlew script and use it to execute an older
version of Gradle.

This should be transparent for most users; however, there may be changes for Gradle builds that
rely on the environment variables JAVA_OPTS or GRADLE_OPTS to pass parameters with complicated
quote escaping. Contact us if you suspect something has broken your build and you cannot find a
solution.

Updates to bundled Gradle dependencies
* Groovy has been updated to Groovy 3.0.8.
* Kotlin has been updated to Kotlin 1.5.21.
Updates to default tool integration versions

* PMD has been updated to PMD 6.36.0.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/UntrackedTask.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doNotTrackState(java.lang.String)
https://github.com/gradle/gradle/security/advisories/GHSA-6j2p-252f-7mw8
https://groovy-lang.org/releasenotes/groovy-3.0.html
https://github.com/JetBrains/kotlin/releases/tag/v1.5.21
https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.36.0

Deprecations

Using Java lambdas as task actions

When using a Java lambda to implement a task action, Gradle cannot track the implementation and
the task will never be up-to-date or served from the build cache. Since it is easy to add such a task
action, using task actions implemented by Java lambdas is now deprecated. See Validation
problems for more details how to fix the issue.

Relying on equals for up-to-date checks is deprecated

When a task input is annotated with @Input and is not a type Gradle understand directly (like
String), then Gradle uses the serialized form of the input for up-to-date checks and the build cache
key. Historically, Gradle also loads the serialized value from the last execution and then uses
equals() to compare it to the current value for up-to-date checks. Doing so is error prone, doesn’t
work with the build cache and has a performance impact, therefore it has been deprecated. Instead
of using @Input on a type Gradle doesn’t understand directly, use @Nested and annotate the
properties of the type accordingly.

Upgrading from 7.0 and earlier

Potential breaking changes

Updates to default tool integration versions

» JaCoCo has been updated to 0.8.7.

The org.gradle.util package is now a public API

Officially, the org.gradle.util package is not part of the public API. But, because this package name
doesn’t contain the word internal, many Gradle plugins already consider as one. Gradle 7.1
addresses the situation and marks the package as public. The classes that were unintentionally
exposed are either deprecated or removed, depending on their external usage.

The following classes are now officially recognized as public API:

e GradleVersion
e Path

» Configurable

The following classes have known usages in external plugins and are now deprecated and set
for removal in Gradle 8.0:

e VersionNumber

TextUtil
* WrapUtil
e RelativePathUtil

e DistributionLocator

validation_problems.pdf#implementation_unknown
validation_problems.pdf#implementation_unknown
http://www.jacoco.org/jacoco/trunk/doc/changes.html

* SingleMessagelogger
» ConfigureUtil

ConfigureUtil is being removed without a replacement. Plugins can avoid the need for using
ConfigureUtil by following our example.

The following classes have only internal usages and were moved from org.gradle.util to the
org.gradle.util.internal package:

* Resources

* RedirectStdOutAndErr

* Swapper

* StdInSwapper

* Incubationlogger

* RedirectStdIn

* MultithreadedTestRule

* DisconnectableInputStream
* BulkReadInputStream

* MockExecutor

* FailsWithMessage

* FailsWithMessageExtension
* TreeVisitor

* AntUtil

* JarUtil

The last set of classes have no external or internal usages and therefore were deleted:

* DiffUtil

* NoopChangeListener

* EnumWithClassBody

* AlwaysTrue

* ReflectionEqualsMatcher
* DynamicDelegate

* Incubationlogger

* NoOpChangelListener

* DeferredUtil

» Changelistener

https://docs.gradle.org/8.6/javadoc/org/gradle/util/ConfigureUtil.html

The return type of source set extensions have changed

The following source sets are contributed via an extension with a custom type:

* groovy: GroovySourceDirectorySet
* antlr: AntlrSourceDirectorySet

* scala: ScalaSourceDirectorySet

The 'idiomatic' DSL declaration is backward compatible:

sourceSets {
main {
groovy {
/] ...

However, the return type of the groovy block has changed to the extension type. This means that
the following snippet no longer works in Gradle 7.1:

sourceSets {
main {
GroovySourceSet sourceSet = groovy {
/] ...

Start scripts require bash shell

The command used to start Gradle, the Gradle wrapper as well as the scripts generated by the
application plugin now require bash shell.

Deprecations

Using convention mapping with properties with type Provider is deprecated

Convention mapping is an internal feature that is been replaced by the Provider API. When mixing
convention mapping with the Provider API, unexpected behavior can occur. Gradle emits a
deprecation warning when a property in a task, extension or other domain object uses convention
mapping with the Provider APIL.

To fix this, the plugin that configures the convention mapping for the task, extension or domain
object needs to be changed to use the Provider API only.

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.GroovySourceDirectorySet.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.plugins.antlr.AntlrSourceDirectorySet.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.ScalaSourceDirectorySet.html

Setting custom build layout

Command line options:

* -c, --settings-file for specifying a custom settings file location

* -b, --build-file for specifying a custom build file location
have been deprecated.
Setting custom build file using buildFile property in GradleBuild task has been deprecated.

Please use the dir property instead to specify the root of the nested build. Alternatively, consider
using one of the recommended alternatives for GradleBuild task as suggested in Avoid using the
GradleBuild task type section.

Setting custom build layout wusing StartParameter methods setBuildFile(File) and
setSettingsFile(File) as well as the counterpart getters getBuildFile() and getSettingsFile() have been
deprecated.

Please use standard locations for settings and build files:

* settings file in the root of the build

* build file in the root of each subproject

For the use case where custom settings or build files are used to model different behavior (similar
to Maven profiles), consider using system properties with conditional logic. For example, given a
piece of code in either settings or build file:

if (System.getProperty("profile") == "custom") {
println("custom profile")

} else {
println("default profile")

You can pass the profile system property to Gradle using gradle -Dprofile=custom to execute the
code in the custom profile branch.

Substitution.with replaced with Substitution.using

Dependency substitutions using with method have been deprecated and are replaced with using
method that also allows chaining. For example, a dependency substitution rule
substitute(project(':a")).with(project(':b")) should be replaced with
substitute(project(':a")).using(project(':b")). With chaining you can, for example, add a reason
for a substitution like this: substitute(project(':a"')).using(project(':b"')).because("a reason").

Properties deprecated in JavaExec task

* The main getters and setters in JavaExec task have been deprecated. Use the mainClass property
instead.

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.GradleBuild.html#org.gradle.api.tasks.GradleBuild:buildFile
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.GradleBuild.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.GradleBuild.html#org.gradle.api.tasks.GradleBuild:dir
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.GradleBuild.html
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#setBuildFile-java.io.File-
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#setSettingsFile-java.io.File-
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#getBuildFile--
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#getSettingsFile--
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:main
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.JavaExec.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.JavaExec.html#org.gradle.api.tasks.JavaExec:mainClass

Deprecated properties in compile task

* The JavaCompile.destinationDir property has been deprecated. Use the
JavaCompile.destinationDirectory property instead.

* The GroovyCompile.destinationDir =~ property has been deprecated. Use the
GroovyCompile.destinationDirectory property instead.

* The ScalaCompile.destinationDir ~ property has been deprecated. Use the
ScalaCompile.destinationDirectory property instead.

Non-hierarchical project layouts

Gradle 7.1 deprecated project layouts where subprojects were located outside of the project root.
However, based on community feedback we decided to roll back in Gradle 7.4 and removed the
deprecation. As a consequence, the Settings.includeFlat() method is deprecated in Gradle 7.1, 7.2,
and 7.3 only.

Deprecated Upload task

Gradle used to have two ways of publishing artifacts. Now, the situation has been cleared and all
build should use the maven-publish plugin. The last remaining artifact of the old way of publishing is
the Upload task that has been deprecated and scheduled for removal in Gradle 8.0. Existing clients
should migrate to the maven-publish plugin.

Deprecated conventions

The concept of conventions is outdated and superseded by extensions. To reflect this in the Gradle
API, the following elements are now deprecated:

» org.gradle.api.Project.getConvention()

* org.gradle.api.internal.HasConvention (deprecated)
The internal usages of conventions have been also cleaned up (see the deprecated items below).

Plugin authors migrate to extensions if they replicate the changes we’ve done internally. Here are
some examples:

* Migrate plugin configuration: gradle/gradle#16900.

* Migrate custom source sets: gradle/gradle#17149.

Deprecated consumption of internal plugin configurations

Some core Gradle plugins declare configurations that are used by the plugin itself and are not
meant to be published or consumed by another subproject directly. Gradle did not explicitly
prohibit this. Gradle 7.1 deprecates consumption of those configurations and this will become an
error in Gradle 8.0.

The following plugin configurations have been deprecated for consumption:

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:destinationDir
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.JavaCompile.html#org.gradle.api.tasks.compile.JavaCompile:destinationDirectory
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.GroovyCompile.html#org.gradle.api.tasks.compile.GroovyCompile:destinationDir
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.GroovyCompile.html#org.gradle.api.tasks.compile.GroovyCompile:destinationDirectory
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.scala.ScalaCompile.html#org.gradle.api.tasks.scala.ScalaCompile:destinationDir
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.scala.ScalaCompile.html#org.gradle.api.tasks.scala.ScalaCompile:destinationDirectory
https://github.com/gradle/gradle/issues/18644
https://docs.gradle.org/8.6/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:includeFlat(java.lang.String[])
https://docs.gradle.org/8.6/javadoc/org/gradle/api/Project.html#getConvention--
https://github.com/gradle/gradle/pull/16900/files#diff-ac53d4f39698b83e30b93855fe6a725ffd96d5ed9df156d4f9dfd32bdc7946e7
https://github.com/gradle/gradle/pull/17149/files#diff-e159587e2f9aec398fa795b1d8b344f1593cb631e15e04893d31cdc9465f9781

plugin configurations deprecated for consumption

codenarc codenarc

pmd pmd

checkstyle checkstyle

antlr antlr

jacoco jacocoAnt, jacocoAgent

scala zinc

war providedCompile, providedRuntime

If your use case needs to consume any of the above mentioned configurations in another project,
please create a separate consumable configuration that extends from the internal ones. For
example:

plugins {
id("codenarc")
}
configurations {
codenarc
// because currently this is consumable until Gradle 8.0 and can clash with
the confiquration below depending on the attributes set
canBeConsumed = false
}
codenarcConsumable {
extendsFrom(codenarc)
canBeConsumed = true
canBeResolved = false
// the attributes below make this configuration consumable by a ‘java-library’
project using ‘implementation’ configuration
attributes {
attribute(Usage.USAGE_ATTRIBUTE, objects.named(Usage, Usage.JAVA_RUNTIME))
attribute(Category.CATEGORY_ATTRIBUTE, objects.named(Category,
Category.LIBRARY))
attribute(LibraryElements.LIBRARY_ELEMENTS_ATTRIBUTE,
objects.named(LibraryElements, LibraryElements.JAR))
attribute(Bundling.BUNDLING_ATTRIBUTE, objects.named(Bundling,
Bundling.EXTERNAL))
attribute(TargetJvmEnvironment.TARGET_JVM_ENVIRONMENT_ATTRIBUTE,
objects.named(TargetJvmEnvironment, TargetJvmEnvironment.STANDARD_JVM));
}
}

Deprecated custom source set interfaces

The following source set interfaces are now deprecated and scheduled for removal in Gradle 8.0:

* GroovySourceSet

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/GroovySourceSet.html

* org.gradle.api.plugins.antlr.AntlrSourceVirtualDirectory (removed)

» ScalaSourceSet
Clients should configure the sources with their plugin-specific configuration:

* groovy: GroovySourceDirectorySet
* antlr: AntlrSourceDirectorySet

* scala: ScalaSourceDirectorySet

For example, here’s how you configure the groovy sources from a plugin:

GroovySourceDirectorySet groovySources = sourceSet.getExtensions().getByType
(GroovySourceDirectorySet.class);
groovySources.setSrcDirs(Arrays.asList("sources/groovy"));

Registering artifact transforms extending ArtifactTransform

When Gradle first introduced artifact transforms, it used the base class ArtifactTransform for
implementing them. Gradle 5.3 introduced the interface TransformAction for implementing artifact
transforms, replacing the previous class ArtifactTransform and addressing various shortcomings.
Using the registration method DependencyHandler.registerTransform(Action) for ArtifactTransform
has been deprecated. Migrate your artifact transform to use TransformAction and use
DependencyHandler.registerTransform(Class, Action) instead. See the user manual for more
information on implementing TransformAction.

Upgrading your build from Gradle 6.x to 7.0

This chapter provides the information you need to migrate your Gradle 6.x builds to Gradle 7.0. For
migrating from Gradle 5.x or earlier, complete the older migration guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/ScalaSourceSet.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/GroovySourceDirectorySet.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/antlr/AntlrSourceDirectorySet.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/ScalaSourceDirectorySet.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:registerTransform(org.gradle.api.Action)
https://docs.gradle.org/8.6/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:registerTransform(java.lang.Class,%20org.gradle.api.Action)
https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

(S Gradle Enterprise € + gradle clean kotlin-dsl-tooling-builders:platforniTest Dec 23,2020 7:38:27 PM EST i= Buldsans | @ @

= Ssummary
Console log

(D Deprecations

- Timeline

ons has been deprecated.

W Performance The KotlinDslPluginOptions.

Tests This s scheduled to be rem
2 usages >

s Projects

rimentalWarning property has been deprecated.
in Gradle 8.0.

&% Dependencies

22 Build dependencies
[Plugins

5= Custom values

& Switches

Infrastructure

¥ See before and after

@D Compare build scan

This is so that you can see any deprecation warnings that apply to your build.

Alternatively, you can run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the API.

3. Run gradle wrapper --gradle-version 7.0 to update the project to 7.0.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

Upgrading from 6.9 and earlier

Changes in the IDE integration

Changes in the IDEA model

The getGeneratedSourceDirectories() and getGeneratedTestDirectories() methods are removed
from the IdeaContentRoot interface. Clients should replace these invocations with
getSourceDirectories() and getTestDirectories() and use the isGenerated() method on the
returned instances.

Dependency locking now defaults to a single file per project

The format of the dependency lockfile has been changed and as a consequence there is only one file
per project instead of one file per configuration per project. This change only affects writing lock
files. Gradle remains capable of loading lock state saved in the older format.

Head over to the documentation to learn how to migrate to the new format. The migration can be

performed per configuration and does not have to be done in a single step. Gradle will
automatically clean up previous lock files when migrating them over to the new file format.

Gradle Module Metadata is now reproducible by default

The buildId field will not be populated by default to ensure that the produced metadata file
remains unchanged when no build inputs are changed. Users can still opt in to have this unique
identifier part of the produced metadata if they want to, see the documentation.

The jcenter () convenience method is now deprecated

JFrog announced the sunset of the JCenter repository in February 2021. Many Gradle builds rely on
JCenter for project dependencies.

No new packages or versions are published to JCenter, but JFrog says they will keep JCenter
running in a read-only state indefinitely. We recommend that you consider using mavenCentral(),
google() or a private maven repository instead.

Gradle emits a deprecation warning when jcenter() is used as a repository and this method is
scheduled to be removed in Gradle 8.0.

Potential breaking changes

Updates to bundled Gradle dependencies

 Kotlin has been updated to Kotlin 1.4.31.

* Groovy has been updated to Groovy 3.0.7.

Changes to Groovy and Groovy DSL

Due to the update to the next major version of Groovy, you may experience minor issues when
upgrading to Gradle 7.0.

The new version of Groovy has a stricter parser that fails to compile code that may have been
accepted in previous Groovy versions. If you encounter syntax errors, check the Groovy issue
tracker and Groovy 3 release highlights.

Some very specific regressions have already been fixed in the next minor version of Groovy.

Groovy modularization

Gradle no longer embeds a copy of groovy-all that bundles all Groovy modules into a single jar—
only the most important modules are distributed in the Gradle distribution.

The localGroovy() dependency will include these Groovy modules:

* groovy
* groovy-ant
* groovy-astbuilder

* groovy-console

https://jfrog.com/blog/into-the-sunset-bintray-jcenter-gocenter-and-chartcenter
https://blog.gradle.org/jcenter-shutdown
https://kotlinlang.org/docs/reference/whatsnew1430.html
https://groovy-lang.org/releasenotes/groovy-3.0.html
https://groovy.apache.org/#reporting-issues
https://groovy.apache.org/#reporting-issues
https://blogs.apache.org/groovy/entry/groovy-3-highlights
https://issues.apache.org/jira/browse/GROOVY-9936

* groovy-datetime
* groovy-dateutil
* groovy-groovydoc
* groovy-json

* groovy-nio

* groovy-sql

* groovy-templates
* groovy-test

* groovy-xml
But the following Groovy modules are not included:

* groovy-cli-picocli
* groovy-docgenerator
* groovy-groovysh

* groovy-jmx

* groovy-jsr223

* groovy-macro

* groovy-servlet

* groovy-swing

* groovy-test-junith

* groovy-testng

You can pull these dependencies into your build like any other external dependency.

Building Gradle plugins with Groovy 3

Plugins built with Gradle 7.0 will now have Groovy 3 on their classpath when using gradleApi() or
localGroovy().

If you use Spock to test your plugins, you will need to use Spock 2.x. There are no

NOTE
compatible versions of Spock 1.x and Groovy 3.

https://spockframework.org/

dependencies {
// Ensure you use the Groovy 3.x variant
testImplementation('org.spockframework:spock-core:2.0-groovy-3.0"') {
exclude group: 'org.codehaus.groovy'
}
}

// Spock 2 is based on JUnit Platform which needs to be enabled explicitly.
tasks.withType(Test).configureEach {
useJUnitPlatform()

}

Performance

Depending on the number of subprojects and Groovy DSL build scripts, you may notice a
performance regression when compiling build scripts for the first time or when changes are made
to the build script’s classpath. This is due to the slower performance of the Groovy 3 parser, but the
Groovy team is aware of the issue and trying to mitigate the regression.

In general, we are also looking at how we can improve the performance of build script compilation
for both Groovy DSL and Kotlin DSL.

Encountering 'Could not find method X for arguments Y on DefaultDependencyHandler'

While the following error initially looks like a compile error, it is actually due to the fact that
specific "Configuration's have been removed. Please refer to Removal of compile and runtime
configurations for more details.

Could not find method testCompile() for arguments
[DefaultExternalModuleDependency{group="org.junit', name='junit-bom', version='5.7.0",
configuration="default'}] on object of type
org.gradle.api.internal.artifacts.dsl.dependencies.DefaultDependencyHandler.

Updates to default tool integration versions

* PMD has been updated to PMD 6.31.0.

* Groovy and GroovyDoc have been updated to Groovy 3.0.7.

Removal of compile and runtime configurations

Since its inception, Gradle provided the compile and runtime configurations to declare
dependencies. These however did not support a fine grained scoping of dependencies. Hence, better
replacements were introduced in Gradle 3.4:

* The implementation configuration should be used to declare dependencies which are
implementation details of a library: they are not visible to consumers of the library during
compilation time.

https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.31.0
https://groovy-lang.org/releasenotes/groovy-3.0.html

* The api configuration, available only if you apply the java-library plugin, should be used to
declare dependencies which are part of the API of a library, that need to be exposed to
consumers at compilation time.

In Gradle 7, both the compile and runtime configurations are removed. Therefore, you have to
migrate to the implementation and api configurations above. If you are still using the java plugin for
a Java library, you will need to apply the java-library plugin instead.

Table 3. Common configuration upgrades

Removed Configuration New Configuration
compile api or implementation
runtime runtimeOnly

testRuntime testRuntimeOnly
testCompile testImplementation
<sourceSet>Runtime <sourceSet>RuntimeOnly
<sourceSet>Compile <sourceSet>Implementation

You can find more details about the benefits of the new configurations and which one to use in
place of compile and runtime by reading the Java Library plugin documentation.

When using the Groovy DSL, you need to watch out for a particular upgrade problem when dealing
with the removed configurations.

If you were creating custom configurations that extend one of the removed configurations, Gradle
may silently create configurations that do not exist.

This looks something like:

configurations {
// This silently creates a configuration called "runtime"
myConf extendsFrom runtime

}

The result of dependency resolution for your custom configuration may not be the same as Gradle
6.x or before. You may notice missing dependencies or artifacts.

Location of temporary project files for ProjectBuilder

The ProjectBuilder API is used for inspecting Gradle builds in unit tests. This API used to create
temporary project files under the system temporary directory as defined by java.io.tmpdir.

The API now creates temporary project files under the Test task’s temporary directory. This path is
usually under the project build directory. This may cause test failures when the test expects
particular file paths.

If the test uses ProjectBuilder.withProjectDir(:), it is unaffected.

Location of temporary files for TestKit tests

Tests that use the TestKit API used to create temporary files under the system temporary directory
as defined by java.io.tmpdir. These files were used to store copies of Gradle distributions or
another test-only Gradle User Home.

TestKit tests will now create temporary files under the Test task’s temporary directory. This path is
usually under the project build directory. This may cause test failures when the test expects
particular file paths.

If the test uses GradleRunner.withTestKitDir(::+), it is unaffected.

File system watching with TestKit on Windows

The file system watching implementation on Windows adds a lock to the root project directory in
order to watch for changes. This may cause errors when you try to delete the root project directory
after running a build with TestKit. For example, tests that use TestKit together with JUnit’s @TempDir
extension, or the TemporaryFolder rule can run into this problem. To avoid problems with these file
locks, TestKit disables file system watching for builds executed on Windows via GradleRunner. If
you’d like to override the default behavior, you can enable file system watching by passing --watch
-fs to GradleRunner.withArguments().

Removal of the legacy maven plugin

The maven plugin has been removed. You should use the maven-publish plugin instead.

Please refer to the documentation of the Maven Publish plugin for more details.

Removal of the uploadArchives task

The uploadArchives task was used in combination with the legacy Ivy or Maven publishing
mechanisms. It has been removed in Gradle 7. You should migrate to the maven-publish or ivy-
publish plugin instead.

Please refer to the documentation of the Maven Publish plugin for publishing on Maven
repositories. Please refer to the documentation of the Ivy Publish plugin for publishing on Ivy
repositories.

Changes in dependency version sorting

In the context of dependency version sorting, a -SNAPSHOT version is now considered to be right
before a final release but after any -RC version. More special version suffixes are also taken into
account. This brings the Gradle algorithm closer to the Maven one for well-known version suffixes.

Have a look at the documentation for all the rules Gradle applies.

Removal of Play Framework plugins

The deprecated Play plugins have been removed. An external replacement, the Play Framework
plugin, is available from the plugin portal.

https://gradle.github.io/playframework
https://gradle.github.io/playframework

Removal of deprecated JVM plugins

These unmaintained alternative JVM plugins have been removed: java-lang, scala-lang, junit-
test-suite, jvm-component, jvm-resources.

Please use the stable Java Library and Scala plugins instead.

Removal of experimental JavaScript plugins

The following plugins for experimental JavaScript integration are now removed from the
distribution: coffeescript-base, envjs, javascript-base, jshint, rhino.

If you used these plugins despite their experimental nature, you may find suitable replacements in
the Plugin Portal.

Configuring the layout of an Ivy repository

The 1layout method taking a configuration block has been removed and is replaced by
patternLayout.

Executing a Gradle build without a settings file is now an error

A Gradle build is defined by its settings.gradle(.kts) file found in the current or parent directory.
Without a settings file, a Gradle build is undefined and Gradle produces an error when attempting
to execute tasks.

To fix this error, create a settings.gradle(.kts) file for the build.

Exceptions to this are invoking Gradle with the init task or using diagnostic command line flags,
such as --version.

Calling Project.afterEvaluate() after project evaluation is now an error

Gradle 6.x warns users about the wrong behavior and ignores the target action in this scenario.
Starting from 7.0 the same case will produce an error. Plugins and build scripts should be adjusted
to call afterEvaluate only at configuration time. If you have such a build failure and the related
afterEvaluate statement is declared in your build sources then you can simply delete it. If
afterEvaluate is declared in a plugin then report the issue to the plugin maintainers.

Modifying file collections after values finalized is now an error

Calling any mutator methods (i.e. clear (), add(), remove(), etc.) on ConfigurableFileCollection after
the stored value calculated throws an exception. Users and plugin authors should adjust their code
such that all configuration on ConfigurableFileCollection happens during configuration time,
before the values are read.

Removal of ProjectlLayoutffconfigurableFiles

Please use ObjectFactory#fileCollection() instead.

https://plugins.gradle.org/
https://docs.gradle.org/8.6/dsl/org.gradle.api.artifacts.repositories.IvyArtifactRepository.html#org.gradle.api.artifacts.repositories.IvyArtifactRepository:patternLayout(org.gradle.api.Action)

Removal of BasePluginConvention.libsDir and BasePluginConvention.distsDir

Please use the libsDirectory and distsDirectory properties instead.

Removal of UnableToDeleteFileException

Existing usages should be replaced with RuntimeException.

Properties removed in Checkstyle and PMD plugins

* The configDir getters and setters have been removed from the Checkstle task and extension. Use
the configDirectory property instead.

* The rulePriority getter and setter have been removed from the Pmd task and extension. Use the
rulesMinimumPriority property instead.

Removal of baseName property in distribution plugin

The getBaseName() and setBaseName() methods were removed from the Distribution class. Clients
should replace the usages with the distributionBaseName property.

Using AbstractTask

Registering a task with the AbstractTask type or with a type extending AbstractTask was deprecated
in Gradle 6.5 and is now an error in Gradle 7.0. You can use DefaultTask instead.

Removal of BuildListener.buildStarted(Gradle)

BuildListener.buildStarted(Gradle) was deprecated in Gradle 6.0 and is now removed in Gradle
7.0. Please use BuildListener.beforeSettings(Settings) instead.

Removal of unused StartParameter APIs

The following APIs, which were not usable via command line options anymore since Gradle 5.0, are
now removed: StartParameter.useEmptySettings(), StartParameter.isUseEmptySettings(),
StartParameter.setSearchUpwards(boolean) and StartParameter.isSearchUpwards().

Removal of searching for settings files in 'master' directories

Gradle no longer supports discovering the settings file in a directory named master in a sibling
directory. If your build still uses this deprecated feature, consider refactoring the build to have the
root directory match the physical root of the project hierarchy. You can find more information
about how to structure a Gradle build or a composition of builds in the user manual. Alternatively,
you can still run tasks in builds like this by invoking the build from the master directory only using
a fully qualified path to the task.

modularity.inferModulePath defaults to 'true’

Compiling, testing and executing now works automatically for any source set that defines a module
by containing a module-info.java file. Usually, this is the behavior you need. If this is causing issues
in cases you manually configure the module path, or use a 3rd party plugin for it, you can still opt
out of this by setting modularity.inferModulePath to false on the java extension or individual tasks.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/DefaultTask.html
https://docs.gradle.org/8.6/javadoc/org/gradle/BuildListener.html#beforeSettings-org.gradle.api.initialization.Settings-

Removal of ValidateTaskProperties

The ValidateTaskProperties task has been removed and replaced by the ValidatePlugins task.

Removal of ImmutableFileCollection

The ImmutableFileCollection type has been removed. Use the factory method instead. A handle to
the project layout can be obtained via Project.layout.

Removal of ComponentSelectionReason.getDescription

The method ComponentSelectionReason.getDescription has been removed. It is replaced by
ComponentSelectionReason.getDescriptions which returns a list of ComponentSelectionDescriptor,
each having a getDescription.

Removal of domain object collection constructors

The following deprecated constructors were removed:

DefaultNamedDomainObjectList(Class, Instantiator, Namer)

DefaultNamedDomainObjectSet(Class, Instantiator)

DefaultPolymorphicDomainObjectContainer(Class, Instantiator)

» FactoryNamedDomainObjectContainer(Class, Instantiator, NamedDomainObjectFactory)

Removal of arbitrary local cache configuration

The local build cache configuration now needs to be done via BuildCacheConfiguration.local().

Removal of DefaultVersionSelectorScheme constructor

This internal API was used in plugins, amongst other the Nebula plugins, and was deprecated in the
Gradle 5.x timeline and is now removed. Latest plugins version should no longer reference it.

Setting the config_loc config property on the checkstyle plugin is now an error

The checkstyle plugin now fails for the following configuration

checkstyle {
configProperties['config_loc'] = file("path/to/checkstyle-config-dir")

Builds should declare the checkstyle configuration with the checkstyle block:

checkstyle {
configDirectory = file("path/to/checkstyle-config-dir")

https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/ProjectLayout.html#files-java.lang.Object…​-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/Project.html#getLayout--
https://docs.gradle.org/8.6/javadoc/org/gradle/caching/configuration/BuildCacheConfiguration.html#local-org.gradle.api.Action-
https://github.com/nebula-plugins

Querying the mapped value of a provider before the producer has completed is now an error

Gradle 6.x warns users about the wrong behavior and then returns a possibly incorrect provider
value. Starting with 7.0 the same case will produce an error. Plugins and build scripts should be
adjusted to query the mapped value of a provider, for example a task output property, after the task
has completed.

Task validation problems are now errors

Gradle 6.0 started warning about problems with task definitions (such as incorrectly defined inputs
or outputs). For Gradle 7.0, those warnings are now errors and will fail the build.

Change in behavior when there’s a strict version conflict with a local project

Previous Gradle releases had an inconsistent behavior in regard to conflict resolution in a
particular configuration: - your project declares a strict dependency on a published module (for
example, com.mycompany:some-module:1.2!!, where 1.2!! is the short hand notation for a strict
dependency on 1.2) - your build actually provides com.mycompany:some-module in a higher version

Previous Gradle releases would succeed, selecting the project dependency despite the strict
constraint. Starting from Gradle 7, this will trigger a dependency resolution failure.

See this issue for more context.

Deprecations

Missing dependencies between tasks

Having a task which produces an output in a location and another task consuming that location by
referring to it as an input without the consumer task depending on the producer task has been
deprecated. A fix for this problem is to add a dependency from the consumer to the producer.

Duplicates strategy

Gradle 7 now fails when a copy operation (or any operation which wuses a
org.gradle.api.file.CopySpec) encounters a duplicate entry, and that the duplicates strategy isn’t
set. Please look at the CopySpec docs for details.

Upgrading from 6.8 and earlier

No upgrade notes from 6.8 to 6.9, as 6.9 only contains bug fixes.

Upgrading from 6.7 and earlier

Potential breaking changes

Toolchain API is now marked as @NonNull

The API supporting the Java Toolchain feature in org.gradle.jvm.toolchain is now marked as
@NonNull.

https://github.com/gradle/gradle/issues/16706
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/CopySpec.html#setDuplicatesStrategy-org.gradle.api.file.DuplicatesStrategy-

This may impact Kotlin consumers where the return types of APIs are no longer nullable.

Updates to default tool integration versions

» JaCoCo has been updated to 0.8.6.
* Checkstyle has been updated to Checkstyle 8.37.
* CodeNarc has been updated to CodeNarc 2.0.0.

Updates to bundled Gradle dependencies

* Kotlin has been updated to Kotlin 1.4.20. Note that Gradle scripts are still using the Kotlin 1.3
language.

» Apache Ant has been updated to 1.10.9 to fix CVE-2020-11979

Projects imported into Eclipse now include custom source set classpaths

Previously, projects imported by Eclipse only included dependencies for the main and test source
sets. The compile and runtime classpaths of custom source sets were ignored.

Since Gradle 6.8, projects imported into Eclipse include the compile and runtime classpath for
every source set defined by the build.

SourceTask is no longer sensitive to empty directories

Previously, empty directories would be taken into account during up-to-date checks and build cache
key calculations for the sources declared in SourceTask. This meant that a source tree that contained
an empty directory and an otherwise identical source tree that did not contain the empty directory
would be considered different sources, even if the task would produce the same outputs. In Gradle
6.8, SourceTask now ignores empty directories during doing up-to-date checks and build cache key
calculations. In the vast majority of cases, this is the desired behavior, but it is possible that a task
may extend SourceTask but also produce different outputs when empty directories are present in
the sources. For tasks where this is a concern, you can expose a separate property without the
@IgnoreEmptyDirectories annotation in order to capture those changes:

@InputFiles

@SkipWhenEmpty

@PathSensitive(PathSensitivity.ABSOLUTE)

public FileTree getSourcesWithEmptyDirectories() {
return super.getSource()

}

Changes to publications

Publishing a component which has a dependency on an enforced platform now triggers a
validation error, preventing accidental publishing of bad metadata: enforced platforms use cases
should be limited to applications, not things which can be consumed from another library or an
application.

If, for some reason, you still want to publish components with dependencies on enforced platforms,

http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://checkstyle.sourceforge.io/releasenotes.html#Release_8.37
https://github.com/CodeNarc/CodeNarc/blob/v2.0.0/CHANGELOG.md
https://blog.jetbrains.com/kotlin/2020/08/kotlin-1-4-released-with-a-focus-on-quality-and-performance/
https://github.com/gradle/gradle/security/advisories/GHSA-j45w-qrgf-25vm

you can disable the validation following the documentation.

Changing default excludes during the execution phase

Gradle’s file trees apply some default exclude patterns for convenience — the same defaults as Ant
in fact. See the user manual for more information. Sometimes, Ant’s default excludes prove
problematic, for example when you want to include the .gitignore in an archive file.

Changing Gradle’s default excludes during the execution phase can lead to correctness problems
with up-to-date checks. As a consequence, you are only allowed to change Gradle’s default excludes
in the settings script, see the user manual for an example.

Deprecations

Referencing tasks from included builds

Direct references to tasks from included builds in mustRunAfter, shouldRunAfter and finalizedBy task
methods have been deprecated. Task ordering using mustRunAfter and shouldRunAfter as well as
finalizers specified by finalizedBy should be used for task ordering within a build. If you happen to
have cross-build task ordering defined using above mentioned methods, consider restructuring
such builds and decoupling them from one another.

Searching for settings files in 'master' directories

Gradle will emit a deprecation warning when your build relies on finding the settings file in a
directory named master in a sibling directory.

If your build uses this feature, consider refactoring the build to have the root directory match the
physical root of the project hierarchy.

Alternatively, you can still run tasks in builds like this by invoking the build from the master
directory only using a fully qualified path to the task.

Using method NamedDomainObjectContainer<T>.invoke(kotlin.Function1)

Gradle Kotlin DSL extensions have been changed to favor Gradle’s Action<T> type over Kotlin
function types.

While the change should be transparent to Kotlin clients, Java clients calling Kotlin DSL extensions
need to be updated to use the Action<T> APIs.

Upgrading from 6.6 and earlier

Potential breaking changes

buildSrc can now see included builds from the root

Previously, buildSrc was built in such a way that included builds were ignored from the root build.

Since Gradle 6.7, buildSrc can see any included build from the root build. This may cause
dependencies to be substituted from an included build in buildSrc. This may also change the order

in which some builds are executed if an included build is needed by buildSrc.

Updates to default tool integration versions

* PMD has been updated to PMD 6.26.0.
* Checkstyle has been updated to Checkstyle 8.35.
* CodeNarc has been updated to CodeNarc 1.6.1.

Deprecations

Changing default excludes during the execution phase

Gradle’s file trees apply some default exclude patterns for convenience — the same defaults as Ant
in fact. See the user manual for more information. Sometimes, Ant’s default excludes prove
problematic, for example when you want to include the .gitignore in an archive file.

Changing Gradle’s default excludes during the execution phase can lead to correctness problems
with up-to-date checks, and is deprecated. You are only allowed to change Gradle’s default excludes
in the settings script, see the user manual for an example.

Using a Configuration directly as a dependency

Gradle allowed instances of Configuration to be used directly as dependencies:

dependencies {
implementation(configurations.myConfiguration)

This behavior is now deprecated as it is confusing: one could expect the "dependent configuration”
to be resolved first and add the result of resolution as dependencies to the including configuration,
which is not the case. The deprecated version can be replaced with the actual behavior, which is
configuration inheritance:

configurations.implementation.extendsFrom(configurations.myConfiguration)

Upgrading from 6.5 and earlier

Potential breaking changes

Updates to bundled Gradle dependencies
* Ant has been updated to 1.10.8.
* Groovy has been updated to Groovy 2.5.12.
Dependency substitutions and variant aware dependency resolution

While adding support for expressing variant support in dependency substitutions, a bug fix

https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.26.0
https://checkstyle.sourceforge.io/releasenotes.html#Release_8.35
https://github.com/CodeNarc/CodeNarc/blob/v1.6.1/CHANGELOG.md
https://downloads.apache.org/ant/RELEASE-NOTES-1.10.8.html
https://groovy-lang.org/changelogs/changelog-2.5.12.html

introduced a behaviour change that some builds may rely upon. Previously a substituted
dependency would still use the attributes of the original selector instead of the ones from the
replacement selector.

With that change, existing substitutions around dependencies with richer selectors, such as for
platform dependencies, will no longer work as they did. It becomes mandatory to define the variant
aware part in the target selector.

You can be affected by this change if you:

* have dependencies on platforms, like implementation platform("org:platform:1.0")
* or if you specify attributes on dependencies,

* and you use resolution rules on these dependencies.

See the documentation for resolving issues if you are impacted.

Deprecations

No deprecations were made in Gradle 6.6.

Upgrading from 6.4 and earlier

Potential breaking changes

Updates to bundled Gradle dependencies

 Kotlin has been updated to Kotlin 1.3.72.

* Groovy has been updated to Groovy 2.5.11.

Updates to default tool integration versions

* PMD has been updated to PMD 6.23.0.

Deprecations

Internal class AbstractTask is deprecated

AbstractTask is an internal class which is visible on the public API, as a superclass of public type
DefaultTask. AbstractTask will be removed in Gradle 7.0, and the following are deprecated in Gradle
6.5:

* Registering a task whose type is AbstractTask or TaskInternal. You can remove the task type
from the task registration and Gradle will use DefaultTask instead.

* Registering a task whose type is a subclass of AbstractTask but not a subclass of DefaultTask. You
can change the task type to extend DefaultTask instead.

» Using the class AbstractTask from plugin code or build scripts. You can change the code to use
DefaultTask instead.

https://github.com/JetBrains/kotlin/releases/tag/v1.3.72
https://groovy-lang.org/changelogs/changelog-2.5.11.html
https://github.com/pmd/pmd/releases/tag/pmd_releases%2F6.23.0

Upgrading from 6.3 and earlier

Potential breaking changes

PMD plugin expects PMD 6.0.0 or higher by default

Gradle 6.4 enabled incremental analysis by default. Incremental analysis is only available in PMD
6.0.0 or higher. If you want to use an older PMD version, you need to disable incremental analysis:

pmd {
incrementalAnalysis = false

}

Changes in dependency locking

With Gradle 6.4, the incubating API for dependency locking LockMode has changed. The value is now
set via a Property<LockMode> instead of a direct setter. This means that the notation to set the value
has to be updated for the Kotlin DSL:

dependencylocking {
lockMode.set(LockMode.STRICT)
by

Users of the Groovy DSL should not be impacted as the notation lockMode = LockMode.STRICT
remains valid.

Java versions in published metadata

If a Java library is published with Gradle Module Metadata, the information which Java version it
supports is encoded in the org.gradle.jvm.version attribute. By default, this attribute was set to
what you configured in java.targetCompatibility. If that was not configured, it was set to the
current Java version running Gradle. Changing the version of a particular compile task, e.g.
javaCompile.targetCompatibility had no effect on that attribute, leading to wrong information if the
attribute was not adjusted manually. This is now fixed and the attribute defaults to the setting of
the compile task that is associated with the sources from which the published jar is built.

Ivy repositories with custom layouts

Gradle versions from 6.0 to 6.3.x included could generate bad Gradle Module Metadata when
publishing on an Ivy repository which had a custom repository layout. Starting from 6.4, Gradle will
no longer publish Gradle Module Metadata if it detects that you are using a custom repository
layout.

New properties may shadow variables in build scripts

This release introduces some new properties—mainClass, mainModule, modularity —in different
places. Since these are very generic names, there is a chance that you use one of them in your build
scripts as variable name. A new property might then shadow one of your variables in an undesired

way, leading to a build failure where the property is accessed instead of the local variable with the
same name. You can fix it by renaming the corresponding variable in the build script.

Affected is configuration code inside the application {} and java {} configuration blocks, inside a
java execution setup with project.javaexec {}, and inside various task configurations (JavaExec,
CreateStartScripts, JavaCompile, Test, Javadoc).

Updates to bundled Gradle dependencies

* Kotlin has been updated to Kotlin 1.3.71.

Deprecations

There were no deprecations between Gradle 6.3 and 6.4.

Upgrading from 6.2 and earlier

Potential breaking changes

Fewer dependencies available in IDEA

Gradle no longer includes the annotation processor classpath as provided dependencies in IDEA.
The dependencies IDEA sees at compile time are the same as what Gradle sees after resolving the
compile classpath (configuration named compileClasspath). This prevents the leakage of annotation
processor dependencies into the project’s code.

Before Gradle introduced incremental annotation processing support, IDEA required all annotation
processors to be on the compilation classpath to be able to run annotation processing when
compiling in IDEA. This is no longer necessary because Gradle has a separate annotation processor
classpath. The dependencies for annotation processors are not added to an IDEA module’s classpath
when a Gradle project with annotation processors is imported.

Updates to bundled Gradle dependencies
 Kotlin has been updated to Kotlin 1.3.70.
* Groovy has been updated to Groovy 2.5.10.
Updates to default tool integration versions
* PMD has been updated to PMD 6.21.0.
* CodeNarc has been updated to CodeNarc 1.5.
Rich console support removed for some 32-bit operating systems

Gradle 6.3 does not support the rich console for 32-bit Unix systems and for old FreeBSD versions
(older than FreeBSD 10). Microsoft Windows 32-bit is unaffected.

Gradle will continue building projects on 32-bit systems but will no longer show the rich console.

https://github.com/JetBrains/kotlin/releases/tag/v1.3.71
java_plugin.pdf#sec:incremental_annotation_processing
java_plugin.pdf#tab:configurations
java_plugin.pdf#tab:configurations
https://blog.jetbrains.com/kotlin/2020/03/kotlin-1-3-70-released/
http://groovy-lang.org/changelogs/changelog-2.5.10.html
https://pmd.github.io/pmd-6.21.0/pmd_release_notes.html#24-january-2020---6210
https://github.com/CodeNarc/CodeNarc/blob/v1.5/CHANGELOG.md#version-15----nov-2019

Deprecations

Using default and archives configurations

Almost every Gradle project has the default and archives configurations which are added by the
base plugin. These configurations are no longer used in modern Gradle builds that use variant
aware dependency management and the new publishing plugins.

While the configurations will stay in Gradle for backwards compatibility for now, using them to
declare dependencies or to resolve dependencies is now deprecated.

Resolving these configurations was never an intended use case and only possible because in earlier
Gradle versions every configuration was resolvable. For declaring dependencies, please use the
configurations provided by the plugins you use, for example by the Java Library plugin.

Upgrading from 6.1 and earlier

Potential breaking changes

Compile and runtime classpath now request library variants by default

A classpath in a JVM project now explicitly requests the org.gradle.category=1library attribute. This
leads to clearer error messages if a certain library cannot be used. For example, when the library
does not support the required Java version. The practical effect is that now all platform
dependencies have to be declared as such. Before, platform dependencies also worked, accidentally,
when the platform() keyword was omitted for local platforms or platforms published with Gradle
Module Metadata.

Properties from project root gradle.properties leaking into buildSrc and included builds

There was a regression in Gradle 6.2 and Gradle 6.2.1 that caused Gradle properties set in the
project root gradle.properties file to leak into the buildSrc build and any builds included by the
root.

This could cause your build to start failing if the buildSrc build or an included build suddenly found
an unexpected or incompatible value for a property coming from the project root gradle.properties
file.

The regression has been fixed in Gradle 6.2.2.
Deprecations

There were no deprecations between Gradle 6.1 and 6.2.
Upgrading from 6.0 and earlier

Deprecations

Querying a mapped output property of a task before the task has completed

Querying the value of a mapped output property before the task has completed can cause strange

build failures because it indicates stale or non-existent outputs may be used by mistake. This
behavior is deprecated and will emit a deprecation warning. This will become an error in Gradle
7.0.

The following example demonstrates this problem where the Producer’s output file is parsed
before the Producer executes:

class Consumer extends DefaultTask {
@Input
final Property<Integer> threadPoolSize = ...

class Producer extends DefaultTask {
@OutputFile
final RegularFileProperty outputFile = ...

}

// threadPoolSize is read from the producer's outputFile
consumer .threadPoolSize = producer.outputFile.map { it.text.toInteger() }

// Emits deprecation warning
println("thread pool size = " + consumer.threadPoolSize.get())

Querying the value of consumer.threadPoolSize will produce a deprecation warning if done prior to
producer completing, as the output file has not yet been generated.

Discontinued methods

The following methods have been discontinued and should no longer be used. They will be
removed in Gradle 7.0.

BasePluginConvention.setProject(ProjectInternal)
* BasePluginConvention.getProject()

o StartParameter.useEmptySettings()

StartParameter.isUseEmptySettings()

Alternative JVM plugins (a.k.a "Software Model")

A set of alternative plugins for Java and Scala development were introduced in Gradle 2.x as an
experiment based on the "software model". These plugins are now deprecated and will eventually
be removed. If you are still using one of these old plugins (java-1lang, scala-1lang, jvm-component, jvm-
resources, junit-test-suite) please consult the documentation on Building Java & JVM projects to
determine which of the stable JVM plugins are appropriate for your project.

Potential breaking changes

ProjectLayout is no longer available to worker actions as a service

In Gradle 6.0, the ProjectlLayout service was made available to worker actions via service injection.
This service allowed for mutable state to leak into a worker action and introduced a way for
dependencies to go undeclared in the worker action.

ProjectlLayout has been removed from the available services. Worker actions that were using
ProjectlLayout should switch to injecting the projectDirectory or buildDirectory as a parameter
instead.

Updates to bundled Gradle dependencies

* Kotlin has been updated to Kotlin 1.3.61.

Updates to default tool integration versions

* Checkstyle has been updated to Checkstyle 8.27.
* PMD has been updated to PMD 6.20.0.

Publishing Spring Boot applications

Starting from Gradle 6.2, Gradle performs a sanity check before uploading, to make sure you don’t
upload stale files (files produced by another build). This introduces a problem with Spring Boot
applications which are uploaded using the components.java component:

Artifact my-application-0.0.1-SNAPSHOT.jar wasn't produced by this build.

This is caused by the fact that the main jar task is disabled by the Spring Boot application, and the
component expects it to be present. Because the bootJar task uses the same file as the main jar task
by default, previous releases of Gradle would either:

* publish a stale bootJar artifact

« or fail if the bootJar task hasn’t been called previously

A workaround is to tell Gradle what to upload. If you want to upload the bootJar, then you need to
configure the outgoing configurations to do this:

configurations {
[apiElements, runtimeElements].each {
it.outgoing.artifacts.removelf {
it.buildDependencies.getDependencies(null).contains(jar) }
it.outgoing.artifact(bootJar)
}

Alternatively, you might want to re-enable the jar task, and add the bootJar with a different
classifier.

https://blog.jetbrains.com/kotlin/2019/11/kotlin-1-3-60-released/
https://checkstyle.org/releasenotes.html#Release_8.27
https://pmd.github.io/pmd-6.20.0/pmd_release_notes.html#29-november-2019---6200

jar {
enabled = true

}
bootJar {

classifier = 'application’
}

Upgrading your build from Gradle 5.x to 6.0

This chapter provides the information you need to migrate your Gradle 5.x builds to Gradle 6.0. For
migrating from Gradle 4.x, complete the 4.x to 5.0 guide first.

We recommend the following steps for all users:

1. Try running gradle help --scan and view the deprecations view of the generated build scan.

(% Gradle Enterprise € + eradle clean kotlin-dsl-tooling-builders:platforniTest Dec 23, 2020 7:38:27 PM ES 5= Buldscans | @ @

= Summary istry to detect Java i ions has been

[Console log

Timeline

Wk Performance The KotlinDsIPluginOptions.experi ing property has been
Tegs This is scheduled to be removed in Gradle 8.0.
2 usages >

s Projects

&% Dependencies

22 Build dependencies
B Plugins

5S Custom values

8 switches

Infrastructure

“D See before and after
@D Compare build scan

This is so that you can see any deprecation warnings that apply to your build.

Alternatively, you can run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

2. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the APIL.

3. Run gradle wrapper --gradle-version 6.0 to update the project to 6.0.

4. Try to run the project and debug any errors using the Troubleshooting Guide.

https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

Upgrading from 5.6 and earlier

Deprecations

Dependencies should no longer be declared using the compile and runtime configurations

The usage of the compile and runtime configurations in the Java ecosystem plugins has been
discouraged since Gradle 3.4.

These configurations are used for compiling and running code from the main source set. Other
sources sets create similar configurations (e.g. testCompile and testRuntime for the test source set),
should not be used either. The implementation, api, compileOnly and runtimeOnly configurations
should be used to declare dependencies and the compileClasspath and runtimeClasspath
configurations to resolve dependencies. See the relationship of these configurations.

Legacy publication system is deprecated and replaced with the *-publish plugins

The uploadArchives task and the maven plugin are deprecated.

Users should migrate to the publishing system of Gradle by using either the maven-publish or ivy-
publish plugins. These plugins have been stable since Gradle 4.8.

The publishing system is also the only way to ensure the publication of Gradle Module Metadata.

Problems with tasks emit deprecation warnings

When Gradle detects problems with task definitions (such as incorrectly defined inputs or outputs)
it will show the following message on the console:

Deprecated Gradle features were used in this build, making it incompatible with Gradle
7.0.

Use '--warning-mode all' to show the individual deprecation warnings.

See
https://docs.gradle.org/6.0/userquide/command_line_interface.html#sec:command_line_war
nings

The deprecation warnings show up in build scans for every build, regardless of the command-line
switches used.

When the build is executed with --warning-mode all, the individual warnings will be shown:

> Task :myTask

Property 'inputDirectory' is declared without normalization specified. Properties of
cacheable work must declare their normalization via @PathSensitive, @Classpath or
@CompileClasspath. Defaulting to PathSensitivity.ABSOLUTE. This behavior is scheduled
to be removed in Gradle 7.0.

Property 'outputFile' is not annotated with an input or output annotation. This
behavior is scheduled to be removed in Gradle 7.0.

https://docs.gradle.org/3.4/release-notes.html#the-java-library-plugin
https://scans.gradle.com/s/txrptciitl2ha/deprecations

If you own the code of the tasks in question, you can fix them by following the suggestions. You can
also use --stacktrace to see where in the code each warning originates from.

Otherwise, you’ll need to report the problems to the maintainer of the relevant task or plugin.

0ld API for incremental tasks, IncrementalTaskInputs, has been deprecated

In Gradle 5.4 we introduced a new API for implementing incremental tasks: InputChanges. The old
API based on IncrementalTaskInputs has been deprecated.

Forced dependencies
Forcing dependency versions using force = true on a first-level dependency has been deprecated.

Force has both a semantic and ordering issue which can be avoided by using a strict version
constraint.

Search upwards related APIs in StartParameter have been deprecated
In Gradle 5.0, we removed the --no-search-upward CLI parameter.
The related APIs in StartParameter (like isSearchUpwards()) are now deprecated.

APIs BuildlListener.buildStarted and Gradle.buildStarted have been deprecated

These methods currently do not work as expected since the callbacks will never be called after the
build has started.

The methods are being deprecated to avoid confusion.

Implicit duplicate strategy for Copy or archive tasks has been deprecated

Archive tasks Tar and Zip by default allow multiple entries for the same path to exist in the created
archive. This can cause "grossly invalid zip files" that can trigger zip bomb detection.

To prevent this from happening accidentally, encountering duplicates while creating an archive
now produces a deprecation message and will fail the build starting with Gradle 7.0.

Copy tasks also happily copy multiple sources with the same relative path to the destination
directory. This behavior has also been deprecated.

If you want to allow duplicates, you can specify that explicitly:

task archive(type: Zip) {
duplicatesStrategy = DuplicatesStrategy.INCLUDE // allow duplicates

Executing Gradle without a settings file has been deprecated

A Gradle build is defined by a settings.gradle[.kts] file in the current or parent directory. Without

https://docs.gradle.org/8.6/dsl/org.gradle.work.InputChanges.html
https://github.com/gradle/gradle/issues/9990

a settings file, a Gradle build is undefined and will emit a deprecation warning.

In Gradle 7.0, Gradle will only allow you to invoke the init task or diagnostic command line flags,
such as --version, with undefined builds.

Calling Project.afterEvaluate on an evaluated project has been deprecated

Once a project is evaluated, Gradle ignores all configuration passed to Project#afterEvaluate and
emits a deprecation warning. This scenario will become an error in Gradle 7.0.

Deprecated plugins

The following bundled plugins were never announced and will be removed in the next major
release of Gradle:

* org.gradle.coffeescript-base
* org.gradle.envjs

* org.gradle.javascript-base

* org.gradle.jshint

* org.gradle.rhino

Some of these plugins may have replacements on the Plugin Portal.

Potential breaking changes

Android Gradle Plugin 3.3 and earlier is no longer supported

Gradle 6.0 supports Android Gradle Plugin versions 3.4 and later.

Build scan plugin 2.x is no longer supported

For Gradle 6, usage of the build scan plugin must be replaced with the Develocity plugin. This also
requires changing how the plugin is applied. Please see https://gradle.com/help/gradle-6-build-scan-
plugin for more information.

Updates to bundled Gradle dependencies

* Groovy has been updated to Groovy 2.5.8.
 Kotlin has been updated to Kotlin 1.3.50.

* Ant has been updated to Ant 1.10.7.

Updates to default integration versions

Checkstyle has been updated to Checkstyle 8.24.
* CodeNarc has been updated to CodeNarc 1.4.

PMD has been updated to PMD 6.17.0.

* JaCoCo has been updated to 0.8.5. Contributed by Evgeny Mandrikov

https://plugins.gradle.org/
https://gradle.com/help/gradle-6-build-scan-plugin
https://gradle.com/help/gradle-6-build-scan-plugin
http://groovy-lang.org/changelogs/changelog-2.5.8.html
https://blog.jetbrains.com/kotlin/2019/08/kotlin-1-3-50-released/
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.10.7.html
https://checkstyle.org/releasenotes.html#Release_8.24
https://github.com/CodeNarc/CodeNarc/blob/master/CHANGELOG.md#version-14---may-2019
https://pmd.github.io/latest/pmd_release_notes.html#28-july-2019---6170
http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://github.com/Godin

Changes to build and task names in composite builds

Previously, Gradle used the name of the root project as the build name for an included build. Now,
the name of the build’s root directory is used and the root project name is not considered if
different. A different name for the build can be specified if the build is being included via a settings
file.

includeBuild("some-other-build") {
name = "another-name"

The previous behavior was problematic as it caused different names to be used at different times
during the build.

buildSrc is now reserved as a project and subproject build name

Previously, Gradle did not prevent using the name “buildSrc” for a subproject of a multi-project
build or as the name of an included build. Now, this is not allowed. The name “buildSrc” is now
reserved for the conventional buildSrc project that builds extra build logic.

Typical use of buildSrc is unaffected by this change. You will only be affected if your settings file
specifies include("buildSrc") or includeBuild("buildSrc").

Scala Zinc compiler

The Zinc compiler has been upgraded to version 1.3.0. Gradle no longer supports building for Scala
2.9.

The minimum Zinc compiler supported by Gradle is 1.2.0 and the maximum tested version is 1.3.0.
To make it easier to select the version of the Zinc compiler, you can now configure a zincVersion

property:

scala {
zincVersion = "1.2.1"

Please remove any explicit dependencies you’ve added to the zinc configuration and use this
property instead. If you try to use the com.typesafe.zinc:zinc dependency, Gradle will switch to the
new Zinc implementation.

Changes to Build Cache

Local build cache is always a directory cache

In the past, it was possible to use any build cache implementation as the local cache. This is no
longer allowed as the local cache must always be a DirectoryBuildCache.

Calls to BuildCacheConfiguration.local(Class) with anything other than DirectoryBuildCache as the

type will fail the build. Calling these methods with the DirectoryBuildCache type will produce a
deprecation warning.

Use getlocal() and local(Action) instead.

Failing to pack or unpack cached results will now fail the build

In the past, when Gradle encountered a problem while packing the results of a cached task, Gradle
would ignore the problem and continue running the build.

When encountering a corrupt cached artifact, Gradle would remove whatever was already
unpacked and re-execute the task to make sure the build had a chance to succeed.

While this behavior was intended to make a build successful, this had the adverse effect of hiding
problems and led to reduced cache performance.

In Gradle 6.0, both pack and unpack errors will cause the build to fail, so that these problems will
be surfaced more easily.

buildSrc projects automatically use build cache configuration

Previously, in order to use the build cache for the buildSrc build you needed to duplicate your build
cache config in the buildSrc build. Now, it automatically uses the build cache configuration defined
by the top level settings script.

Changes to Dependency Management

Gradle Module Metadata is always published

Officially introduced in Gradle 5.3, Gradle Module Metadata was created to solve many of the
problems that have plagued dependency management for years, in particular, but not exclusively,
in the Java ecosystem.

With Gradle 6.0, Gradle Module Metadata is enabled by default.

This means, if you are publishing libraries with Gradle and using the maven-publish or ivy-publish
plugin, the Gradle Module Metadata file is always published in addition to traditional metadata.

The traditional metadata file will contain a marker so that Gradle knows that there is additional
metadata to consume.

Gradle Module Metadata has stricter validation

The following rules are verified when publishing Gradle Module Metadata:
* Variant names must be unique,
e Each variant must have at least one attribute,

» Two variants cannot have the exact same attributes and capabilities,

* If there are dependencies, at least one, across all variants, must carry version information.

These are documented in the specification as well.

https://blog.gradle.org/gradle-metadata-1.0
https://github.com/gradle/gradle/blob/master/platforms/documentation/docs/src/docs/design/gradle-module-metadata-latest-specification.md

Maven or Ivy repositories are no longer queried for artifacts without metadata by default

If Gradle fails to locate the metadata file (.pom or ivy.xml) of a module in a repository defined in the
repositories { } section, it now assumes that the module does not exist in that repository.

For dynamic versions, the maven-metadata.xml for the corresponding module needs to be present in
a Maven repository.

Previously, Gradle would also look for a default artifact (.jar). This behavior often caused a large
number of unnecessary requests when using multiple repositories that slowed builds down.

You can opt into the old behavior for selected repositories by adding the artifact() metadata
source.

Changing the pom packaging property no longer changes the artifact extension

Previously, if the pom packaging was not jar, ejb, bundle or maven-plugin, the extension of the main
artifact published to a Maven repository was changed during publishing to match the pom
packaging.

This behavior led to broken Gradle Module Metadata and was difficult to understand due to
handling of different packaging types.

Build authors can change the artifact name when the artifact is created to obtain the same result as
before — e.g. by setting jar.archiveExtension.set(pomPackaging) explicitly.

An ivy.xml published for Java libraries contains more information
A number of fixes were made to produce more correct ivy.xml metadata in the ivy-publish plugin.

As a consequence, the internal structure of the ivy.xml file has changed. The runtime configuration
now contains more information, which corresponds to the runtimeElements variant of a Java
library. The default configuration should yield the same result as before.

In general, users are advised to migrate from ivy.xml to the new Gradle Module Metadata format.

Changes to Plugins and Build scripts

Classes from buildSrc are no longer visible to settings scripts

Previously, the buildSrc project was built before applying the project’s settings script and its classes
were visible within the script. Now, buildSrc is built after the settings script and its classes are not
visible to it. The buildSrc classes remain visible to project build scripts and script plugins.

Custom logic can be used from a settings script by declaring external dependencies.

The pluginManagement block in settings scripts is now isolated

Previously, any pluginManagement {} blocks inside a settings script were executed during the normal
execution of the script.

Now, they are executed earlier in a similar manner to buildscript {} or plugins {}. This means that

code inside such a block cannot reference anything declared elsewhere in the script.

This change has been made so that pluginManagement configuration can also be applied when
resolving plugins for the settings script itself.

Plugins and classes loaded in settings scripts are visible to project scripts and buildSrc

Previously, any classes added to the a settings script by using buildscript {} were not visible
outside of the script. Now, they are visible to all of the project build scripts.

They are also visible to the buildSrc build script and its settings script.

This change has been made so that plugins applied to the settings script can contribute logic to the
entire build.

Plugin validation changes

* The validateTaskProperties task is now deprecated, use validatePlugins instead. The new name
better reflects the fact that it also validates artifact transform parameters and other non-
property definitions.

* The ValidateTaskProperties type is replaced by ValidatePlugins.

* The set(Classes() method is now removed. Use getClasses().setFrom() instead.

* The setClasspath() method is also removed. use getClasspath().setFrom() instead.
* The failOnWarning option is now enabled by default.

* The following task validation errors now fail the build at runtime and are promoted to errors
for ValidatePlugins:

o A task property is annotated with a property annotation not allowed for tasks, like
@InputArtifact.

Changes to Kotlin DSL

Using the embedded-kot1lin plugin now requires a repository

Just like when using the kotlin-dsl plugin, it is now required to declare a repository where Kotlin
dependencies can be found if you apply the embedded-kot1lin plugin.

plugins {
‘embedded-kotlin®
}

repositories {
mavenCentral()

}

Kotlin DSL IDE support now requires Kotlin Intelli] Plugin >= 1.3.50

With Kotlin Intelli] plugin versions prior to 1.3.50, Kotlin DSL scripts will be wrongly highlighted

https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html#getFailOnWarning--
https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/devel/tasks/ValidatePlugins.html

when the Gradle JVM is set to a version different from the one in Project SDK. Simply upgrade your
IDE plugin to a version >= 1.3.50 to restore the correct Kotlin DSL script highlighting behavior.

Kotlin DSL script base types no longer extend Project, Settings or Gradle

In previous versions, Kotlin DSL scripts were compiled to classes that implemented one of the three
core Gradle configuration interfaces in order to implicitly expose their APIs to scripts.
org.gradle.api.Project for project scripts, org.gradle.api.initialization.Settings for settings
scripts and org.gradle.api.invocation.Gradle for init scripts.

Having the script instance implement the core Gradle interface of the model object it was supposed
to configure was convenient because it made the model object API immediately available to the
body of the script but it was also a lie that could cause all sorts of trouble whenever the script itself
was used in place of the model object, a project script was not a proper Project instance just
because it implemented the core Project interface and the same was true for settings and init
scripts.

In 6.0 all Kotlin DSL scripts are compiled to classes that implement the newly introduced
org.gradle.kotlin.dsl.KotlinScript interface and the corresponding model objects are now
available as implicit receivers in the body of the scripts. In other words, a project script behaves as if
the body of the script is enclosed within a with(project) { -+ } block, a settings script as if the
body of the script is enclosed within a with(settings) { -+ } block and an init script as if the body
of the script is enclosed within a with(gradle) { -+ } block. This implies the corresponding model
object is also available as a property in the body of the script, the project property for project
scripts, the settings property for settings scripts and the gradle property for init scripts.

As part of the change, the SettingsScriptApi interface is no longer implemented by settings scripts
and the InitScriptApi interface is no longer implemented by init scripts. They should be replaced
with the corresponding model object interfaces, Settings and Gradle.

Miscellaneous

Javadoc and Groovydoc don’t include timestamps by default

Timestamps in the generated documentation have very limited practical use, however they make it
impossible to have repeatable documentation builds. Therefore, the Javadoc and Groovydoc tasks are
now configured to not include timestamps by default any more.

User provided 'config_loc' properties are ignored by Checkstyle

Gradle always uses configDirectory as the value for 'config_loc' when running Checkstyle.

New Tooling API progress event

In Gradle 6.0, we introduced a new progress event (org.gradle.tooling.events.test.TestOutputEvent)
to expose the output of test execution. This new event breaks the convention of having a StartEvent-
FinishEvent pair to express progress. TaskOutputEvent is a simple ProgressEvent.

Changes to the task container behavior

The following deprecated methods on the task container now result in errors:

https://docs.gradle.org/8.6/javadoc/org/gradle/tooling/events/test/TestOutputEvent.html

» TaskContainer.add()

e TaskContainer.addAl1l()

* TaskContainer.remove()

» TaskContainer.removeAll()
e TaskContainer.retainAll()
e TaskContainer.clear()

» TaskContainer.iterator().remove()
Additionally, the following deprecated functionality now results in an error:

* Replacing a task that has already been realized.

* Replacing a registered (unrealized) task with an incompatible type. A compatible type is the
same type or a sub-type of the registered type.

* Replacing a task that has never been registered.

Replaced and Removed APIs

Methods on DefaultTask and ProjectLayout replaced with ObjectFactory
Use ObjectFactory.fileProperty() instead of the following methods that are now removed:
e DefaultTask.newInputFile()

» DefaultTask.newOutputFile()

* Projectlayout.fileProperty()
Use ObjectFactory.directoryProperty() instead of the following methods that are now removed:

» DefaultTask.newInputDirectory()
» DefaultTask.newQutputDirectory()

* Projectlayout.directoryProperty()

Annotation @Nullable has been removed

The org.gradle.api.Nullable annotation type has been removed. Use javax.annotation.Nullable
from JSR-305 instead.

The FindBugs plugin has been removed

The deprecated FindBugs plugin has been removed. As an alternative, you can use the SpotBugs
plugin from the Gradle Plugin Portal.

The JDepend plugin has been removed

The deprecated JDepend plugin has been removed. There are a number of community-provided
plugins for code and architecture analysis available on the Gradle Plugin Portal.

https://plugins.gradle.org/plugin/com.github.spotbugs
https://plugins.gradle.org/plugin/com.github.spotbugs
https://plugins.gradle.org/search?term=spotbugs
https://plugins.gradle.org

The OSGI plugin has been removed

The deprecated OSGI plugin has been removed. There are a number of community-provided OSGI
plugins available on the Gradle Plugin Portal.

The announce and build-announcements plugins have been removed

The deprecated announce and build-announcements plugins have been removed. There are a
number of community-provided plugins for sending out notifications available on the Gradle
Plugin Portal.

The Compare Gradle Builds plugin has been removed

The deprecated Compare Gradle Builds plugin has been removed. Please use build scans for build
analysis and comparison.

The Play plugins have been removed

The deprecated Play plugin has been removed. An external replacement, the Play Framework
plugin, is available from the plugin portal.

Method AbstractCompile.compile() method has been removed

The abstract method compile() is no longer declared by AbstractCompile.

Tasks extending AbstractCompile can implement their own @TaskAction method with the name of
their choosing.

They are also free to add a method annotated with @TaskAction using an InputChanges parameter
without having to implement a parameter-less one as well.

Other Deprecated Behaviors and APIs

* The org.gradle.util.internal.GUtil.savePropertiesNoDateComment has been removed. There is
no public replacement for this internal method.

* The deprecated class org.gradle.api.tasks.compile.CompilerArgumentProvider has been
removed. Use org.gradle.process.CommandLineArgumentProvider instead.

* The deprecated class org.gradle.api.ConventionProperty has been removed. Use Providers
instead of convention properties.

* The deprecated class org.gradle.reporting.DurationFormatter has been removed.

* The bridge method org.gradle.api.tasks.TaskInputs.property(String name, @Nullable Object
value) returning TaskInputs has been removed. A plugin using the method must be compiled
with Gradle 4.3 to work on Gradle 6.0.

* The following setters have been removed from JacocoReportBase:
o executionData - use getExecutionData().setFrom() instead.
o sourceDirectories - use getSourceDirectories().setFrom() instead.
o classDirectories - use getClassDirectories().setFrom() instead.

o additionalClassDirs - use getAdditionalClassDirs().setFrom() instead.

https://plugins.gradle.org/search?term=osgi
https://plugins.gradle.org
https://plugins.gradle.org
https://scans.gradle.com/
https://gradle.github.io/playframework
https://gradle.github.io/playframework
https://docs.gradle.org/8.6/javadoc/org/gradle/process/CommandLineArgumentProvider.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/provider/Provider.html
https://docs.gradle.org/8.6/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:executionData
https://docs.gradle.org/8.6/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:sourceDirectories
https://docs.gradle.org/8.6/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:classDirectories
https://docs.gradle.org/8.6/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:additionalClassDirs

o additionalSourceDirs - use getAdditionalSourceDirs().setFrom() instead.

* The append property on JacocoTaskExtension has been removed. append is now always configured
to be true for the Jacoco agent.

* The configureDefaultOutputPathForJacocoMerge method on JacocoPlugin has been removed. The
method was never meant to be public.

* File paths in deployment descriptor file name for the ear plugin are not allowed any more. Use a
simple name, like application.xml, instead.

* The org.gradle.testfixtures.ProjectBuilder constructor has been removed. Please use
ProjectBuilder.builder() instead.

* When incremental Groovy compilation is enabled, a wrong configuration of the source roots or
enabling Java annotation for Groovy now fails the build. Disable incremental Groovy
compilation when you want to compile in those cases.

» ComponentSelectionRule no longer can inject the metadata or ivy descriptor. Use the methods on
the ComponentSelection parameter instead.

* Declaring an incremental task without declaring outputs is now an error. Declare file outputs or
use TaskOutputs.upToDateWhen() instead.

* The getEffectiveAnnotationProcessorPath() method is removed from the JavaCompile and
ScalaCompile tasks.

* Changing the value of a task property with type Property<T> after the task has started execution
now results in an error.

* The islLegacylLayout() method is removed from SourceSetQutput.

* The map returned by TaskInputs.getProperties() is now unmodifiable. Trying to modify it will
result in an UnsupportedOperationException being thrown.

* There are slight changes in the incubating capabilities resolution API, which has been
introduced in 5.6, to also allow variant selection based on variant name

Upgrading from 5.5 and earlier

Deprecations

Changing the contents of ConfigurableFileCollection task properties after task starts execution

When a task property has type ConfigurableFileCollection, then the file collection referenced by
the property will ignore changes made to the contents of the collection once the task starts
execution. This has two benefits. Firstly, this prevents accidental changes to the property value
during task execution which can cause Gradle up-to-date checks and build cache lookup using
different values to those used by the task action. Secondly, this improves performance as Gradle can
calculate the value once and cache the result.

This will become an error in Gradle 6.0.

Creating SignOperation instances

Creating SignOperation instances directly is now deprecated. Instead, the methods of

https://docs.gradle.org/8.6/dsl/org.gradle.testing.jacoco.tasks.JacocoReport.html#org.gradle.testing.jacoco.tasks.JacocoReport:additionalSourceDirs
https://docs.gradle.org/8.6/javadoc/org/gradle/plugins/ear/descriptor/DeploymentDescriptor.html#getFileName--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

SigningExtension should be used to create these instances.

This will become an error in Gradle 6.0.

Declaring an incremental task without outputs

Declaring an incremental task without declaring outputs is now deprecated. Declare file outputs or
use TaskOutputs.upToDateWhen() instead.

This will become an error in Gradle 6.0.

Method WorkerExecutor.submit() is deprecated

The WorkerExecutor.submit() method is now deprecated. The new nolsolation(),
classloaderIsolation() and processIsolation() methods should now be used to submit work. See
the section on the Worker API for more information on using these methods.

WorkerExecutor.submit() will be removed in Gradle 8.0.

Potential breaking changes

Task dependencies are honored for task @Input properties whose value is a Property

Previously, task dependencies would be ignored for task @Input properties of type Property<T>.
These are now honored, so that it is possible to attach a task output property to a task @Input

property.

This may introduce unexpected cycles in the task dependency graph, where the value of an output
property is mapped to produce a value for an input property.

Declaring task dependencies using a file Provider that does not represent a task output

Previously, it was possible to pass Task.dependsOn() a Provider<File>, Provider<RegularFile> or
Provider<Directory> instance that did not represent a task output. These providers would be silently
ignored.

This is now an error because Gradle does not know how to build files that are not task outputs.

Note that it is still possible to pass Task.dependsOn() a Provider that returns a file and that
represents a task output, for example myTask.dependsOn(jar.archiveFile) or
myTask.dependsOn(taskProvider.flatMap { it.outputDirectory }), when the Provider is an annotated
@OutputFile or @OutputDirectory property of a task.

Setting Property value to null uses the property convention

Previously, calling Property.set(null) would always reset the value of the property to 'not defined'.
Now, the convention that is associated with the property using the convention() method will be
used to determine the value of the property.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskOutputs.html#upToDateWhen-groovy.lang.Closure-

Enhanced validation of names for publishing.publications and publishing.repositories

The repository and publication names are used to construct task names for publishing. It was
possible to supply a name that would result in an invalid task name. Names for publications and
repositories are now restricted to [A-Za-z0-9_\\-.]+.

Restricted Worker API classloader and process classpath

Gradle now prevents internal dependencies (like Guava) from leaking into the classpath used by
Worker API actions. This fixes an issue where a worker needs to use a dependency that is also used
by Gradle internally.

In previous releases, it was possible to rely on these leaked classes. Plugins relying on this behavior
will now fail. To fix the plugin, the worker should explicitly include all required dependencies in its
classpath.

Default PMD version upgraded to 6.15.0

The PMD plugin has been upgraded to use PMD version 6.15.0 instead of 6.8.0 by default.

Contributed by wreulicke

Configuration copies have unique names

Previously, all copies of a configuration always had the name <0riginConfigurationName>Copy. Now
when creating multiple copies, each will have a unique name by adding an index starting from the
second copy. (e.g. CompileOnlyCopy2)

Changed classpath filtering for Eclipse

Gradle 5.6 no longer supplies custom classpath attributes in the Eclipse model. Instead, it provides
the attributes for Eclipse test sources. This change requires Buildship version 3.1.1 or later.

Embedded Kotlin upgraded to 1.3.41

Gradle Kotlin DSL scripts and Gradle Plugins authored using the kotlin-dsl plugin are now
compiled using Kotlin 1.3.41.

Please see the Kotlin blog post and changelog for more information about the included changes.
The minimum supported Kotlin Gradle Plugin version is now 1.2.31. Previously it was 1.2.21.

Automatic capability conflict resolution

Previous versions of Gradle would automatically select, in case of capability conflicts, the module
which has the highest capability version. Starting from 5.6, this is an opt-in behavior that can be
activated using:

configurations.all {
resolutionStrategy.capabilitiesResolution.all { selectHighestVersion() }

https://github.com/gradle/gradle/issues/3698
pmd_plugin.pdf#pmd_plugin
https://pmd.github.io/pmd-6.15.0/pmd_release_notes.html
https://github.com/wreulicke
https://www.eclipse.org/eclipse/news/4.8/jdt.php#jdt-test-sources
https://blog.jetbrains.com/kotlin/2019/06/kotlin-1-3-40-released/
https://github.com/JetBrains/kotlin/blob/1.3.40/ChangeLog.md

See the capabilities section of the documentation for more options.

File removal operations don’t follow symlinked directories

When Gradle has to remove the output files of a task for various reasons, it will not follow
symlinked directories. The symlink itself will be deleted, but the contents of the linked directory
will stay intact.

Disabled debug argument parsing in JavaExec

Gradle 5.6 introduced a new DSL element (
JavaForkOptions.debugOptions(Action<JavaDebugOptions>)) to configure debug properties for forked
Java processes. Due to this change, Gradle no longer parses debug-related JVM arguments.
Consequently, JavaForkOptions.getDebu() no longer returns true if the
-Xrunjdwp:transport=dt_socket,server=y, suspend=y,address=5005 or the
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 argument is specified to the
process.

Scala 2.9 and Zinc compiler

Gradle no longer supports building applications using Scala 2.9.

Upgrading from 5.4 and earlier

Deprecations

Play

The built-in Play plugin has been deprecated and will be replaced by a new Play Framework plugin
available from the plugin portal.

Build Comparison

The build comparison plugin has been deprecated and will be removed in the next major version of
Gradle.

Build scans show much deeper insights into your build and you can use Develocity to directly
compare two build’s build-scans.

Potential breaking changes

User supplied Eclipse project names may be ignored on conflict

Project names configured via EclipseProject.setName(::-) were honored by Gradle and Buildship in
all cases, even when the names caused conflicts and import/synchronization errors.

Gradle can now deduplicate these names if they conflict with other project names in an Eclipse
workspace. This may lead to different Eclipse project names for projects with user-specified names.

The upcoming 3.1.1 version of Buildship is required to take advantage of this behavior.

play_plugin.pdf#play_plugin
https://gradle.github.io/playframework
https://gradle.com/build-scans
https://gradle.com/develocity
https://docs.gradle.org/8.6/javadoc/org/gradle/plugins/ide/eclipse/model/EclipseProject.html

Contributed by Christian Frankel

Default JaCoCo version upgraded to 0.8.4

The JaCoCo plugin has been upgraded to use JaCoCo version 0.8.4 instead of 0.8.3 by default.

Contributed by Evgeny Mandrikov

Embedded Ant version upgraded to 1.9.14

The version of Ant distributed with Gradle has been upgraded to 1.9.14 from 1.9.13.

Type DependencyHandler now statically exposes ExtensionAware

This affects Kotlin DSL build scripts that make use of ExtensionAware extension members such as the
extra properties accessor inside the dependencies {} block. The receiver for those members will no
longer be the enclosing Project instance but the dependencies object itself, the innermost
ExtensionAware conforming receiver. In order to address Project extra properties inside
dependencies {} the receiver must be explicitly qualified i.e. project.extra instead of just extra.
Affected extensions also include the<T>() and configure<T>(T.() » Unit).

Improved processing of dependency excludes

Previous versions of Gradle could, in some complex dependency graphs, have a wrong result or a
randomized dependency order when lots of excludes were present. To mitigate this, the algorithm
that computes exclusions has been rewritten. In some rare cases this may cause some differences in
resolution, due to the correctness changes.

Improved classpath separation for worker processes

The system classpath for worker daemons started by the Worker API when using PROCESS isolation
has been reduced to a minimum set of Gradle infrastructure. User code is still segregated into a
separate classloader to isolate it from the Gradle runtime. This should be a transparent change for
tasks using the worker API, but previous versions of Gradle mixed user code and Gradle internals
in the worker process. Worker actions that rely on things like the java.class.path system property
may be affected, since java.class.path now represents only the classpath of the Gradle internals.

Upgrading from 5.3 and earlier

Deprecations

Using custom local build cache implementations

Using a custom build cache implementation for the local build cache is now deprecated. The only
allowed type will be DirectoryBuildCache going forward. There is no change in the support for using
custom build cache implementations as the remote build cache.

Potential breaking changes

https://github.com/fraenkelc
jacoco_plugin.pdf#jacoco_plugin
http://www.jacoco.org/jacoco/trunk/doc/changes.html
https://github.com/Godin
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.9.14.html

Use HTTPS when configuring Google Hosted Libraries via googleApis()

The Google Hosted Libraries URL accessible via
JavaScriptRepositoriesExtension#GO0GLE_APIS_REPO_URL was changed to use the HTTPS protocol. The
change also affect the Ivy repository configured via googleApis().

Upgrading from 5.2 and earlier

Potential breaking changes

Bug fixes in platform resolution

There was a bug from Gradle 5.0 to 5.2.1 (included) where enforced platforms would potentially
include dependencies instead of constraints. This would happen whenever a POM file defined both
dependencies and "constraints" (via <dependencyManagement>) and that you used enforcedPlatform.
Gradle 5.3 fixes this bug, meaning that you might have differences in the resolution result if you
relied on this broken behavior. Similarly, Gradle 5.3 will no longer try to download jars for platform
and enforcedPlatform dependencies (as they should only bring in constraints).

Automatic target JVM version

If you apply any of the Java plugins, Gradle will now do its best to select dependencies which match
the target compatibility of the module being compiled. What it means, in practice, is that if you
have module A built for Java 8, and module B built for Java 8, then there’s no change. However if B
is built for Java 9+, then it’s not binary compatible anymore, and Gradle would complain with an
error message like the following:

Unable to find a matching variant of project :producer:

- Variant 'apiElements' capability test:producer:unspecified:
- Provides org.gradle.dependency.bundling 'external’
- Required org.gradle.jvm.version '8"' and found incompatible value '9".
- Required org.gradle.usage 'java-api' and found value 'java-api-jars'.

- Variant 'runtimeElements' capability test:producer:unspecified:
- Provides org.gradle.dependency.bundling 'external’
- Required org.gradle.jvm.version '8' and found incompatible value '9'.
- Required org.gradle.usage 'java-api' and found value 'java-runtime-jars'.

In general, this is a sign that your project is misconfigured and that your dependencies are not
compatible. However, there are cases where you still may want to do this, for example when only a
subset of classes of your module actually need the Java 9 dependencies, and are not intended to be
used on earlier releases. Java in general doesn’t encourage you to do this (you should split your
module instead), but if you face this problem, you can workaround by disabling this new behavior
on the consumer side:

java {
disableAutoTargetJvm()
}

Bug fix in Maven / Ivy interoperability with dependency substitution

If you have a Maven dependency pointing to an Ivy dependency where the default configuration
dependencies do not match the compile + runtime + master ones and that Ivy dependency was
substituted (using a resolutionStrategy.force, resolutionStrategy.eachDependency or
resolutionStrateqgy.dependencySubstitution) then this fix will impact you. The legacy behaviour of
Gradle, prior to 5.0, was still in place instead of being replaced by the changes introduced by
improved pom support.

Delete operations correctly handle symbolic links on Windows

Gradle no longer ignores the followSymlink option on Windows for the clean task, all Delete tasks,
and project.delete {} operations in the presence of junction points and symbolic links.

Fix in publication of additional artifacts

In previous Gradle versions, additional artifacts registered at the project level were not published
by maven-publish or ivy-publish unless they were also added as artifacts in the publication
configuration.

With Gradle 5.3, these artifacts are now properly accounted for and published.

This means that artifacts that are registered both on the project and the publication, Ivy or Maven,
will cause publication to fail since it will create duplicate entries. The fix is to remove these artifacts
from the publication configuration.

Upgrading from 5.1 and earlier

Potential breaking changes

none

Upgrading from 5.0 and earlier

Deprecations

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

» Setters for classes and classpath on org.gradle.plugin.devel.tasks.ValidateTaskProperties
(removed)

* There should not be setters for lazy properties like ConfigurableFileCollection. Use setFrom
instead. For example,

validateTaskProperties.getClasses().setFrom(fileCollection)
validateTaskProperties.getClasspath().setFrom(fileCollection)

https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/ConfigurableFileCollection.html

Potential breaking changes

The following changes were not previously deprecated:

Signing API changes
Input and output files of Sign tasks are now tracked via Signature.getToSign() and

Signature.getFile(), respectively.

Collection properties default to empty collection

In Gradle 5.0, the collection property instances created using ObjectFactory would have no value
defined, requiring plugin authors to explicitly set an initial value. This proved to be awkward and
error prone so ObjectFactory now returns instances with an empty collection as their initial value.

Worker API: working directory of a worker can no longer be set

Since JDK 11 no longer supports changing the working directory of a running process, setting the
working directory of a worker via its fork options is now prohibited. All workers now use the same
working directory to enable reuse. Please pass files and directories as arguments instead. See
examples in the Worker API documentation.

Changes to native linking tasks

To expand our idiomatic Provider API practices, the install name property from
org.gradle.nativeplatform.tasks.LinkSharedLibrary is affected by this change.
» getInstallName() was changed to return a Property.

» setInstallName(String) was removed. Use Property.set() instead.

Passing arguments to Windows Resource Compiler

To expand our idiomatic Provider API practices, the WindowsResourceCompile task has been
converted to use the Provider API.

Passing additional compiler arguments now follow the same pattern as the CppCompile and other
tasks.

Copied configuration no longer shares a list of beforeResolve actions with original

The list of beforeResolve actions are no longer shared between a copied configuration and the
original. Instead, a copied configuration receives a copy of the beforeResolve actions at the time the
copy is made. Any beforeResolve actions added after copying (to either configuration) will not be
shared between the original and the copy. This may break plugins that relied on the previous
behaviour.

Changes to incubating POM customization types

* The type of MavenPomDeveloper.properties has changed from Property<Map<String, String>> to
MapProperty<String, String>.

* The type of MavenPomContributor.properties has changed from Property<Map<String, String>>to

MapProperty<String, String>.

Changes to specifying operating system for native projects

The incubating operatingSystems property on native components has been replaced with the
targetMachines property.

Changes for archive tasks (Zip, Jar, War, Ear, Tar)

Change in behavior for tasks extending AbstractArchiveTask

The AbstractArchiveTask has several new properties using the Provider API. Plugins that extend
these types and override methods from the base class may no longer behave the same way.
Internally, AbstractArchiveTask prefers the new properties and methods like getArchiveName() are
facades over the new properties.

If your plugin/build only uses these types (and does not extend them), nothing has changed.

Upgrading your build from Gradle 4.x to 5.0

This chapter provides the information you need to migrate your older Gradle 4.x builds to Gradle
5.0. In most cases, you will need to apply the changes from all versions that come after the one
you’re upgrading from. For example, if you’re upgrading from Gradle 4.3 to 5.0, you will also need
to apply the changes since 4.4, 4.5, etc up to 5.0.

If you are using Gradle for Android, you need to move to version 3.3 or higher of both

TIP
the Android Gradle Plugin and Android Studio.

For all users

1. If you are not already on the latest 4.10.x release, read the sections below for help upgrading
your project to the latest 4.10.x release. We recommend upgrading to the latest 4.10.x release to
get the most useful warnings and deprecations information before moving to 5.0. Avoid
upgrading Gradle and migrating to Kotlin DSL at the same time in order to ease troubleshooting
in case of potential issues.

2. Try running gradle help --scan and view the deprecations view of the generated build scan. If
there are no warnings, the Deprecations tab will not appear.

https://docs.gradle.org/8.6/javadoc/org/gradle/language/cpp/CppComponent.html#getTargetMachines()
https://gradle.com/enterprise/releases/2018.4/#identify-usages-of-deprecated-gradle-functionality

(7 Gradle Enterprise € + gradle clean kotlin-dsl-tooling-builders:platforniTest Dec 23,2020 7:38:27 PM EST i= Buldsans | @ @

= Ssummary
Console log

(D Deprecations.]

- Timeline

ons has been deprecated.

W Performance The KotlinDslPluginOptions.

Tests This s scheduled to be rem
2 usages >

s Projects

rimentalWarning property has been deprecated.
in Gradle 8.0.

&% Dependencies

22 Build dependencies
[Plugins

5= Custom values

& Switches

Infrastructure

¥ See before and after

@D Compare build scan

This is so that you can see any deprecation warnings that apply to your build. Gradle 5.x will
generate (potentially less obvious) errors if you try to upgrade directly to it.

Alternatively, you can run gradle help --warning-mode=all to see the deprecations in the
console, though it may not report as much detailed information.

3. Update your plugins.

Some plugins will break with this new version of Gradle, for example because they use internal
APIs that have been removed or changed. The previous step will help you identify potential
problems by issuing deprecation warnings when a plugin does try to use a deprecated part of
the APIL.

In particular, you will need to use at least a 2.x version of the Shadow Plugin.

4. Run gradle wrapper --gradle-version 5.0 to update the project to 5.0

5. Move to Java 8 or higher if you haven’t already. Whereas Gradle 4.x requires Java 7, Gradle 5
requires Java 8 to run.

6. Read the Upgrading from 4.10 section and make any necessary changes.
7. Try to run the project and debug any errors using the Troubleshooting Guide.

In addition, Gradle has added several significant new and improved features that you should
consider using in your builds:

e Maven Publish and Ivy Publish Plugins that now support digital signatures with the Signing
Plugin.

» Use native BOM import in your builds.

* The Worker API for enabling units of work to run in parallel.

* A new API for creating and configuring tasks lazily that can significantly improve your build’s
configuration time.

https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow
signing_plugin.pdf#signing_plugin
signing_plugin.pdf#signing_plugin

Other notable changes to be aware of that may break your build include:

» Separation of compile and runtime dependencies when consuming POMs

* A change that means you should configure existing wrapper and init tasks rather than defining
your own.

* The honoring of implicit wildcards in Maven POM exclusions, which may result in
dependencies being excluded that weren’t before.

* A change to the way you add Java annotation processors to a project.

The default memory settings for the command-line client, the Gradle daemon, and all workers
including compilers and test executors, have been greatly reduced.

The default versions of several code quality plugins have been updated.

Several library versions used by Gradle have been upgraded.

Upgrading from 4.10 and earlier

If you are not already on version 4.10, skip down to the section that applies to your current Gradle
version and work your way up until you reach here. Then, apply these changes when moving from
Gradle 4.10 to 5.0.

Other changes

* The enableFeaturePreview('IMPROVED_POM_SUPPORT") and
enableFeaturePreview('STABLE_PUBLISHING") flags are no longer necessary. These features are
now enabled by default.

* Gradle now bundles JAXB for Java 9 and above. You can remove the --add-modules
java.xml.bind option from org.gradle.jvmargs, if set.

Potential breaking changes

The changes in this section have the potential to break your build, but the vast majority have been
deprecated for quite some time and few builds will be affected by a large number of them. We
strongly recommend upgrading to Gradle 4.10 first to get a report on what deprecations affect your
build.

The following breaking changes are not from deprecations, but the result of changes in behavior:

» Separation of compile and runtime dependencies when consuming POMs

* The evaluation of the publishing {} block is no longer deferred until needed but behaves like
any other block. Please use afterEvaluate {} if you need to defer evaluation.

e The Javadoc and Groovydoc tasks now delete the destination dir for the documentation before
executing. This has been added to remove stale output files from the last task execution.

* The Java Library Distribution Plugin is now based on the Java Library Plugin instead of the Java

Plugin.

While it applies the Java Plugin, it behaves slightly different (e.g. it adds the api configuration).
Thus, make sure to check whether your build behaves as expected after upgrading.

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.javadoc.Javadoc.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.javadoc.Groovydoc.html
java_library_distribution_plugin.pdf#java_library_distribution_plugin
java_plugin.pdf#java_plugin
java_plugin.pdf#java_plugin

* The html property on CheckstyleReport and FindBugsReport now returns a
CustomizableHtmlReport instance that is easier to configure from statically typed languages like
Java and Kotlin.

» The Configuration Avoidance API has been updated to prevent the creation and configuration of
tasks that are never used.

* The default memory settings for the command-line client, the Gradle daemon, and all workers
including compilers and test executors, have been greatly reduced.

* The default versions of several code quality plugins have been updated.

* Several library versions used by Gradle have been upgraded.
The following breaking changes will appear as deprecation warnings with Gradle 4.10:

General

» << for task definitions no longer works. In other words, you can not use the syntax task
myTask << { -+ 1.

Use the Task.doLast() method instead, like this:

task myTask {
dolast {

* You can no longer use any of the following characters in domain object names, such as
project and task names: <space>/ \ : < > " ? * | . You should also not use . as a leading or
trailing character.

Running Gradle & build environment

* As mentioned before, Gradle can no longer be run on Java 7. However, you can still use
forked compilation and testing to build and test software for Java 6 and above.

* The -Dtest.single command-line option has been removed — use test filtering instead.

* The -Dtest.debug command-line option has been removed — use the --debug-jvm option
instead.

* The -u/--no-search-upward command-line option has been removed — make sure all your
builds have a settings.gradle file.

* The --recompile-scripts command-line option has been removed.

* You can no longer have a Gradle build nested in a subdirectory of another Gradle build
unless the nested build has a settings.gradle file.

* The DirectoryBuildCache.setTargetSizeInMB(long) method has been removed — use
DirectoryBuildCache.removeUnusedEntriesAfterDays instead.

* The org.gradle.readlLoggingConfigFile system property no longer does anything — update
affected tests to work with your java.util.logging settings.

https://docs.gradle.org/8.6/dsl/org.gradle.api.reporting.CustomizableHtmlReport.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Task.html#org.gradle.api.Task:doLast(org.gradle.api.Action)
https://docs.gradle.org/8.6/dsl/org.gradle.caching.local.DirectoryBuildCache.html#org.gradle.caching.local.DirectoryBuildCache:removeUnusedEntriesAfterDays

Working with files
* You can no longer cast FileCollection objects to other types using the as keyword or the
asType() method.

* You can no longer pass null as the configuration action of CopySpec.from(Object, Action).

* For better compatibility with the Kotlin DSL, CopySpec.duplicatesStrategy is no longer
nullable. The property setter no longer accepts null as a way to reset the property back to its
default value. Use DuplicatesStrategy.INHERIT instead.

» The FileCollection.stopExecutionIfEmpty() method has been removed — wuse the
@SkipWhenEmpty annotation on FileCollection task properties instead.

* The FileCollection.add() method has been removed —use Project.files() and
Project.fileTree() to create configurable file collections/file trees and add to them via
ConfigurableFileCollection.from().

» SimpleFileCollection has been removed — use Project.files(Object...) instead.

* Don’t have your own classes extend AbstractFileCollection — use the Project.files() method
instead. This problem may exhibit as a missing getBuildDependencies() method.

Java builds

* The CompileOptions.bootClasspath property has been removed —use
CompileOptions.bootstrapClasspath instead.

* You can no longer use -source-path as a generic compiler argument — use
CompileOptions.sourcepath instead.

* You can no longer use -processorpath as a generic compiler argument — use
CompileOptions.annotationProcessorPath instead.

» Gradle will no longer automatically apply annotation processors that are on the compile
classpath — use CompileOptions.annotationProcessorPath instead.

* The test(lassesDir property has been removed from the Test task — use testClassesDirs
instead.

* The classesDir property has been removed from both the JDepend task and SourceSetOutput.
Use the JDepend.classesDirs and SourceSetOutput.classesDirs properties instead.

» The Javalibrary(PublishArtifact, DependencySet) constructor has been removed — this was
used by the Shadow Plugin, so make sure you upgrade to at least version 2.x of that plugin.

» The JavaBasePlugin.configureForSourceSet() method has been removed.

* You can no longer create your own instances of JavaPluginConvention,
ApplicationPluginConvention, WarPluginConvention, EarPluginConvention,
BasePluginConvention, and ProjectReportsPluginConvention.

* The Maven Plugin used to publish the highly outdated Maven 2 metadata format. This has
been changed and it will now publish Maven 3 metadata, just like the Maven Publish Plugin.

With the removal of Maven 2 support, the methods that configure unique snapshot behavior
have also been removed. Maven 3 only supports unique snapshots, so we decided to remove
them.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/CopySpec.html#from-java.lang.Object-org.gradle.api.Action-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/DuplicatesStrategy.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/SkipWhenEmpty.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:fileTree(java.lang.Object)
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/ConfigurableFileCollection.html#from-java.lang.Object...-
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:files(java.lang.Object[])
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:bootstrapClasspath
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:sourcepath
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:annotationProcessorPath
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.CompileOptions.html#org.gradle.api.tasks.compile.CompileOptions:annotationProcessorPath
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:testClassesDirs
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.SourceSetOutput.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.SourceSetOutput.html#org.gradle.api.tasks.SourceSetOutput:classesDirs
https://plugins.gradle.org/plugin/com.github.johnrengelman.shadow
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/JavaPluginConvention.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/ApplicationPluginConvention.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/WarPluginConvention.html
https://docs.gradle.org/8.6/javadoc/org/gradle/plugins/ear/EarPluginConvention.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/BasePluginConvention.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/ProjectReportsPluginConvention.html

Tasks & properties

» The following legacy classes and methods related to lazy properties have been removed
— use ObjectFactory.property() to create Property instances:

o PropertyState

o DirectoryVar

o RegularFileVar

o ProjectlLayout.newDirectoryVar()
o ProjectlLayout.newFileVar()

o Project.property(Class)

o Script.property(Class)

o ProviderFactory.property(Class)

» Tasks configured and registered with the task configuration avoidance APIs have more
restrictions on the other methods that can be called from a configuration action.

» The internal @0ption and @0ptionValues annotations — package
org.gradle.api.internal.tasks.options — have been removed. Use the public @Option and
@OptionValues annotations instead.

» The Task.deleteAllActions() method has been removed with no replacement.

* The Task.dependsOnTaskDidWork() method has been removed — use declared inputs and
outputs instead.

* The following properties and methods of TaskInternal have been removed — use task
dependencies, task rules, reusable utility methods, or the Worker API in place of executing a
task directly.

o execute()

o executer

o getValidators()
o addValidator()

» The TaskInputs.file(Object) method can no longer be called with an argument that resolves to
anything other than a single regular file.

* The TaskInputs.dir(Object) method can no longer be called with an argument that resolves to
anything other than a single directory.

* You can no longer register invalid inputs and outputs via TaskInputs and TaskOutputs.

* The TaskDestroyables.file() and TaskDestroyables.files() methods have been removed
— use TaskDestroyables.register() instead.

» SimpleWorkResult has been removed — use WorkResult.didWork.

* Overriding built-in tasks deprecated in 4.8 now produces an error.

Attempting to replace a built-in task will produce an error similar to the following:

https://docs.gradle.org/8.6/javadoc/org/gradle/api/model/ObjectFactory.html#property-java.lang.Class-
task_configuration_avoidance.pdf#sec:task_configuration_avoidance_migration_guidelines
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/options/Option.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/options/OptionValues.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskInputs.html#file-java.lang.Object-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskInputs.html#dir-java.lang.Object-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskInputs.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskOutputs.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskDestroyables.html#register-java.lang.Object...-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/WorkResult.html#getDidWork--

> Cannot add task 'wrapper' as a task with that name already exists.

Scala & Play
 Play 2.2 is no longer supported — please upgrade the version of Play you are using.
» The ScalaDocOptions.styleSheet property has been removed — the Scaladoc Ant task in Scala
2.11.8 and later no longer supports this property.

Kotlin DSL

* Artifact configuration accessors now have the type
NamedDomainObjectProvider<Configuration> instead of Configuration

* PluginAware.apply<T>(to) was renamed PluginAware.applyTo<T>(target).

Both changes could cause script compilation errors. See the Gradle Kotlin DSL release notes for
more information and how to fix builds broken by the changes described above.

Miscellaneous

» The ConfigurableReport.setDestination(Object) method has been removed — use
ConfigurableReport.setDestination(File) instead.

* The Signature.setFile(File) method has been removed — Gradle does not support changing
the output file for the generated signature.

» The read-only Signature.toSignArtifact property has been removed — it should never have
been part of the public APIL

* The @DeferredConfigurable annotation has been removed.
* The method isDeferredConfigurable() was removed from ExtensionSchema.

» IdeaPlugin.performPostEvaluationActions() and
EclipsePlugin.performPostEvaluationActions() have been removed.

* The ‘BroadcastingCollectionEventRegister.getAddAction() method has been removed with no
replacement.

* The internal org.gradle.util package is no longer imported by default.
Ideally you shouldn’t use classes from this package, but, as a quick fix, you can add explicit
imports to your build scripts for those classes.

» The gradlePluginPortal() repository no longer looks for JARs without a POM by default.

» The Tooling API can no longer connect to builds using a Gradle version below Gradle 2.6. The
same applies to builds run through TestKit.

* Gradle 5.0 requires a minimum Tooling API client version of 3.0. Older client libraries can no
longer run builds with Gradle 5.0.

* The IdeaModule Tooling API model element contains methods to retrieve resources and test
resources so those elements were removed from the result of IdeaModule.getSourceDirs()
and IdeaModule.getTestSourceDirs().

* In previous Gradle versions, the source field in SourceTask was accessible from subclasses.

https://github.com/gradle/kotlin-dsl-samples/releases/tag/v1.0.2#breaking-changes
https://docs.gradle.org/8.6/javadoc/org/gradle/api/reporting/ConfigurableReport.html#setDestination-java.io.File-

This is not the case anymore as the source field is now declared as private.
* In the Worker API, the working directory of a worker can no longer be set.

* A change in behavior related to dependency and version constraints may impact a small
number of users.

* There have been several changes to property factory methods on DefaultTask that may
impact the creation of custom tasks.

Upgrading from 4.9 and earlier

If you are not already on version 4.9, skip down to the section that applies to your current Gradle
version and work your way up until you reach here. Then, apply these changes when upgrading to
Gradle 4.10.

Deprecated classes, methods and properties

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

» TaskContainer.add() and TaskContainer.addA11() —use TaskContainer.create() or
TaskContainer.register() instead

Potential breaking changes

* There have been several potentially breaking changes in Kotlin DSL — see the Breaking changes
section of that project’s release notes.

* You can no longer use any of the Project.beforeEvaluate() or Project.afterEvaluate() methods
with lazy task configuration, for example inside a TaskContainer.register() block.

» Publishing to AWS S3 requires new permissions.

* Both PluginUnderTestMetadata and GeneratePluginDescriptors — classes used by the Java
Gradle Plugin Development Plugin — have been updated to use the Provider API.

Use the Property.sset() method to modify their values rather than using standard property
assignment syntax, unless you are doing so in a Groovy build script. Standard property
assignment still works in that one case.

Upgrading from 4.8 and earlier

* Consider trying the lazy API for task creation and configuration

Potential breaking changes

* You can no longer use GPath syntax with tasks.withType().

Use Groovy’s spread operator instead. For example, you would replace
tasks.withType(JavaCompile).name with tasks.withType(JavaCompile)*.name.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskContainer.html#create-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://github.com/gradle/kotlin-dsl/releases/tag/v1.0-RC3
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:beforeEvaluate(org.gradle.api.Action)
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:afterEvaluate(org.gradle.api.Action)
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskContainer.html#register-java.lang.String-java.lang.Class-org.gradle.api.Action-
https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/devel/tasks/PluginUnderTestMetadata.html
https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/devel/tasks/GeneratePluginDescriptors.html
java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin
https://docs.gradle.org/8.6/javadoc/org/gradle/api/provider/Property.html#set-T-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskCollection.html#withType-java.lang.Class-
https://docs.groovy-lang.org/latest/html/documentation/#_spread_operator

Upgrading from 4.7 and earlier

Switch to the Maven Publish and Ivy Publish plugins
Use deferred configuration with the publishing plugins
Configure existing wrapper and init tasks rather than defining your own

Consider migrating to the built-in dependency locking mechanism if you are currently using a
plugin or custom solution for this

Potential breaking changes

Build will now fail if a specified init script is not found.

TaskContainer.remove() now actually removes the given task — some plugins may have
accidentally relied on the old behavior.

Gradle now honors implicit wildcards in Maven POM exclusions.

The Kotlin DSL now respects JSR-305 package annotations.

This will lead to some types annotated according to JSR-305 being treated as nullable where
they were treated as non-nullable before. This may lead to compilation errors in the build
script. See the relevant Kotlin DSL release notes for details.

Error messages will be directed to standard error rather than standard output now, unless a
console is attached to both standard output and standard error. This may affect tools that scrape
a build’s plain console output. Ignore this change if you’re upgrading from an earlier version of
Gradle.

Deprecations

Prior to this release, builds were allowed to replace built-in tasks. This feature has been deprecated.

The full list of built-in tasks that should not be replaced is: wrapper, init, help, tasks, projects,

buildEnvironment, components, dependencies, dependencyInsight, dependentComponents, model,
properties.

Upgrading from 4.6 and earlier

Potential breaking changes

Gradle will now, by convention, look for Checkstyle configuration files in the root project’s
config/checkstyle directory.

Checkstyle configuration files in subprojects — the old by-convention location — will be ignored
unless you explicitly configure their path via checkstyle.configDir or checkstyle.config.

The structure of Gradle’s plain console output has changed, which may break tools that scrape
that output.

The APIs of many native tasks related to compilation, linking and installation have changed in
breaking ways.

https://github.com/gradle/kotlin-dsl/releases/tag/v0.17.4
https://docs.gradle.org/4.8/release-notes.html#overwriting-gradle's-built-in-tasks
https://docs.gradle.org/8.6/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html#org.gradle.api.plugins.quality.CheckstyleExtension:configDir
https://docs.gradle.org/8.6/dsl/org.gradle.api.plugins.quality.CheckstyleExtension.html#org.gradle.api.plugins.quality.CheckstyleExtension:config

[Kotlin DSL] Delegated properties used to access Gradle’s build properties — defined in
gradle.properties for example — must now be explicitly typed.

[Kotlin DSL] Declaring a plugins {} block inside a nested scope now throws an exception.
[Kotlin DSL] Only one pluginManagement {} block is allowed now.

The cache control DSL provided by the org.gradle.api.artifacts.cache.* interfaces are no
longer available.

getEnabledDirectoryReportDestinations(), getEnabledFileReportDestinations() and
getEnabledReportNames() have all been removed from org.gradle.api.reporting.ReportContainer.

StartParameter.projectProperties and StartParameter.systemPropertiesArgs now return
immutable maps.

Upgrading from 4.5 and earlier

Deprecations

You should not put annotation processors on the compile classpath or declare them with the
-processorpath compiler argument.

They should be added to the annotationProcessor configuration instead. If you don’t want any
processing, but your compile classpath contains a processor unintentionally (e.g. as part of a
library you depend on), use the -proc:none compiler argument to ignore it.

Use CommandLineArgumentProvider in place of CompilerArgumentProvider.

Potential breaking changes

The Java plugins now add a sourceSetAnnotationProcessor configuration for each source set,
which might break if any of them match existing configurations you have. We recommend you
remove your conflicting configuration declarations.

The StartParameter.taskOutputCacheEnabled property has been replaced by
StartParameter.setBuildCacheEnabled(boolean).

The Visual Studio integration now only configures a single solution for all components in a
build.

Gradle has replaced HttpClient 4.4.1 with version 4.5.5.

Gradle now bundles the kotlin-stdlib-jdk8 artifact instead of kotlin-stdlib-jre8. This may
affect your build. Please see the Kotlin documentation for more details.

Upgrading from 4.4 and earlier

Make sure you have a settings.gradle file: it avoids a performance penalty and allows you to set
the root project’s name.

Gradle now ignores the build cache configuration of included builds (composite builds) and
instead uses the root build’s configuration for all the builds.

https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#getProjectProperties--
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#getSystemPropertiesArgs--
https://docs.gradle.org/8.6/javadoc/org/gradle/process/CommandLineArgumentProvider.html
https://docs.gradle.org/4.10.3/javadoc/org/gradle/api/tasks/compile/CompilerArgumentProvider.html
https://docs.gradle.org/8.6/javadoc/org/gradle/StartParameter.html#setBuildCacheEnabled-boolean-
http://kotlinlang.org/docs/reference/whatsnew12.html#kotlin-standard-library-artifacts-and-split-packages

Potential breaking changes

Two overloaded ValidateTaskProperties.setOutputFile() methods were removed. They are
replaced with auto-generated setters when the task is accessed from a build script, but that
won’t be the case from plugins and other code outside of the build script.

The Maven Publish Plugin now produces more complete maven-metadata.xml files, including
maintaining a list of <snapshotVersion> elements. Some older versions of Maven may not be able
to consume this metadata.

HttpBuildCache no longer follows redirects.
The Depend task type has been removed.

Project.file(Object) no longer normalizes case for file paths on case-insensitive file systems. It
now ignores case in such circumstances and does not touch the file system.

ListProperty no longer extends Property.

Upgrading from 4.3 and earlier

Potential breaking changes

AbstractTestTask is now extended by non-JVM test tasks as well as Test. Plugins should beware
configuring all tasks of type AbstractTestTask because of this.

The default output location for EclipseClasspath.defaultOutputDir has changed from
$projectDir/bin to $projectDir/bin/default.

The deprecated InstallExecutable.setDestinationDir(Provider) was removed — use
InstallExecutable.installDirectory instead.

The deprecated InstallExecutable.setExecutable(Provider) was removed — use
InstallExecutable.executableFile instead.

Gradle will no longer prefer a version of Visual Studio found on the path over other locations. It

is now a last resort.

You can bypass the toolchain discovery by specifying the installation directory of the version of
Visual Studio you want via VisualCpp.setInstallDir(Object).

pluginManagement.repositories is now of type RepositoryHandler rather than
PluginRepositoriesSpec, which has been removed.

5xx HTTP errors during dependency resolution will now trigger exceptions in the build.

The embedded Apache Ant has been upgraded from 1.9.6 to 1.9.9.

Several third-party libraries used by Gradle have been upgraded to fix security issues.

Upgrading from 4.2 and earlier

The plugins {} block can now be used in subprojects and for plugins in the buildSrc directory.

https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:file(java.lang.Object)
https://docs.gradle.org/8.6/javadoc/org/gradle/api/provider/ListProperty.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/provider/Property.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.testing.AbstractTestTask.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.testing.Test.html
https://docs.gradle.org/8.6/dsl/org.gradle.plugins.ide.eclipse.model.EclipseClasspath.html#org.gradle.plugins.ide.eclipse.model.EclipseClasspath:defaultOutputDir
https://docs.gradle.org/8.6/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html#org.gradle.nativeplatform.tasks.InstallExecutable:installDirectory
https://docs.gradle.org/8.6/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html#org.gradle.nativeplatform.tasks.InstallExecutable:executableFile
https://docs.gradle.org/8.6/dsl/org.gradle.nativeplatform.toolchain.VisualCpp.html#org.gradle.nativeplatform.toolchain.VisualCpp:installDir
https://docs.gradle.org/8.6/dsl/org.gradle.api.artifacts.dsl.RepositoryHandler.html

Other deprecations

* You should no longer run Gradle versions older than 2.6 via the Tooling API.
* You should no longer run any version of Gradle via an older version of the Tooling API than 3.0.

* You should no longer chain TaskInputs.property(String,Object) and TaskInputs.properties(Map)
methods.

Potential breaking changes

* DefaultTask.newOutputDirectory() now returns a DirectoryProperty instead of a DirectoryVar.
* DefaultTask.newOutputFile() now returns a ReqularFileProperty instead of a ReqularFileVar.

* DefaultTask.newInputFile() now returns a ReqularFileProperty instead of a ReqularFileVar.

* ProjectLayout.buildDirectory now returns a DirectoryProperty instead of a DirectoryVar.

» AbstractNativeCompileTask.compilerArgs is now of type ListProperty<String> instead of
List<String>.

» AbstractNativeCompileTask.objectFileDir is now of type DirectoryProperty instead of File.

» AbstractLinkTask.linkerArgs is now of type ListProperty<String> instead of List<String>.

» TaskDestroyables.getFiles() is no longer part of the public APIL

* Overlapping version ranges for a dependency now result in Gradle picking a version that

satisfies all declared ranges.

For example, if a dependency on some-module is found with a version range of [3,6] and also
transitively with a range of [4,8], Gradle now selects version 6 instead of 8. The prior behavior
was to select 8.

* The order of elements in Iterable properties marked with either @OutputFiles or
@OutputDirectories now matters. If the order changes, the property is no longer considered up
to date.

Prefer using separate properties with @0utputFile/@OutputDirectory annotations or use Map
properties with @0utputFiles/@OutputDirectories instead.

* Gradle will no longer ignore dependency resolution errors from a repository when there is
another repository it can check. Dependency resolution will fail instead. This results in more
deterministic behavior with respect to resolution results.

Upgrading from 4.1 and earlier

Potential breaking changes

e The withPathSensitivity() methods on TaskFilePropertyBuilder and
TaskOutputFilePropertyBuilder have been removed.
* The bundled bndlib has been upgraded from 3.2.0 to 3.4.0.

* The FindBugs Plugin no longer renders progress information from its analysis. If you rely on
that output in any way, you can enable it with FindBugs.showProgress.

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskInputs.html#property-java.lang.String-java.lang.Object-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskInputs.html#properties-java.util.Map-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/DefaultTask.html#newOutputDirectory--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/DefaultTask.html#newOutputFile--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/DefaultTask.html#newInputFile--
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/ProjectLayout.html#getBuildDirectory--
https://docs.gradle.org/8.6/dsl/org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask.html#org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask:compilerArgs
https://docs.gradle.org/8.6/dsl/org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask.html#org.gradle.language.nativeplatform.tasks.AbstractNativeCompileTask:objectFileDir
https://docs.gradle.org/8.6/dsl/org.gradle.nativeplatform.tasks.AbstractLinkTask.html#org.gradle.nativeplatform.tasks.AbstractLinkTask:linkerArgs
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskFilePropertyBuilder.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskOutputFilePropertyBuilder.html

Upgrading from 4.0

* Consider using the new Worker API to enable units of work within your build to run in parallel.

Deprecated classes, methods and properties

Follow the API links to learn how to deal with these deprecations (if no extra information is
provided here):

e Nullable

Potential breaking changes

* Non-Java projects that have a project dependency on a Java project now consume the
runtimeElements configuration by default instead of the default configuration.

To override this behavior, you can explicitly declare the configuration to use in the project
dependency. For example: project(path: ':myJavaProject', configuration: 'default').

* Default Zinc compiler upgraded from 0.3.13 to 0.3.15.

* [Kotlin DSL] Base package renamed from org.gradle.script.lang.kotlin to
org.gradle.kotlin.dsl.

Changes in detail

[5.0] Default memory settings changed

The command line client now starts with 64MB of heap instead of 1GB. This may affect builds
running directly inside the client VM using --no-daemon mode. We discourage the use of --no-daemon,
but if you must use it, you can increase the available memory using the GRADLE_OPTS environment
variable.

The Gradle daemon now starts with 512MB of heap instead of 1GB. Large projects may have to
increase this setting using the org.gradle.jvmargs property.

All workers, including compilers and test executors, now start with 512MB of heap. The previous
default was 1/4th of physical memory. Large projects may have to increase this setting on the
relevant tasks, e.g. JavaCompile or Test.

[5.0] New default versions for code quality plugins

The default tool versions of the following code quality plugins have been updated:

The Checkstyle Plugin now uses 8.12 instead of 6.19 by default.

The CodeNarc Plugin now uses 1.2.1 instead of 1.1 by default.

The JaCoCo Plugin now uses 0.8.2 instead of 0.8.1 by default.

The PMD Plugin now uses 6.8.0 instead of 5.6.1 by default.

In addition, the default ruleset was changed from the now deprecated java-basic to

https://docs.gradle.org/4.10.3/javadoc/org/gradle/api/Nullable.html
config_gradle.pdf#sec:configuring_jvm_memory
config_gradle.pdf#sec:configuring_jvm_memory
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.testing.Test.html
http://checkstyle.sourceforge.net
http://checkstyle.sourceforge.net/releasenotes.html#Release_8.12
https://codenarc.org/
https://github.com/CodeNarc/CodeNarc/blob/master/CHANGELOG.md#version-121-aug-2018
https://www.jacoco.org/jacoco/
https://www.jacoco.org/jacoco/trunk/doc/changes.html
https://pmd.github.io/
https://pmd.github.io/pmd-6.8.0/pmd_release_notes.html#30-september-2018---680

category/java/errorprone.xml.

We recommend configuring a ruleset explicitly, though.

[5.0] Library upgrades

Several libraries that are used by Gradle have been upgraded:

* Groovy was upgraded from 2.4.15 to 2.5.4.
* Ant has been upgraded from 1.9.11 to 1.9.13.

» The AWS SDK used to access S3-backed Maven/Ivy repositories has been upgraded from 1.11.267
to 1.11.407.

* The BND library used by the OSGi Plugin has been upgraded from 3.4.0 to 4.0.0.

* The Google Cloud Storage JSON API Client Library used to access Google Cloud Storage backed
Maven/Ivy repositories has been upgraded from v1-rev116-1.23.0 to v1-rev136-1.25.0.

* Ivy has been upgraded from 2.2.0 to 2.3.0.
* The JUnit Platform libraries used by the Test task have been upgraded from 1.0.3 to 1.3.1.

* The Maven Wagon libraries used to access Maven repositories have been upgraded from 2.4 to
3.0.0.

» SLF4] has been upgraded from 1.7.16 to 1.7.25.

[5.0] Improved support for dependency and version constraints

Through the Gradle 4.x release stream, new @Incubating features were added to the dependency
resolution engine. These include sophisticated version constraints (prefer, strictly, reject),
dependency constraints, and platform dependencies.

If you have been using the IMPROVED_POM_SUPPORT feature preview, playing with constraints or prefer,
reject and other specific version indications, then make sure to take a good look at your
dependency resolution results.

[5.0] BOM import

Gradle now provides support for importing bill of materials (BOM) files, which are effectively POM
files that use <dependencyManagement> sections to control the versions of direct and transitive
dependencies. All you need to do is declare the POM as a platform dependency.

The following example picks the versions of the gson and dom4j dependencies from the declared
Spring Boot BOM:

https://groovy-lang.org/releasenotes/groovy-2.5.html
https://archive.apache.org/dist/ant/RELEASE-NOTES-1.9.13.html
https://github.com/aws/aws-sdk-java/blob/master/CHANGELOG.md#111407-2018-09-11
https://github.com/bndtools/bnd/wiki/Changes-in-4.0.0
http://ant.apache.org/ivy/history/2.3.0/release-notes.html
https://www.slf4j.org/news.html

dependencies {

// import a BOM

implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE")

// define dependencies without versions
implementation 'com.google.code.gson:gson'
implementation 'dom4j:dom4;j’

[5.0] Separation of compile and runtime dependencies when consuming POMs

Since Gradle 1.0, runtime-scoped dependencies have been included in the Java compilation
classpath, which has some drawbacks:

* The compilation classpath is much larger than it needs to be, slowing down compilation.

* The compilation classpath includes runtime-scoped files that do not impact compilation,
resulting in unnecessary re-compilation when those files change.

With this new behavior, the Java and Java Library plugins both honor the separation of compile
and runtime scopes. This means that the compilation classpath only includes compile-scoped
dependencies, while the runtime classpath adds the runtime-scoped dependencies as well. This is
particularly useful if you develop and publish Java libraries with Gradle where the separation
between api and implementation dependencies is reflected in the published scopes.

[5.0] Changes to property factory methods on DefaultTask

Property factory methods on DefaultTask are now final

The property factory methods such as newInputFile() are intended to be called from the constructor
of a type that extends DefaultTask. These methods are now final to avoid subclasses overriding
these methods and using state that is not initialized.

Inputs and outputs are not automatically registered

The Property instances that are returned by these methods are no longer automatically registered
as inputs or outputs of the task. The Property instances need to be declared as inputs or outputs in
the usual ways, such as attaching annotations such as @0utputFile or using the runtime API to
register the property.

For example, you could previously use the following syntax and have both outputFile instances
registered as declared outputs:

build.gradle

class MyTask extends DefaultTask {
// note: no annotation here
final ReqularFileProperty outputFile = newOutputFile()

}

task myOtherTask {
def outputFile = newOutputFile()
dolast { ... }

build.gradle.kts

open class MyTask : DefaultTask() {
// note: no annotation here
val outputFile: ReqularFileProperty = newOutputFile()

}
task("myOtherTask") {

val outputFile = newOutputFile()
dolLast { ... }

Now you have to explicitly register outputFile, like this:

build.gradle

class MyTask extends DefaultTask {
// property needs an annotation
final ReqularFileProperty outputFile = project.objects.fileProperty()

}

task myOtherTask {
def outputFile = project.objects.fileProperty()
outputs.file(outputFile) // or to be registered using the runtime API
doLast { ... }

build.gradle.kts

open class MyTask : DefaultTask() {
@OutputFile // property needs an annotation
val outputFile: ReqularFileProperty = project.objects.fileProperty()

}

task("myOtherTask") {
val outputFile = project.objects.fileProperty()
outputs.file(outputFile) // or to be registered using the runtime API
dolLast { ... }

[5.0] Gradle now bundles JAXB for Java 9 and above

In order to use S3 backed artifact repositories, you previously had to add --add-modules
java.xml.bind to org.gradle.jvmargs when running on Java 9 and above.

Since Java 11 no longer contains the java.xml.bind module, Gradle now bundles JAXB 2.3.1
(com.sun.xml.bind:jaxb-impl) and uses it on Java 9 and above.

Please remove the --add-modules java.xml.bind option from org.gradle.jvmargs, if set.

[5.0] The gradlePluginPortal() repository no longer looks for JARs without a POM by default

With this new behavior, if a plugin or a transitive dependency of a plugin found in the
gradlePluginPortal() repository has no Maven POM it will fail to resolve.

Artifacts published to a Maven repository without a POM should be fixed. If you encounter such
artifacts, please ask the plugin or library author to publish a new version with proper metadata.

If you are stuck with a bad plugin, you can work around by re-enabling JARs as metadata source for

the gradlePluginPortal() repository:

settings.gradle

pluginManagement {
repositories {
gradlePluginPortal().tap {
metadataSources {
mavenPom()
artifact()

settings.gradle.kts

pluginManagement {
repositories {
gradlePluginPortal().apply {
(this as MavenArtifactRepository).metadataSources {
mavenPom()
artifact()

Java Library Distribution Plugin utilizes Java Library Plugin

The Java Library Distribution Plugin is now based on the Java Library Plugin instead of the Java
Plugin.

Additionally, the default distribution created by the plugin will contain all artifacts of the
runtimeClasspath configuration instead of the deprecated runtime configuration.

Configuration Avoidance API disallows common configuration errors

The configuration avoidance API introduced in Gradle 4.9 allows you to avoid creating and
configuring tasks that are never used.

With the existing API, this example adds two tasks (foo and bar):

java_library_distribution_plugin.pdf#java_library_distribution_plugin
java_plugin.pdf#java_plugin
java_plugin.pdf#java_plugin
task_configuration_avoidance.pdf#task_configuration_avoidance

build.gradle

tasks.create("foo") {
tasks.create("bar")

build.gradle.kts

tasks.create("foo") {
tasks.create("bar")

When converting this to use the new API, something surprising happens: bar doesn’t exist. The new
API only executes configuration actions when necessary, so the register() for task bar only
executes when foo is configured.

build.gradle

tasks.register("foo") {
tasks.register("bar") // WRONG

}

build.gradle.kts

tasks.register("foo") {
tasks.register("bar") // WRONG
}

To avoid this, Gradle now detects this and prevents modification to the underlying container
(through create() or register()) when using the new API.

[5.0] Worker API: working directory of a worker can no longer be set

Since JDK 11 no longer supports changing the working directory of a running process, setting the
working directory of a worker via its fork options is now prohibited.

All workers now use the same working directory to enable reuse.

Please pass files and directories as arguments instead.

[4.10] Publishing to AWS S3 requires new permissions

The S3 repository transport protocol allows Gradle to publish artifacts to AWS S3 buckets. Starting
with this release, every artifact uploaded to an S3 bucket will be equipped with the bucket-owner-
full-control canned ACL. Make sure that the AWS account used to publish artifacts has the
s3:PutObjectAcl and s3:PutObjectVersionAcl permissions, otherwise the upload will fail.

{
"Version":"2012-10-17",
"Statement":[
/] ...
{
"Effect":"Allow",
"Action":[
"s3:PutObject", // necessary for uploading objects
"s3:PutObjectAcl", // required starting with this release
"s3:PutObjectVersionAcl" // if S3 bucket versioning is enabled
1
"Resource":"arn:aws:s3:::myCompanyBucket/*"
}
]
}

See AWS S3 Cross Account Access for more information.

[4.9] Consider trying the lazy API for task creation and configuration

Gradle 4.9 introduced a new way to create and configure tasks that works lazily. When you use this
approach for tasks that are expensive to configure, or when you have many, many tasks, your build
configuration time can drop significantly when those tasks don’t run.

You can learn more about lazily creating tasks in the Task Configuration Avoidance chapter. You
can also read about the background to this new feature in this blog post.

[4.8] Switch to the Maven Publish and Ivy Publish Plugins

Now that the publishing plugins are stable, we recommend that you migrate from the legacy
publishing mechanism for standard Java projects, i.e. those based on the Java Plugin. That includes
projects that use any one of: Java Library Plugin, Application Plugin or War Plugin.

To use the new approach, simply replace any upload<Conf> configuration with a publishing {} block.
See the publishing overview chapter for more information.

[4.8] Use deferred configuration for publishing plugins

Prior to Gradle 4.8, the publishing {} block was implicitly treated as if all the logic inside it was
executed after the project was evaluated. This was confusing, because it was the only block that
behaved that way. As part of the stabilization effort in Gradle 4.8, we are deprecating this behavior
and asking all users to migrate their build.

task_configuration_avoidance.pdf#task_configuration_avoidance
https://blog.gradle.org/preview-avoiding-task-configuration-time
java_plugin.pdf#java_plugin
war_plugin.pdf#war_plugin

The new, stable behavior can be switched on by adding the following to your settings file:

settings.gradle

enableFeaturePreview('STABLE PUBLISHING')

settings.gradle.kts

enableFeaturePreview("STABLE _PUBLISHING")

We recommend doing a test run with a local repository to see whether all artifacts still have the
expected coordinates. In most cases everything should work as before and you are done. However,
your publishing block may rely on the implicit deferred configuration, particularly if it relies on
values that may change during the configuration phase of the build.

For example, under the new behavior, the following logic assumes that jar.archiveBaseName doesn’t
change after artifactId is set:

build.gradle

subprojects {
publishing {
publications {
mavenJava {
from components.java
artifactId = jar.archiveBaseName

build.gradle.kts

subprojects {
publishing {
publications {
named<MavenPublication>("mavenlava") {
from(components["java"])
artifactId = tasks.jar.get().archiveBaseName.get()

If that assumption is incorrect or might possibly be incorrect in the future, the artifactId must be
set within an afterEvaluate {} block, like so:

build.gradle

subprojects {
publishing {
publications {
mavenJava {
from components.java
afterEvaluate {
artifactId = jar.archiveBaseName

}

build.gradle.kts

subprojects {
publishing {
publications {
named<MavenPublication>("mavenJava") {
from(components["java"])
afterEvaluate {
artifactId = tasks.jar.get().archiveBbaseName.get()

}

[4.8] Configure existing wrapper and init tasks

You should no longer define your own wrapper and init tasks. Configure the existing tasks instead,
for example by converting this:

build.gradle
task wrapper(type: Wrapper) {

}

build.gradle.kts

task<Wrapper>("wrapper") {

}

to this:

build.gradle

wrapper {

}

build.gradle.kts

tasks.wrapper {

}

[4.8] Gradle now honors implicit wildcards in Maven POM exclusions

If an exclusion in a Maven POM was missing either a groupId or artifactId, Gradle used to ignore
the exclusion. Now the missing elements are treated as implicit wildcards —e.g.
<groupld>*</groupId> — which means that some of your dependencies may now be excluded where
they weren’t before.

You will need to explicitly declare any missing dependencies that you need.

[4.7] Changes to the structure of Gradle’s plain console output

The plain console mode now formats output consistently with the rich console, which means that
the output format has changed. For example:

* The output produced by a given task is now grouped together, even when other tasks execute in
parallel with it.

» Task execution headers are printed with a "> Task" prefix.

* All output produced during build execution is written to the standard output file handle. This
includes messages written to System.err unless you are redirecting standard error to a file or
any other non-console destination.

This may break tools that scrape details from the plain console output.

[4.6] Changes to the APIs of native tasks related to compilation, linking and installation

Many tasks related to compiling, linking and installing native libraries and applications have been
converted to the Provider API so that they support lazy configuration. This conversion has
introduced some breaking changes to the APIs of the tasks so that they match the conventions of
the Provider API.

The following tasks have been changed:

AbstractLinkTask and its subclasses

» getDestinationDir() was replaced by getDestinationDirectory().

» getBinaryFile(), getOutputFile() was replaced by getLinkedFile().

» setOutputFile(File) was removed. Use Property.set() instead.

e setOutputFile(Provider) was removed. Use Property.set() instead.

» getTargetPlatform() was changed to return a Property.

» setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.
* getToolChain() was changed to return a Property.

e setToolChain(NativeToolChain) was removed. Use Property.set() instead.

CreateStaticLibrary

» getOutputFile() was changed to return a Property.

» setOutputFile(File) was removed. Use Property.set() instead.

o setOutputFile(Provider) was removed. Use Property.set() instead.

» getTargetPlatform() was changed to return a Property.

» setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.
» getToolChain() was changed to return a Property.

* setToolChain(NativeToolChain) was removed. Use Property.set() instead.

» getStaticLibArgs() was changed to return a ListProperty.

» setStaticLibArgs(List) was removed. Use ListProperty.set() instead.

InstallExecutable

» getSourceFile() was replaced by getExecutableFile().
» getPlatform() was replaced by getTargetPlatform().

https://docs.gradle.org/8.6/dsl/org.gradle.nativeplatform.tasks.AbstractLinkTask.html
https://docs.gradle.org/8.6/dsl/org.gradle.nativeplatform.tasks.CreateStaticLibrary.html
https://docs.gradle.org/8.6/dsl/org.gradle.nativeplatform.tasks.InstallExecutable.html

» setTargetPlatform(NativePlatform) was removed. Use Property.set() instead.
» getToolChain() was changed to return a Property.

* setToolChain(NativeToolChain) was removed. Use Property.set() instead.
The following have also seen similar changes:

» Assemble

* WindowsResourceCompile
* StripSymbols

* ExtractSymbols

» SwiftCompile

LinkMachOBundle

[4.6] Visual Studio integration only supports a single solution file for all components of a
build

VisualStudioExtension no longer has a solutions property. Instead, you configure a single solution
via VisualStudioRootExtension in the root project, like so:

build.gradle

model {
visualStudio {
solution {
solutionFile.location = "vs/${name}.sln"

In addition, there are no longer individual tasks to generate the solution files for each component,
but rather a single visualStudio task that generates a solution file that encompasses all components
in the build.

[4.5] HttpBuildCache no longer follows redirects

When connecting to an HTTP build cache backend via HttpBuildCache, Gradle does not follow
redirects any more, treating them as errors instead. Getting a redirect from the build cache
backend is mostly a configuration error — using an "http" URL instead of "https" for example — and
has negative effects on performance.

[4.4] Third-party dependency upgrades

This version includes several upgrades of third-party dependencies:

https://docs.gradle.org/8.6/dsl/org.gradle.language.assembler.tasks.Assemble.html
https://docs.gradle.org/8.6/dsl/org.gradle.language.rc.tasks.WindowsResourceCompile.html
https://docs.gradle.org/8.6/javadoc/org/gradle/nativeplatform/tasks/StripSymbols.html
https://docs.gradle.org/8.6/javadoc/org/gradle/nativeplatform/tasks/ExtractSymbols.html
https://docs.gradle.org/8.6/javadoc/org/gradle/language/swift/tasks/SwiftCompile.html
https://docs.gradle.org/8.6/javadoc/org/gradle/nativeplatform/tasks/LinkMachOBundle.html
https://docs.gradle.org/8.6/dsl/org.gradle.ide.visualstudio.VisualStudioExtension.html
https://docs.gradle.org/8.6/dsl/org.gradle.ide.visualstudio.VisualStudioRootExtension.html

jackson: 2.6.6 - 2.8.9
* plexus-utils: 2.0.6 - 2.1
» xerceslmpl: 2.9.1 - 2.11.0

bsh: 2.0b4 — 2.0b6

* bouncycastle: 1.57 - 1.58
This fix the following security issues:

e CVE-2017-7525 (critical)
» SONATYPE-2017-0359 (critical)
* SONATYPE-2017-0355 (critical)
* SONATYPE-2017-0398 (critical)
e CVE-2013-4002 (critical)
* CVE-2016-2510 (severe)
* SONATYPE-2016-0397 (severe)
* CVE-2009-2625 (severe)
e SONATYPE-2017-0348 (severe)

Gradle does not expose public APIs for these 3rd-party dependencies, but those who customize
Gradle will want to be aware.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-7525
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-4002
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2510
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2009-2625

MIGRATING

Migrating Builds From Apache Maven

Apache Maven is a build tool for Java and other JVM-based projects. It is typical to migrate an
existing Maven build to Gradle.

This guide will help with such a migration by explaining the differences and similarities between
the two tools and providing steps that you can follow to ease the process.

Converting a build can be scary, but you don’t have to do it alone. You can search our
documentation, post on our community forums, or reach out on our Slack channel if you get stuck.

Making a case for migration

The primary differences between Gradle and Maven are flexibility, performance, user experience,
and dependency management.

A visual overview of these aspects is available in the Maven vs Gradle feature comparison.

Since Gradle 3.0, Gradle has invested heavily in making Gradle builds much faster, with features
such as build caching, compile avoidance, and an improved incremental Java compiler. Gradle is
now 2-10x faster than Maven for the vast majority of projects, even without using a build cache. In-
depth performance comparison and business cases for switching from Maven to Gradle can be
found here.

General guidelines

Gradle and Maven have fundamentally different views on how to build a project. Gradle provides a
flexible and extensible build model that delegates the actual work to the execution of a graph of
tasks. Maven uses a model of fixed, linear phases to which you can attach goals (the things that do
the work). This may make migrating between the two seem intimidating, but migrations can be
surprisingly easy because Gradle follows many of the same conventions as Maven —such as the
standard project structure — and its dependency management works in a similar way.

Here we lay out a series of steps for you to follow that will help facilitate the migration of any
Maven build to Gradle:

Keep the old Maven build and new Gradle build side by side. You know the Maven
build works, so you should keep it until you are confident that the Gradle build
produces all the same artifacts. This also means that users can try the Gradle build
without creating a new copy of the source tree.

TIP

1. Create a build scan for the Maven build.

A build scan will make it easier to visualize what’s happening in your existing Maven build. For
Maven builds, you will be able to see the project structure, what plugins are being used, a
timeline of the build steps, and more. Keep this handy so you can compare it to the Gradle build

https://maven.apache.org
https://docs.gradle.org/
https://discuss.gradle.org/
https://gradle.org/slack-invite
https://gradle.org/maven-vs-gradle
https://blog.gradle.org/introducing-gradle-build-cache
https://blog.gradle.org/incremental-compiler-avoidance
https://gradle.org/gradle-vs-maven-performance/
java_plugin.pdf#sec:java_project_layout
https://scans.gradle.com

scans while converting the project.
. Develop a mechanism to verify that the two builds produce the same artifacts.

This is a vitally important step to ensure that your deployments and tests don’t break. Even
small changes, such as the contents of a manifest file in a JAR, can cause problems. If your
Gradle build produces the same output as the Maven build, this will give you confidence in
switching over and make it easier to implement the changes that will provide the greatest
benefits.

This doesn’t mean that you need to verify every artifact at every stage, although doing so can
help you quickly identify the source of a problem. You should focus on the critical output such
as final reports and the artifacts that are published or deployed.

You will need to factor in some inherent differences in the build output that Gradle produces
compared to Maven. Generated POMs will contain only the information needed for
consumption and they will use <compile> and <runtime> scopes correctly for that scenario. You
might also see differences in the order of files in archives and of files on classpaths. Most
differences will be minor, but it’s worth identifying them and verifying that they are acceptable.

. Run an automatic conversion.

This will create all the Gradle build files you need, even for multi-module builds. For simpler
Maven projects, the Gradle build will be ready to run!

. Create a build scan for the Gradle build.

A build scan will make it easier to visualize what’s happening in the build. For Gradle builds,
yowll be able to see the project structure, the dependencies (regular and inter-project ones),
what plugins are being used and the console output of the build.

Your build may fail at this point, but that’s ok; the scan will still run. Compare the build scan for
the Gradle build to the one for the Maven build and continue down this list to troubleshoot the
failures.

We recommend that you regularly generate build scans during the migration to help you
identify and troubleshoot problems. If you want, you can also use a Gradle build scan to identify
opportunities to improve the performance of the build.

. Verify your dependencies and fix any problems.
. Configure integration and functional tests.
Many tests can simply be migrated by configuring an extra source set. If you are using a third-

party library, such as FitNesse, look to see whether there is a suitable community plugin
available on the Gradle Plugin Portal.

. Replace Maven plugins with Gradle equivalents.

In the case of popular plugins, Gradle often has an equivalent plugin that you can use. You
might also find that you can replace a plugin with built-in Gradle functionality. As a last resort,
you may need to reimplement a Maven plugin via your own custom plugins and task types.

https://scans.gradle.com
http://docs.fitnesse.org/FrontPage
https://plugins.gradle.org/

The rest of this chapter looks in more detail at specific aspects of migrating a build from Maven
to Gradle.

Understanding the build lifecycle

Maven builds are based around the concept of build lifecycles that consist of a set of fixed phases.
This can be a challenge for users migrating to Gradle because the build lifecycle is a new concept.
Although it’s important to understand how Gradle builds fit into the structure of initialization,
configuration, and execution phases, Gradle provides a helper feature that can mimic Maven’s
phases: lifecycle tasks.

This feature allow you to define your own "lifecycles" by creating no-action tasks that simply
depend on the tasks you’re interested in. And to make the transition to Gradle easier for Maven
users, the Base Plugin—applied by all the JVM language plugins like the Java Library
Plugin — provides a set of lifecycle tasks that correspond to the main Maven phases.

Here is a list of some of the main Maven phases and the Gradle tasks that they map to:

clean

Use the clean task provided by the Base Plugin.

compile

Use the classes task provided by the Java Plugin and other JVM language plugins. This compiles
all classes for all source files of all languages and also performs resource filtering via the
processResources task.

test

Use the test task provided by the Java Plugin. It runs the unit tests, and more specifically, the
tests that make up the test source set.

package

Use the assemble task provided by the Base Plugin. This builds whatever is the appropriate
package for the project; for example, a JAR for Java libraries or a WAR for traditional Java
webapps.

verify

Use the check task provided by the Base Plugin. This runs all verification tasks that are attached
to it, which typically includes the unit tests, any static analysis tasks — such as Checkstyle —and
others. If you want to include integration tests, you will have to configure these manually.

install
Use the publishToMavenLocal task provided by the Maven Publish Plugin.

Note that Gradle builds don’t require you to "install" artifacts as you have access to more
appropriate features like inter-project dependencies and composite builds. You should only use
publishToMavenLocal for interoperating with Maven builds.

Gradle also allows you to resolve dependencies against the local Maven cache, as described in
the Declaring repositories section.

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
base_plugin.pdf#sec:base_tasks
java_plugin.pdf#sec:java_tasks
java_plugin.pdf#source_sets
java_plugin.pdf#source_sets
checkstyle_plugin.pdf#checkstyle_plugin

deploy
Use the publish task provided by the Maven Publish Plugin — making sure you switch from the
older Maven Plugin (ID: maven) if your build is using that one. This will publish your package to
all configured publication repositories. There are also tasks that allow you to publish to a single
repository even when multiple ones are defined.

Note that the Maven Publish Plugin does not publish source and Javadoc JARs by default, but
this can easily be activated as explained in the guide for building java projects.

Performing an automatic conversion

Gradle’s init task is typically used to create a new skeleton project, but you can also use it to
convert an existing Maven build to Gradle automatically. Once Gradle is installed on your system,
all you have to do is run the command

> gradle init

from the root project directory. This consists of parsing the existing POMs and generating the
corresponding Gradle build scripts. Gradle will also create a settings script if you’re migrating a
multi-project build.

Youw’ll find that the new Gradle build includes the following:

 All the custom repositories that are specified in the POM

* Your external and inter-project dependencies

» The appropriate plugins to build the project (limited to one or more of the Maven Publish, Java
and War Plugins)

See the Build Init Plugin chapter for a complete list of the automatic conversion features.

One thing to keep in mind is that assemblies are not automatically converted. This additional
conversion will required some manual work. Options include:

* Using the Distribution Plugin

* Using the Java Library Distribution Plugin

Using the Application Plugin
* Creating custom archive tasks

* Using a suitable community plugin from the Gradle Plugin Portal

If your Maven build does not have many plugins or custom steps, you can simply run

> gradle build

once the migration has completed. This will run the tests and produce the required artifacts
automatically.

build_init_plugin.pdf#build_init_plugin
build_init_plugin.pdf#build_init_plugin
java_plugin.pdf#java_plugin
war_plugin.pdf#war_plugin
build_init_plugin.pdf#sec:pom_maven_conversion
distribution_plugin.pdf#distribution_plugin
java_library_distribution_plugin.pdf#java_library_distribution_plugin
https://plugins.gradle.org/

Migrating dependencies

Gradle’s dependency management system is more flexible than Maven’s, but it still supports the
same concepts of repositories, declared dependencies, scopes (dependency configurations in
Gradle), and transitive dependencies. In fact, Gradle works with Maven-compatible repositories
which makes it easy to migrate your dependencies.

One notable difference between the two tools is in how they manage version
conflicts. Maven uses a "closest" match algorithm, whereas Gradle picks the newest.
Don’t worry though, you have a lot of control over which versions are selected, as
documented in Managing Transitive Dependencies.

NOTE

Over the following sections, we will show you how to migrate the most common elements of a
Maven build’s dependency management information.

Declaring dependencies

Gradle uses the same dependency identifier components as Maven: group ID, artifact ID and
version. It also supports classifiers. All you need to do is substitute the identifier information for a
dependency into Gradle’s syntax, which is described in the Declaring Dependencies chapter.

For example, consider this Maven-style dependency on Log4]:

<dependencies>
<dependency>
<groupld>log4j</groupIld>
<artifactId>log4j</artifactld>
<version>1.2.12</version>
</dependency>
</dependencies>

This dependency would look like the following in a Gradle build script:

Example 1. Declaring a simple compile-time dependency

build.gradle.kts

dependencies {
implementation("log4j:10g4j:1.2.12") @
}

build.gradle

dependencies {
implementation 'log4j:log4j:1.2.12" @
}

@ Attaches version 1.2.12 of Log4] to the implementation configuration (scope)

The string identifier takes the Maven values of groupld, artifactId and version, although Gradle
refers to them as group, module and version.

The above example raises an obvious question: what is that implementation configuration? It’s one
of the standard dependency configurations provided by the Java Plugin and is often used as a
substitute for Maven’s default compile scope.

Several of the differences between Maven’s scopes and Gradle’s standard configurations come
down to Gradle distinguishing between the dependencies required to build a module and the
dependencies required to build a module that depends on it. Maven makes no such distinction, so
published POMs typically include dependencies that consumers of a library don’t actually need.

Here are the main Maven dependency scopes and how you should deal with their migration:

compile
Gradle has two configurations that can be used in place of the compile scope: implementation and

api. The former is available to any project that applies the Java Plugin, while api is only available
to projects that specifically apply the Java Library Plugin.

In most cases you should simply use the implementation configuration, particularly if you're
building an application or webapp. But if you’re building a library, you can learn about which
dependencies should be declared using api in the section on Building Java libraries. Even more
information on the differences between api and implementation is provided in the Java Library
Plugin chapter linked above.

runtime

Use the runtimeOnly configuration.

#ex-declaring-a-simple-compile-time-dependency
java_plugin.pdf#tab:configurations

test

Gradle distinguishes between those dependencies that are required to compile a project’s tests
and those that are only needed to run them.

Dependencies required for test compilation should be declared against the testImplementation
configuration. Those that are only required for running the tests should use testRuntimeOnly.

provided

Use the compileOnly configuration.

Note that the War Plugin adds providedCompile and providedRuntime dependency configurations.
These behave slightly differently from compileOnly and simply ensure that those dependencies
aren’t packaged in the WAR file. However, the dependencies are included on runtime and test
runtime classpaths, so use these configurations if that’s the behavior you need.

import
The import scope is mostly used within <dependencyManagement> blocks and applies solely to POM-

only publications. Read the section on Using bills of materials to learn more about how to
replicate this behavior.

You can also specify a regular dependency on a POM-only publication. In this case, the
dependencies declared in that POM are treated as normal transitive dependencies of the build.

For example, imagine you want to use the groovy-all POM for your tests. It's a POM-only
publication that has its own dependencies listed inside a <dependencies> block. The appropriate
configuration in the Gradle build looks like this:

Example 2. Consuming a POM-only dependency

build.gradle.kts

dependencies {
testImplementation("org.codehaus.groovy:groovy-all:2.5.4")

}

build.gradle

dependencies {
testImplementation 'org.codehaus.groovy:groovy-all:2.5.4'

}

The result of this will be that all compile and runtime scope dependencies in the groovy-all POM
get added to the test runtime classpath, while only the compile scope dependencies get added to
the test compilation classpath. Dependencies with other scopes will be ignored.

war_plugin.pdf#sec:war_dependency_management
#ex-consuming-a-pom-only-dependency

Declaring repositories

Gradle allows you to retrieve declared dependencies from any Maven-compatible or Ivy-compatible
repository. Unlike Maven, it has no default repository and so you have to declare at least one. In
order to have the same behavior as your Maven build, just configure Maven Central in your Gradle
build, like this:

Example 3. Configuring the build to use Maven Central

build.gradle.kts

repositories {
mavenCentral()

}

build.gradle

repositories {
mavenCentral()

}

You can also use the repositories {} block to configure custom repositories, as described in the
Repository Types chapter.

Lastly, Gradle allows you to resolve dependencies against the local Maven cache/repository. This
helps Gradle builds interoperate with Maven builds, but it shouldn’t be a technique that you use if
you don’t need that interoperability. If you want to share published artifacts via the filesystem,
consider configuring a custom Maven repository with a file:// URL.

You might also be interested in learning about Gradle’s own dependency cache, which behaves
more reliably than Maven’s and can be used safely by multiple concurrent Gradle processes.

Controlling dependency versions

The existence of transitive dependencies means that you can very easily end up with multiple
versions of the same dependency in your dependency graph. By default, Gradle will pick the newest
version of a dependency in the graph, but that’s not always the right solution. That’'s why it
provides several mechanisms for controlling which version of a given dependency is resolved.

On a per-project basis, you can use:

* Dependency constraints
* Bills of materials (Maven BOMs)

» Overriding transitive versions

#ex-configuring-the-build-to-use-maven-central

There are even more, specialized options listed in the controlling transitive dependencies chapter.

If you want to ensure consistency of versions across all projects in a multi-project build, similar to
how the <dependencyManagement> block in Maven works, you can use the Java Platform Plugin. This
allows you declare a set of dependency constraints that can be applied to multiple projects. You can
even publish the platform as a Maven BOM or using Gradle’s metadata format. See the plugin page
for more information on how to do that, and in particular the section on Consuming platforms to
see how you can apply a platform to other projects in the same build.

Excluding transitive dependencies

Maven builds use exclusions to keep unwanted dependencies—or unwanted versions of
dependencies — out of the dependency graph. You can do the same thing with Gradle, but that’s not
necessarily the right thing to do. Gradle provides other options that may be more appropriate for a
given situation, so you really need to understand why an exclusion is in place to migrate it properly.

If you want to exclude a dependency for reasons unrelated to versions, then check out the section
on excluding transitive dependencies. It shows you how to attach an exclusion either to an entire
configuration (often the most appropriate solution) or to a dependency. You can even easily apply
an exclusion to all configurations.

If you're more interested in controlling which version of a dependency is actually resolved, see the
previous section.

Handling optional dependencies

You are likely to encounter two situations regarding optional dependencies:

* Some of your transitive dependencies are declared as optional

* You want to declare some of your direct dependencies as optional in your project’s published
POM

For the first scenario, Gradle behaves the same way as Maven and simply ignores any transitive
dependencies that are declared as optional. They are not resolved and have no impact on the
versions selected if the same dependencies appear elsewhere in the dependency graph as non-
optional.

As for publishing dependencies as optional, Gradle provides a richer model called feature variants,
which will let you declare the "optional features" your library provides.

Using bills of materials (BOMs)

Maven allows you to share dependency constraints by defining dependencies inside a
<dependencyManagement> section of a POM file that has a packaging type of pom. This special type of
POM (a BOM) can then be imported into other POMs so that you have consistent library versions
across your projects.

Gradle can use such BOMs for the same purpose, using a special dependency syntax based on
platform() and enforcedPlatform() methods. You simply declare the dependency in the normal way,
but wrap the dependency identifier in the appropriate method, as shown in this example that

https://docs.gradle.org/8.6/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:platform(java.lang.Object)
https://docs.gradle.org/8.6/dsl/org.gradle.api.artifacts.dsl.DependencyHandler.html#org.gradle.api.artifacts.dsl.DependencyHandler:enforcedPlatform(java.lang.Object)

"imports" the Spring Boot Dependencies BOM:

Example 4. Importing a BOM in a Gradle build

build.gradle.kts

dependencies {
implementation(platform("org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE")) @

implementation("com.google.code.gson:gson") @
implementation("dom4j:dom4j")

build.gradle

dependencies {
implementation platform('org.springframework.boot:spring-boot-
dependencies:1.5.8.RELEASE"') @

implementation 'com.google.code.gson:gson' @
implementation 'dom4j:dom4j'

@ Applies the Spring Boot Dependencies BOM
@ Adds a dependency whose version is defined by that BOM

You can learn more about this feature and the difference between platform() and
enforcedPlatform() in the section on importing version recommendations from a Maven BOM.

You can use this feature to apply the <dependencyManagement> information from any

NOTE

dependency’s POM to the Gradle build, even those that don’t have a packaging type

of pom. Both platform() and enforcedPlatform() will ignore any dependencies

declared in the <dependencies> block.

Migrating multi-module builds (project aggregation)

Maven’s multi-module builds map nicely to Gradle’s multi-project builds. Try the corresponding

sample to see how a basic multi-project Gradle build is set up.
To migrate a multi-module Maven build, simply follow these steps:
1. Create a settings script that matches the <modules> block of the root POM.

For example, this <modules> block:

#ex-importing-a-bom-in-a-gradle-build
../samples/sample_structuring_software_projects.html

<modules>
<module>simple-weather</module>
<module>simple-webapp</module>
</modules>

can be migrated by adding the following line to the settings script:

Example 5. Declaring which projects are part of the build

settings.gradle.kts
rootProject.name = "simple-multi-module" @

include("simple-weather", "simple-webapp") @

settings.gradle
rootProject.name = 'simple-multi-module' @

include 'simple-weather', 'simple-webapp' @

@ Sets the name of the overall project

@ Configures two subprojects as part of this build

Output of gradle projects

> gradle projects

Root project 'simple-multi-module'
+--- Project ':simple-weather'
\--- Project ':simple-webapp’

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :simple-weather:tasks

2. Replace cross-module dependencies with project dependencies.

3. Replicate project inheritance with convention plugins.

This basically involves creating a root project build script that injects shared configuration into

#ex-declaring-which-projects-are-part-of-the-build

the appropriate subprojects.

Sharing versions across projects

If you want to replicate the Maven pattern of having dependency versions declared in the
dependencyManagement section of the root POM file, the best approach is to leverage the java-platform
plugin. You will need to add a dedicated project for this and consume it in the regular projects of
your build. See the documentation for more details on this pattern.

Migrating Maven profiles and properties

Maven allows you parameterize builds using properties of various sorts. Some are read-only
properties of the project model, others are user-defined in the POM. It even allows you to treat
system properties as project properties.

Gradle has a similar system of project properties, although it differentiates between those and
system properties. You can, for example, define properties in:

¢ the build script
» agradle.properties file in the root project directory

* agradle.properties file in the $HOME/.gradle directory

Those aren’t the only options, so if you are interested in finding out more about how and where you
can define properties, check out the Build Environment chapter.

One important piece of behavior you need to be aware of is what happens when the same property
is defined in both the build script and one of the external properties files: the build script value
takes precedence. Always. Fortunately, you can mimic the concept of profiles to provide overridable
default values.

Which brings us to Maven profiles. These are a way to enable and disable different configurations
based on environment, target platform, or any other similar factor. Logically, they are nothing
more than limited if statements. And since Gradle has much more powerful ways to declare
conditions, it does not needto have formal support for profiles (except in the POMs of
dependencies). You can easily get the same behavior by combining conditions with secondary build
scripts, as you’ll see.

Let’s say you have different deployment settings depending on the environment: local development
(the default), a test environment, and production. To add profile-like behavior, you first create build
scripts for each environment in the project root: profile-default.gradle, profile-test.gradle, and
profile-prod.gradle. You can then conditionally apply one of those profile scripts based on a project
property of your own choice.

The following example demonstrates the basic technique using a project property called
buildProfile and profile scripts that simply initialize an extra project property called message:

project_properties.pdf#sec:project_properties
project_properties.pdf#sec:project_properties

Example 6. Mimicking the behavior of Maven profiles in Gradle

build.gradle.kts
val buildProfile: String? by project @
apply(from = "profile-${buildProfile ?: "default"}.gradle.kts") @
tasks.register("greeting") {
// Store the message into a variable, because referencing extras from the
task action
// is not compatible with the configuration cache.
val message = project.extra["message"]
dolast {

println(message) ®
}

profile-default.gradle.kts

val message by extra("foobar") @

profile-test.gradle.kts

val message by extra("testing 12 3") @

profile-prod.gradle.kts

val message by extra("Hello, world!") @

#ex-mimicking-the-behavior-of-maven-profiles-in-gradle

build.gradle
if (!'hasProperty('buildProfile')) ext.buildProfile = 'default’ @
apply from: "profile-${buildProfile}.gradle" @

tasks.register('greeting') {
// Store the message into a variable, because referencing extras from the
task action
// 1s not compatible with the confiquration cache.
def message = project.message
dolast {
println message ®

}

profile-default.gradle

ext.message = 'foobar' @

profile-test.gradle

ext.message = 'testing 12 3" @

profile-prod.gradle

ext.message = 'Hello, world!' @

@ Checks for the existence of (Groovy) or binds (Kotlin) the buildProfile project property

@ Applies the appropriate profile script, using the value of buildProfile in the script filename

® Prints out the value of the message extra project property

@ Initializes the message extra project property, whose value can then be used in the main build

script

With this setup in place, you can activate one of the profiles by passing a value for the project
property you’re using — buildProfile in this case:

Output of gradle greeting

> gradle greeting
foobar

Output of gradle -PbuildProfile=test greeting

> gradle -PbuildProfile=test greeting
testing 1 2 3

You’re not limited to checking project properties. You could also check environment variables, the
JDK version, the OS the build is running on, or anything else you can imagine.

One thing to bear in mind is that high level condition statements make builds harder to understand
and maintain, similar to the way they complicate object-oriented code. The same applies to profiles.
Gradle offers you many better ways to avoid the extensive use of profiles that Maven often
requires, for example by configuring multiple tasks that are variants of one another. See the
publishPubNamePublicationToRepoNameRepository tasks created by the Maven Publish Plugin.

For a lengthier discussion on working with Maven profiles in Gradle, look no further than this blog
post.

Filtering resources

Maven has a phase called process-resources that has the goal resources:resources bound to it by
default. This gives the build author an opportunity to perform variable substitution on various files,
such as web resources, packaged properties files, etc.

The Java plugin for Gradle provides a processResources task to do the same thing. This is a
ProcessResources task that copies files from the configured resources
directory —src/main/resources by default—to an output directory. And as with any
ProcessResources or Copy task, you can configure it to perform file filtering, renaming, and content
filtering.

As an example, here’s a configuration that treats the source files as Groovy SimpleTemplateEngine
templates, providing version and buildNumber properties to those templates:

https://blog.gradle.org/maven-pom-profiles
https://blog.gradle.org/maven-pom-profiles
https://docs.gradle.org/8.6/dsl/org.gradle.language.jvm.tasks.ProcessResources.html
https://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_simpletemplateengine
https://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_simpletemplateengine

Example 7. Filtering the content of resources via the processResources task

build.gradle.kts

tasks {
processResources {
expand("version" to version, "buildNumber" to currentBuildNumber)

build.gradle

processResources {
expand(version: version, buildNumber: currentBuildNumber)

See the API docs for CopySpec to see all the options available to you.

Configuring integration tests

Many Maven builds incorporate integration tests of some sort, which Maven supports through an
extra set of phases: pre-integration-test, integration-test, post-integration-test, and verify. It
also uses the Failsafe plugin in place of Surefire so that failed integration tests don’t automatically
fail the build (because you may need to clean up resources, such as a running application server).

This behavior is easy to replicate in Gradle with source sets, as explained in our chapter on Testing
in Java & JVM projects. You can then configure a clean-up task, such as one that shuts down a test
server for example, to always run after the integration tests regardless of whether they succeed or
fail using Task.finalizedBy().

If you really don’t want your integration tests to fail the build, then you can use the
Test.ignoreFailures setting described in the Test execution section of the Java testing chapter.

Source sets also give you a lot of flexibility on where you place the source files for your integration
tests. You can easily keep them in the same directory as the unit tests or, more preferably, in a
separate source directory like src/integTest/java. To support other types of tests, simple add more
source sets and Test tasks.

Migrating common plugins

Maven and Gradle share a common approach of extending the build through plugins. Although the
plugin systems are very different beneath the surface, they share many feature-based plugins, such
as:

e Shade/Shadow

#ex-filtering-the-content-of-resources-via-the-processresources-task
#ex-filtering-the-content-of-resources-via-the-processresources-task
#ex-filtering-the-content-of-resources-via-the-processresources-task
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/CopySpec.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Task.html#org.gradle.api.Task:finalizedBy(java.lang.Object[])
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.testing.Test.html#org.gradle.api.tasks.testing.Test:ignoreFailures
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.testing.Test.html

o Jetty
* Checkstyle
* JaCoCo

* AntRun (see further down)

Why does this matter? Because many plugins rely on standard Java conventions, migration is just a
matter of replicating the configuration of the Maven plugin in Gradle. As an example, here’s a
simple Maven Checkstyle plugin configuration:

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
<version>2.17</version>
<executions>
<execution>
<id>validate</id>
<phase>validate</phase>
<configuration>
<configlocation>checkstyle.xml</configlLocation>
<encoding>UTF-8</encoding>
<consoleQutput>true</consoleQutput>
<failsOnError>true</failsOnError>
<linkXRef>false</1linkXRef>
</configuration>
<goals>
<goal>check</goal>
</goals>
</execution>
</executions>
</plugin>

Everything outside of the configuration block can safely be ignored when migrating to Gradle. In
this case, the corresponding Gradle configuration is as follows:

Example 8. Configuring the Gradle Checkstyle Plugin

build.gradle.kts

checkstyle {
config = resources.text.fromFile("checkstyle.xml", "UTF-8")

isShowViolations = true
isIgnorefFailures = false

build.gradle

checkstyle {
config = resources.text.fromFile('checkstyle.xml', "UTF-8")

showViolations = true
ignoreFailures = false

The Checkstyle tasks are automatically added as dependencies of the check task, which also includes
test. If you want to ensure that Checkstyle runs before the tests, then just specify an ordering with

the mustRunAfter(...) method:

Example 9. Controlling when the checkstyle task runs

build.gradle.kts

tasks {
test {
mustRunAfter(checkstyleMain, checkstyleTest)

}

build.gradle

test.mustRunAfter checkstyleMain, checkstyleTest

As you can see, the Gradle configuration is often much shorter than the Maven equivalent. You also
have a much more flexible execution model since you are no longer constrained by Maven’s fixed

phases.

#ex-configuring-the-gradle-checkstyle-plugin
https://docs.gradle.org/8.6/dsl/org.gradle.api.Task.html#org.gradle.api.Task:mustRunAfter(java.lang.Object[])
#ex-controlling-when-the-checkstyle-task-runs
#ex-controlling-when-the-checkstyle-task-runs
#ex-controlling-when-the-checkstyle-task-runs

While migrating a project from Maven, don’t forget about source sets. These often provide a more
elegant solution for handling integration tests or generated sources than Maven can provide, so you
should factor them into your migration plans.

Ant goals

Many Maven builds rely on the AntRun plugin to customize the build without the overhead of
implementing a custom Maven plugin. Gradle has no equivalent plugin because Ant is a first-class
citizen in Gradle builds, via the ant object. For example, you can use Ant’s Echo task like this:

Example 10. Invoking Ant tasks

build.gradle.kts

tasks.register("sayHello") {
dolLast {
ant.withGroovyBuilder {
"echo"("message" to "Hello!")

}

build.gradle

tasks.register('sayHello') {
dolast {
ant.echo message: 'Hello!'

Even Ant properties and filesets are supported natively. To learn more, see Using Ant from Gradle.

It may be simpler and cleaner to just create custom task types to replace the work that
TIP Ant is doing for you. You can then more readily benefit from incremental build and
other useful Gradle features.

Understanding which plugins you don’t need

It’s worth remembering that Gradle builds are typically easier to extend and customize than Maven
ones. In this context, that means you may not need a Gradle plugin to replace a Maven one. For
example, the Maven Enforcer plugin allows you to control dependency versions and environmental
factors, but these things can easily be configured in a normal Gradle build script.

#ex-invoking-ant-tasks

Dealing with uncommon and custom plugins

You may come across Maven plugins that have no counterpart in Gradle, particularly if you or
someone in your organisation has written a custom plugin. Such cases rely on you understanding
how Gradle (and potentially Maven) works, because you will usually have to write your own
plugin.

For the purposes of migration, there are two key types of Maven plugins:

* Those that use the Maven project object.

¢ Those that don’t.

Why is this important? Because if you use one of the latter, you can trivially reimplement it as a
custom Gradle task type. Simply define task inputs and outputs that correspond to the mojo
parameters and convert the execution logic into a task action.

If a plugin depends on the Maven project, then you will have to rewrite it. Don’t start by
considering how the Maven plugin works, but look at what problem it is trying to solve. Then try to
work out how to solve that problem in Gradle. You will probably find that the two build models are
different enough that "transcribing" Maven plugin code into a Gradle plugin just won’t be effective.
On the plus side, the plugin is likely to be much easier to write than the original Maven one because
Gradle has a much richer build model and API.

If you do need to implement custom logic, either via build scripts or plugins, check out the Guides
related to plugin development. Also be sure to familiarize yourself with Gradle’s Groovy DSL
Reference, which provides comprehensive documentation on the API that you’ll be working with. It
details the standard configuration blocks (and the objects that back them), the core types in the
system (Project, Task, etc.), and the standard set of task types. The main entry point is the Project
interface as that’s the top-level object that backs the build scripts.

Further reading

This chapter has covered the major topics that are specific to migrating Maven builds to Gradle. All
that remain are a few other areas that may be useful during or after a migration:

» Learn how to configure Gradle’s build environment, including the JVM settings used to run it

* Learn how to structure your builds effectively

» Configure Gradle’s logging and use it from your builds

As a final note, this guide has only touched on a few of Gradle’s features and we encourage you to
learn about the rest from the other chapters of the user manual and from our step-by-step samples.

Migrating Builds From Apache Ant

Apache Ant is a build tool with a long history in the Java world that is still widely used, albeit by a
decreasing number of teams. While flexible, it lacks conventions and many of the powerful features
that Gradle provides. Migrating to Gradle is worthwhile so that your builds can become slimmer,
simpler, and faster, while still retaining the flexibility you enjoy with Ant. You will also benefit from

https://gradle.org/guides/?q=Plugin%20Development
https://gradle.org/guides/?q=Plugin%20Development
https://docs.gradle.org/8.6/dsl/
https://docs.gradle.org/8.6/dsl/
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html
../samples/index.html
https://ant.apache.org/

robust support for multi-project builds and easy-to-use, flexible dependency management.

The biggest challenge in migrating from Ant to Gradle is that there is no such thing as a standard
Ant build. That makes it difficult to provide specific instructions. Fortunately, Gradle has some great
integration features with Ant that can make the process relatively smooth. Migrating from Ivy
-based dependency management isn’t difficult because Gradle has a similar model based on
dependency configurations that works with Ivy-compatible repositories.

We will start by outlining the things you should consider when migrating a build from Ant to
Gradle and offer some general guidelines on how to proceed.

General guidelines

When you migrate a build from Ant to Gradle, you should keep in mind the nature of what you
already have and where you would like to end up. Do you want a Gradle build that mirrors the
structure of the existing Ant build? Or do you want to move to something that is more idiomatic to
Gradle? What are the main benefits you are looking for?

To better understand, consider the following opposing scenarios:
* An imported build via ant. importBuild()

This approach is quick, simple, and works for many Ant-based builds. You end up with a build
that is effectively identical to the original Ant build, except your Ant targets become Gradle
tasks. Even the dependencies between targets are retained.

The downside is that you're still using the Ant build, which you must continue to maintain. You
also lose the advantages of Gradle’s conventions, many of its plugins, its dependency
management, and so on. You can still enhance the build with incremental build information,
but it’s more effort than would be the case for a normal Gradle build.

¢ An idiomatic Gradle build

If you want to future proof your build, this is where you want to end up. Making use of Gradle’s
conventions and plugins will result in a smaller, easier-to-maintain build, with a structure that
is familiar to many Java developers. You will also find it easier to take advantage of Gradle’s
power features to improve build performance.

The main downside is the extra work required to perform the migration, particularly if the
existing build is complex and has many inter-project dependencies. However, these builds often
benefit the most from a switch to idiomatic Gradle. In addition, Gradle provides many features
that can ease the migration, such as the ability to use core and custom Ant tasks directly from a
Gradle build.

You ideally want to end up somewhere close to the second option in the long term, but you don’t
have to get there in one fell swoop.

What follows is a series of steps to help you decide the approach you want to take and how to go
about it:

https://ant.apache.org/ivy/

1. Keep the old Ant build and new Gradle build side by side.

You know the Ant build works, so you should keep it until you are confident that the Gradle
build produces all the same artifacts and otherwise does what you need. This also means that
users can try the Gradle build without creating a new copy of the source tree.

Don’t try to change the directory and file structure of the build until after you’re ready to make
the switch.

2. Develop a mechanism to verify that the two builds produce the same artifacts.

This is a vitally important step to ensure that your deployments and tests don’t break. Even
small changes, such as the contents of a manifest file in a JAR, can cause problems. If your
Gradle build produces the same output as the Ant build, this will give you and others confidence
in switching over and make it easier to implement the big changes that will provide the greatest
benefits.

3. Decide whether you have a multi-project build or not.

Multi-project builds are generally harder to migrate and require more work than single-project
ones. We have provided some dedicated advice to help with the process in the Migrating multi-
project builds section.

4. Work out what plugins to use for each project.

We expect that the vast majority of Ant builds are for JVM-based projects, for which there are a
wealth of plugins that provide a lot of the functionality you need. Gradle plugins include core
plugins that come packaged with Gradle and useful community plugins on the Plugin Portal.

Even if the Java Plugin or one of its derivatives (such as the Java Library Plugin) aren’t a good
match for your build, you should at least consider the Base Plugin for its lifecycle tasks.

5. Import the Ant build or create a Gradle build from scratch.

This step very much depends on the requirements of your build. If a selection of Gradle plugins
can do the vast majority of the work your Ant build does, then it probably makes sense to create
a fresh Gradle build script that doesn’t depend on the Ant build. You can either implement the
missing pieces yourself or use existing Ant tasks.

The alternative approach is to import the Ant build into the Gradle build script and gradually
replace the Ant build functionality. This allows you to have a working Gradle build at each
stage, but it requires a bit of work to get the Gradle tasks working properly with the Ant ones.
You can learn more about this in Working with an imported build.

6. Configure your build for the existing directory and file structure

Gradle makes use of conventions to eliminate much of the boilerplate associated with older
builds and to make it easier for users to work with new builds once they are familiar with those
conventions. But that doesn’t mean you have to follow them.

Gradle provides many configuration options that allow for a good degree of customization.

https://plugins.gradle.org/
java_plugin.pdf#java_plugin
base_plugin.pdf#base_plugin

Those options are typically made available through the plugins that provide the conventions.
For example, the standard source directory structure for production Java code — src/main/java
—1s provided by the Java Plugin, which allows you to configure a different source path. Many
paths can be modified via properties on the Project object.

7. Migrate to standard Gradle conventions if you wish

Once you’re confident that the Gradle build is producing the same artifacts and other resources
as the Ant build, you can consider migrating to the standard conventions, such as for source
directory paths. Doing so will allow you to remove the extra configuration that was required to
override those conventions. New team members will also find it easier to work with the build
after the change.

It’s up to you to decide whether this step is worth the effort and potential disruption, which in
turn depends on your specific build and team.

The rest of the chapter covers some common scenarios you will likely deal with during the
migration, such as dependency management and working with Ant tasks.

Working with an imported build

WARNING Importing an Ant build is not supported with the configuration cache. You
need to complete the conversion to Gradle to get the benefits of caching.

The first step of many migrations will involve importing an Ant build using ant.importBuild(). Then

how do you then move towards a standard Gradle build without replacing everything at once?

The important thing to remember is that the Ant targets become real Gradle tasks, meaning you can
do things like modify their task dependencies, attach extra task actions, and so on. This allows you
to substitute native Gradle tasks for the equivalent Ant ones, maintaining any links to other existing
tasks.

As an example, imagine that you have a Java library project that you want to migrate from Ant to
Gradle. The Gradle build script has the line that imports the Ant build and now want to use the
standard Gradle mechanism for compiling the Java source files. However, you want to keep using
the existing package task that creates the library’s JAR file.

In diagram form, the scenario looks like the following, where each box represents a target/task:

https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html

Original Ant build Updated Gradle build

prepare

prepare

depends on

—

old Ant task (renamed)

compileJava

compileJava

—>

package package

|=

assemble

The idea is to substitute the standard Gradle compileJava task for the Ant build task. There are
several steps involved in this substitution:

1. Applying the Java Library Plugin.
This provides the compilelava task shown in the diagram.
2. Renaming the old build task.

The name build conflicts with the standard build task provided by the Base Plugin (via the Java
Library Plugin).

3. Configuring the compilation to use the existing directory structure.

There’s a good chance the Ant build does not conform to the standard Gradle directory
structure, so you need to tell Gradle where to find the source files and where to place the
compiled classes so package can find them.

4. Updating task dependencies.

compilelava must depend on prepare, package must depend on compilelava rather than ant_build,
and assemble must depend on package rather than the standard Gradle jar task.

Applying the plugin is as simple as inserting a plugins {} block at the beginning of the Gradle build
script, i.e. before ant.importBuild(). Here’s how to apply the Java Library Plugin:

base_plugin.pdf#base_plugin

Example 11. Applying the Java Library Plugin

build.gradle.kts

plugins {
‘java-library®

}

build.gradle

plugins {
id 'java-library'

}

To rename the build task, use the variant of AntBuilder.importBuild() that accepts a transformer,
like this:

Example 12. Renaming targets on import

build.gradle.kts

ant.importBuild("build.xml") { oldTargetName ->
if (oldTargetName == "build") "ant_build" else oldTargetName @
}

build.gradle

ant.importBuild('build.xml") { String oldTargetName ->
return oldTargetName == 'build' ? 'ant_build' : oldTargetName @
¥

@ Renames the build target to ant_build and leaves all other targets unchanged

Configuring a different path for the sources is described in Building Java & JVM projects. You can
change the output directory for the compiled classes in a similar way.

If, for example, the original Ant build stores these paths in Ant properties; src.dir for the Java
source files and classes.dir for the output. Here’s how you would configure Gradle to use those
paths:

#ex-applying-the-java-library-plugin
https://docs.gradle.org/8.6/javadoc/org/gradle/api/AntBuilder.html#importBuild-java.lang.Object-org.gradle.api.Transformer-
#ex-renaming-targets-on-import

Example 13. Configuring the source sets

build.gradle.kts

sourceSets {
main {
java.setSrcDirs(listOf(ant.properties["src.dir"]))
java.destinationDirectory = file(ant.properties["classes.dir"] ?:
layout.buildDirectory.dir("classes"))
}
+

build.gradle

sourceSets {
main {
java {
srcDirs = [ant.properties['src.dir']]
destinationDirectory = file(ant.properties['classes.dir'])

You should eventually switch to the standard directory structure for your type of project so that you
will be able to remove this customization.

The last step is straightforward and involves using the Task.dependsOn property and
Task.dependsOn() method to detach and link tasks. The property is appropriate for replacing
dependencies, while the method is the preferred way to add to the existing dependencies.

Here is the required task dependency configuration for the example scenario, which should come
after the Ant build import:

#ex-configuring-the-source-sets
https://docs.gradle.org/8.6/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn
https://docs.gradle.org/8.6/dsl/org.gradle.api.Task.html#org.gradle.api.Task:dependsOn(java.lang.Object[])

Example 14. Configuring the task dependencies

build.gradle.kts

tasks {
compileJava {
dependsOn("prepare") @
}
named("package") {
setDependsOn(1istOf(compilelava)) @

}
assemble {
setDependsOn(1ist0f("package")) ®
}
}
build.gradle

compileJava.dependsOn 'prepare’ @
tasks.named('package') { dependsOn = ['compileJava'] } @
assemble.dependsOn = ['package'] ®

® Makes compilation depend on the prepare task
@ Detaches package from the ant_build task and makes it depend on compileJava

® Detaches assemble from the standard Gradle jar task and makes it depend on package instead

These four steps will successfully replace the old Ant compilation with the Gradle implementation.
Even this small migration will give you the advantage of Gradle’s incremental Java compilation for
faster builds.

This is one example of a staged migration. It may make more sense to include resource
TIP processing — such as properties files — and packaging with the compilation in this
stage.

One important question you will have to ask yourself is how many tasks to migrate in each stage.
The more you can migrate in one go the better, but risk comes with the number of custom steps
within the Ant build that will be affected by the changes.

For example, if the Ant build follows a fairly standard approach for compilation, static resources,
packaging and unit tests, then it is probably worth migrating all of those together. But if the build
performs some extra processing on the compiled classes, or does something unique when
processing the static resources, it is probably worth splitting those tasks into separate stages.

#ex-configuring-the-task-dependencies
java_plugin.pdf#sec:incremental_compile

Managing dependencies

Ant builds typically take one of two approaches to dealing with binary dependencies (such as
libraries):

 Storing them with the project in a local "lib" directory

» Using Apache Ivy to manage them

They each require a different technique for the migration to Gradle, but you will find the process
straightforward in either case. Let’s look at each case, in detail, in the following sections.

Serving dependencies from a directory

When you are attempting to migrate a build that stores its dependencies on the filesystem, either
locally or on the network, you should consider whether you want to eventually move to managed
dependencies using remote repositories. That’s because you can incorporate filesystem
dependencies into a Gradle build in one of two ways:

* Define a flat-directory repository and use standard dependency declarations

 Attach the files directly to the appropriate dependency configurations (file dependencies)

It’s easier to migrate to managed dependencies served from Maven, or Ivy-compatible repositories,
if you take the first approach, but doing so requires all your files to conform to the naming
convention "<moduleName>-<version>.<extension>".

If you store your dependencies in the standard Maven repository layout
NOTE —<repoDir>/<group>/<module>/<version> — then you can define a custom Maven
repository with a file:// URL.

To demonstrate the two techniques, consider a project that has the following library JARs in its 1ibs
directory:

libs

—— our-custom. jar

—— awesome-framework-2.0.jar
L—— utility-library-1.0.jar

The file our-custom.jar has no version number, so it has to be added as a file dependency. The other
two JARs match the required naming convention and can be declared as normal module
dependencies that are retrieved from a flat-directory repository.

The following sample build script demonstrates how you can incorporate all of these libraries into a
build:

https://ant.apache.org/ivy/

Example 15. Declaring dependencies served from the filesystem

build.gradle.kts

repositories {
flatDir {
name = "libs dir"
dir(file("1ibs")) @

}

dependencies {
implementation(files("1libs/our-custom.jar")) @
implementation(":awesome-framework:2.0") ©)
implementation(":utility-library:1.0") ®

build.gradle

repositories {
flatDir {
name = 'libs dir'
dir file('libs') @

}

dependencies {
implementation files('libs/our-custom.jar') @
implementation ':awesome-framework:2.0' ®
implementation ':utility-library:1.0" ®

@ Specifies the path to the directory containing the JAR files
@ Declares a file dependency for the un-versioned JAR
® Declares dependencies using standard dependency coordinates — note that no group is

specified, but each identifier has a leading :, implying an empty group

The above sample will add our-custom.jar, awesome-framework-2.0.jar and utility-library-1.0.jar
to the implementation configuration, which is used to compile the project’s code.

#ex-declaring-dependencies-served-from-the-filesystem

You can also specify a group in these module dependencies, even though they don’t
actually have a group. That’s because the flat-directory repository simply ignores

NOTE this information. Then, if you add a normal Maven or Ivy-compatible repository at a
later date, Gradle will download the module dependencies that are declared with a
group from that repository rather than the flat-directory one.

Migrating Ivy dependencies

Apache Ivy is a standalone dependency management tool that is widely used with Ant. It works
similarly to Gradle. In fact, they both allow you to:

* Define your own configurations

» Extend configurations from one another

 Attach dependencies to configurations

* Resolve dependencies from Ivy-compatible repositories

 Publish artifacts to Ivy-compatible repositories
The most notable difference is that Gradle has standard configurations for specific types of projects.

For example, the Java Plugin defines configurations like implementation, testImplementation and
runtimeOnly. You are able to define your own dependency configurations if needed.

As such, it’s typically straightforward to migrate from Ivy to Gradle:

* Transcribe the dependency declarations from your module descriptors into the dependencies {}
block of your Gradle build script, ideally using the standard configurations provided by any
plugins you apply.

» Transcribe any configuration declarations from your module descriptors into the configurations

{} block of the build script for any custom configurations that can’t be replaced by Gradle’s
standard ones.

» Transcribe the resolvers from your Ivy settings file into the repositories {} block of the build

script.

See the chapters on Managing Dependency Configurations, Declaring Dependencies and Declaring
Repositories for more information.

Ivy provides several Ant tasks that handle Ivy’s process for fetching dependencies. The basic steps
of that process consist of:

1. Configure — applies the configuration defined in the Ivy settings file

2. Resolve — locates the declared dependencies and downloads them to the cache if necessary

3. Retrieve — copies the cached dependencies to another directory
Gradle’s process is similar, but you don’t have to explicitly invoke the first two steps as it performs
them automatically. The third step doesn’t happen at all — unless you create a task to do it —

because Gradle typically uses the files in the dependency cache directly in classpaths and as the
source for assembling application packages.

java_plugin.pdf#tab:configurations
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:dependencies(groovy.lang.Closure)
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:configurations(groovy.lang.Closure)
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:repositories(groovy.lang.Closure)

Let’s look in more detail at how Ivy’s steps map to Gradle:

Configuration

Most of Gradle’s dependency-related configuration is baked into the build script, as you've seen
with elements like the dependencies {} block. Another particularly important configuration
element is resolutionStrategy, which can be accessed from dependency configurations. This
provides many of the features you might get from Ivy’s conflict managers and is a powerful way
to control transitive dependencies and caching.

Some Ivy configuration options have no equivalent in Gradle. For example, there are no lock
strategies because Gradle guarantees that its dependency cache is concurrency safe. There are
no "latest strategies" methodology because it’s simpler to have a reliable, single strategy for
conflict resolution. If the "wrong" version is picked, you can override it using forced versions or
other resolution options.

See the chapter on controlling transitive dependencies for more information.

Resolution

At the beginning of the build, Gradle will automatically resolve any dependencies that you have
declared and download them to its cache. Gradle searches the repositories for those
dependencies, with the search order defined by the order in which the repositories are declared.

It’s worth noting that Gradle supports the same dynamic version syntax as Ivy, so you can still
use conventions like 1.0.+. You can also use the special latest.integration and latest.release
labels. If you decide to use such dynamic and changing dependencies, you can configure the
caching behavior for them via resolutionStrategy.

You might also want to consider dependency locking if you’re using dynamic and/or changing
dependencies. It’s a way to make the build more reliable and ensures reproducibility.

Retrieval

As mentioned, Gradle does not automatically copy files from the dependency cache. Its standard
tasks typically use the files directly. If you want to copy the dependencies to a local directory, you
can use a Copy task like this in your build script:

https://docs.gradle.org/8.6/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.artifacts.ResolutionStrategy.html
https://reproducible-builds.org/
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.Copy.html

Example 16. Copying dependencies to a local directory

build.gradle.kts

tasks.register<Copy>("retrieveRuntimeDependencies") {
into(layout.buildDirectory.dir("libs"))
from(configurations.runtimeClasspath)

build.gradle

tasks.register('retrieveRuntimeDependencies', Copy) {
into layout.buildDirectory.dir('libs")
from configurations.runtimeClasspath

A configuration is also a file collection, hence why it can be used in the from() configuration. You
can use a similar technique to attach a configuration to a compilation task or one that produces
documentation. See the chapter on Working with Files for more examples and information on
Gradle’s file APL

Publishing artifacts

Projects that use Ivy to manage dependencies often also use it for publishing JARs and other
artifacts to repositories. If you’re migrating such a build, then you’ll be glad to know that Gradle has
built-in support for publishing artifacts to Ivy-compatible repositories.

Before you attempt to migrate this particular aspect of your build, read the Publishing chapter to
learn about Gradle’s publishing model. The chapter examples are based on Maven repositories but
the same model is used for Ivy repositories.

The basic migration process looks like this:

* Apply the Ivy Publish Plugin to your build

» Configure at least one publication, representing what will be published (including additional
artifacts if desired)

* Configure one or more repositories to publish artifacts to

Once that’s all done, you will be able to generate an Ivy module descriptor for each publication and
publish them to one or more repositories.

Let’s say you have defined a publication named "myLibrary" and a repository named "myRepo".
Ivy’s Ant tasks would then map to the Gradle tasks like this:

#ex-copying-dependencies-to-a-local-directory

* <deliver> — generateDescriptorFileForMyLibraryPublication
e <publish> — publishMyLibraryPublicationToMyRepoRepository
There is also a convenient publish task that publishes all publications to all repositories. If you want

to limit publications to specific repositories, check out the relevant section of the Publishing
chapter.

On dependency versions

Ivy will, by default, automatically replace dynamic versions of dependencies with the resolved
"static" versions when it generates the module descriptor. Gradle does not mimic this behavior,
declared dependency versions are left unchanged.

You can replicate the default Ivy behavior by using the Nebula Ivy Resolved Plugin. Alternatively,
you can customize the descriptor file so that it contains the versions you want.

Dealing with custom Ant tasks

One of the advantages of Ant is that it’s fairly easy to create a custom task and incorporate it into a
build. If you have such tasks, then there are two main options for migrating them to a Gradle build:
* Using the custom Ant task from the Gradle build
* Rewriting the task as a custom Gradle task type
The first option is typically quick and easy. If you want to integrate the task into incremental build,

you must use the incremental build runtime APIL You also often have to work with Ant paths and
filesets, which can be inconvenient.

The second option is preferable long term. Gradle task types tend to be simpler than Ant tasks
because they don’t have to work with an XML-based interface. You also gain the benefits of Gradle’s
rich APIs. This approach enables the type-safe incremental build API based on typed properties.

Working with files

Ant has many tasks for working with files, most of which have Gradle equivalents. As with other
areas of the Ant to Gradle migration, you can use those Ant tasks from within your Gradle build.
However, we strongly recommend migrating to native Gradle constructs where possible so that the
build benefits from:

e Incremental build
 Easier integration with other parts of the build, such as dependency configurations
* More idiomatic build scripts
It can be convenient to use Ant tasks that have no direct equivalents, such as <checksum> and

<chown>. However, in the long term, it may be better to convert these to native Gradle task types that
make use of standard Java APIs or third-party libraries.

Here are the most common file-related elements used by Ant builds, along with the Gradle
equivalents:

https://plugins.gradle.org/plugin/nebula.ivy-resolved-dependencies
https://docs.gradle.org/8.6/dsl/org.gradle.api.publish.ivy.IvyModuleDescriptorSpec.html#org.gradle.api.publish.ivy.IvyModuleDescriptorSpec:withXml(org.gradle.api.Action)

» <copy> — prefer the Gradle Copy task type
» <zip> (plus Java variants) — prefer the Zip task type (plus Jar, War, and Ear)

* <unzip>— prefer using the Project.zipTree() method with a Copy task

You can see several examples of Gradle’s file API and learn more about it in the Working with Files
chapter.

On paths and filesets

Ant makes use of the concepts of path-like structures and filesets to enable users to work with
collections of files and directories. Gradle has a simpler, more powerful model based on
FileCollections and FileTrees that can be treated as objects from within the build. Both types allow
filtering based on Ant’s glob syntax, e.g. **/books_*. You can learn more about these types and other
aspects of Gradle’s file API in the Working with Files chapter.

You can construct Ant paths and filesets from within your build via the ant object if you need to
interact with an Ant task that requires them. The chapter on Ant integration has examples that use
both <path> and <fileset>. There is also a method on FileCollection that will convert a file
collection to a fileset or similar Ant type.

Migrating Ant properties

Ant makes use of a properties map to store values that can be reused throughout the build. The big
downsides to this approach are that property values are all strings and the properties themselves
behave like global variables.

Interacting with Ant properties in Gradle

Sometimes you will want to make use of an Ant task directly from your Gradle build and that task
requires one or more Ant properties to be set.

If that’s the case, you can easily set those properties via the ant object, as described in the Using Ant
from Gradle chapter.

Gradle does use something similar in the form of project properties, which are a reasonable way to
parameterize a build. These can be set from the command line, in the gradle.properties file, or via
specially named system properties and environment variables.

If you have existing Ant properties files, you can copy their contents into the project’s
gradle.properties file. Just be aware that:

* Properties set in gradle.properties do not override extra project properties defined in the build
script with the same name

* Imported Ant tasks will not automatically "see" the Gradle project properties — you must copy
them into the Ant properties map for that to happen

Another important factor to understand is that a Gradle build script works with an object-oriented
API and it’s often best to use the properties of tasks, source sets, and other objects where possible.
For example, this build script fragment creates tasks for packaging Javadoc documentation as a JAR
and unpacking it, linking tasks via their properties:

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.Copy.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.Jar.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.War.html
https://docs.gradle.org/8.6/dsl/org.gradle.plugins.ear.Ear.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/FileCollection.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/FileTree.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/FileCollection.html#addToAntBuilder-java.lang.Object-java.lang.String-org.gradle.api.file.FileCollection.AntType-
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/FileCollection.html#addToAntBuilder-java.lang.Object-java.lang.String-org.gradle.api.file.FileCollection.AntType-
project_properties.pdf#sec:project_properties

Example 17. Using task properties in place of project properties

build.gradle.kts

val tmpDistDir = layout.buildDirectory.dir("dist")

tasks.register<Jar>("javadocJarArchive") {
from(tasks.javadoc) @
archiveClassifier = "javadoc"

}

tasks.register<Copy>("unpackJavadocs") {
from(zipTree(tasks.named<Jar>("javadocJarArchive").qget().archiveFile))

@
into(tmpDistDir) @

build.gradle
def tmpDistDir = layout.buildDirectory.dir('dist")

tasks.register('javadocJarArchive', Jar) {
from javadoc @
archiveClassifier = 'javadoc'

}

tasks.register('unpackJavadocs', Copy) {
from zipTree(javadocJarArchive.archiveFile) @
into tmpDistDir ®

@ Packages all javadoc's output files — equivalent to from javadoc.destinationDir

@ Uses the location of the Javadoc JAR held by the javadocJar task

® Uses an project property called tmpDistDir to define the location of the 'dist' directory

As you can see from the example with tmpDistDir, there is often a need to define paths through

properties, which is why Gradle also provides extra properties that can be attached to the project,
tasks, and some other types of objects.

Migrating multi-project builds

Multi-project builds are a particular challenge to migrate because there is no standard approach in
Ant for structuring them or handling inter-project dependencies.

#ex-using-task-properties-in-place-of-project-properties

Fortunately, Gradle’s multi-project support can handle fairly diverse project structures and it
provides much more robust and helpful support than Ant for constructing and maintaining multi-
project builds. The ant.importBuild() method also handles <ant> and <antcall> tasks transparently,
which allows for a phased migration.

The following steps highlight a suggested method for migrating a multi-project build:

1. Start by learning how Gradle configures multi-project builds.

2. Create a Gradle build script in each project of the build, setting their contents to this line:

ant.importBuild 'build.xml'

ant.importBuild("build.xml")

Replace build.xml with the path to the actual Ant build file that corresponds to the project. If
there is no corresponding Ant build file, leave the Gradle build script empty. Even if your build
is not be suitable for this migration approach, continue with these steps to see if there is still a
way to do a phased migration.

3. Create a settings file that includes all the projects that now have a Gradle build script.

4. Implement inter-project dependencies.

Some projects in your multi-project build will depend on artifacts produced by one or more
other projects in that build. Such projects need to ensure that the projects they depend on have
produced their artifacts and that the paths to those artifacts are known.

Ensuring the production of the required artifacts typically means calling into other projects’
builds via the <ant> task. This unfortunately bypasses the Gradle build, negating any changes
you make to the Gradle build scripts. You will need to replace targets that use <ant> tasks with
Gradle task dependencies.

For example, your web project depends on a "util" library that’s part of the same build. The Ant
build file for "web" might have a target like this:

web/build.xml

<target name="buildRequiredProjects">
<ant dir="${root.dir}/util" target="build"/> @
</target>

@ root.dir would have to be defined by the build

This can be replaced by an inter-project task dependency in the corresponding Gradle build
script, as demonstrated in the following example that assumes the "web" project’s "compile"

https://docs.gradle.org/8.6/dsl/org.gradle.api.initialization.Settings.html#org.gradle.api.initialization.Settings:include(java.lang.String[])

task is requires "util" to be built beforehand:

web/build.gradle.kts
ant.importBuild("build.xml")

tasks {
named<Task>("compile") {
setDependsOn(1listOf(":util:build"))
}

web/build.gradle
ant.importBuild 'build.xml'

compile.dependsOn = [':util:build']

This is not as robust or powerful as Gradle’s project dependencies, but it solves the immediate
problem without big changes to the build. Just be careful to remove or override any
dependencies on tasks that delegate to other subprojects, like the buildRequiredProjects task.

5. Identify the projects that have no dependencies on other projects and migrate them to idiomatic
Gradle builds scripts.

Follow the advice in the rest of this guide to migrate individual project builds. As mentioned,
you should use Gradle standard plugins where possible. This may mean that you need to add an
extra copy task to each build that copies the generated artifacts to the location expected by the
rest of the Ant builds.

6. Migrate projects when they depend solely on projects with fully migrated Gradle builds.

At this point, you should be able to switch to using proper project dependencies attached to the
appropriate dependency configurations.

7. Clean up projects once no part of the Ant build depends on them.

We mentioned in step 5 that you might need to add copy tasks to satisfy the requirements of
dependent Ant builds. Once those builds have been migrated, such build logic will no longer be
needed and should be removed.

At the end of the process you should have a Gradle build that you are confident works as it should,
with much less build logic than before.

Further reading

This chapter has covered the major topics that are specific to migrating Ant builds to Gradle. All
that remain are a few other areas that may be useful following a migration:

» Learn how to configure Gradle’s build environment, including the JVM settings used to run it

* Learn how to structure your builds effectively

» Configure Gradle’s logging and use it from your builds

As a final note, this guide has only touched on a few of Gradle’s features and we encourage you to
learn about the rest from the other chapters of the User Manual.

GETTING STARTED

Getting Started

Everyone has to start somewhere, and if you’re new to Gradle, this is where to begin.
To get started using Gradle:

1. Read the core concepts chapters.

2. Follow the tutorial for a hands-on approach.

1. Gradle Core Concepts

The core concepts section goes through the Gradle basics so that you can quickly understand how to
invoke tasks, turn on features, apply plugins, add dependencies to your project, and more.

Training level: Beginner
Reading time: 25 minutes

The core concepts cover:

Part 1. Gradle Overview

Part 2. Gradle’s Wrapper

Part 3. Gradle’s Command Line Interface
Part 4. Settings File

Part 5. Build Files

Part 6. Dependency Management

Part 7. Tasks

Part 8. Plugins

Part 9. Build Scans

Part 10. Gradle Optimizations

2. Gradle Tutorial

The tutorial will take you from Gradle initialization all the way through to utilizing Gradle’s task
caching for your basic Java App. No previous experience is necessary but a basic knowledge of Java
and Kotlin is nice to have.

If you need to install Gradle before the tutorial, you can do so in the installation section.

Training level: Beginner
Training time: 55 minutes

The tutorial covers:

gradle_basics.pdf#gradle
gradle_wrapper_basics.pdf#gradle_wrapper
command_line_interface_basics.pdf#command_line_interface
settings_file_basics.pdf#settings_file_basics
build_file_basics.pdf#build_file_basics
dependency_management_basics.pdf#dependency_management_basics
task_basics.pdf#task_basics
plugin_basics.pdf#plugin_basics
build_scans.pdf#build_scans
gradle_optimizations.pdf#gradle_optimizations

Part 1. Initializing the Project

Part 2. Running Tasks

Part 3. Understanding Dependencies
Part 4. Applying Plugins

Part 5. Exploring Incremental Builds
Part 6. Enabling the Cache

Part 7. Using Reference Materials

Installing Gradle

Gradle Installation

If all you want to do is run an existing Gradle project, then you don’t need to install Gradle if the
build uses the Gradle Wrapper. This is identifiable by the presence of the gradlew or gradlew.bat
files in the root of the project:

. @
—— gradle

| L—— wrapper @
—— gradlew ®
—— gradlew.bat ®
L— 1

@ Project root directory.
@ Gradle Wrapper.

® Scripts for executing Gradle builds.

If the gradlew or gradlew.bat files are already present in your project, you do not need to install
Gradle. But you need to make sure your system satisfies Gradle’s prerequisites.

You can follow the steps in the Upgrading Gradle section if you want to update the Gradle version
for your project. Please use the Gradle Wrapper to upgrade Gradle.

Android Studio comes with a working installation of Gradle, so you don’t need to install Gradle
separately when only working within that IDE.

If you do not meet the criteria above and decide to install Gradle on your machine, first check if
Gradle is already installed by running gradle -v in your terminal. If the command does not return
anything, then Gradle is not installed, and you can follow the instructions below.

You can install Gradle Build Tool on Linux, macOS, or Windows. The installation can be done
manually or using a package manager like SDKMAN! or Homebrew.

You can find all Gradle releases and their checksums on the releases page.

Prerequisites

Gradle runs on all major operating systems. It requires Java Development Kit (JDK) version 8 or

part1_gradle_init.pdf#part1_begin
part2_gradle_tasks.pdf#part2_begin
part3_gradle_dep_man.pdf#part3_begin
part4_gradle_plugins.pdf#part4_begin
part5_gradle_inc_builds.pdf#part5_begin
part6_gradle_caching.pdf#part6_begin
part7_gradle_refs.pdf#part7_begin
https://sdkman.io/
https://brew.sh/
https://gradle.org/releases
https://jdk.java.net/

higher to run. You can check the compatibility matrix for more information.

To check, run java -version:

0 java -version

openjdk version "11.0.18" 2023-01-17

Open]DK Runtime Environment Homebrew (build 11.0.18+0)

OpenJDK 64-Bit Server VM Homebrew (build 11.0.18+0, mixed mode)

0 java version "1.8.0_151"
Java(TM) SE Runtime Environment (build 1.8.0_151-b12)
Java HotSpot(TM) 64-Bit Server VM (build 25.151-b12, mixed mode)

Gradle uses the JDK it finds in your path, the JDK used by your IDE, or the JDK specified by your
project. In this example, the $PATH points to JDK17:

0 echo $PATH
/opt/homebrew/opt/openjdk@17/bin

You can also set the JAVA_HOME environment variable to point to a specific JDK installation directory.
This is especially useful when multiple JDKs are installed:

0 echo %JAVA_HOME%
C:\Program Files\Java\jdk1.7.0_80

0 echo $JAVA_HOME
/Library/Java/JavaVirtualMachines/jdk-16.jdk/Contents/Home

Gradle supports Kotlin and Groovy as the main build languages. Gradle ships with its own Kotlin
and Groovy libraries, therefore they do not need to be installed. Existing installations are ignored
by Gradle.

See the full compatibility notes for Java, Groovy, Kotlin, and Android.

Linux installation

https://kotlinlang.org/
https://groovy-lang.org/

Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on
most Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). Gradle is deployed and
maintained by SDKMAN!:

0 sdk install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc. Linux package managers may distribute a modified version of
Gradle that is incompatible or incomplete when compared to the official version.

#ex-installing-with-a-package-manager
http://sdkman.io

Installing manually

Step 1 - Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

* Complete (all) with docs and sources

We recommend downloading the bin file; it is a smaller file that is quick to download (and the
latest documentation is available online).

Step 2 - Unpack the distribution

Unzip the distribution zip file in the directory of your choosing, e.g.:

0 mkdir /opt/gradle

0 unzip -d /opt/gradle gradle-8.6-bin.zip

0 1s /opt/gradle/gradle-8.6

LICENSE NOTICE bin README init.d 1ib media

Step 3 - Configure your system environment

To install Gradle, the path to the unpacked files needs to be in your Path. Configure your PATH
environment variable to include the bin directory of the unzipped distribution, e.g.:

0 export PATH=$PATH:/opt/gradle/gradle-8.6/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, simply change
the GRADLE_HOME environment variable.

export GRADLE_HOME=/opt/gradle/gradle-8.6
export PATH=${GRADLE_HOME}/bin:${PATH}

macOS installation

#ex-installing-manually
https://gradle.org/releases

Installing with a package manager

SDKMAN! is a tool for managing parallel versions of multiple Software Development Kits on
most Unix-like systems (macOS, Linux, Cygwin, Solaris and FreeBSD). Gradle is deployed and
maintained by SDKMAN!:

0 sdk install gradle

Using Homebrew:

0 brew install gradle

Using MacPorts:

0 sudo port install gradle

Other package managers are available, but the version of Gradle distributed by them is not
controlled by Gradle, Inc.

#ex-installing-with-a-package-manager
http://sdkman.io
http://brew.sh
https://www.macports.org

Installing manually

Step 1 - Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

* Complete (all) with docs and sources

We recommend downloading the bin file; it is a smaller file that is quick to download (and the
latest documentation is available online).

Step 2 - Unpack the distribution

Unzip the distribution zip file in the directory of your choosing, e.g.:

0 mkdir /usr/local/gradle

0 unzip gradle-8.6-bin.zip -d /usr/local/gradle
0 1s /usr/local/gradle/gradle-8.6

LICENSE NOTICE README bin init.d T1ib

Step 3 - Configure your system environment

To install Gradle, the path to the unpacked files needs to be in your Path. Configure your PATH
environment variable to include the bin directory of the unzipped distribution, e.g.:

0 export PATH=$PATH:/usr/local/gradle/gradle-8.6/bin

Alternatively, you could also add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your PATH, you can add
$GRADLE_HOME/bin to your PATH. When upgrading to a different version of Gradle, simply change
the GRADLE_HOME environment variable.

It’s a good idea to edit .bash_profile in your home directory to add GRADLE_HOME variable:

export GRADLE_HOME=/usr/local/gradle/gradle-8.6
export PATH=$GRADLE_HOME/bin:$PATH

Windows installation

#ex-installing-manually
https://gradle.org/releases

Installing manually

Step 1 - Download the latest Gradle distribution
The distribution ZIP file comes in two flavors:

* Binary-only (bin)

* Complete (all) with docs and sources
We recommend downloading the bin file.
Step 2 - Unpack the distribution
Create a new directory C:\Gradle with File Explorer.

Open a second File Explorer window and go to the directory where the Gradle distribution
was downloaded. Double-click the ZIP archive to expose the content. Drag the content folder
gradle-8.6 to your newly created C:\Gradle folder.

Alternatively, you can unpack the Gradle distribution ZIP into C:\Gradle using the archiver tool
of your choice.

Step 3 - Configure your system environment
To install Gradle, the path to the unpacked files needs to be in your Path.

In File Explorer right-click on the This PC (or Computer) icon, then click Properties — Advanced
System Settings — Environmental Variables.

Under System Variables select Path, then click Edit. Add an entry for C:\Gradle\gradle-8.6\bin.
Click OK to save.

Alternatively, you can add the environment variable GRADLE_HOME and point this to the
unzipped distribution. Instead of adding a specific version of Gradle to your Path, you can add
%GRADLE_HOME%\bin to your Path. When upgrading to a different version of Gradle, just change
the GRADLE_HOME environment variable.

Verify the installation

Open a console (or a Windows command prompt) and run gradle -v to run gradle and display the
version, e.g.:

#ex-installing-manually
https://gradle.org/releases

0 gradle -v

Build time: 2023-03-03 16:41:37 UTC

Revision: 7d6581558e226a580d91d399f7dfb9e3095c2b1d

Kotlin: 1.8.10

Groovy: 3.0.13

Ant: Apache Ant(TM) version 1.10.11 compiled on July 10 2021
JUM: 17.0.6 (Homebrew 17.0.6+0)

0S: Mac 0S X 13.2.1 aarch64

If you run into any trouble, see the section on troubleshooting.

You can verify the integrity of the Gradle distribution by downloading the SHA-256 file (available
from the releases page) and following these verification instructions.

https://gradle.org/releases

RUNNING GRADLE BUILDS

Command-Line Interface Reference

The command-line interface is the primary method of interacting with Gradle.

The following is a reference for executing and customizing the Gradle command-line. It also serves
as a reference when writing scripts or configuring continuous integration.

Use of the Gradle Wrapper is highly encouraged. Substitute ./gradlew (in macOS / Linux) or
gradlew.bat (in Windows) for gradle in the following examples.

Executing Gradle on the command-line conforms to the following structure:
gradle [taskName...] [--option-name...]

Options are allowed before and after task names.
gradle [--option-name...] [taskName...]

If multiple tasks are specified, you should separate them with a space.
gradle [taskNamel taskName2...] [--option-name...]

Options that accept values can be specified with or without = between the option and argument.
The use of = is recommended.

gradle [...] --console=plain

Options that enable behavior have long-form options with inverses specified with --no-. The
following are opposites.

gradle [...] --build-cache
gradle [...] --no-build-cache

Many long-form options have short-option equivalents. The following are equivalent:

gradle --help
gradle -h

Many command-line flags can be specified in gradle.properties to avoid needing to

NOTE
be typed. See the Configuring build environment guide for details.

Command-line usage
The following sections describe the use of the Gradle command-line interface.

Some plugins also add their own command line options. For example, --tests, which is added by
Java test filtering. For more information on exposing command line options for your own tasks, see
Declaring command-line options.

Executing tasks

You can learn about what projects and tasks are available in the project reporting section.

Most builds support a common set of tasks known as lifecycle tasks. These include the build,
assemble, and check tasks.

To execute a task called myTask on the root project, type:
$ gradle :myTask

This will run the single myTask and all of its dependencies.

Specify options for tasks

To pass an option to a task, prefix the option name with -- after the task name:

$ gradle exampleTask --exampleOption=exampleValue

Disambiguate task options from built-in options

Gradle does not prevent tasks from registering options that conflict with Gradle’s built-in options,
like --profile or --help.

You can fix conflicting task options from Gradle’s built-in options with a -- delimiter before the task
name in the command:

$ gradle [--built-in-option-name...] -- [taskName...] [--task-option-name...]

Consider a task named mytask that accepts an option named profile:
* In gradle mytask --profile, Gradle accepts --profile as the built-in Gradle option.
* Ingradle -- mytask --profile=value, Gradle passes --profile as a task option.
Executing tasks in multi-project builds

In a multi-project build, subproject tasks can be executed with : separating the subproject name
and task name. The following are equivalent when run from the root project:

$ gradle :subproject:taskName

$ gradle subproject:taskName

You can also run a task for all subprojects using a task selector that consists of only the task name.
The following command runs the test task for all subprojects when invoked from the root project

directory:

$ gradle test

Some tasks selectors, like help or dependencies, will only run the task on the project

NOTE
they are invoked on and not on all the subprojects.

When invoking Gradle from within a subproject, the project name should be omitted:

$ cd subproject

$ gradle taskName

When executing the Gradle Wrapper from a subproject directory, reference gradlew

TIP)
relatively. For example: ../gradlew taskName.

Executing multiple tasks

You can also specify multiple tasks. The tasks' dependencies determine the precise order of
execution, and a task having no dependencies may execute earlier than it is listed on the command-
line.

For example, the following will execute the test and deploy tasks in the order that they are listed on

the command-line and will also execute the dependencies for each task.

$ gradle test deploy

Command line order safety

Although Gradle will always attempt to execute the build quickly, command line ordering safety
will also be honored.

For example, the following will execute clean and build along with their dependencies:

$ gradle clean build

However, the intention implied in the command line order is that clean should run first and then
build. It would be incorrect to execute clean after build, even if doing so would cause the build to
execute faster since clean would remove what build created.

Conversely, if the command line order was build followed by clean, it would not be correct to
execute clean before build. Although Gradle will execute the build as quickly as possible, it will also
respect the safety of the order of tasks specified on the command line and ensure that clean runs
before build when specified in that order.

Note that command line order safety relies on tasks properly declaring what they create, consume,
or remove.

Excluding tasks from execution

You can exclude a task from being executed using the -x or --exclude-task command-line option
and providing the name of the task to exclude:

$ gradle dist --exclude-task test

> Task :compile
compiling source

> Task :dist
building the distribution

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

Figure 1. Simple Task Graph

You can see that the test task is not executed, even though it depends on the dist task. The test
task’s dependencies, such as compileTest, are not executed either. Those dependencies of test that
another task requires, such as compile, are still executed.

Forcing tasks to execute

You can force Gradle to execute all tasks ignoring up-to-date checks using the --rerun-tasks option:

$ gradle test --rerun-tasks

This will force test and all task dependencies of test to execute. It is similar to running gradle
clean test, but without the build’s generated output being deleted.

Alternatively, you can tell Gradle to rerun a specific task using the --rerun built-in task option.

Continue the build after a task failure

By default, Gradle aborts execution and fails the build when any task fails. This allows the build to
complete sooner and prevents cascading failures from obfuscating the root cause of an error.

You can use the --continue option to force Gradle to execute every task when a failure occurs:

$ gradle test --continue

When executed with --continue, Gradle executes every task in the build if all the dependencies for
that task are completed without failure.

For example, tests do not run if there is a compilation error in the code under test because the test
task depends on the compilation task. Gradle outputs each of the encountered failures at the end of
the build.

If any tests fail, many test suites fail the entire test task. Code coverage and
NOTE reporting tools frequently run after the test task, so "fail fast" behavior may halt
execution before those tools run.

Name abbreviation

When you specify tasks on the command-line, you don’t have to provide the full name of the task.
You can provide enough of the task name to identify the task uniquely. For example, it is likely
gradle che is enough for Gradle to identify the check task.

The same applies to project names. You can execute the check task in the library subproject with
the gradle 1ib:che command.

You can use camel case patterns for more complex abbreviations. These patterns are expanded to
match camel case and kebab case names. For example, the pattern foBa (or fB) matches fooBar and
foo-bar.

More concretely, you can run the compileTest task in the my-awesome-library subproject with the
command gradle mAL:cT.

$ gradle mAL:cT

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Kebab_case

> Task :my-awesome-library:compileTest
compiling unit tests

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

Abbreviations can also be used with the -x command-line option.

Tracing name expansion

For complex projects, it might be ambiguous if the intended tasks were executed. When using
abbreviated names, a single typo can lead to the execution of unexpected tasks.

When INFO, or more verbose logging is enabled, the output will contain extra information about the
project and task name expansion.

For example, when executing the mAL:cT command on the previous example, the following log
messages will be visible:

No exact project with name ':mAL' has been found. Checking for abbreviated names.

Found exactly one project that matches the abbreviated name ':mAL': ':my-awesome-
library'.

No exact task with name ':cT' has been found. Checking for abbreviated names.

Found exactly one task name, that matches the abbreviated name ':cT': ':compileTest'.

Common tasks

The following are task conventions applied by built-in and most major Gradle plugins.

Computing all outputs

It is common in Gradle builds for the build task to designate assembling all outputs and running all
checks:

$ gradle build

Running applications

It is common for applications to run with the run task, which assembles the application and
executes some script or binary:

$ gradle run

Running all checks

It is common for all verification tasks, including tests and linting, to be executed using the check

task:

$ gradle check

Cleaning outputs

You can delete the contents of the build directory using the clean task. Doing so will cause pre-
computed outputs to be lost, causing significant additional build time for the subsequent task
execution:

$ gradle clean

Project reporting

Gradle provides several built-in tasks which show particular details of your build. This can be
useful for understanding your build’s structure and dependencies, as well as debugging problems.

Listing projects

Running the projects task gives you a list of the subprojects of the selected project, displayed in a
hierarchy:

$ gradle projects

You also get a project report within Build Scans.

Listing tasks

Running gradle tasks gives you a list of the main tasks of the selected project. This report shows the
default tasks for the project, if any, and a description for each task:

$ gradle tasks

By default, this report shows only those tasks assigned to a task group.

Groups (such as verification, publishing, help, build...) are available as the header of each section
when listing tasks:

https://scans.gradle.com/

> Task :tasks

Build tasks

assemble - Assembles the outputs of this project.
Build Setup tasks

init - Initializes a new Gradle build.
Distribution tasks

;;;é;g{éég;;_:_A;;embles the main distributions
Documentation tasks

javadoc - Generates Javadoc API documentation for the main source code.

You can obtain more information in the task listing using the --all option:

$ gradle tasks --all

The option --no-all can limit the report to tasks assigned to a task group.

If you need to be more precise, you can display only the tasks from a specific group using the
--group option:

$ gradle tasks --group="build setup"

Show task usage details

Running gradle help --task someTask gives you detailed information about a specific task:

$ gradle -q help --task libs

Detailed task information for libs

Paths
:api:libs
:webapp:1libs

Type

Task (org.gradle.api.Task)
Options

--rerun Causes the task to be re-run even if up-to-date.
Description

Builds the JAR

Group
build

This information includes the full task path, the task type, possible task-specific command line
options, and the description of the given task.

You can get detailed information about the task class types using the --types option or using --no
-types to hide this information.

Reporting dependencies

Build Scans give a full, visual report of what dependencies exist on which configurations, transitive
dependencies, and dependency version selection. They can be invoked using the --scan options:

$ gradle myTask --scan

This will give you a link to a web-based report, where you can find dependency information like
this:

https://scans.gradle.com/

[NON J /@ Build Scan® for 'gradle’ today X + v

<« C @ ge.gradle.org/s/num5ib52372lg/dependencies?toggled=W1szXSxbMywxXV0 h * @ v @ & 0P
CS?Gradle Enterprise O v g.. antlr:test build-profile:test docs-asciidoctor-extensions... Jul 12 2023 10:08:33 PDT = BuildScans | (@
E Summary |= 1= Q@ =585 dependencies resolved in 125 projects across 606 configurations from 7 repositories, 79 dependencies failed to resolve

Console log

:antlr >
Failure :api-metadata >
(D) Deprecations :base-annotations >
o :base-services -
- Timeline annotationProcessor 0.000s
W Performance compileClasspath ~ 0.004s

:base-annotations >

[Tests :build-operations

523 Projects :distributions-dependencies > platform
Ny :hashing

gg Dependelels :worker-services

23 Build dependencies com.google.guava:guava: =* 31.1-jre >

[Plugins commons-io:commons-io: =¥ 2.11.0

_ commons-lang:commons-lang: =* 2.6

o= Custom values javax.inject:javax.inject: = 1

() org.ow2.asm:asm: =* 9.4

o Switches

. org.slf4j:sIf4j-api: =» 1.7.30
Infrastructure

detachedConfiguration1 > 0.006s
runtimeClasspath > 0.007s

“0) See before and after testFixturesAnnotationProcessor 0.000s
testFixturesCompileClasspath > 0.009s

Q) Compare Build Scan
:base-services-groovy >

Listing project dependencies

Running the dependencies task gives you a list of the dependencies of the selected project, broken
down by configuration. For each configuration, the direct and transitive dependencies of that
configuration are shown in a tree.

Below is an example of this report:

$ gradle dependencies

> Task :app:dependencies

Project '":app'

compileClasspath - Compile classpath for source set 'main'.
+--- project :model
| \--- org.json:json:20220924
+--- com.google.inject:quice:5.1.0
+--- javax.inject:javax.inject:1
+--- aopalliance:aopalliance:1.0
\--- com.google.guava:guava:30.1-jre -> 28.2-jre
+--- com.google.qguava:failureaccess:1.0.1
+--- com.google.quava:listenablefuture:9999.0-empty-to-avoid-conflict-with-
uava
+--- com.google.code.findbugs:jsr305:3.0.2
+--- org.checkerframework:checker-qual:2.10.0 -> 3.28.0
+--- com.google.errorprone:error_prone_annotations:2.3.4
\--- com.google.j2objc:j2objc-annotations:1.3
+--- com.google.inject:quice:{strictly 5.1.0} -> 5.1.0 (c)
+--- org.json:json:{strictly 20220924} -> 20220924 (c)
+--- javax.inject:javax.inject:{strictly 1} -> 1 (c)
+--- aopalliance:aopalliance:{strictly 1.0} -> 1.0 (c)
+--- com.google.quava:qguava:{strictly [28.0-jre, 28.5-jre]} -> 28.2-jre (c)
+--- com.google.quava:quava:{strictly 28.2-jre} -> 28.2-jre (c)
+--- com.google.quava:failureaccess:{strictly 1.0.1} -> 1.0.1 (c)
+--- com.google.quava:listenablefuture:{strictly 9999.0-empty-to-avoid-conflict-with-
guava} -> 9999.0-empty-to-avoid-conflict-with-quava (c)
+--- com.google.code.findbugs:jsr305:{strictly 3.0.2} -> 3.0.2 (c)
+--- org.checkerframework:checker-qual:{strictly 3.28.0} -> 3.28.0 (c)
+--- com.google.errorprone:error_prone_annotations:{strictly 2.3.4} -> 2.3.4 (c)
\--- com.google.j2objc:j2objc-annotations:{strictly 1.3} -> 1.3 (c)

—_———— 0 — — —

Concrete examples of build scripts and output available in Viewing and debugging dependencies.

Running the buildEnvironment task visualises the buildscript dependencies of the selected project,
similarly to how gradle dependencies visualizes the dependencies of the software being built:

$ gradle buildEnvironment

Running the dependencyInsight task gives you an insight into a particular dependency (or
dependencies) that match specified input:

$ gradle dependencyInsight --dependency [...] --configuration [...]

The --configuration parameter restricts the report to a particular configuration such as

compileClasspath.

Listing project properties

Running the properties task gives you a list of the properties of the selected project:

$ gradle -q api:properties

Project ":api' - The shared API for the application

allprojects: [project ':api']

ant: org.gradle.api.internal.project.DefaultAntBuilder@12345

antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFactory@12345
artifacts:
org.gradle.api.internal.artifacts.dsl.DefaultArtifactHandler_Decorated@12345
asDynamicObject: DynamicObject for project ':api'

base(ClasslLoaderScope:
org.gradle.api.internal.initialization.MutableClassLoaderScope@12345

You can also query a single property with the optional --property argument:

$ gradle -q api:properties --property allprojects

Project ':api' - The shared API for the application

allprojects: [project ':api']

Command-line completion

Gradle provides bash and zsh tab completion support for tasks, options, and Gradle properties
through gradle-completion (installed separately):

[gradle completion 4.0] | gradle-completion-4.0.gif

Debugging options

-7, -h, --help

Shows a help message with the built-in CLI options. To show project-contextual options,
including help on a specific task, see the help task.

https://github.com/gradle/gradle-completion

-v, --version

Prints Gradle, Groovy, Ant, JVM, and operating system version information and exit without
executing any tasks.

-V, --show-version

Prints Gradle, Groovy, Ant, JVM, and operating system version information and continue
execution of specified tasks.

-S, --full-stacktrace

Print out the full (very verbose) stacktrace for any exceptions. See also logging options.

-s, --stacktrace

Print out the stacktrace also for user exceptions (e.g. compile error). See also logging options.

--scan

Create a Build Scan with fine-grained information about all aspects of your Gradle build.

-Dorg.gradle.debug=true

Debug Gradle Daemon process. Gradle will wait for you to attach a debugger at localhost:5005
by default.

-Dorg.gradle.debug.host=(host address)

Specifies the host address to listen on or connect to when debug is enabled. In the server mode
on Java 9 and above, passing * for the host will make the server listen on all network interfaces.
By default, no host address is passed to JDWP, so on Java 9 and above, the loopback address is
used, while earlier versions listen on all interfaces.

-Dorg.gradle.debug.port=(port number)

Specifies the port number to listen on when debug is enabled. Default is 5005.

-Dorg.gradle.debug.server=(true,false)

If set to true and debugging is enabled, Gradle will run the build with the socket-attach mode of
the debugger. Otherwise, the socket-listen mode is used. Default is true.

-Dorg.gradle.debug.suspend=(true,false)

When set to true and debugging is enabled, the JVM running Gradle will suspend until a
debugger is attached. Default is true.

-Dorg.gradle.daemon.debug=true

Debug Gradle Daemon process. (duplicate of -Dorg.gradle.debug)

Performance options
Try these options when optimizing and improving build performance.

Many of these options can be specified in the gradle.properties file, so command-line flags are
unnecessary.

https://gradle.com/build-scans

--build-cache, --no-build-cache

Toggles the Gradle Build Cache. Gradle will try to reuse outputs from previous builds. Default is

off.

--configuration-cache, --no-configuration-cache

Toggles the Configuration Cache. Gradle will try to reuse the build configuration from previous
builds. Default is off.

--confiquration-cache-problems=(fail,warn)

Configures how the configuration cache handles problems. Default is fail.
Set to warn to report problems without failing the build.
Set to fail to report problems and fail the build if there are any problems.

--configure-on-demand, --no-configure-on-demand

Toggles configure-on-demand. Only relevant projects are configured in this build run. Default is

off.

--max-workers

Sets the maximum number of workers that Gradle may use. Default is number of processors.

--parallel, --no-parallel

Build projects in parallel. For limitations of this option, see Parallel Project Execution. Default is

off.

--priority
Specifies the scheduling priority for the Gradle daemon and all processes launched by it. Values
are normal or low. Default is normal.

--profile

Generates a high-level performance report in the layout.buildDirectory.dir("reports/profile")
directory. --scan is preferred.

--Scan

Generate a build scan with detailed performance diagnostics.

([] ® /@ Build Scan® for 'gradle’ today X + v

<&« C @ ge.gradle.org/s/num5ib52372lg/performance/build h * @ T @ ®» O

CS?Gradle Enterprise O v g.. antlr:test build-profile:test docs-asciidoctor-extensions... Jul 12 2023 10:08:33 PDT $= BuildScans | (@

E Summary Build Configuration Dependency resolution Task execution Build cache Daemon Network activity
Console log
Failure Total build time 6m 31.643s
@ Deprecations Initialization & configuration 2m 3.620s
@ Startup 11.347s
Timeline Settings 25.315s
Configuration 1m 5.767s
[Tests Execution 4m 28.023s
& Projects Task execution 4m 27.497s
. End of build 0.526s
€% Dependencies
2% Build dependencies Total garbage collection time 4.866s
Plugins Peak heap memory usage
9= (Cystom values G10ld Gen 619.6 MiB/2.4 GiB (24.7%)
% Switches
Infrastructure
“0) See before and after

Q) Compare Build Scan

--watch-fs, --no-watch-fs

Toggles watching the file system. When enabled, Gradle reuses information it collects about the
file system between builds. Enabled by default on operating systems where Gradle supports this
feature.

Gradle daemon options

You can manage the Gradle Daemon through the following command line options.

--daemon, --no-daemon

Use the Gradle Daemon to run the build. Starts the daemon if not running or the existing
daemon is busy. Default is on.

--foreground

Starts the Gradle Daemon in a foreground process.

--status (Standalone command)

Run gradle --status to list running and recently stopped Gradle daemons. It only displays
daemons of the same Gradle version.

--stop (Standalone command)

Run gradle --stop to stop all Gradle Daemons of the same version.

-Dorg.gradle.daemon.idletimeout=(number of milliseconds)

Gradle Daemon will stop itself after this number of milliseconds of idle time. Default is 10800000
(3 hours).

Logging options

Setting log level

You can customize the verbosity of Gradle logging with the following options, ordered from least
verbose to most verbose.

-Dorg.gradle.logging.level=(quiet,warn,lifecycle,info,debug)

Set logging level via Gradle properties.

-q, --quiet

Log errors only.

-w, --warn

Set log level to warn.

-i, --info

Set log level to info.

-d, --debug
Log in debug mode (includes normal stacktrace).

Lifecycle is the default log level.

Customizing log format

You can control the use of rich output (colors and font variants) by specifying the console mode in
the following ways:

-Dorg.gradle.console=(auto,plain,rich,verbose)

Specify console mode via Gradle properties. Different modes are described immediately below.

--console=(auto,plain,rich,verbose)

Specifies which type of console output to generate.

Set to plain to generate plain text only. This option disables all color and other rich output in the
console output. This is the default when Gradle is not attached to a terminal.

Set to auto (the default) to enable color and other rich output in the console output when the
build process is attached to a console or to generate plain text only when not attached to a
console. This is the default when Gradle is attached to a terminal.

Set to rich to enable color and other rich output in the console output, regardless of whether the
build process is not attached to a console. When not attached to a console, the build output will
use ANSI control characters to generate the rich output.

Set to verbose to enable color and other rich output like rich with output task names and
outcomes at the lifecycle log level, (as is done by default in Gradle 3.5 and earlier).

Showing or hiding warnings

By default, Gradle won’t display all warnings (e.g. deprecation warnings). Instead, Gradle will

collect them and render a summary at the end of the build like:

Deprecated Gradle features were used in this build, making it incompatible with Gradle
5.0.

You can control the verbosity of warnings on the console with the following options:

-Dorg.gradle.warning.mode=(all,fail,none,summary)

Specify warning mode via Gradle properties. Different modes are described immediately below.

--warning-mode=(all, fail,none,summary)

Specifies how to log warnings. Default is summary.

Set to all to log all warnings.

Set to fail to log all warnings and fail the build if there are any warnings.

Set to summary to suppress all warnings and log a summary at the end of the build.

Set to none to suppress all warnings, including the summary at the end of the build.

Rich console
Gradle’s rich console displays extra information while builds are running.

® © @® 7 solution — java -Xmx64m -Xms64m -Dorg.gradle.appname=gradlew -classpath ~/Documents/Training/training/build-tool-training-exercises/Jv...

> Task :groovy:processTestResources NO-SOURCE
> Task :scala:processTestResources NO-SOURCE
> Task :java:processTestResources NO-SOURCE

> Task :guava-old-version:compileJava

Note: /Users/lkassovic/Documents/Training/training/build-tool-training-exercises/Jvm_Builds_with_Gradle_Build_Tool/exercise4/solution/guava-old-
version/src/main/java/com/gradle/lab/old/0OldMessage.java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

> Task :guava-old-version:processResources NO-SOURCE
> Task :guava-old-version:classes

> Task :guava-old-version:shadowdar

> Task :guava-old-version:jar

> Task :guava-old-version:assemble

> Task :guava-old-version:compileTestJava NO-SOURCE
> Task :guava-old-version:processTestResources NO-SOURCE
> Task :guava-old-version:testClasses UP-TO-DATE

> Task :guava-old-version:test NO-SOURCE

> Task :guava-old-version:check UP-TO-DATE

> Task :guava-old-version:build

K==Em————————— > 23% EXECUTING [5s]

> IDLE

> IDLE

:scala:compileJava

:kotlin:compileKotlin > Resolve files of :kotlin:kotlinCompilerClasspath > kotlin-reflect-1.7.10.jar
IDLE

IDLE

IDLE

:groovy:compileJava

IDLE

:java:compileJava

IDLE

EEV VVVVVVVYV

Features:

* Progress bar and timer visually describe the overall status
» Parallel work-in-progress lines below describe what is happening now

* Colors and fonts are used to highlight significant output and errors

Execution options

The following options affect how builds are executed by changing what is built or how
dependencies are resolved.

--include-build

Run the build as a composite, including the specified build.

--offline

Specifies that the build should operate without accessing network resources.

-U, --refresh-dependencies

Refresh the state of dependencies.

--continue

Continue task execution after a task failure.

-m, --dry-run

Run Gradle with all task actions disabled. Use this to show which task would have executed.

-t, --continuous

Enables continuous build. Gradle does not exit and will re-execute tasks when task file inputs
change.

--write-locks

Indicates that all resolved configurations that are lockable should have their lock state persisted.

--update-locks <group:name>[,<group:name>]*

Indicates that versions for the specified modules have to be updated in the lock file.
This flag also implies --write-locks.

-a, --no-rebuild

Do not rebuild project dependencies. Useful for debugging and fine-tuning buildSrc, but can lead
to wrong results. Use with caution!

Dependency verification options

Learn more about this in dependency verification.

-F=(strict,lenient,off), --dependency-verification=(strict,lenient,off)

Configures the dependency verification mode.
The default mode is strict.

-M, --write-verification-metadata

Generates checksums for dependencies used in the project (comma-separated list) for
dependency verification.

--refresh-keys

Refresh the public keys used for dependency verification.

--export-keys

Exports the public keys used for dependency verification.

Environment options

You can customize many aspects about where build scripts, settings, caches, and so on through the
options below.

-b, --build-file (deprecated)

Specifies the build file. For example: gradle --build-file=foo.gradle. The default is build.gradle,
then build.gradle.kts.

-c, --settings-file (deprecated)

Specifies the settings file. For example: gradle --settings-file=somewhere/else/settings.gradle

-g, --gradle-user-home

Specifies the Gradle User Home directory. The default is the .gradle directory in the user’s home
directory.

-p, --project-dir

Specifies the start directory for Gradle. Defaults to current directory.

--project-cache-dir
Specifies the project-specific cache directory. Default value is .gradle in the root project
directory.

-D, --system-prop
Sets a system property of the JVM, for example -Dmyprop=myvalue.

-I, --init-script

Specifies an initialization script.

-P, --project-prop

Sets a project property of the root project, for example -Pmyprop=myvalue.

-Dorg.gradle.jvmargs

Set JVM arguments.
-Dorg.gradle.java.home
Set JDK home dir.

Task options

Tasks may define task-specific options which are different from most of the global options
described in the sections above (which are interpreted by Gradle itself, can appear anywhere in the

project_properties.pdf#sec:project_properties

command line, and can be listed using the --help option).
Task options:

1. Are consumed and interpreted by the tasks themselves;
2. Must be specified immediately after the task in the command-line;

3. May be listed using gradle help --task someTask (see Show task usage details).

To learn how to declare command-line options for your own tasks, see Declaring and Using
Command Line Options.

Built-in task options

Built-in task options are options available as task options for all tasks. At this time, the following
built-in task options exist:

--rerun

Causes the task to be rerun even if up-to-date. Similar to --rerun-tasks, but for a specific task.

Bootstrapping new projects

Creating new Gradle builds

Use the built-in gradle init task to create a new Gradle build, with new or existing projects.
$ gradle init

Most of the time, a project type is specified. Available types include basic (default), java-library,
java-application, and more. See init plugin documentation for details.

$ gradle init --type java-library

Standardize and provision Gradle

The built-in gradle wrapper task generates a script, gradlew, that invokes a declared version of
Gradle, downloading it beforehand if necessary.

$ gradle wrapper --gradle-version=8.1

You can also specify --distribution-type=(bin|all), --gradle-distribution-url, --gradle
-distribution-sha256-sum in addition to --gradle-version.
Full details on using these options are documented in the Gradle wrapper section.

Continuous build

Continuous Build allows you to automatically re-execute the requested tasks when file inputs

build_init_plugin.pdf#build_init_plugin

change. You can execute the build in this mode using the -t or --continuous command-line option.

For example, you can continuously run the test task and all dependent tasks by running:

$ gradle test --continuous

Gradle will behave as if you ran gradle test after a change to sources or tests that contribute to the
requested tasks. This means unrelated changes (such as changes to build scripts) will not trigger a
rebuild. To incorporate build logic changes, the continuous build must be restarted manually.

Continuous build uses file system watching to detect changes to the inputs. If file system watching
does not work on your system, then continuous build won’t work either. In particular, continuous
build does not work when using --no-daemon.

When Gradle detects a change to the inputs, it will not trigger the build immediately. Instead, it will
wait until no additional changes are detected for a certain period of time - the quiet period. You can
configure the quiet period in milliseconds by the Gradle property
org.gradle.continuous.quietperiod.

Terminating Continuous Build

If Gradle is attached to an interactive input source, such as a terminal, the continuous build can be
exited by pressing CTRL-D (On Microsoft Windows, it is required to also press ENTER or RETURN after
CTRL-D).

If Gradle is not attached to an interactive input source (e.g. is running as part of a script), the build
process must be terminated (e.g. using the kill command or similar).

If the build is being executed via the Tooling API, the build can be cancelled using the Tooling APT’s
cancellation mechanism.

Limitations

Under some circumstances, continuous build may not detect changes to inputs.

Creating input directories

Sometimes, creating an input directory that was previously missing does not trigger a build, due to
the way file system watching works. For example, creating the src/main/java directory may not
trigger a build. Similarly, if the input is a filtered file tree and no files are matching the filter, the
creation of matching files may not trigger a build.

Inputs of untracked tasks

Changes to the inputs of untracked tasks or tasks that have no outputs may not trigger a build.

Changes to files outside of project directories

Gradle only watches for changes to files inside the project directory. Changes to files outside of the
project directory will go undetected and not trigger a build.

Build cycles

Gradle starts watching for changes just before a task executes. If a task modifies its own inputs
while executing, Gradle will detect the change and trigger a new build. If every time the task
executes, the inputs are modified again, the build will be triggered again. This isn’t unique to
continuous build. A task that modifies its own inputs will never be considered up-to-date when run
"normally" without continuous build.

If your build enters a build cycle like this, you can track down the task by looking at the list of files
reported changed by Gradle. After identifying the file(s) that are changed during each build, you
should look for a task that has that file as an input. In some cases, it may be obvious (e.g., a Java file
is compiled with compileJava). In other cases, you can use --info logging to find the task that is out-
of-date due to the identified files.

Changes to symbolic links

In general, Gradle will not detect changes to symbolic links or to files referenced via symbolic links.

Changes to build logic are not considered

The current implementation does not recalculate the build model on subsequent builds. This means
that changes to task configuration, or any other change to the build model, are effectively ignored.

Gradle Wrapper Reference

The recommended way to execute any Gradle build is with the help of the Gradle Wrapper
(referred to as "Wrapper").

The Wrapper is a script that invokes a declared version of Gradle, downloading it beforehand if
necessary. As a result, developers can get up and running with a Gradle project quickly.

In a nutshell, you gain the following benefits:

» Standardizes a project on a given Gradle version for more reliable and robust builds.

* Provisioning the Gradle version for different users is done with a simple Wrapper definition

change.
* Provisioning the Gradle version for different execution environments (e.g., IDEs or Continuous
Integration servers) is done with a simple Wrapper definition change.

There are three ways to use the Wrapper:

1. You set up a new Gradle project and add the Wrapper to it.
2. You run a project with the Wrapper that already provides it.

3. You upgrade the Wrapper to a new version of Gradle.

The following sections explain each of these use cases in more detail.

Adding the Gradle Wrapper

Generating the Wrapper files requires an installed version of the Gradle runtime on your machine
as described in Installation. Thankfully, generating the initial Wrapper files is a one-time process.

Every vanilla Gradle build comes with a built-in task called wrapper. The task is listed under the
group "Build Setup tasks" when listing the tasks.

Executing the wrapper task generates the necessary Wrapper files in the project directory:

$ gradle wrapper

> Task :wrapper

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

To make the Wrapper files available to other developers and execution environments,
you need to check them into version control. Wrapper files, including the JAR file, are

TIP small. Adding the JAR file to version control is expected. Some organizations do not
allow projects to submit binary files to version control, and there is no workaround
available.

The generated Wrapper properties file, gradle/wrapper/gradle-wrapper.properties, stores the
information about the Gradle distribution:
* The server hosting the Gradle distribution.

* The type of Gradle distribution. By default, the -bin distribution contains only the runtime but
no sample code and documentation.

* The Gradle version used for executing the build. By default, the wrapper task picks the same
Gradle version used to generate the Wrapper files.

* Optionally, a timeout in ms used when downloading the Gradle distribution.

* Optionally, a boolean to set the validation of the distribution URL.

The following is an example of the generated distribution URL in gradle/wrapper/gradle-
wrapper.properties:

distributionUrl=https\://services.gradle.org/distributions/gradle-8.6-bin.zip

All of those aspects are configurable at the time of generating the Wrapper files with the help of the
following command line options:

--gradle-version

The Gradle version used for downloading and executing the Wrapper. The resulting distribution
URL is validated before it is written to the properties file.

The following labels are allowed:

e latest
* release-candidate
* nightly

* release-nightly

--distribution-type
The Gradle distribution type used for the Wrapper. Available options are bin and all. The default
value is bin.

--gradle-distribution-url

The full URL pointing to the Gradle distribution ZIP file. This option makes --gradle-version and
--distribution-type obsolete, as the URL already contains this information. This option is
valuable if you want to host the Gradle distribution inside your company’s network. The URL is
validated before it is written to the properties file.

--gradle-distribution-sha256-sum
The SHA256 hash sum used for verifying the downloaded Gradle distribution.

--network-timeout

The network timeout to use when downloading the Gradle distribution, in ms. The default value
is 10000.

--no-validate-url

Disables the validation of the configured distribution URL.

--validate-url
Enables the validation of the configured distribution URL. Enabled by default.

If the distribution URL is configured with --gradle-version or --gradle-distribution-url, the URL is
validated by sending a HEAD request in the case of the https scheme or by checking the existence of
the file in the case of the file scheme.

Let’s assume the following use-case to illustrate the use of the command line options. You would

https://gradle.org/releases
https://gradle.org/release-candidate
https://gradle.org/nightly
https://gradle.org/release-nightly

like to generate the Wrapper with version 8.6 and use the -all distribution to enable your IDE to
enable code-completion and being able to navigate to the Gradle source code.

The following command-line execution captures those requirements:

$ gradle wrapper --gradle-version 8.6 --distribution-type all
> Task :wrapper

BUILD SUCCESSFUL in @s
1 actionable task: 1 executed

As a result, you can find the desired information (the generated distribution URL) in the Wrapper
properties file:

distributionUrl=https\://services.gradle.org/distributions/gradle-8.6-all.zip

Let’s have a look at the following project layout to illustrate the expected Wrapper files:

—— a-subproject

| L—— build.gradle.kts
—— settings.gradle.kts
—— gradle

| L—— wrapper

| —— gradle-wrapper.jar
| L—— gradle-wrapper.properties

—— gradlew

L—— gradlew.bat

—— a-subproject

| L—— build.gradle
—— settings.gradle
—— gradle

| L—— wrapper

| —— gradle-wrapper.jar
! L—— gradle-wrapper.properties

—— gradlew

L—— gradlew.bat

A Gradle project typically provides a settings.gradle(.kts) file and one build.gradle(.kts) file for

each subproject. The Wrapper files live alongside in the gradle directory and the root directory of
the project.

The following list explains their purpose:

gradle-wrapper.jar

The Wrapper JAR file containing code for downloading the Gradle distribution.

gradle-wrapper.properties

A properties file responsible for configuring the Wrapper runtime behavior e.g. the Gradle
version compatible with this version. Note that more generic settings, like configuring the
Wrapper to use a proxy, need to go into a different file.

gradlew, gradlew.bat
A shell script and a Windows batch script for executing the build with the Wrapper.

You can go ahead and execute the build with the Wrapper without installing the Gradle runtime. If
the project you are working on does not contain those Wrapper files, you will need to generate
them.

Using the Gradle Wrapper

It is always recommended to execute a build with the Wrapper to ensure a reliable, controlled, and
standardized execution of the build. Using the Wrapper looks like running the build with a Gradle
installation. Depending on the operating system you either run gradlew or gradlew.bat instead of the
gradle command.

The following console output demonstrates the use of the Wrapper on a Windows machine for a
Java-based project:

$ gradlew.bat build

Downloading https://services.gradle.org/distributions/gradle-5.0-all.zip
Unzipping C:\Documents and Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac2708rbd@ic8ih410r9132mv\gradle-5.0-all.zip to C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-al\ac2708rbd@ic8ih410r9132mv
Set executable permissions for: C:\Documents and
Settings\Claudia\.gradle\wrapper\dists\gradle-5.0-
all\ac2708rbd@ic8ih410r9132mv\gradle-5.0\bin\gradle

BUILD SUCCESSFUL in 12s
1 actionable task: 1 executed

If the Gradle distribution is unavailable on the machine, the Wrapper will download it and store it
in the local file system. Any subsequent build invocation will reuse the existing local distribution as
long as the distribution URL in the Gradle properties doesn’t change.

networking.pdf#sec:accessing_the_web_via_a_proxy
networking.pdf#sec:accessing_the_web_via_a_proxy

The Wrapper shell script and batch file reside in the root directory of a single or
multi-project Gradle build. You will need to reference the correct path to those files
in case you want to execute the build from a subproject directory e.g. ../../gradlew
tasks.

NOTE

Upgrading the Gradle Wrapper

Projects typically want to keep up with the times and upgrade their Gradle version to benefit from
new features and improvements.

One way to upgrade the Gradle version is by manually changing the distributionUrl property in the
Wrapper’s gradle-wrapper.properties file.

The better and recommended option is to run the wrapper task and provide the target Gradle
version as described in Adding the Gradle Wrapper. Using the wrapper task ensures that any
optimizations made to the Wrapper shell script or batch file with that specific Gradle version are
applied to the project.

As usual, you should commit the changes to the Wrapper files to version control.

Note that running the wrapper task once will update gradle-wrapper.properties only, but leave the
wrapper itself in gradle-wrapper.jar untouched. This is usually fine as new versions of Gradle can
be run even with older wrapper files.

If you want all the wrapper files to be completely up-to-date, you will need to run

NOTE .
the wrapper task a second time.

The following command upgrades the Wrapper to the latest version:

$./gradlew wrapper --gradle-version latest

BUILD SUCCESSFUL in 4s
1 actionable task: 1 executed

The following command upgrades the Wrapper to a specific version:

$./gradlew wrapper --gradle-version 8.6

BUILD SUCCESSFUL in 4s
1 actionable task: 1 executed

Once you have upgraded the wrapper, you can check that it’s the version you expected by executing
./gradlew --version.

Don’t forget to run the wrapper task again to download the Gradle distribution binaries (if needed)
and update the gradlew and gradle.bat files.

Customizing the Gradle Wrapper

Most users of Gradle are happy with the default runtime behavior of the Wrapper. However,
organizational policies, security constraints or personal preferences might require you to dive
deeper into customizing the Wrapper.

Thankfully, the built-in wrapper task exposes numerous options to bend the runtime behavior to
your needs. Most configuration options are exposed by the underlying task type Wrapper.

Let’s assume you grew tired of defining the -all distribution type on the command line every time
you upgrade the Wrapper. You can save yourself some keyboard strokes by re-configuring the
wrapper task.

build.gradle.kts

tasks.wrapper {
distributionType = Wrapper.DistributionType.ALL
¥

build.gradle

tasks.named('wrapper") {
distributionType = Wrapper.DistributionType.ALL
}

With the configuration in place, running ./gradlew wrapper --gradle-version 8.6 is enough to
produce a distributionUrl value in the Wrapper properties file that will request the -all
distribution:

distributionUrl=https\://services.gradle.org/distributions/gradle-8.6-all.zip

Check out the API documentation for a more detailed description of the available configuration
options. You can also find various samples for configuring the Wrapper in the Gradle distribution.

Authenticated Gradle distribution download

The Gradle Wrapper can download Gradle distributions from servers using HTTP Basic
Authentication. This enables you to host the Gradle distribution on a private protected server.

You can specify a username and password in two different ways depending on your use case: as
system properties or directly embedded in the distributionUrl. Credentials in system properties
take precedence over the ones embedded in distributionUrl.

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.wrapper.Wrapper.html
https://docs.gradle.org/8.6/javadoc/org/gradle/package-summary.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/wrapper/Wrapper.html

HTTP Basic Authentication should only be used with HTTPS URLs and not plain HTTP

TIP
ones. With Basic Authentication, the user credentials are sent in clear text.

System properties can be specified in the .gradle/gradle.properties file in the user’s home
directory or by other means.

To specify the HTTP Basic Authentication credentials, add the following lines to the system
properties file:

systemProp.gradle.wrapperUser=username
systemProp.gradle.wrapperPassword=password

Embedding credentials in the distributionUrl in the gradle/wrapper/gradle-wrapper.properties file
also works. Please note that this file is to be committed into your source control system.

Shared credentials embedded in distributionUrl should only be used in a controlled

TIP .
environment.

To specify the HTTP Basic Authentication credentials in distributionUr1l, add the following line:

distributionUrl=https://username:password@somehost/path/to/gradle-distribution.zip

This can be used in conjunction with a proxy, authenticated or not. See Accessing the web via a
proxy for more information on how to configure the Wrapper to use a proxy.

Verification of downloaded Gradle distributions

The Gradle Wrapper allows for verification of the downloaded Gradle distribution via SHA-256
hash sum comparison. This increases security against targeted attacks by preventing a man-in-the-
middle attacker from tampering with the downloaded Gradle distribution.

To enable this feature, download the .sha256 file associated with the Gradle distribution you want
to verify.

Downloading the SHA-256 file

You can download the .sha256 file from the stable releases or release candidate and nightly
releases. The format of the file is a single line of text that is the SHA-256 hash of the corresponding
zip file.

You can also reference the list of Gradle distribution checksums.

Configuring checksum verification

Add the downloaded (SHA-256 checksum) hash sum to gradle-wrapper.properties using the
distributionSha256Sum property or use --gradle-distribution-sha256-sum on the command-line:

networking.pdf#sec:accessing_the_web_via_a_proxy
networking.pdf#sec:accessing_the_web_via_a_proxy
https://services.gradle.org/distributions/
https://services.gradle.org/distributions-snapshots/
https://services.gradle.org/distributions-snapshots/
https://gradle.org/release-checksums/

distributionSha256Sum=371cb9fbebbe9880d147159bab36d61ece122854ef8c9eelect12b82368bcT10

Gradle will report a build failure if the configured checksum does not match the checksum found
on the server hosting the distribution. Checksum verification is only performed if the configured
Wrapper distribution hasn’t been downloaded yet.

The Wrapper task fails if gradle-wrapper.properties contains distributionSha256Sum,
but the task configuration does not define a sum. Executing the Wrapper task
preserves the distributionSha256Sum configuration when the Gradle version does
not change.

NOTE

Verifying the integrity of the Gradle Wrapper JAR

The Wrapper JAR is a binary file that will be executed on the computers of developers and build
servers. As with all such files, you should ensure it’s trustworthy before executing it.

Since the Wrapper JAR is usually checked into a project’s version control system, there is the
potential for a malicious actor to replace the original JAR with a modified one by submitting a pull
request that only upgrades the Gradle version.

To verify the integrity of the Wrapper JAR, Gradle has created a GitHub Action that automatically
checks Wrapper JARs in pull requests against a list of known good checksums.

Gradle also publishes the checksums of all releases (except for version 3.3 to 4.0.2, which did not
generate reproducible JARSs), so you can manually verify the integrity of the Wrapper JAR.

Automatically verifying the Gradle Wrapper JAR on GitHub

The GitHub Action is released separately from Gradle, so please check its documentation for how to
apply it to your project.

Manually verifying the Gradle Wrapper JAR

You can manually verify the checksum of the Wrapper JAR to ensure that it has not been tampered
with by running the following commands on one of the major operating systems.

Manually verifying the checksum of the Wrapper JAR on Linux:

$ cd gradle/wrapper

$ curl --location --output gradle-wrapper.jar.sha256 \
https://services.gradle.org/distributions/gradle-{gradleVersion}-
wrapper.jar.sha256

$ echo "gradle-wrapper.jar" >> gradle-wrapper.jar.sha256

https://github.com/marketplace/actions/gradle-wrapper-validation
https://gradle.org/release-checksums/
https://github.com/marketplace/actions/gradle-wrapper-validation

$ sha256sum --check gradle-wrapper.jar.sha256

gradle-wrapper.jar: OK

Manually verifying the checksum of the Wrapper JAR on macOS:

$ cd gradle/wrapper

$ curl --location --output gradle-wrapper.jar.sha256 \
https://services.gradle.org/distributions/gradle-{gradleVersion}-
wrapper.jar.sha256

$ echo "gradle-wrapper.jar" >> gradle-wrapper.jar.sha256

$ shasum --check gradle-wrapper.jar.sha256

gradle-wrapper.jar: OK

Manually verifying the checksum of the Wrapper JAR on Windows (using PowerShell):

> $expected = Invoke-RestMethod -Uri https://services.gradle.org/distributions/gradle-
8.6-wrapper.jar.sha256

> $actual = (Get-FileHash gradle\wrapper\gradle-wrapper.jar -Algorithm
SHA256) .Hash.ToLower ()

> @{$true = 'OK: Checksum match'; $false = "ERROR: Checksum mismatch!‘nExpected:
$expected'nActual: $actual"}[$actual -eq $expected]

0OK: Checksum match

Troubleshooting a checksum mismatch

If the checksum does not match the one you expected, chances are the wrapper task wasn’t executed
with the upgraded Gradle distribution.

You should first check whether the actual checksum matches a different Gradle version.

Here are the commands you can run on the major operating systems to generate the actual
checksum of the Wrapper JAR.

Generating the checksum of the Wrapper JAR on Linux:

$ sha256sum gradle/wrapper/gradle-wrapper.jar
d81e0f23ade952b35e55333dd5f1821585e887c6d24305aeea2 fbc8dad564b95
gradle/wrapper/gradle-wrapper.jar

Generating the actual checksum of the Wrapper JAR on macOS:

$ shasum --algorithm=256 gradle/wrapper/gradle-wrapper.jar
d81e@f23ade952b35€55333dd5f1821585e887c6d24305aeea2 fbc8dad564b95
gradle/wrapper/gradle-wrapper.jar

Generating the actual checksum of the Wrapper JAR on Windows (using PowerShell):

> (Get-FileHash gradle\wrapper\gradle-wrapper.jar -Algorithm SHA256).Hash.ToLower ()
d81e0f23ade952b35e55333dd5f1821585e887c6d24305aeea2 fbc8dad564b95

Once you know the actual checksum, check whether it’s listed on https://gradle.org/release-
checksums/. If it is listed, you have verified the integrity of the Wrapper JAR. If the version of
Gradle that generated the Wrapper JAR doesn’t match the version in gradle/wrapper/gradle-
wrapper .properties, it’s safe to run the wrapper task again to update the Wrapper JAR.

If the checksum is not listed on the page, the Wrapper JAR might be from a milestone, release
candidate, or nightly build or may have been generated by Gradle 3.3 to 4.0.2. Try to find out how it
was generated but treat it as untrustworthy until proven otherwise. If you think the Wrapper JAR
was compromised, please let the Gradle team know by sending an email to security@gradle.com.

Multi-Project Build Basics

Gradle supports multi-project builds.

https://gradle.org/release-checksums/
https://gradle.org/release-checksums/
mailto:security@gradle.com

Project Gradle

e———————
|
|

sub-project-1

</»| source code

sub-project-2

Build Flow

TestA
TestB
Test C

Project_App.JAR
Android_App.APK
Gradle_Plugin.ZIP
Web_App.WAR

Dependencies

While some small projects and monolithic applications may contain a single build file and source
tree, it is often more common for a project to have been split into smaller, interdependent modules.
The word "interdependent" is vital, as you typically want to link the many modules together

through a single build.

Gradle supports this scenario through multi-project builds. This is sometimes referred to as a multi-

module project. Gradle refers to modules as subprojects.

A multi-project build consists of one root project and one or more subprojects.

Multi-Project structure

The following represents the structure of a multi-project build that contains two subprojects:

Generic Multi-Project Build:

% settings.gradle.kts

Root Project

Sub-Project 2

@ build.gradle.kts*
foreny % build.gradle.kts
@ libs.version.toml

Sub-Project 1 Sub-Project 3

% build.gradle.kts % build.gradle. kts

The directory structure should look as follows:

—— .gradle
| L—1
—— gradle
| F—— 1ibs.version.toml
| L—— wrapper
—— gradlew
—— gradlew.bat
—— settings.gradle.kts @
—— sub-project-1
| L—— build.gradle.kts @
—— sub-project-2
| L—— build.gradle.kts @
L—— sub-project-3
L—— build.gradle.kts @

@ The settings.gradle.kts file should include all subprojects.
@ Each subproject should have its own build.gradle.kts file.

Multi-Project standards

The Gradle community has two standards for multi-project build structures:

1. Multi-Project Builds using buildSrc - where buildSrc is a subproject-like directory at the
Gradle project root containing all the build logic.

2. Composite Builds - a build that includes other builds where build-logic is a build directory at
the Gradle project root containing reusable build logic.

Multi-project Build - using buildSrc:

Composite Build - using includeBuild:

% settings.gradle.kts

O ()
(1,

T

% settings.gradle.kts

B
B

build-logic

[% settings.gradle.kts [%

B build.gradle kts

N

; Sub-project containing reusable build logic

1. Multi-Project Builds using buildSrc

\ Separate build containing reusable build logic
Can be built by Gradle as its own project

Multi-project builds allow you to organize projects with many modules, wire dependencies between

those modules, and easily share common build logic amongst them.

For example, a build that has many modules called mobile-app, web-app, api, 1ib, and documentation
could be structured as follows:

—— gradle
—— gradlew
—— settings.gradle.kts

—— buildSrc
| —— build.gradle.kts
| L—— src/main/kotlin/shared-build-conventions.gradle.kts
—— mobile-app
| L—— build.gradle.kts
—— web-app
| L—— build.gradle.kts
—— api
| L—— build.gradle.kts
F—— 1ib
| L—— build.gradle.kts
L—— documentation

L—— build.gradle.kts

The modules will have dependencies between them such as web-app and mobile-app depending on
1ib. This means that in order for Gradle to build web-app or mobile-app, it must build 1ib first.

In this example, the root settings file will look as follows:

settings.gradle.kts

include("mobile-app", "web-app", "api", "1ib", "documentation")

NOTE The order in which the subprojects (modules) are included does not matter.

The buildSrc directory is automatically recognized by Gradle. It is a good place to define and
maintain shared configuration or imperative build logic, such as custom tasks or plugins.

buildSrc is automatically included in your build as a special subproject if a build.gradle(.kts) file is
found under buildSrc.

If the java plugin is applied to the buildSrc project, the compiled code from buildSrc/src/main/java
is put in the classpath of the root build script, making it available to any subproject (web-app, mobile-
app, lib, etc...) in the build.

Consult how to declare dependencies between subprojects to learn more.

2. Composite Builds

Composite Builds, also referred to as included builds, are best for sharing logic between builds (not

subprojects) or isolating access to shared build logic (i.e., convention plugins).

Let’s take the previous example. The logic in buildSrc has been turned into a project that contains
plugins and can be published and worked on independently of the root project build.

The plugin is moved to its own build called build-1logic with a build script and settings file:

—— gradle
—— gradlew
—— settings.gradle.kts
—— build-logic
| —— settings.gradle.kts
| L—— conventions
| —— build.gradle.kts
| L—— src/main/kot1lin/shared-build-conventions.gradle.kts
—— mobile-app
| L—— build.gradle.kts
—— web-app
| L—— build.gradle.kts
—— api
| L—— build.gradle.kts
F—— 1ib
| L—— build.gradle.kts
L—— documentation

L—— build.gradle.kts

The fact that build-logic is located in a subdirectory of the root project is irrelevant.

NOTE
The folder could be located outside the root project if desired.

The root settings file includes the entire build-1logic build:

settings.gradle.kts

pluginManagement {
includeBuild("build-logic")
}

include("mobile-app", "web-app", "api", "1ib", "documentation")

Consult how to create composite builds with includeBuild to learn more.

Multi-Project path

A project path has the following pattern: it starts with an optional colon, which denotes the root
project.

The root project, :, is the only project in a path not specified by its name.

The rest of a project path is a colon-separated sequence of project names, where the next project is

a subproject of the previous project:
:sub-project-1
You can see the project paths when running gradle projects:

Root project 'project'
+--- Project ':sub-project-1'
\--- Project ':sub-project-2'

Project paths usually reflect the filesystem layout, but there are exceptions. Most notably for
composite builds.

Identifying project structure
You can use the gradle projects command to identify the project structure.

As an example, let’s use a multi-project build with the following structure:

> gradle -q projects

Root project 'multiproject’

+--- Project ':api'

+--- Project ':services'

| +--- Project ':services:shared'

| \--- Project ':services:webservice'
\--- Project ':shared'

To see a list of the tasks of a project, run gradle <project-path>:tasks
For example, try running gradle :api:tasks

Multi-project builds are collections of tasks you can run. The difference is that you may want to
control which project’s tasks get executed.

The following sections will cover your two options for executing tasks in a multi-project build.

Executing tasks by name

The command gradle test will execute the test task in any subprojects relative to the current
working directory that has that task.

If you run the command from the root project directory, you will run test in api, shared,
services:shared and services:webservice.

If you run the command from the services project directory, you will only execute the task in
services:shared and services:webservice.

The basic rule behind Gradle’s behavior is to execute all tasks down the hierarchy with this
name. And complain if there is no such task found in any of the subprojects traversed.

Some task selectors, like help or dependencies, will only run the task on the project
NOTE they are invoked on and not on all the subprojects to reduce the amount of
information printed on the screen.

Executing tasks by fully qualified name

You can use a task’s fully qualified name to execute a specific task in a particular subproject. For
example: gradle :services:webservice:build will run the build task of the webservice subproject.

The fully qualified name of a task is its project path plus the task name.

This approach works for any task, so if you want to know what tasks are in a particular subproject,
use the tasks task, e.g. gradle :services:webservice:tasks.

Multi-Project building and testing
The build task is typically used to compile, test, and check a single project.

In multi-project builds, you may often want to do all of these tasks across various projects. The
buildNeeded and buildDependents tasks can help with this.

In this example, the :services:person-service project depends on both the :api and :shared
projects. The :api project also depends on the :shared project.

Assuming you are working on a single project, the :api project, you have been making changes but
have not built the entire project since performing a clean. You want to build any necessary
supporting JARs but only perform code quality and unit tests on the parts of the project you have
changed.

The build task does this:

$ gradle :api:build

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTestl]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

V V V V V V V V V V V V V V V

BUILD SUCCESSFUL in 0s

If you have just gotten the latest version of the source from your version control system, which
included changes in other projects that :api depends on, you might want to build all the projects
you depend on AND test them too.

The buildNeeded task builds AND tests all the projects from the project dependencies of the
testRuntime configuration:

$ gradle :api:buildNeeded

Task :shared:compilelava

Task :shared:processResources
Task :shared:classes

Task :shared:jar

Task :api:compilelava

Task :api:processResources
Task :api:classes

Task :api:jar

Task :api:assemble

Task :api:compileTestl]ava
Task :api:processTestResources
Task :api:testClasses

Task :api:test

Task :api:check

Task :api:build

Task :shared:assemble

Task :shared:compileTestJava
Task :shared:processTestResources
Task :shared:test(Classes

Task :shared:test

Task :shared:check

Task :shared:build

Task :shared:buildNeeded

Task :api:buildNeeded

V VvV

BUILD SUCCESSFUL in 0@s

You may want to refactor some part of the :api project used in other projects. If you make these
changes, testing only the :api project is insufficient. You must test all projects that depend on the
:api project.

The buildDependents task tests ALL the projects that have a project dependency (in the testRuntime
configuration) on the specified project:

$ gradle :api:buildDependents

BUILD SUCCESSFUL in 0@s

Finally, you can build and test everything in all projects. Any task you run in the root project folder

> Task :shared:compilelava

> Task :shared:processResources

> Task :shared:classes

> Task :shared:jar

> Task :api:compilelava

> Task :api:processResources

> Task :api:classes

> Task :api:jar

> Task :api:assemble

> Task :api:compileTest]ava

> Task :api:processTestResources

> Task :api:testClasses

> Task :api:test

> Task :api:check

> Task :api:build

> Task :services:person-service:compilelava

> Task :services:person-service:processResources
> Task :services:person-service:classes

> Task :services:person-service:jar

> Task :services:person-service:assemble

> Task :services:person-service:compileTestJava
> Task :services:person-service:processTestResources
> Task :services:person-service:testClasses

> Task :services:person-service:test

> Task :services:person-service:check

> Task :services:person-service:build

> Task :services:person-service:buildDependents
> Task :api:buildDependents

will cause that same-named task to be run on all the children.

You can run gradle build to build and test ALL projects.

Consult the Structuring Builds chapter to learn more.

Next Step: Learn about the Gradle Build Lifecycle >>

Troubleshooting builds

The following is a collection of common issues and suggestions for addressing them. You can get
other tips and search the Gradle forums and StackOverflow #gradle answers, as well as Gradle

https://discuss.gradle.org/c/help-discuss
https://stackoverflow.com/questions/tagged/gradle

documentation from help.gradle.org.

Troubleshooting Gradle installation

If you followed the installation instructions, and aren’t able to execute your Gradle build, here are
some tips that may help.

If you installed Gradle outside of just invoking the Gradle Wrapper, you can check your Gradle
installation by running gradle --version in a terminal.

You should see something like this:

0 gradle --version

Build time: 2020-06-02 20:46:21 UTC

Revision: a27f41e4ae5e8a41ab9b19f8dd6d86d7b384dad4

Kotlin: 1.3.72

Groovy: 2.5.11

Ant: Apache Ant(TM) version 1.10.7 compiled on September 1 2019
JVM: 14 (AdoptOpen]DK 14+36)

0S: Mac 0S X 10.15.2 x86_64

If not, here are some things you might see instead.

Command not found: gradle

If you get "command not found: gradle", you need to ensure that Gradle is properly added to your
PATH.

JAVA_HOME is set to an invalid directory

If you get something like:

ERROR: JAVA_HOME is set to an invalid directory

Please set the JAVA_HOME variable in your environment to match the location of your
Java installation.

You’ll need to ensure that a Java Development Kit version 8 or higher is properly installed, the
JAVA_HOME environment variable is set, and Java is added to your PATH.

https://help.gradle.org/
https://jdk.java.net/
https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/path.xml
https://www.java.com/en/download/help/path.xml

Permission denied

If you get "permission denied", that means that Gradle likely exists in the correct place, but it is not
executable. You can fix this using chmod +x path/to/executable on *nix-based systems.

Other installation failures

If gradle --version works, but all of your builds fail with the same error, it is possible there is a
problem with one of your Gradle build configuration scripts.

You can verify the problem is with Gradle scripts by running gradle help which executes
configuration scripts, but no Gradle tasks. If the error persists, build configuration is problematic. If
not, then the problem exists within the execution of one or more of the requested tasks (Gradle
executes configuration scripts first, and then executes build steps).

Debugging dependency resolution

Common dependency resolution issues such as resolving version conflicts are covered in
Troubleshooting Dependency Resolution.

You can see a dependency tree and see which resolved dependency versions differed from what
was requested by clicking the Dependencies view and using the search functionality, specifying the
resolution reason.

20O (< [l & scans.gradle.com & i} [l ’T
ﬁ Build Scan e v/ gradle :docs:userguide... Feb 21, 2018 3:06:35 PM MST
E Summary Search
Console IOg | [Resolution: Selected different from requested X] |
##+ Timeline
“'w LR . Found 3 dependencies resolved in 1 project across 2 configurations
o Projects
9 Dependencies :docs
) asciidoctor ~ - 0.018s
> Plugins org.asciidoctor:asciidoctorj:1.5.2 = 1.5.6 conflict resolution
o= Custom values userGuideTask ~ - 0.011s
g Switches xerces:xerceslmpl:2.9.0 — 2.11.0 conflict resolution

xml-apis:xml-apis:1.3.04 — 1.4.01 conflict resolution

15

Infrastructure

B

Home : Dependencies Close dependency details {esc)

Figure 2. Debugging dependency conflicts with build scans

The actual build scan with filtering criteria is available for exploration.

Troubleshooting slow Gradle builds

For build performance issues (including “slow sync time”), see improving the Performance of
Gradle Builds.

https://scans.gradle.com/s/sample/troubleshooting-userguide/dependencies?expandAll&filters=WzFd&toggled=W1swXSxbMF0sWzAsMF0sWzAsMV1d

Android developers should watch a presentation by the Android SDK Tools team about Speeding Up
Your Android Gradle Builds. Many tips are also covered in the Android Studio user guide on
optimizing build speed.

Debugging build logic

Attaching a debugger to your build

You can set breakpoints and debug buildSrc and standalone plugins in your Gradle build itself by
setting the org.gradle.debug property to “true” and then attaching a remote debugger to port 5005.
You can change the port number by setting the org.gradle.debug.port property to the desired port
number.

To attach the debugger remotely via network, you need to set the org.gradle.debug.host property to
the machine’s IP address or * (listen on all interfaces).

0 gradle help -Dorg.gradle.debug=true

In addition, if you’ve adopted the Kotlin DSL, you can also debug build scripts themselves.
The following video demonstrates how to debug an example build using Intelli] IDEA.

[remote debug gradle] | remote-debug-gradle.gif
Figure 3. Interactive debugging of a build script

Adding and changing logging

In addition to controlling logging verbosity, you can also control display of task outcomes (e.g. “UP-
TO-DATE”) in lifecycle logging using the --console=verbose flag.

You can also replace much of Gradle’s logging with your own by registering various event listeners.
One example of a custom event logger is explained in the logging documentation. You can also
control logging from external tools, making them more verbose in order to debug their execution.

Additional logs from the Gradle Daemon can be found under $

NOTE
GRADLE_USER_HOME/daemon/8.6/.

Task executed when it should have been UP-TO-DATE

--info logs explain why a task was executed, though build scans do this in a searchable, visual way
by going to the Timeline view and clicking on the task you want to inspect.

https://youtu.be/7ll-rkLCtyk
https://youtu.be/7ll-rkLCtyk
https://developer.android.com/studio/build/optimize-your-build.html
https://developer.android.com/studio/build/optimize-your-build.html

oD® < Em} @ scans.gradle.com & i} [l ,T
ﬁ Build Scan e Vv gradle :docs:userguideHtml Feb 21, 2018 3:06:35 PM MST (& (Q)
=] © 12 tasks executed in 1 project in 43.899s ()

= Summary

Console log :docs:userguideAsci...

:docs:userguideHtml

I Performance

52';5 Projects Path Started after Duration Class Order: Execution
¥% Dependencies ExtractDslM|
s Plugins) GenerateDe
. | :docsiuserguideAsciidoc H X rT:
o= Custom values :docs:checkSectionlds Started after 0.108s rifi
g Switches :docs:configureCss Duration 8.930s
BE Infrastructure Class org.gradle.build.docs.CacheableAsciidoctorTask
S lel}
The task was not up-to-date because of the following reasons:
Task "docs:userguideAsciidoc' class path has changed from CT:
:docs:userguideDocbook 764654807a0962e25e318676ecec5244 to 1E}
97e9924c30cd3fe08d245f30f54ac92a.
:docs:userguideHtml
Build cache result > Miss (local and remote), Store (local)
Home » Timeline Close timeline (esc)

Figure 4. Debugging incremental build with a build scan

You can learn what the task outcomes mean from this listing.

Debugging IDE integration

Many infrequent errors within IDEs can be solved by '"refreshing" Gradle. See also more
documentation on working with Gradle in Intelli] IDEA and in Eclipse.

Refreshing Intelli] IDEA

NOTE This only works for Gradle projects linked to Intelli].

From the main menu, go to View > Tool Windows > Gradle. Then click on the Refresh icon.

https://www.jetbrains.com/help/idea/gradle.html
http://www.vogella.com/tutorials/EclipseGradle/article.html
https://www.jetbrains.com/help/idea/gradle.html#link_gradle_project

Figure 5. Refreshing a Gradle project in Intelli] IDEA

Refreshing Eclipse (using Buildship)

[] | gradle-digest-plugin [~/sreferiwen/gradle-digest-plugin] - .../build.gradle.kis [gradle-digest-plugin]

L

'buildScan { s

' Remote

servicelrl("https

Debug Gradle) =

Refresh all Gradle projects

+

¥ (=; gradle

>
>
>
>
>
>
>
>
>
>

help
other

og

gest-plugin (auto-impo

build
build scan
build setup

documentation

plugin development
plugin portal
publ

verif ion

ing

> [Ef Dependencies

If you're using Buildship for the Eclipse IDE, you can re-synchronize your Gradle build by opening
the "Gradle Tasks" view and clicking the "Refresh" icon, or by executing the Gradle > Refresh Gradle
Project command from the context menu while editing a Gradle script.

b

®
=5
L

(=

]

& build.gradle £3

lapply plugin: 'java'

2apply plugin: 'application'

3apply plugin: 'idea'

4apply plugin: '"eclipse'
c

6group "org.sample"
7version "1.@"

&G

8

9mainClassName = "org.sample.myapp.Main"
10

11 dependencies {

12 compile "org.sample:number-utils:1.0"
13 compile "org.sample:string-utils:1.@"
141

eclipse-workspace - multirepo-app/build.gradle - Eclipse

@ = HO-%UQU HCG BC -

= B & Gradle Tasks I3

Name
v Bmultimpo-app
b (& application
P (% build scan
¥ (2 build setup
b (% build
b (& distribution
» (& documentation
b (& help
b (Zide
b (& verification
» = number-utils
> I.L",Jstring-utils

<&

e
1B $5% ¥ ||

Dest pefresh Tasks for All Proje
|4

Figure 6. Refreshing a Gradle project in Eclipse Buildship

Troubleshooting daemon connection issues

If your Gradle build fails before running any tasks, you may be encountering problems with your
network configuration. When Gradle is unable to communicate with the Gradle daemon process,
the build will immediately fail with a message similar to this:

https://projects.eclipse.org/projects/tools.buildship

$ gradle help

Starting a Gradle Daemon, 1 stopped Daemon could not be reused, use --status for
details

FAILURE: Build failed with an exception.

* What went wrong:

A new daemon was started but could not be connected to: pid=DaemonInfo{pid=55913,
address=[7fb34c82-1907-4c32-afda-888c9b6e2279 port:42751, addresses:[/127.0.0.1]],
state=Busy, ...

We have observed this can occur when network address translation (NAT) masquerade is used.
When NAT masquerade is enabled, connections that should be considered local to the machine are
masked to appear from external IP addresses. Gradle refuses to connect to any external IP address
as a security precaution.

The solution to this problem is to adjust your network configuration such that local connections are
not modified to appear as from external addresses.

You can monitor the detected network setup and the connection requests in the daemon log file (
$GRADLE _USER_HOME/daemon/<Gradle version>/daemon-<PID>.out.10g).

2021-08-12712:01:50.755+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding IP addresses for
network interface enp@s3

2021-08-12712:01:50.759+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Is this a loopback interface?
false

2021-08-12712:01:50.769+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding remote address
/fe80:0:0:0:85ba:3f3e:1b88:c0e1%enpds3

2021-08-12712:01:50.770+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding remote address
/10.0.2.15

2021-08-12712:01:50.770+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding IP addresses for
network interface lo

2021-08-12712:01:50.771+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Is this a loopback interface?
true

2021-08-12712:01:50.771+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding loopback address
/0:0:0:0:0:0:0:1%10

2021-08-12712:01:50.771+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.InetAddresses] Adding loopback address
/127.0.0.1

2021-08-12712:01:50.775+0200 [DEBUG]
[org.gradle.internal.remote.internal.inet.TcpIncomingConnector] Listening on
[7fb34c82-1907-4c32-afda-888c9b6e2279 port:42751, addresses:[localhost/127.0.0.1]].

2021-08-12712:01:50.797+0200 [INFO]
[org.gradle.launcher.daemon.server.DaemonRegistryUpdater] Advertising the daemon
address to the clients: [7fb34c82-1907-4c32-afda-888c9bbe2279 port:42751,
addresses:[localhost/127.0.0.1]]

2021-08-12712:01:50.923+0200 [ERROR]
[org.gradle.internal.remote.internal.inet.TcpIncomingConnector] Cannot accept
connection from remote address /10.0.2.15.

Getting additional help

If you didn’t find a fix for your issue here, please reach out to the Gradle community on the help
forum or search relevant developer resources using help.gradle.org.

If you believe you’ve found a bug in Gradle, please file an issue on GitHub.

https://discuss.gradle.org/c/help-discuss
https://discuss.gradle.org/c/help-discuss
https://help.gradle.org/
https://github.com/gradle/gradle/issues

CUSTOMIZING EXECUTION

Configuring the Build Environment

Gradle provides multiple mechanisms for configuring the behavior of Gradle itself and specific
projects. The following is a reference for using these mechanisms.

When configuring Gradle behavior, you can use these methods, listed in order of highest to lowest
precedence (the first one wins):

Order Method Example Notes
1 Command-line --build-cache These have precedence over
flags properties and environment variables.
2 System properties SystemProp.http.pr Stored in a gradle.properties file in a
?;yHost:somehost.o root project directory.
3 Gradle properties 0rg.gradle.caching Stored in a gradle.properties file in
=true the GRADLE_USER_HOME.
3.1 Gradle properties 0rg.gradle.caching Stored in a gradle.properties file in a
=true project directory, then its parent
project’s directory up to the project’s
root directory.
3.2 Gradle properties 0rg.gradle.caching Stored in a gradle.properties file in
mtrue the GRADLE_HOMNE.
4 Environment GRADLE_OPTS Sourced by the environment that
variables executes Gradle.

Configuring your build environment
You can configure the build using the same mechanisms.

You can also read information about the environment in the build logic.

1. Command-line flags

The command line interface, along with the available flags, is described in its own section.

2. System properties

Using the -D command-line option, you can pass a system property to the JVM, which runs Gradle.
The -D option of the gradle command has the same effect as the -D option of the java command.

You can also set system properties in gradle.properties files with the prefix systemProp:

systemProp.gradle.wrapperUser=myuser
systemProp.gradle.wrapperPassword=mypassword

The following are common system properties:
Gradle Properties

gradle.wrapperUser=(myuser)

Specify username to download Gradle distributions from servers using HTTP
Authentication.

gradle.wrapperPassword=(mypassword)

Specify password for downloading a Gradle distribution using the Gradle wrapper.

gradle.user.home=(path to directory)
Specify the GRADLE_USER_HOME directory.

The Gradle Properties listed the section below can also be set as system properties.
Networking Properties

https.protocols

Specify the supported TLS versions in a comma-separated format. e.g., TLSv1.2,TLSv1.3.

http.proxyHost

The hostname, or address, of the proxy server. Default: none.

http.proxyPort

The port number of the proxy server. Default: 80.

http.nonProxyHosts

Basic

Indicates the hosts that should be accessed without going through the proxy. Default:

localhost|127.*|[::1].

https.proxyHost

The hostname, or address, of the proxy server. Default: none.

https.proxyPort

The port number of the proxy server. Default: 443.

socksProxyHost

The hostname, or address, of the proxy server. Default: none.

socksProxyPort

The port number of the proxy server. Default: 1080.

socksProxyVersion

The version of the SOCKS protocol supported by the server. Default: 5 for SOCKS V5.

java.net.socks.username

Username to use if the SOCKSv5 server asks for authentication. Default: none.

java.net.socks.password

Password to use if the SOCKSV5 server asks for authentication. Default: none.
Runtime Environment Properties

java.runtime.version=(string)
JRE version, e.g. 1.7.0_09-b@5.

java.version=(string)

JDK version, e.g., 1.7.0_09.

java.home=(string)

JRE home directory, e.g., C:\Program Files\Java\jdk1.7.0_09\jre.

java.class.path=(string)

JRE classpath e.g., . (dot — used for current working directory).

java.library.path=(string)
JRE library search path for search native libraries. Typically taken from the environment
variable PATH.

java.ext.dirs=(string)

JRE extension library path(s), e.g, C:\Program
Files\Java\jdk1.7.0_09\jre\lib\ext;C:\Windows\Sun\Java\lib\ext.

Operating System Properties

os.name=(string)

The OS’s name, e.g., Windows 7.

os.arch=(string)

The OS’s architecture, e.g., x86.

os.version=(string)

The OS’s version, e.g., 6.1.
File System Properties

file.separator=(string)

Symbol for file directory separator such as d:\test\test.java. Default is '\' for windows or '/' for
Unix/Mac.

path.separator=(string)

Symbol for separating path entries, e.g., in PATH or CLASSPATH. Default is ';' for windows or "'
for Unix/Mac.

line.separator=(string)

Symbol for end-of-line (or new line). Default is "\r\n" for windows or "\n" for Unix/Mac OS X.
User Properties

user.name=(string)

The user’s name.

user .home=(string)

The user’s home directory.

user.dir=(string)

The user’s current working directory.

In a multi-project build, systemProp properties set in any project except the root will be ignored.
Only the root project’s gradle.properties file will be checked for properties that begin with
systemProp.

The following examples demonstrate how to use System properties.

Example 1: Setting system properties with a gradle.properties file:

gradle.properties

systemProp.system=gradlePropertiesValue

Example 2: Reading system properties at configuration time:

init.gradle.kts

// Using the Java API
println(System.getProperty("system"))

settings.gradle.kts

// Using the Java API
println(System.qgetProperty("system"))

// Using the Gradle API, provides a lazy Provider<String>
println(providers.systemProperty("system").get())

build.gradle.kts

// Using the Java API
println(System.qgetProperty("system"))

// Using the Gradle API, provides a lazy Provider<String>
println(providers.systemProperty("system").get())

init.gradle

// Using the Java API
println System.getProperty('system")

settings.gradle

// Using the Java API
println System.getProperty('system')

// Using the Gradle API, provides a lazy Provider<String>
println providers.systemProperty('system').qget()

build.gradle

// Using the Java API
println System.getProperty('system')

// Using the Gradle API, provides a lazy Provider<String>
println providers.systemProperty('system').qget()

Example 3: Reading system properties for consumption at execution time:

build.gradle.kts

tasks.register<PrintValue>("printProperty") {

// Using the Gradle API, provides a lazy Provider<String> wired to a task
input

inputValue = providers.systemProperty("system")

}

build.gradle

tasks.register('printProperty', PrintValue) {

// Using the Gradle API, provides a lazy Provider<String> wired to a task
input

inputValue = providers.systemProperty('system")

}

Example 4: Setting system properties from the command line -D gradle.wrapperUser=username:

$ gradle -Dsystem=commandLineValue

3. Gradle properties

Gradle provides several options that make it easy to configure the Java process that will be used to
execute your build.

While it’s possible to configure these in your local environment via GRADLE_OPTS or JAVA_OPTS, it is
useful to be able to store certain settings like JVM memory configuration and JAVA_HOME location in
version control so that an entire team can work with a consistent environment.

To do so, place these settings into a gradle.properties file and commit it to your version control
system.

The final configuration taken into account by Gradle is a combination of all Gradle properties set on
the command line and your gradle.properties files.

If an option is configured in multiple locations, the first one found in any of these locations wins:

1. command line, set using -D.

2. gradle.properties in GRADLE_USER_HOME directory.

3. gradle.properties in the project’s directory, then its parent project’s directory up to the build’s
root directory.

4. gradle.properties in the Gradle installation directory.

The location of the GRADLE_USER_HOME may have been changed beforehand via the

NOTE
-Dgradle.user.home system property passed on the command line.

The following properties can be used to configure the Gradle build environment:

org.gradle.caching=(true,false)

When set to true, Gradle will reuse task outputs from any previous build when possible,
resulting in much faster builds.

Default is false; the build cache is not enabled.

org.gradle.caching.debug=(true,false)

When set to true, individual input property hashes and the build cache key for each task are
logged on the console.

Default is false.

org.gradle.configuration-cache=(true,false)

Enables configuration caching. Gradle will try to reuse the build configuration from previous
builds.

Default is false.

org.gradle.configuration-cache.inputs.unsafe.ignore.file-system-checks=(file path)

Used to exclude file system checks on the specified path from configuration cache inputs
fingerprinting.

Default is null.

org.gradle.configuration-cache.inputs.unsafe.ignore.in-serialization=(true,false)

Used to ignore inputs in task graph serialization.
Default is false.

org.gradle.configuration-cache.problems=(fail,warn)

Configures how the configuration cache handles problems.

Set to warn to report problems without failing the build.

Set to fail to report problems and fail the build if there are any problems.
Default is fail.

org.gradle.configuration-cache.max-problems=(# of problems)

Configures the maximum number of configuration cache problems allowed as warnings until

Gradle fails the build.
Default is 512.

org.gradle.configureondemand=(true,false)

Enables incubating configuration-on-demand, where Gradle will attempt to configure only
necessary projects.

Default is false.

org.gradle.console=(auto,plain,rich,verbose)

Customize console output coloring or verbosity.
Default depends on how Gradle is invoked.

org.gradle.continue=(true,false)

If enabled, continue task execution after a task failure, else stop task execution after a task
failure.

Default is false.

org.gradle.continuous.quietperiod=(# of quiet period millis)

When using continuous build, Gradle will wait for the quiet period to pass before triggering
another build. Any additional changes within this quiet period restart the quiet period
countdown.

Default is 250 milliseconds.

org.gradle.daemon=(true,false)

When set to true the Gradle Daemon is used to run the build.
Default is true.

org.gradle.daemon.healthcheckinterval=(# of millis)

Gradle Daemon health will be checked after a specified number of milliseconds.
Default is 10000; (10 secs).

org.gradle.daemon.idletimeout=(# of idle millis)

Gradle Daemon will terminate itself after a specified number of idle milliseconds.
Default is 10800000 (3 hours).

org.gradle.daemon.registry.base=(directory)

Specify a Daemon registry path where the daemon registry file (addresses of active daemons)
and daemon log files reside.

Default is . (local directory).

org.gradle.debug=(true,false)

When set to true, Gradle will run the build with remote debugging enabled, listening on port
5005. Note that this is equivalent to adding
-agentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=5005 to the JVM command line
and will suspend the virtual machine until a debugger is attached.

Default is false.

org.gradle.debug.host=(host address)

Specifies the host address to listen on or connect to when debug is enabled. In the server mode
on Java 9 and above, passing * for the host will make the server listen on all network interfaces.

Default is null; no host address is passed to JDWP (on Java 9 and above, the loopback address is
used, while earlier versions listen on all interfaces).

org.gradle.debug.port=(port number)

Specifies the port number to listen on when debug is enabled.
Default is 5005.

org.gradle.debug.server=(true,false)

If set to true and debugging is enabled, Gradle will run the build with the socket-attach mode of
the debugger. Otherwise, the socket-listen mode is used.

Default is true.

org.gradle.debug.suspend=(true,false)

When set to true and debugging is enabled, the JVM running Gradle will suspend until a
debugger is attached.

Default is true.

org.gradle.dependency.verification=(strict,lenient,off)

Configures the dependency verification mode where in strict mode verification fails as early as
possible, in order to avoid the use of compromised dependencies during the build.

Default is strict.

org.gradle.internal.instrumentation.agent=(true, false)

Enables the instrumentation Java agent for the daemon.
Default is true.

org.gradle.java.home=(path to JDK home)
Specifies the Java home for the Gradle build process. The value can be set to either a jdk or jre
location; however, depending on what your build does, using a JDK is safer. This does not affect
the version of Java used to launch the Gradle client VM.

Default is derived from your environment (JAVA_HOME or the path to java) if the setting is
unspecified.

org.gradle.jvmargs=(JVM arguments)

Specifies the JVM arguments used for the Gradle Daemon. The setting is particularly useful for
configuring JVM memory settings for build performance. This does not affect the JVM settings
for the Gradle client VM.

Default is -Xmx512m "-XX:MaxMetaspaceSize=384m".

org.gradle.logging.level=(quiet,warn,info,debug)
When set to quiet, warn, info, or debug, Gradle will use this log level. The values are not case-
sensitive.

Default is 1ifecycle level.

org.gradle.logging.stacktrace=(internal,all, full)

Specifies whether stacktraces should be displayed as part of the build result upon an exception.
See the --stacktrace command-line option for additional information.

When set to internal, a stacktrace is present in the output only in case of internal exceptions.
When set to all or full, a stacktrace is present in the output for all exceptions and build failures.
Using full doesn’t truncate the stacktrace, which leads to a much more verbose output.

Default is internal.

org.gradle.parallel=(true,false)

When configured, Gradle will fork up to org.gradle.workers.max JVMs to execute projects in
parallel.

Default is false.

org.gradle.priority=(low,normal)

Specifies the scheduling priority for the Gradle daemon and all processes launched by it.
Default is normal.

org.gradle.projectcachedir=(directory)

Specify the project-specific cache directory. Defaults to .gradle in the root project directory."
Default is .gradle.

org.gradle.unsafe.isolated-projects=(true,false)

Enables project isolation which enables configuration caching.
Default is false.

org.gradle.vfs.verbose=(true,false)

Configures verbose logging when watching the file system.

Default is false.

config_gradle.pdf#sec:configuring_jvm_memory

org.gradle.vfs.watch=(true,false)

Toggles watching the file system. When enabled, Gradle reuses information it collects about the
file system between builds.

Default is true on operating systems where Gradle supports this feature.

org.gradle.vfs.watch.debug=(true, false)

Enables debug events emitted in native-platform to be shown. Events are only shown when
--debug is enabled or when the daemon is between builds.

Default is false.

org.gradle.warning.mode=(all,fail,summary,none)

When set to all, summary or none, Gradle will use different warning type display.
Default is summary.

org.gradle.welcome=(never,once)

Controls whether Gradle should print a welcome message.

If set to never, then the welcome message will be suppressed.

If set to once, then the message is printed once for each new version of Gradle.
Default is once.

org.gradle.workers.max=(max # of worker processes)

When configured, Gradle will use a maximum of the given number of workers.
Default is the number of CPU processors.
The following examples demonstrate how to use Gradle properties.

Example 1: Setting Gradle properties with a gradle.properties file:

gradle.properties

gradlePropertiesProp=gradlePropertiesValue
gradleProperties.with.dots=gradlePropertiesDottedValue

Example 2: Reading Gradle properties at configuration time:

settings.gradle.kts

// Using the API, provides a lazy Provider<String>
println(providers.gradleProperty("gradlePropertiesProp").get())

// Using Kotlin delegated properties on ‘settings’
val gradlePropertiesProp: String by settings
println(gradlePropertiesProp)

build.gradle.kts

// Using the API, provides a lazy Provider<String>
println(providers.gradleProperty("gradlePropertiesProp").get())

// Using Kotlin delegated properties on ‘project’
val gradlePropertiesProp: String by project
println(gradlePropertiesProp)

settings.gradle

// Using the API, provides a lazy Provider<String>
println providers.gradleProperty('gradlePropertiesProp').get()

// Using Groovy dynamic names
println gradlePropertiesProp
println settings.gradlePropertiesProp

// Using Groovy dynamic array notation on ‘settings®
println settings['gradlePropertiesProp']

build.gradle

// Using the API, provides a lazy Provider<String>
println providers.gradleProperty('gradlePropertiesProp').get()

// Using Groovy dynamic names
println gradlePropertiesProp
println project.gradlePropertiesProp

// Using Groovy dynamic array notation on ‘project’
println project['gradlePropertiesProp']

The Kotlin delegated properties are part of the Gradle Kotlin DSL. You need to explicitly specify the
type as String. If you need to branch depending on the presence of the property, you can also use

https://kotlinlang.org/docs/delegated-properties.html

String? and check for null.

Note that if a Gradle property has a dot in its name, using the dynamic Groovy names is not
possible. You have to use the API or the dynamic array notation instead.

Example 3: Reading Gradle properties for consumption at execution time:

build.gradle.kts
tasks.register<PrintValue>("printProperty") {

// Using the API, provides a lazy Provider<String> wired to a task input
inputValue = providers.gradleProperty("gradlePropertiesProp")

build.gradle
tasks.register('printProperty’, PrintValue) {

// Using the API, provides a lazy Provider<String> wired to a task input
inputValue = providers.gradleProperty('gradlePropertiesProp')

Example 4: Setting Gradle properties from the command line:

$ gradle -DgradlePropertiesProp=commandLineValue

Note that initialization scripts can’t read Gradle properties directly. The earliest Gradle properties
can be read in initialization scripts is on settingsEvaluated {}:

Example 5: Reading Gradle properties from initialization scripts:

init.gradle.kts

settingsEvaluated {
// Using the API, provides a lazy Provider<String>
println(providers.gradleProperty("gradlePropertiesProp").get())

// Using Kotlin delegated properties on ‘settings’
val gradlePropertiesProp: String by this
println(gradlePropertiesProp)

init.gradle

settingsEvaluated { settings ->
// Using the API, provides a lazy Provider<String>
println settings.providers.gradleProperty('gradlePropertiesProp’).get()

// Using Groovy dynamic names
println settings.gradlePropertiesProp

// Using Groovy dynamic array notation on ‘settings®
println settings['gradlePropertiesProp']

Properties declared in a gradle.properties file present in a subproject directory are only available
to that project and its children.

4. Environment variables
The following environment variables are available for the gradle command.

GRADLE_HOME

Installation directory for Gradle.
Can be used to specify a local Gradle version instead of using the wrapper.

You can add GRADLE_HOME/bin to your PATH for specific applications and use-cases (such as testing
an early release for Gradle).

JAVA_OPTS
Used to pass JVM options and custom settings to the JVM.

GRADLE_OPTS

Specifies JVM arguments to use when starting the Gradle client VM.

The client VM only handles command line input/output, so it is rare that one would need to
change its VM options.

The actual build is run by the Gradle daemon, which is not affected by this environment
variable.

GRADLE_USER_HOME

Specifies the GRADLE_USER_HOME directory for Gradle to store its global configuration properties,
initialization scripts, caches, log files and more.

Defaults to USER_HOME/.gradle if not set.

JAVA_HOME
Specifies the JDK installation directory to use for the client VM.

This VM is also used for the daemon unless a different one is specified in a Gradle properties file
with org.gradle.java.home.

GRADLE_LIBS_REPO_OVERRIDE
Overrides for the default Gradle library repository.

Can be used to specify a default Gradle repository URL in
org.gradle.plugins.ide.internal.resolver.

Useful override to specify an internally hosted repository in case your company uses a
firewall/proxy.

The following examples demonstrate how to use environment variables.

Example 1: Reading environment variables at configuration time:

init.gradle.kts

// Using the Java API
println(System.getenv("ENVIRONMENTAL"))

settings.gradle.kts

// Using the Java API
println(System.getenv("ENVIRONMENTAL"))

// Using the Gradle API, provides a lazy Provider<String>
println(providers.environmentVariable("ENVIRONMENTAL").qget())

build.gradle.kts

// Using the Java API
println(System.getenv("ENVIRONMENTAL"))

// Using the Gradle API, provides a lazy Provider<String>
println(providers.environmentVariable("ENVIRONMENTAL").qget())

init.gradle

// Using the Java API
println System.getenv('ENVIRONMENTAL")

settings.gradle

// Using the Java API
println System.getenv('ENVIRONMENTAL")

// Using the Gradle API, provides a lazy Provider<String>
println providers.environmentVariable('ENVIRONMENTAL").qget()

build.gradle

// Using the Java API
println System.getenv('ENVIRONMENTAL")

// Using the Gradle API, provides a lazy Provider<String>
println providers.environmentVariable('ENVIRONMENTAL").get()

Example 2: Reading environment variables for consumption at execution time:

build.gradle.kts

tasks.register<PrintValue>("printValue") {

// Using the Gradle API, provides a lazy Provider<String> wired to a task
input

inputValue = providers.environmentVariable("ENVIRONMENTAL")
}

build.gradle

tasks.register('printValue', PrintValue) {

// Using the Gradle API, provides a lazy Provider<String> wired to a task
input

inputValue = providers.environmentVariable("'ENVIRONMENTAL")
}

Gradle Daemon

A daemon is a computer program that runs as a background process rather than being under the
direct control of an interactive user.

Gradle runs on the Java Virtual Machine (JVM) and uses several supporting libraries with non-
trivial initialization time. Startups can be slow. The Gradle Daemon solves this problem.

The Gradle Daemon is a long-lived background process that reduces the time it takes to run a build.
The Gradle Daemon reduces build times by:

* Caching project information across builds

* Running in the background so every Gradle build doesn’t have to wait for JVM startup

Benefiting from continuous runtime optimization in the JVM

Watching the file system to calculate exactly what needs to be rebuilt before you run a build

Understanding the Daemon

The Gradle JVM client sends the Daemon build information such as command line arguments,
project directories, and environment variables so that it can run the build. The Wrapper is
responsible for resolving dependencies, executing build scripts, creating and running tasks; when it
is done, it sends the client the output. Communication between the client and the Daemon happens
via a local socket connection.

Daemons use the JVM’s default minimum heap size.

If the requested build environment does not specify a maximum heap size, the Daemon uses up to
512MB of heap. 512MB is adequate for most builds. Larger builds with hundreds of subprojects,
configuration, and source code may benefit from a larger heap size.

Check Daemon status

To get a list of running Daemons and their statuses, use the --status command:

$ gradle --status

PID STATUS INFO
28486 IDLE 7.5
34247 BUSY 7.5

Currently, a given Gradle version can only connect to Daemons of the same version. This means the
status output only shows Daemons spawned running the same version of Gradle as the current
project.

Find Daemons

If you have installed the Java Development Kit (JDK), you can view live daemons with the jps
command.

$ jps

33920 Jps
27171 GradleDaemon
22792

Live Daemons appear under the name GradleDaemon. Because this command uses the JDK, you can
view Daemons running any version of Gradle.

Enable Daemon

Gradle enables the Daemon by default since Gradle 3.0. If your project doesn’t use the Daemon, you
can enable it for a single build with the --daemon flag when you run a build:

$ gradle <task> --daemon

This flag overrides any settings that disable the Daemon in your project or user gradle.properties
files.

To enable the Daemon by default in older Gradle versions, add the following setting to the
gradle.properties file in the project root or your Gradle User Home (GRADLE_USER_HOME:

gradle.properties

org.gradle.daemon=true

Disable Daemon
You can disable the Daemon in multiple ways but there are important considerations:

Single-use Daemon

If the JVM args of the client process don’t match what the build requires, a single-used Daemon
(disposable JVM) is created. This means the Daemon is required for the build, so it is created,
used, and then stopped at the end of the build.

No Daemon

If the JAVA_OPTS and GRADLE_OPTS match org.gradle.jvmargs, the Daemon will not be used at all
since the build happens in the client JVM.

Disable for a build

To disable the Daemon for a single build, pass the --no-daemon flag when you run a build:

$ gradle <task> --no-daemon

This flag overrides any settings that enable the Daemon in your project including the
gradle.properties files.

Disable for a project

To disable the Daemon for all builds of a project, add org.gradle.daemon=false to the
gradle.properties file in the project root.

Disable for a user
On Windows, this command disables the Daemon for the current user:
(if not exist "%USERPROFILE%/.gradle" mkdir "%USERPROFILE%/.gradle") && (echo. >>

"%USERPROFILE%/.gradle/gradle.properties” && echo org.gradle.daemon=false >>
"%USERPROFILE%/.gradle/gradle.properties")

On UNIX-like operating systems, the following Bash shell command disables the Daemon for the
current user:

mkdir -p ~/.gradle && echo "org.gradle.daemon=false" >> ~/.gradle/gradle.properties

Disable globally

There are two recommended ways to disable the Daemon globally across an environment:

* add org.gradle.daemon=false to the $GRADLE_USER_HOME/gradle.properties " file

» add the flag -Dorg.gradle.daemon=false to the GRADLE_OPTS environment variable

Don’t forget to make sure your JVM arguments and GRADLE_OPTS / JAVA_OPTS match if you want to
completely disable the Daemon and not simply invoke a single-use one.

Stop Daemon
It can be helpful to stop the Daemon when troubleshooting or debugging a failure.
Daemons automatically stop given any of the following conditions:

* Available system memory is low

* Daemon has been idle for 3 hours

To stop running Daemon processes, use the following command:
$ gradle --stop

This terminates all Daemon processes started with the same version of Gradle used to execute the
command.

You can also kill Daemons manually with your operating system. To find the PIDs for all Daemons
regardless of Gradle version, see Find Daemons.

Tools & IDEs

The Gradle Tooling API used by IDEs and other tools to integrate with Gradle always uses the Gradle
Daemon to execute builds. If you execute Gradle builds from within your IDE, you already use the
Gradle Daemon. There is no need to enable it for your environment.

Continuous Integration

We recommend using the Daemon for developer machines and Continuous Integration (CI) servers.
Compatibility
Gradle starts a new Daemon if no idle or compatible Daemons exist.

The following values determine compatibility:

* Requested build environment, including the following:
o Java version
o JVM attributes
o JVM properties
e Gradle version
Compatibility is based on exact matches of these values. For example:
» If a Daemon is available with a Java 8 runtime, but the requested build environment calls for
Java 10, then the Daemon is not compatible.
» If a Daemon is available running Gradle 7.0, but the current build uses Gradle 7.4, then the

Daemon is not compatible.

Certain properties of a Java runtime are immutable: they cannot be changed once the JVM has
started. The following JVM system properties are immutable:

* file.encoding

* user.lanquage

* user.country

e yser.variant

* java.io.tmpdir

* javax.net.ssl.keyStore

* javax.net.ssl.keyStorePassword

* javax.net.ssl.keyStoreType

* javax.net.ssl.trustStore

* javax.net.ssl.trustStorePassword

* javax.net.ssl.trustStoreType

* com.sun.management.jmxremote
The following JVM attributes controlled by startup arguments are also immutable:

* The maximum heap size (the -Xmx JVM argument)
* The minimum heap size (the -Xms JVM argument)
* The boot classpath (the -Xbootclasspath argument)
* The "assertion" status (the -ea argument)

If the requested build environment requirements for any of these properties and attributes differ
from the Daemon’s JVM requirements, the Daemon is not compatible.

For more information about build environments, see the build environment

NOTE .
documentation.

Performance Impact

The Daemon can reduce build times by 15-75% when you build the same project repeatedly.

To understand the Daemon’s impact on your builds, you can profile your build with

TIP ,
--profile.

In between builds, the Daemon waits idly for the next build. As a result, your machine only loads
Gradle into memory once for multiple builds instead of once per build. This is a significant
performance optimization.

Runtime Code Optimizations

The JVM gains significant performance from runtime code optimization: optimizations applied to
code while it runs.

JVM implementations like Open]DK’s Hotspot progressively optimize code during execution.
Consequently, subsequent builds can be faster purely due to this optimization process.

With the Daemon, perceived build times can drop dramatically between a project’s 1% and 10™
builds.

Memory Caching

The Daemon enables in-memory caching across builds. This includes classes for plugins and build
scripts.

Similarly, the Daemon maintains in-memory caches of build data, such as the hashes of task inputs
and outputs for incremental builds.

Performance Monitoring
Gradle actively monitors heap usage to detect memory leaks in the Daemon.
When a memory leak exhausts available heap space, the Daemon:

1. Finishes the currently running build.

2. Restarts before running the next build.
Gradle enables this monitoring by default.

To disable this monitoring, set the org.gradle.daemon.performance.enable-monitoring Daemon option
to false.

You can do this on the command line with the following command:
$ gradle <task> -Dorg.gradle.daemon.performance.enable-monitoring=false

Or you can configure the property in the gradle.properties file in the project root or your

GRADLE_USER_HOME (Gradle User Home):

gradle.properties

org.gradle.daemon.performance.enable-monitoring=false

File System Watching

Gradle maintains a Virtual File System (VFS) to calculate what needs to be rebuilt on repeat builds
of a project. By watching the file system, Gradle keeps the VES current between builds.

Enable

Gradle enables file system watching by default for supported operating systems since Gradle 7.
Run the build with the --watch-fs' flag to force file system watching for a build.
To force file system watching for all builds (unless disabled with --no-watch-fs), add the following

value to gradle.properties:

gradle.properties

org.gradle.vfs.watch=true

Disable
To disable file system watching:

 use the --no-watch-fs flag

* setorg.gradle.vfs.watch=false in gradle.properties

Supported Operating Systems

Gradle uses native operating system features to watch the file system. Gradle supports file system
watching on the following operating systems:
* Windows 10, version 1709 and later
» Linux, tested on the following distributions:
o Ubuntu 16.04 or later
> CentOS 8 or later
o Red Hat Enterprise Linux (RHEL) 8 or later

o Amazon Linux 2 or later

* macOS 10.14 (Mojave) or later on Intel and ARM architectures

Supported File Systems
File system watching supports the following file system types:

* APFS
* btrfs
* ext3
* ext4
* XFS
» HFS+
* NTFS

Gradle also supports VirtualBox’s shared folders.
Network file systems like Samba and NFS are not supported.

Symlinks

File system watching is not compatible with symlinks. If your project files include symlinks,
symlinked files do not benefit from file system-watching optimizations.

Unsupported File Systems

When enabled by default, file system watching acts conservatively when it encounters content on
unsupported file systems. This can happen if you mount a project directory or subdirectory from a
network drive. Gradle doesn’t retain information about unsupported file systems between builds
when enabled by default. If you explicitly enable file system watching, Gradle retains information
about unsupported file systems between builds.

Logging

To view information about Virtual File System (VFS) changes at the beginning and end of a build,
enable verbose VFS logging.

Set the org.gradle.vfs.verbose Daemon option to true to enable verbose logging.

You can do this on the command line with the following command:
$ gradle <task> -Dorg.gradle.vfs.verbose=true

Or configure the property in the gradle.properties file in the project root or your Gradle User
Home:

gradle.properties

org.gradle.vfs.verbose=true

This produces the following output at the start and end of the build:

$ gradle assemble --watch-fs -Dorg.gradle.vfs.verbose=true

Received 3 file system events since last build while watching 1 locations

Virtual file system retained information about 2 files, 2 directories and @ missing
files since last build

> Task :compileJava NO-SOURCE

Task :processResources NO-SOURCE

Task :classes UP-TO-DATE

Task :jar UP-TO-DATE

Task :assemble UP-TO-DATE

vV V V V

BUILD SUCCESSFUL in 58ms

1 actionable task: 1 up-to-date

Received 5 file system events during the current build while watching 1 locations
Virtual file system retains information about 3 files, 2 directories and 2 missing
files until next build

On Windows and macOS, Gradle might report changes received since the last build, even if you
haven’t changed anything. These are harmless notifications about changes to Gradle’s caches and
can be safely ignored.

Troubleshooting

Gradle does not detect some changes

Please let us know on the Gradle community Slack. If a build declares its inputs and outputs
correctly, this should not happen. So it’s either a bug we must fix or your build lacks declaration
for some inputs or outputs.

VES state dropped due to lost state

Did you receive a message that reads Dropped VFS state due to lost state during a build?
Please let us know on the Gradle community Slack. This means that your build cannot benefit
from file system watching for one of the following reasons:

* the Daemon received an unknown file system event

* too many changes happened, and the watching API couldn’t handle it

Too many open files on macOS

If you receive the java.io.IOException: Too many open files error on macQOS, raise your open
files limit. See this post for more details.

https://gradle-community.slack.com/app_redirect?channel=file-system-watching
https://gradle-community.slack.com/app_redirect?channel=file-system-watching
https://superuser.com/a/443168/8117

Adjust inotify Limits on Linux

File system watching uses inotify on Linux. Depending on the size of your build, it may be
necessary to increase inotify limits. If you are using an IDE, then you probably already had to
increase the limits in the past.

File system watching uses one inotify watch per watched directory. You can see the current limit of
inotify watches per user by running:
cat /proc/sys/fs/inotify/max_user_watches

To increase the limit to e.g. 512K watches run the following:

echo fs.inotify.max_user_watches=524288 | sudo tee -a /etc/sysctl.conf

sudo sysctl -p --system

Each used inotify watch takes up to 1KB of memory. Assuming inotify uses all the 512K watches
then file system watching could use up to 500MB. In a memory-constrained environment, you may
want to disable file system watching.

Initialization Scripts

Gradle provides a powerful mechanism for customizing the build based on the current
environment.

This mechanism also supports tools that wish to integrate with Gradle.

Basic usage

Initialization scripts (a.k.a. init scripts) are similar to other scripts in Gradle. These scripts, however,
are run before the build starts.

Here are several possible uses:

» Set up enterprise-wide configuration, such as where to find custom plugins.

* Set up properties based on the current environment, such as a developer’s machine vs. a
continuous integration server.

* Supply personal information about the user required by the build, such as repository or
database authentication credentials.

* Define machine-specific details, such as where JDKs are installed.
* Register build listeners. External tools that wish to listen to Gradle events might find this useful.

* Register build loggers. You could customize how Gradle logs the events that it generates.

http://en.wikipedia.org/wiki/Inotify

One main limitation of init scripts is that they cannot access classes in the buildSrc project.

Using an init script
There are several ways to use an init script:

 Specify a file on the command line. The command line option is -I or --init-script followed by
the path to the script.

The command line option can appear more than once, each time adding another init script. The
build will fail if any files specified on the command line do not exist.
 Put a file called init.gradle (or init.gradle.kts for Kotlin) in the $GRADLE_USER_HOME/ directory.

« Put a file that ends with .gradle (or .init.gradle.kts for Kotlin) in the §
GRADLE _USER_HOME/init.d/ directory.

 Put a file that ends with .gradle (or .init.gradle.kts for Kotlin) in the $GRADLE _HOME/init.d/

directory, in the Gradle distribution.

This lets you package a custom Gradle distribution containing custom build logic and plugins.
You can combine this with the Gradle wrapper to make custom logic available to all builds in
your enterprise.

If more than one init script is found, they will all be executed in the order specified above.

Scripts in a given directory are executed in alphabetical order. For example, a tool can specify an
init script on the command line and another in the home directory for defining the environment.
Both scripts will run when Gradle is executed.

Writing an init script

Like a Gradle build script, an init script is a Groovy or Kotlin script. Each init script has a Gradle
instance associated with it. Any property reference and method call in the init script will delegate to
this Gradle instance.

Each init script also implements the Script interface.

When writing init scripts, pay attention to the scope of the reference you are trying
NOTE to access. For example, properties loaded from gradle.properties are available on
Settings or Project instances but not on the Gradle one.

Configuring projects from an init script

You can use an init script to configure the projects in the build. This works similarly to configuring
projects in a multi-project build.

The following sample shows how to perform extra configuration from an init script before the
projects are evaluated:

https://docs.gradle.org/8.6/dsl/org.gradle.api.invocation.Gradle.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Script.html

build.gradle.kts

repositories {
mavenCentral()

}

tasks.register("showRepos") {
val repositoryNames = repositories.map { it.name }
dolLast {
println("All repos:")
println(repositoryNames)

init.gradle.kts

allprojects {
repositories {
mavenlLocal()

}

build.gradle

repositories {
mavenCentral()

}

tasks.register('showRepos') {
def repositoryNames = repositories.collect { it.name }
dolast {
println "All repos:"
println repositoryNames

init.gradle

allprojects {
repositories {
mavenlLocal()

}

This sample uses this feature to configure an additional repository to be used only for specific
environments.

Output when applying the init script

> gradle --init-script init.gradle.kts -q showRepos
A1l repos:
[MavenLocal, MavenRepo]

> gradle --init-script init.gradle -q showRepos
A1l repos:
[MavenLocal, MavenRepo]

External dependencies for the init script

Init scripts can also declare dependencies with the initscript() method, passing in a closure that
declares the init script classpath.

Declaring external dependencies for an init script:

init.gradle.kts

initscript {
repositories {
mavenCentral()
}
dependencies {
classpath("org.apache.commons:commons-math:2.0")

}

init.gradle

initseript {
repositories {
mavenCentral()
}
dependencies {
classpath 'org.apache.commons:commons-math:2.0'

}

The closure passed to the initscript() method configures a ScriptHandler instance. You declare the
init script classpath by adding dependencies to the classpath configuration.

This is the same way you declare, for example, the Java compilation classpath. You can use any of
the dependency types described in Declaring Dependencies, except project dependencies.

Having declared the init script classpath, you can use the classes in your init script as you would
any other classes on the classpath. The following example adds to the previous example and uses
classes from the init script classpath.

An init script with external dependencies:

https://docs.gradle.org/8.6/javadoc/org/gradle/api/initialization/dsl/ScriptHandler.html

init.gradle.kts
import org.apache.commons.math.fraction.Fraction

initscript {
repositories {
mavenCentral()

}
dependencies {
classpath("org.apache.commons:commons-math:2.0")
}
}

println(Fraction.ONE_FIFTH.multiply(2))

build.gradle.kts

tasks.register("doNothing")

init.gradle
import org.apache.commons.math.fraction.Fraction

initscript {
repositories {
mavenCentral()

}
dependencies {
classpath 'org.apache.commons:commons-math:2.0'
}
}

println Fraction.ONE_FIFTH.multiply(2)

build.gradle

tasks.register('doNothing")

Output when applying the init script:

> gradle --init-script init.gradle.kts -q doNothing
2/5

> gradle --init-script init.gradle -q doNothing
2/5
Init script plugins
Like a Gradle build script or a Gradle settings file, plugins can be applied to init scripts.

Using plugins in init scripts:

init.gradle.kts
apply<EnterpriseRepositoryPlugin>()

class EnterpriseRepositoryPlugin : Plugin<Gradle> {
companion object {
const val ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"
}

override fun apply(gradle: Gradle) {
// ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
gradle.allprojects {
repositories {

// Remove all repositories not pointing to the enterprise
repository url
all {
if (this !is MavenArtifactRepository || url.toString() !=
ENTERPRISE_REPOSITORY_URL) {
project.logger.lifecycle("Repository ${(this as?
MavenArtifactRepository)?.url ?: name} removed. Only
$ENTERPRISE_REPOSITORY_URL is allowed")
remove(this)
}
}

// add the enterprise repository
add(maven {
name = "STANDARD_ENTERPRISE_REPOQ"
url = uri(ENTERPRISE_REPOSITORY_URL)

1))

build.gradle.kts

repositories{
mavenCentral()

+
data class RepositoryData(val name: String, val url: URI)

tasks.register("showRepositories") {
val repositoryData = repositories.withType<MavenArtifactRepository>().map
{ RepositoryData(it.name, it.url) }
dolLast {
repositoryData.forEach {
println("repository: ${it.name} ('${it.url}')")
}

init.gradle
apply plugin: EnterpriseRepositoryPlugin
class EnterpriseRepositoryPlugin implements Plugin<Gradle> {

private static String ENTERPRISE_REPOSITORY_URL =
"https://repo.gradle.org/gradle/repo"

void apply(Gradle gradle) {
// ONLY USE ENTERPRISE REPO FOR DEPENDENCIES
gradle.allprojects { project ->
project.repositories {

// Remove all repositories not pointing to the enterprise
repository url
all { ArtifactRepository repo ->
if (!(repo instanceof MavenArtifactRepository) ||
repo.url.toString() != ENTERPRISE_REPOSITORY_URL) {
project.logger.lifecycle "Repository ${repo.url}
removed. Only S$ENTERPRISE_REPOSITORY_URL is allowed"
remove repo
}
}

// add the enterprise repository
maven {
name "STANDARD_ENTERPRISE_REPOQ"
url ENTERPRISE_REPOSITORY_URL

build.gradle

repositories{
mavenCentral()

}

class RepositoryData {
String name
URT url

}

tasks.register('showRepositories') {
def repositoryData = repositories.collect { new RepositoryData(it.name,
it.url) }
dolast {
repositoryData.each {
println "repository: ${it.name} ('${it.url}"')"
}

Output when applying the init script:

> gradle --init-script init.gradle.kts -q showRepositories
repository: STANDARD_ENTERPRISE_REPO (‘'https://repo.gradle.org/gradle/repo")

> gradle --init-script init.gradle -q showRepositories
repository: STANDARD_ENTERPRISE_REPO ('https://repo.gradle.org/gradle/repo")

The plugin in the init script ensures that only a specified repository is used when running the build.

When applying plugins within the init script, Gradle instantiates the plugin and calls the plugin
instance’s Plugin.apply(T) method.

The gradle object is passed as a parameter, which can be used to configure all aspects of a build. Of
course, the applied plugin can be resolved as an external dependency as described in External
dependencies for the init script

https://docs.gradle.org/8.6/javadoc/org/gradle/api/Plugin.html#apply-T-

AUTHORING GRADLE BUILDS

LEARNING THE BASICS

Build Lifecycle

As a build author, you define tasks and dependencies between tasks. Gradle guarantees that these
tasks will execute in order of their dependencies.

Your build scripts and plugins configure this dependency graph.

For example, if your project tasks include build, assemble, createDocs, your build script(s) can
ensure that they are executed in the order build — assemble — createDoc.

Task Graphs
Gradle builds the task graph before executing any task.
Across all projects in the build, tasks form a Directed Acyclic Graph (DAG).

This diagram shows two example task graphs, one abstract and the other concrete, with
dependencies between tasks represented as arrows:

Generic task graph Partial task graph for a standard Java build

7]

@D

/N
Depends on

‘ assemble ’

Both plugins and build scripts contribute to the task graph via the task dependency mechanism and
annotated inputs/outputs.

Build Phases

A Gradle build has three distinct phases.

http://en.wikipedia.org/wiki/Directed_acyclic_graph

1. INITIALIZATION PHASE gawy 2. CONFIGURATION PHASE gy 3. EXECUTION PHASE

Gradle runs these phases in order:

Phase 1. Initialization
* Detects the settings.gradle(.kts) file.

* Creates a Settings instance.

» Evaluates the settings file to determine which projects (and included builds) make up the
build.

* Creates a Project instance for every project.

Phase 2. Configuration

» Evaluates the build scripts, build.gradle(.kts), of every project participating in the build.

* Creates a task graph for requested tasks.

Phase 3. Execution

* Schedules and executes the selected tasks.
* Dependencies between tasks determine execution order.

* Execution of tasks can occur in parallel.

https://docs.gradle.org/8.6/dsl/org.gradle.api.initialization.Settings.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html

@ settings.gradle.kts ¢ o BUiId LifecyCIe

O

c o
o &
=
c
N o
S include("subProject1") Project()
-"é’ Settings() ————> include("subProject2") —> Project() T\
- includeBuild("build-logic") Project()

(Task X) (Task Y) (Ta/si Z)

®

build.gradle.kts
GD 5

(K YJ & % build.gradle.kts
% build.gradle.kts

Phase
oy

N

Configuration

depends on

©

5§83 > @)D - -—-- () ——— —
= ©
S
<
s ED - ED @D -
x
i
Example

The following example shows which parts of settings and build files correspond to various build
phases:

settings.gradle.kts

rootProject.name = "basic"
println("This is executed during the initialization phase.")

build.gradle.kts
println("This is executed during the configuration phase.")

tasks.register("configured") {
println("This is also executed during the configuration phase, because
:configured is used in the build.")

}

tasks.register("test") {
dolast {
println("This is executed during the execution phase.")
}
}

tasks.register("testBoth") {
doFirst {
println("This is executed first during the execution phase.")

}
dolLast {

println("This is executed last during the execution phase.")
}

println("This is executed during the configuration phase as well, because
:testBoth is used in the build.")
}

settings.gradle

rootProject.name = 'basic'
println 'This is executed during the initialization phase.'

build.gradle
println 'This is executed during the configuration phase.'

tasks.register('configured') {
println 'This is also executed during the configuration phase, because
:configured is used in the build.'

}

tasks.register('test') {
dolLast {
println 'This is executed during the execution phase.'

}
}
tasks.register('testBoth') {
doFirst {
println 'This is executed first during the execution phase.'
}
dolLast {
println 'This is executed last during the execution phase.'
}

println 'This is executed during the configuration phase as well, because
:testBoth is used in the build.'

}

The following command executes the test and testBoth tasks specified above. Because Gradle only
configures requested tasks and their dependencies, the configured task never configures:

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in @s
2 actionable tasks: 2 executed

> gradle test testBoth
This is executed during the initialization phase.

> Configure project :

This is executed during the configuration phase.

This is executed during the configuration phase as well, because :testBoth is used in
the build.

> Task :test
This is executed during the execution phase.

> Task :testBoth
This is executed first during the execution phase.
This is executed last during the execution phase.

BUILD SUCCESSFUL in 0s
2 actionable tasks: 2 executed

Phase 1. Initialization

In the initialization phase, Gradle detects the set of projects (root and subprojects) and included
builds participating in the build.

Gradle first evaluates the settings file, settings.gradle(.kts), and instantiates a Settings object.
Then, Gradle instantiates Project instances for each project.

Phase 2. Configuration

In the configuration phase, Gradle adds tasks and other properties to the projects found by the
initialization phase.

Phase 3. Execution
In the execution phase, Gradle runs tasks.

Gradle uses the task execution graphs generated by the configuration phase to determine which
tasks to execute.

Next Step: Learn how to write Settings files >>

Gradle Directories

Gradle uses two main directories to perform and manage its work: the Gradle User Home directory
and the Project Root directory.

Project <Project_Root_Directory> Gradle $GRADLE _USER_HOME

- T =777 77—7—7= B0 T
| | : '
| | gradle.properties % init.gradiets

jdks

jdk-14.0.2+12
jck-11.013

0] jak-19.01

settings.gradle

wrapper/dists

gradle-8.1.1-all
gradle-8.1.1-bin

gradle-8.3-bin

caches daemon

Gradle User Home directory

By default, the Gradle User Home (~/.gradle or C:\Users\<USERNAME>\.gradle) stores global
configuration properties, initialization scripts, caches, and log files.

It can be set with the environment variable GRADLE_USER_HOME.
TIP Not to be confused with the GRADLE_HOME, the optional installation directory for Gradle.

It is roughly structured as follows:

writing_settings_files.pdf#writing_settings_files

WU;

modules-2 ®
on @

=\
Q
D
3

L

G)

3
<
1
%]
[g°}
pry
c
o
o)
=
Q
(=%
—
D

L jdk-14.0.2+12
wrapper
L—— dists @
——10
—— gradle-4.8-bin
—— gradle-4.9-all
L—— gradle-4.9-bin
L—— gradle.properties

!

@ Global cache directory (for everything that is not project-specific).
@ Version-specific caches (e.g., to support incremental builds).

® Shared caches (e.g., for artifacts of dependencies).

@ Registry and logs of the Gradle Daemon.

® Global initialization scripts.

® JDKs downloaded by the toolchain support.

@ Distributions downloaded by the Gradle Wrapper.

Global Gradle configuration properties.

Cleanup of caches and distributions

Gradle automatically cleans its user home directory.

By default, the cleanup runs in the background when the Gradle daemon is stopped or shut down.
If using --no-daemon, it runs in the foreground after the build session.

The following cleanup strategies are applied periodically (by default, once every 24 hours):

* Version-specific caches in all caches/<GRADLE_VERSION>/ directories are checked for whether they
are still in use.

If not, directories for release versions are deleted after 30 days of inactivity, and snapshot
versions after 7 days.

» Shared caches in caches/ (e.g., jars-*) are checked for whether they are still in use.
If no Gradle version still uses them, they are deleted.

* Files in shared caches used by the current Gradle version in caches/ (e.g., jars-3 or modules-2)
are checked for when they were last accessed.

Depending on whether the file can be recreated locally or downloaded from a remote
repository, it will be deleted after 7 or 30 days, respectively.

* Gradle distributions in wrapper/dists/ are checked for whether they are still in use, i.e., whether
there’s a corresponding version-specific cache directory.

Unused distributions are deleted.

Configuring cleanup of caches and distributions

The retention periods of the various caches can be configured.
Caches are classified into four categories:

* Released wrapper distributions: Distributions and related version-specific caches
corresponding to released versions (e.g., 4.6.2 or 8.0).

Default retention for unused versions is 30 days.

* Snapshot wrapper distributions: Distributions and related version-specific caches
corresponding to snapshot versions (e.g. 7.6-20221130141522+0000).

Default retention for unused versions is 7 days.

* Downloaded resources: Shared caches downloaded from a remote repository (e.g., cached
dependencies).

Default retention for unused resources is 30 days.
* Created resources: Shared caches that Gradle creates during a build (e.g., artifact transforms).

Default retention for unused resources is 7 days.

The retention period for each category can be configured independently via an init script in Gradle
User Home:

gradleUserHome/init.d/cache-settings.gradle.kts

beforeSettings {
caches {
releasedWrappers.setRemoveUnusedEntriesAfterDays(45)
snapshotWrappers.setRemoveUnusedEntriesAfterDays(10)
downloadedResources.setRemoveUnusedEntriesAfterDays(45)
createdResources.setRemoveUnusedEntriesAfterDays(10)

gradleUserHome/init.d/cache-settings.gradle

beforeSettings { settings ->
settings.caches {
releasedWrappers.removeUnusedEntriesAfterDays = 45
snapshotWrappers.removeUnusedEntriesAfterDays = 10
downloadedResources.removeUnusedEntriesAfterDays = 45
createdResources.removeUnusedEntriesAfterDays = 10

The frequency at which cache cleanup is invoked is also configurable.
There are three possible settings:

* DEFAULT: Cleanup is performed periodically in the background (currently once every 24
hours).

* DISABLED: Never cleanup Gradle User Home.

This is useful in cases where Gradle User Home is ephemeral or delaying cleanup is desirable
until an explicit point.

* ALWAYS: Cleanup is performed at the end of each build session.

This is useful in cases where it’s desirable to ensure that cleanup has occurred before
proceeding.

However, this performs cache cleanup during the build (rather than in the background), which
can be expensive, so this option should only be used when necessary.

To disable cache cleanup:

gradleUserHome/init.d/cache-settings.gradle.kts

beforeSettings {
caches {
cleanup = Cleanup.DISABLED

gradleUserHome/init.d/cache-settings.gradle

beforeSettings { settings ->
settings.caches {
cleanup = Cleanup.DISABLED

}

Cache cleanup settings can only be configured via init scripts and should be placed
under the init.d directory in Gradle User Home. This effectively couples the

NOTE configuration of cache cleanup to the Gradle User Home those settings apply to and
limits the possibility of different conflicting settings from different projects being
applied to the same directory.

Multiple versions of Gradle sharing a Gradle User Home

It is common to share a single Gradle User Home between multiple versions of Gradle.

As stated above, caches in Gradle User Home are version-specific. Different versions of Gradle will
perform maintenance on only the version-specific caches associated with each version.

On the other hand, some caches are shared between versions (e.g., the dependency artifact cache or
the artifact transform cache).

Beginning with Gradle version 8.0, the cache cleanup settings can be configured to custom
retention periods. However, older versions have fixed retention periods (7 or 30 days, depending
on the cache). These shared caches could be accessed by versions of Gradle with different settings
to retain cache artifacts.

This means that:

« If the retention period is not customized, all versions that perform cleanup will have the same
retention periods. There will be no effect due to sharing a Gradle User Home with multiple
versions.

« If the retention period is customized for Gradle versions greater than or equal to version 8.0 to
use retention periods shorter than the previously fixed periods, there will also be no effect.

The versions of Gradle aware of these settings will cleanup artifacts earlier than the previously
fixed retention periods, and older versions will effectively not participate in the cleanup of
shared caches.

« If the retention period is customized for Gradle versions greater than or equal to version 8.0 to
use retention periods longer than the previously fixed periods, the older versions of Gradle may
clean the shared caches earlier than what is configured.

In this case, if it is desirable to maintain these shared cache entries for newer versions for
longer retention periods, they will not be able to share a Gradle User Home with older versions.
They will need to use a separate directory.

Another consideration when sharing the Gradle User Home with versions of Gradle before version
8.0 is that the DSL elements to configure the cache retention settings are unavailable in earlier
versions, so this must be accounted for in any init script shared between versions. This can easily
be handled by conditionally applying a version-compliant script.

The version-compliant script should reside somewhere other than the init.d

NOTE
directory (such as a sub-directory), so it is not automatically applied.

To configure cache cleanup in a version-safe manner:

gradleUserHome/init.d/cache-settings.gradle.kts

if (GradleVersion.current() >= GradleVersion.version("8.0")) {
apply(from = "gradle8/cache-settings.gradle.kts")

gradleUserHome/init.d/cache-settings.gradle

if (GradleVersion.current() >= GradleVersion.version('8.0"')) {
apply from: "gradle8/cache-settings.gradle"”

Version-compliant cache configuration script:

gradleUserHome/init.d/gradle8/cache-settings.gradle.kts

beforeSettings {
caches {
releasedWrappers { setRemoveUnusedEntriesAfterDays(45) }
snapshotWrappers { setRemoveUnusedEntriesAfterDays(10) }
downloadedResources { setRemoveUnusedEntriesAfterDays(45) }
createdResources { setRemoveUnusedEntriesAfterDays(10) }

gradleUserHome/init.d/gradle8/cache-settings.gradle

beforeSettings { settings ->
settings.caches {
releasedWrappers.removeUnusedEntriesAfterDays = 45
snapshotWrappers.removeUnusedEntriesAfterDays = 10
downloadedResources.removeUnusedEntriesAfterDays = 45
createdResources.removeUnusedEntriesAfterDays = 10

Cache marking

Beginning with Gradle version 8.1, Gradle supports marking caches with a CACHEDIR. TAG file.

It follows the format described in the Cache Directory Tagging Specification. The purpose of this file
is to allow tools to identify the directories that do not need to be searched or backed up.

By default, the directories caches, wrapper/dists, daemon, and jdks in the Gradle User Home are
marked with this file.

Configuring cache marking

The cache marking feature can be configured via an init script in the Gradle User Home:

https://bford.info/cachedir/

gradleUserHome/init.d/cache-settings.gradle.kts

beforeSettings {
caches {
// Disable cache marking for all caches
markingStrategy = MarkingStrategy.NONE

gradleUserHome/init.d/cache-settings.gradle

beforeSettings { settings ->
settings.caches {
// Disable cache marking for all caches
markingStrategy = MarkingStrategy.NONE

Cache marking settings can only be configured via init scripts and should be placed
under the init.d directory in Gradle User Home. This effectively couples the
NOTE configuration of cache marking to the Gradle User Home to which those settings
apply and limits the possibility of different conflicting settings from different
projects being applied to the same directory.
Project Root directory
The project root directory contains all source files from your project.

It also contains files and directories Gradle generates, such as .gradle and build.

While the former are usually checked into source control, the latter are transient files Gradle uses
to support features like incremental builds.

The anatomy of a typical project root directory looks as follows:

—— .gradle
| 4
| 4
| 0

—— build

—— gradle

| L—— wrapper

—— gradle.properties
—— gradlew

—— gradlew.bat

—— settings.gradle.kts
—— subproject-one

| L—— build.gradle.kts
—— subproject-two

| L—— build.gradle.kts
—1

8
9

1]

PRPOO®0OO0y O oo

@ Project-specific cache directory generated by Gradle.

@ Version-specific caches (e.g., to support incremental builds).

® The build directory of this project into which Gradle generates all build artifacts.
@ Contains the JAR file and configuration of the Gradle Wrapper.

® Project-specific Gradle configuration properties.

® Scripts for executing builds using the Gradle Wrapper.

@ The project’s settings file where the list of subprojects is defined.

Usually, a project is organized into one or multiple subprojects.

© Each subproject has its own Gradle build script.

Project cache cleanup

From version 4.10 onwards, Gradle automatically cleans the project-specific cache directory.

After building the project, version-specific cache directories in .gradle/8.6/ are checked
periodically (at most, every 24 hours) to determine whether they are still in use. They are deleted if
they haven’t been used for 7 days.

Next Step: Learn about the Gradle Build Lifecycle >>

Using Tasks

The work that Gradle can do on a project is defined by one or more tasks.

SubProjectB

build.gradle

— = 1. TASK NAME

doLast {
def file = new File("$buildDir/report.txt")/<
file.text = ${results} |
println "Generated file: ${file.path}"

— - 3. TASK GROUP / DESCRIPTION

@ tasks.register('docFilesJar', Jar) {
group = 'documentation’ (
description = 'Generate documentation.’
archiveVersion = null
archiveFileName = 'doc-files.jar'
from 'src/main/template’
} —=- 5. TASK CONFIGURATION
tasks.named(' jar', Jaf) {
from docFilesJar (——————————— |— —— —

}

A task represents some independent unit of work that a build performs. This might be compiling
some classes, creating a JAR, generating Javadoc, or publishing some archives to a repository.

When a user runs ./gradlew build in the command line, Gradle will execute the build task along
with any other tasks it depends on.

List available tasks

Gradle provides several default tasks for a project, which are listed by running ./gradlew tasks:

> Task :tasks

init - Initializes a new Gradle build.
wrapper - Generates Gradle wrapper files.

Help tasks

buildEnvironment - Displays all buildscript dependencies declared in root project
'myTutorial’.

Tasks either come from build scripts or plugins.

Once we apply a plugin to our project, such as the application plugin, additional tasks become
available:

build.gradle.kts

plugins {
id("application")
}

$./gradlew tasks

> Task :tasks

Tasks runnable from project ':app

run - Runs this project as a JVM application

Build tasks

assemble - Assembles the outputs of this project.
build - Assembles and tests this project.

Documentation tasks

javadoc - Generates Javadoc API documentation for the main source code.

Other tasks

compileJava - Compiles main Java source.

Many of these tasks, such as assemble, build, and run, should be familiar to a developer.

Task classification
There are two classes of tasks that can be executed:

1. Actionable tasks have some action(s) attached to do work in your build: compileJava.

2. Lifecycle tasks are tasks with no actions attached: assemble, build.

Typically, a lifecycle tasks depends on many actionable tasks, and is used to execute many tasks at
once.

Task registration and action

Let’s take a look at a simple "Hello World" task in a build script:

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello world!")
}

build.gradle

tasks.register('hello') {
dolLast {
println "Hello world!"

}

In the example, the build script registers a single task called hello using the TaskContainer API,
and adds an action to it.

If the tasks in the project are listed, the hello task is available to Gradle:

$./gradlew app:tasks --all

> Task :app:tasks

Tasks runnable from project ':app'

compileJava - Compiles main Java source.

compileTest]ava - Compiles test Java source.

hello

processResources - Processes main resources.

processTestResources - Processes test resources.

startScripts - Creates 0S-specific scripts to run the project as a JVM application.

You can execute the task in the build script with ./gradlew hello:

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskContainer.html

$./gradlew hello
Hello world!

When Gradle executes the hello task, it executes the action provided. In this case, the action is
simply a block containing some code: println("Hello world!").

Task group and description

The hello task from the previous section can be detailed with a description and assigned to a
group with the following update:

build.gradle.kts

tasks.register("hello") {
group = "Custom"
description = "A lovely greeting task."
dolast {
println("Hello world!")
Iy

Once the task is assigned to a group, it will be listed by ./gradlew tasks:

$./gradlew tasks
> Task :tasks
Custom tasks

hello - A lovely greeting task.

To view information about a task, use the help --task <task-name>command:

$./gradlew help --task hello

> Task :help
Detailed task information for hello

Path
:app:hello

Type
Task (org.gradle.api.Task)

Options
--rerun Causes the task to be re-run even if up-to-date.

Description
A lovely greeting task.

Group
Custom

As we can see, the hello task belongs to the custom group.

Task dependencies

You can declare tasks that depend on other tasks:

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello world!")
Iy
+
tasks.register("intro") {
dependsOn("hello")
dolLast {
println("I'm Gradle")
}

build.gradle

tasks.register('hello') {
dolLast {
println "Hello world!'’
}
}
tasks.register('intro') {
dependsOn tasks.hello
dolast {
println "I'm Gradle"

}

$ gradle -q intro
Hello world!
I'm Gradle

The dependency of taskX to taskY may be declared before taskY is defined:

build.gradle.kts

tasks.register("taskX") {
dependsOn("taskY")
dolast {
println("taskX")
}

}
tasks.register("taskY") {

dolLast {
println("taskY")
}

build.gradle

tasks.register('taskX') {
dependsOn 'taskY'
dolast {
println 'taskX'

}
}
tasks.register('taskY') {
dolast {
println 'taskY'
}
}

$ gradle -q taskX
tasky
taskX

The hello task from the previous example is updated to include a dependency:

build.gradle.kts

tasks.register("hello") {
group = "Custom"
description = "A lovely greeting task."
dolast {
println("Hello world!")
}

dependsOn(tasks.assemble)

The hello task now depends on the assemble task, which means that Gradle must execute the
assemble task before it can execute the hello task:

$./gradlew :app:hello

Task :app:compilelava UP-TO-DATE
Task :app:processResources NO-SOURCE
Task :app:classes UP-TO-DATE

Task :app:jar UP-TO-DATE

Task :app:startScripts UP-TO-DATE
Task :app:distTar UP-TO-DATE

Task :app:distZip UP-TO-DATE

Task :app:assemble UP-TO-DATE

V V V V V V V V

> Task :app:hello
Hello world!

Task configuration

Once registered, tasks can be accessed via the TaskProvider API for further configuration.

For instance, you can use this to add dependencies to a task at runtime dynamically:

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskProvider.html

build.gradle.kts

repeat(4) { counter ->
tasks.register("task$counter") {
dolast {
println("I'm task number $counter")
}
}

}
tasks.named("task@") { dependsOn("task2", "task3") }

build.gradle

4.times { counter ->
tasks.register("taskfcounter") {
dolast {
println "I'm task number $counter"
}
}

}
tasks.named('task@') { dependsOn('task2', 'task3') }

$ gradle -q tasko
I'm task number 2
I'm task number 3
I'm task number 0

Or you can add behavior to an existing task:

build.gradle.kts

tasks.register("hello") {
dolast {
println("Hello Earth")

Iy
+
tasks.named("hello") {
doFirst {
println("Hello Venus")
}
+
tasks.named("hello") {
dolast {
println("Hello Mars")
}
}
tasks.named("hello") {
dolLast {
println("Hello Jupiter")
}
}
build.gradle

tasks.register('hello') {
dolast {
println 'Hello Earth'

}
}
tasks.named('hello') {
doFirst {
println 'Hello Venus'
}
}
tasks.named('hello') {
dolLast {
println 'Hello Mars'
}
}
tasks.named('hello') {
dolLast {
println 'Hello Jupiter'
}

$ gradle -q hello
Hello Venus

Hello Earth

Hello Mars

Hello Jupiter

The calls doFirst and doLast can be executed multiple times. They add an action to the
TIP beginning or the end of the task’s actions list. When the task executes, the actions in
the action list are executed in order.

Here is an example of the named method being used to configure a task added by a plugin:

tasks.named("dokkaHtml") {
outputDirectory.set(buildDir.resolve("dokka"))
}

Task types
Gradle tasks are a subclass of Task.
In the build script, the HelloTask class is created by extending DefaultTask:

build.gradle.kts

// Extend the DefaultTask class to create a HelloTask class
abstract class HelloTask : DefaultTask() {
@TaskAction
fun hello() {
println("hello from HelloTask")
Iy
+

// Register the hello Task with type HelloTask
tasks.register<HelloTask>("hello") {

group = "Custom tasks"

description = "A lovely greeting task."

The hello task is registered with the type HelloTask.

Executing our new hello task:

https://docs.gradle.org/8.6/javadoc/org/gradle/api/Task.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/DefaultTask.html

$./gradlew hello

> Task :app:hello
hello from HelloTask

Now the hello task is of type HelloTask instead of type Task.

The Gradle help task reveals the change:

$./gradlew help --task hello

> Task :help
Detailed task information for hello

Path
:app:hello

Type
HelloTask (Build_gradle$HelloTask)

Options
--rerun Causes the task to be re-run even if up-to-date.

Description
A lovely greeting task.

Group
Custom tasks

Built-in task types

Gradle provides many built-in task types with common and popular functionality, such as copying
or deleting files.

This example task copies *.war files from the source directory to the target directory using the Copy
built-in task:

tasks.register("copyTask",Copy) {
from("source")
into("target")
include("*.war")

There are many task types developers can take advantage of, including GroovyDoc, Zip, Jar,
JacocoReport, Sign, or Delete, which are available in the link:DSI..

Next Step: Learn how to write Tasks >>

https://docs.gradle.org/8.6/dsl/org.gradle.api.plugins.antlr.AntlrTask.html
writing_tasks.pdf#writing_tasks

Writing Build Scripts

The initialization phase in the Gradle Build lifecycle finds the root project and subprojects included
in your project root directory using the settings file.

build.gradle(.kts)

plugins { — + —mmm org.gradle.plugin.use.PluginDependenciesSpec

) id(“application”) -- PluginDependencySpec id(java.lang.String id)

repositories { — T -@8 org.gradle.api.artifacts.dsl.RepositoryHandler
mavenCentral() -- MavenArtifactRepository mavenCentral()

}

dependencies { €—— ——-ﬁ org.gradle.api.artifacts.dsl.DependencyHandler

) implementation("com.google.guava:guava:32.1.1-jre") -- @Nullable Dependency add(java.lang.String configurationName)
icati —_h_l =

application { < T -mm8 ©org.gradle.api.plugins.JavaApplication

) mainClass = “com.example.Main -- Property<java.lang.String> getMainClass()

tasks.named<Test>("test") { -T -ﬁ org.gradle.api.tasks.TaskContainer

useJUnitPlatform()

) -- public void useJUnitPlatform()

Then, for each project included in the settings file, Gradle creates a Project instance.

Gradle then looks for a corresponding build script file, which is used in the configuration phase.

Build Scripts
Every Gradle build comprises one or more projects; a root project and subprojects.

A project typically corresponds to a software component that needs to be built, like a library or an
application. It might represent a library JAR, a web application, or a distribution ZIP assembled
from the JARs produced by other projects.

On the other hand, it might represent a thing to be done, such as deploying your application to
staging or production environments.

Gradle scripts are written in either Groovy DSL or Kotlin DSL (domain-specific language).

A build script configures a project and is associated with an object of type Project.

@ build.gradle(.kts)

As the build script executes, it configures Project.

The build script is either a *.gradle file in Groovy or a *.gradle.kts file in Kotlin.

IMPORTANT Build scripts configure Project objects and their children.

https://docs.gradle.org/8.6/javadocorg/gradle/api/Project.html
https://docs.gradle.org/8.6/javadocorg/gradle/api/Project.html

The Project object

The Project object is part of the Gradle APIL.

¢ In the Groovy DSL, the Project object documentation is found here.

* In the Kotlin DSL, the Project object documentation is found here.
Many top-level properties and blocks in a build script are part of the Project APIL

For example, the following build script uses the Project.name property to print the name of the
project:

build.gradle.kts

println(name)
println(project.name)

build.gradle

println name
println project.name

$ gradle -q check
project-api
project-api

Both println statements print out the same property.

The first uses the top-level reference to the name property of the Project object. The second
statement uses the project property available to any build script, which returns the associated
Project object.

Standard project properties

The Project object exposes a standard set of properties in your build script.

The following table lists a few commonly used properties:

Name Type Description
name String The name of the project directory.
path String The fully qualified name of the project.

description String A description for the project.

https://docs.gradle.org/8.6/javadocorg/gradle/api/Project.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.6/kotlin-dsl/gradle/org.gradle.api.initialization/-settings/index.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:name

Name Type Description
dependencies DependencyHandler Returns the dependency handler of the project.

repositories RepositoryHandler Returns the repository handler of the project.

layout Projectlayout Provides access to several important locations for a project.
group Object The group of this project.
version Object The version of this project.

The following table lists a few commonly used methods:

Name Description
uri() Resolves a file path to a URI, relative to the project directory of this project.
task() Creates a Task with the given name and adds it to this project.

Build Script structure

The Build script is composed of { -+ }, a special object in both Groovy and Kotlin. This object is
called a lambda in Kotlin or a closure in Groovy.

Simply put, the plugins{ } block is a method invocation in which a Kotlin lambda object or Groovy
closure object is passed as the argument. It is the short form for:

plugins(function() {
id("plugin")
1)

Blocks are mapped to Gradle API methods.

The code inside the function is executed against a this object called a receiver in Kotlin lambda and
a delegate in Groovy closure. Gradle determines the correct this object and invokes the correct
corresponding method. The this of the method invocation id("plugin") object is of type
PluginDependenciesSpec.

The build script is essentially composed of Gradle API calls built on top of the DSLs. Gradle executes
the script line by line, top to bottom.

Let’s take a look at an example and break it down:

https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

build.gradle.kts

plugins {
id("org.jetbrains.kotlin.jvm") version "1.9.0"
id("application")

}

repositories {
mavenCentral()

}

dependencies {
testImplementation("org.jetbrains.kotlin:kotlin-test-junit5")
testImplementation("org.junit.jupiter:junit-jupiter-engine:5.9.3")
testRuntimeOnly("org.junit.platform:junit-platform-launcher")
implementation("com.google.guava:quava:32.1.1-jre")

}

application {
mainClass = "com.example.Main"

}

tasks.named<Test>("test") {
useJUnitPlatform()

}

@ Apply plugins to the build.

@ Define the locations where dependencies can be found.
® Add dependencies.

@ Set properties.

® Register and configure tasks.

build.gradle

plugins { ©)
id 'org.jetbrains.kotlin.jvm' version '1.9.0'
id 'application’

}

repositories { @
mavenCentral()

}

dependencies { ®
testImplementation 'org.jetbrains.kotlin:kotlin-test-junit5'
testImplementation 'org.junit.jupiter:junit-jupiter-engine:5.9.3"
testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
implementation 'com.google.guava:quava:32.1.1-jre’

}

application { @
mainClass = 'com.example.Main'

¥

tasks.named('test') { ®
useJUnitPlatform()

}

@ Apply plugins to the build.

@ Define the locations where dependencies can be found.
® Add dependencies.

@ Set properties.

® Register and configure tasks.

1. Apply plugins to the build

Plugins are used to extend Gradle. They are also used to modularize and reuse project
configurations.

Plugins can be applied using the PluginDependenciesSpec plugins script block.
The plugins block is preferred:
plugins {

id("org.jetbrains.kotlin.jvm") version "1.9.0"
id("application")

In the example, the application plugin, which is included with Gradle, has been applied, describing
our project as a Java application.

The Kotlin gradle plugin, version 1.9.0, has also been applied. This plugin is not included with
Gradle and, therefore, has to be described using a plugin id and a plugin version so that Gradle can
find and apply it.

2. Define the locations where dependencies can be found

A project generally has a number of dependencies it needs to do its work. Dependencies include
plugins, libraries, or components that Gradle must download for the build to succeed.

The build script lets Gradle know where to look for the binaries of the dependencies. More than one
location can be provided:

repositories {
mavenCentral()

google()

In the example, the guava library and the JetBrains Kotlin plugin (org.jetbrains.kotlin.jvm) will be
downloaded from the Maven Central Repository.

3. Add dependencies

A project generally has a number of dependencies it needs to do its work. These dependencies are
often libraries of precompiled classes that are imported in the project’s source code.

Dependencies are managed via configurations and are retrieved from repositories.

Use the DependencyHandler returned by Project.getDependencies() method to manage the
dependencies. Use the RepositoryHandler returned by Project.getRepositories() method to manage
the repositories.

dependencies {
implementation("com.google.guava:quava:32.1.1-jre")

}

In the example, the application code uses Google’s guava libraries. Guava provides utility methods
for collections, caching, primitives support, concurrency, common annotations, string processing,
I/0, and validations.

4. Set properties

A plugin can add properties and methods to a project using extensions.

The Project object has an associated ExtensionContainer object that contains all the settings and
properties for the plugins that have been applied to the project.

https://repo.maven.apache.org/maven2/
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/ExtensionContainer.html

In the example, the application plugin added an application property, which is used to detail the
main class of our Java application:

application {
mainClass = "com.example.Main"

}

5. Register and configure tasks

Tasks perform some basic piece of work, such as compiling classes, or running unit tests, or zipping
up a WAR file.

While tasks are typically defined in plugins, you may need to register or configure tasks in build
scripts.

Registering a task adds the task to your project.

You can register tasks in a project using the TaskContainer.register(java.lang.String) method:

tasks.register<Zip>("zip-reports") {
from 'Reports/’
include '*'
archiveName 'Reports.zip'
destinationDir(file('/dir"))

You may have seen usage of the TaskContainer.create(java.lang.String) method which should be
avoided:

tasks.create<Zip>("zip-reports") {
from 'Reports/’
include '*'
archiveName 'Reports.zip'
destinationDir(file('/dir'))

TIP register (), which enables task configuration avoidance, is preferred over create().

You can locate a task to configure it using the TaskCollection.named(java.lang.String) method:

tasks.named<Test>("test") {
useJUnitPlatform()
+

The example below configures the Javadoc task to automatically generate HTML documentation
from Java code:

https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskContainer.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/tasks/TaskContainer.html
task_configuration_avoidance.pdf#task_configuration_avoidance
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.javadoc.Javadoc.html

tasks.named("javadoc").configure {
exclude 'app/Internal*.java’
exclude 'app/internal/*'
exclude 'app/internal/*'

Build Scripting

A build script is made up of zero or more statements and script blocks:
println(project.layout.projectDirectory);

Statements can include method calls, property assignments, and local variable definitions:
version = '1.0.0.GA'

A script block is a method call which takes a closure/lambda as a parameter:

configurations {

}

The closure/lambda configures some delegate object as it executes:

repositories {
google()
}

A build script is also a Groovy or a Kotlin script:

build.gradle.kts

tasks.register("upper") {
dolast {
val someString = "mY_nAmE"
println("Original: $someString")
println("Upper case: ${someString.toUpperCase()}")

build.gradle

tasks.register('upper') {
dolast {
String someString = 'mY_nAmE'
println "Original: $someString"
println "Upper case: ${someString.toUpperCase()}"

$ gradle -q upper
Original: mY_nAmE
Upper case: MY_NAME

It can contain elements allowed in a Groovy or Kotlin script, such as method definitions and class
definitions:

build.gradle.kts

tasks.register("count") {
dolast {
repeat(4) { print("$it ") }
}

build.gradle

tasks.register('count') {
dolast {
4.times { print "¢it " }
}

dle -q count

$ gradl
0123

Flexible task registration

Using the capabilities of the Groovy or Kotlin language, you can register multiple tasks in a loop:

build.gradle.kts

repeat(4) { counter ->
tasks.register("task$counter") {
dolast {
println("I'm task number $counter")

}

build.gradle

4.times { counter ->
tasks.register("taskfcounter") {
dolast {
println "I'm task number $counter"

}

$ gradle -q task1
I'm task number 1

Declare Variables

Build scripts can declare two variables: local variables and extra properties.

Local Variables

Declare local variables with the val keyword. Local variables are only visible in the scope where
they have been declared. They are a feature of the underlying Kotlin language.

Declare local variables with the def keyword. Local variables are only visible in the scope where
they have been declared. They are a feature of the underlying Groovy language.

build.gradle.kts
val dest = "dest"

tasks.register<Copy>("copy") {
from("source")
into(dest)

build.gradle
def dest = 'dest'

tasks.register('copy', Copy) {
from 'source’
into dest

Extra Properties

Gradle’s enhanced objects, including projects, tasks, and source sets, can hold user-defined
properties.

Add, read, and set extra properties via the owning object’s extra property. Alternatively, you can
access extra properties via Kotlin delegated properties using by extra.

Add, read, and set extra properties via the owning object’s ext property. Alternatively, you can use
an ext block to add multiple properties simultaneously.

build.gradle.kts

plugins {
id("java-library")
}

val springVersion by extra("3.1.0.RELEASE")
val emailNotification by extra { "build@emaster.org" }

sourceSets.all { extra["purpose"] = null }

sourceSets {
main {

extra["purpose"] = "production”
}
test {
extra["purpose"] = "test"
}
create("plugin") {
extra["purpose"] = "production”

}
}

tasks.register("printProperties") {
val springVersion = springVersion
val emailNotification = emailNotification
val productionSourceSets = provider {

sourceSets.matching { it.extra["purpose"] == "production” }.map {
it.name }
}
dolLast {
println(springVersion)
println(emailNotification)
productionSourceSets.get().forEach { println(it) }
}

build.gradle

plugins {
id 'java-library'
}
ext {
springVersion = "3.1.0.RELEASE"
emailNotification = "build@emaster.org"
}

sourceSets.all { ext.purpose = null }

sourceSets {

main {

purpose = "production”
}
test {

purpose = "test"
}
plugin {

purpose = "production”
}

}

tasks.register('printProperties') {
def springVersion = springVersion
def emailNotification = emailNotification
def productionSourceSets = provider {

sourceSets.matching { it.purpose == "production” }.collect { it.name
¥
}
dolLast {
println springVersion
println emailNotification
productionSourceSets.get().each { println it }
}
}

$ gradle -q printProperties
3.1.0.RELEASE
build@emaster.org

main

plugin

This example adds two extra properties to the project object via by extra. Additionally, this

example adds a property named purpose to each source set by setting extra["purpose”] to null. Once
added, you can read and set these properties via extra.

This example adds two extra properties to the project object via an ext block. Additionally, this
example adds a property named purpose to each source set by setting ext.purpose to null. Once
added, you can read and set all these properties just like predefined ones.

Gradle requires special syntax for adding a property so that it can fail fast. For example, this allows
Gradle to recognize when a script attempts to set a property that does not exist. You can access
extra properties anywhere where you can access their owning object. This gives extra properties a
wider scope than local variables. Subprojects can access extra properties on their parent projects.

For more information about extra properties, see ExtraPropertiesExtension in the API
documentation.

Configure Arbitrary Objects

The example greet() task shows an example of arbitrary object configuration:

https://docs.gradle.org/8.6/dsl/org.gradle.api.plugins.ExtraPropertiesExtension.html

build.gradle.kts

class UserInfo(
var name: String? = null,
var email: String? = null

)

tasks.register("configure") {
val user = UserInfo().apply {
name = "Isaac Newton"
email = "isaac@newton.me"

}
dolast {
println(user.name)
println(user.email)
}
}
build.gradle

class UserInfo {
String name
String email

}

tasks.register('configure') {
def user = configure(new UserInfo()) {
name = "Isaac Newton"
email = "isaac@newton.me"

}
dolast {
println user.name
println user.email
}

$ gradle -q greet
Isaac Newton
isaac@newton.me

Closure Delegates

Each closure has a delegate object. Groovy uses this delegate to look up variable and method
references to nonlocal variables and closure parameters. Gradle uses this for configuration closures,

where the delegate object refers to the object being configured.

build.gradle

dependencies {
assert delegate == project.dependencies
testImplementation('junit:junit:4.13")
delegate.testImplementation('junit:junit:4.13")

Default imports
To make build scripts more concise, Gradle automatically adds a set of import statements to scripts.

As a result, instead of writing throw new org.gradle.api.tasks.StopExecutionException(), you can
write throw new StopExecutionException() instead.

Gradle implicitly adds the following imports to each script:

Gradle default imports

import org.gradle.*

import org.gradle.api.*

import org.gradle.api.artifacts.*

import org.gradle.api.artifacts.component.*
import org.gradle.api.artifacts.dsl.*

import org.gradle.api.artifacts.ivy.*

import org.gradle.api.artifacts.maven.*
import org.gradle.api.artifacts.query.*
import org.gradle.api.artifacts.repositories.*
import org.gradle.api.artifacts.result.*
import org.gradle.api.artifacts.transform.*
import org.gradle.api.artifacts.type.*
import org.gradle.api.artifacts.verification.*
import org.gradle.api.attributes.*

import org.gradle.api.attributes.java.*
import org.gradle.api.attributes.plugin.*
import org.gradle.api.cache.*

import org.gradle.api.capabilities.*

import org.gradle.api.component.*

import org.gradle.api.configuration.*

import org.gradle.api.credentials.*

import org.gradle.api.distribution.*

import org.gradle.api.distribution.plugins.*
import org.gradle.api.execution.*

import org.gradle.api.file.*

import org.gradle.api.flow.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.

gradle

gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.

.api
api
api
api
api
api
api
api
api
api

api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api
api

api
api
api
api

api
api

api.

api.
.tasks.
api. .javadoc.*
.tasks.
.tasks.
.tasks.

.tasks.

tasks

tasks

tasks

.initialization.*
.initialization.definition.*
.initialization.dsl.*
.initialization.resolve.*
.invocation.*
.java.archives.*

.jvm.*
.launcher.cli.*
.logging.*
.logging.confiquration.*
model.
.plugins.*
.plugins.antlr.*
.plugins.catalog.*
.plugins.jvm.*
.plugins.quality.*
.plugins.scala.*
.problems.*

.provider.*

.publish.*

.publish.ivy.*
.publish.ivy.plugins.*
.publish.ivy.tasks.*
.publish.maven.*
.publish.maven.plugins.*
.publish.maven.tasks.*
.publish.plugins.*
.publish.tasks.*
.reflect.*

.reporting.*
.reporting.components.*
.reporting.dependencies.*
.reporting.dependents.*
.reporting.model.*
.reporting.plugins.*
.resources.”

.services.*

.Specs.
.tasks.
.tasks.
.tasks.
.tasks.
api.
.tasks.

*

*

*

ant.*
application.*
bundling.*

.compile.*

diagnostics.*

.diagnostics.configurations.*

incremental.*

options.*
scala.*
testing.*
testing.junit.*

import org.gradle.api.tasks.testing.junitplatform.*
import org.gradle.api.tasks.testing.testng.*
import org.gradle.api.tasks.util.*

import org.gradle.api.tasks.wrapper.*

import org.gradle.api.toolchain.management.*
import org.gradle.authentication.*

import org.gradle.authentication.aws.*
import org.gradle.authentication.http.*
import org.gradle.build.event.*

import org.gradle.buildinit.*

import org.gradle.buildinit.plugins.*

import org.gradle.buildinit.tasks.*

import org.gradle.caching.*

import org.gradle.caching.configuration.*
import org.gradle.caching.http.*

import org.gradle.caching.local.*

import org.gradle.concurrent.*

import org.gradle.external.javadoc.*

import org.gradle.ide.visualstudio.*

import org.gradle.ide.visualstudio.plugins.*
import org.gradle.ide.visualstudio.tasks.*
import org.gradle.ide.xcode.*

import org.gradle.ide.xcode.plugins.*

import org.gradle.ide.xcode.tasks.*

import org.gradle.ivy.*

import org.gradle.jvm.*

import org.gradle.jvm.application.scripts.*
import org.gradle.jvm.application.tasks.*
import org.gradle.jvm.tasks.*

import org.gradle.jvm.toolchain.*

import org.gradle.language.*

import org.gradle.language.assembler.*
import org.gradle.language.assembler.plugins.*
import org.gradle.language.assembler.tasks.*
import org.gradle.language.base.*

import org.gradle.language.base.artifact.*
import org.gradle.language.base.compile.*
import org.gradle.language.base.plugins.*
import org.gradle.language.base.sources.*
import org.gradle.language.c.*

import org.gradle.language.c.plugins.*
import org.gradle.language.c.tasks.*

import org.gradle.lanquage.cpp.*

import org.gradle.language.cpp.plugins.*
import org.gradle.language.cpp.tasks.*
import org.gradle.language.java.artifact.*
import org.gradle.language.jvm.tasks.*
import org.gradle.language.nativeplatform.*
import org.gradle.language.nativeplatform.tasks.*
import org.gradle.language.objectivec.*
import org.gradle.language.objectivec.plugins.*

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.
org.
org.
org.
org.
org.
org.
org.

org

org.

org

org.

org

org.

gradle

gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.
.gradle.
gradle.

.language.objectivec.tasks.*

language.rc
language.rc
language.rc

maven.*
model.*

platform.*

plugins.ear

plugins.ide
plugins.ide
plugins.ide

plugins.ide.

lanquage.objectivecpp.*
language.objectivecpp.plugins.*
lanquage.objectivecpp.tasks.*
language.plugins.*

"k
.plugins.*
.tasks.*

lanquage.scala.tasks.*
language.swift.*
lanquage.swift.plugins.*
language.swift.tasks.*

nativeplatform.*
nativeplatform.platform.*
nativeplatform.plugins.*
nativeplatform.tasks.*
nativeplatform.test.*
nativeplatform.test.cpp.*
nativeplatform.test.cpp.plugins.*
nativeplatform.test.cunit.*
nativeplatform.test.cunit.plugins.*
nativeplatform.test.cunit.tasks.*
nativeplatform.test.googletest.*
nativeplatform.test.googletest.plugins.*
nativeplatform.test.plugins.*
nativeplatform.test.tasks.*
nativeplatform.test.xctest.*
nativeplatform.test.xctest.plugins.*
nativeplatform.test.xctest.tasks.*
nativeplatform.toolchain.*
nativeplatform.toolchain.plugins.*
normalization.*

platform.base.*
platform.base.binary.*
platform.base.component.*
platform.base.plugins.*
plugin.devel.*
plugin.devel.plugins.*
plugin.devel.tasks.*
plugin.management.*
plugin.use.*
plugins.ear.

*

.descriptor.*
*

.api.*
.eclipse.*
.idea.*

plugins.signing.*

import org.gradle.plugins.signing.signatory.*
import org.gradle.plugins.signing.signatory.pgp.*
import org.gradle.plugins.signing.type.*
import org.gradle.plugins.signing.type.pgp.*
import org.gradle.process.*

import org.gradle.swiftpm.*

import org.gradle.swiftpm.plugins.*

import org.gradle.swiftpm.tasks.*

import org.gradle.testing.base.*

import org.gradle.testing.base.plugins.*
import org.gradle.testing.jacoco.plugins.*
import org.gradle.testing.jacoco.tasks.*
import org.gradle.testing.jacoco.tasks.rules.*
import org.gradle.testkit.runner.*

import org.gradle.util.*

import org.gradle.vcs.*

import org.gradle.vcs.git.*

import org.gradle.work.*

import org.gradle.workers.*

Next Step: Learn how to use Tasks >>

Using Plugins
Many Gradle features, like the ability to compile Java code, are added by plugins.

Plugins add new tasks (e.g., JavaCompile), domain objects (e.g., SourceSet), conventions (e.g., Java
source is located at src/main/java), and extend core objects or objects from other plugins.

Applying a plugin to a project allows the plugin to extend the project’s and Gradle’s capabilities.
Plugins can:

* Extend the Gradle model (e.g., add new DSL elements that can be configured).

* Configure the project according to conventions (e.g., add new tasks or configure sensible
defaults).

* Apply specific configuration (e.g., add organizational repositories or enforce standards).
There are many advantages to applying plugins over adding logic to the project build script:

* Promotes reuse and reduces the overhead of maintaining similar logic across multiple projects.
» Allows a higher degree of modularization, enhancing comprehensibility and organization.

» Encapsulates imperative logic and allows build scripts to be as declarative as possible.

Plugin distribution

Plugins are available in three ways:

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.compile.JavaCompile.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.SourceSet.html

1. Core plugins - Gradle develops and maintains a set of Core Plugins.

2. Community plugins - Gradle plugins shared in a remote repository such as Maven or the
Gradle Plugin Portal.

3. Local plugins - Gradle enables users to create custom plugins using APIs.

Types of plugins

There are two general types of plugins in Gradle: binary plugins and script plugins.

Binary plugins are written either programmatically by implementing the Plugin interface or
through declarations in either Groovy or Kotlin DSL. They can reside within a build script, the
project hierarchy, or externally in a plugin jar.

Script plugins are additional build scripts that further configure the build and usually implement a
declarative approach to manipulating the build. They are typically used within a build but can be
externalized and accessed remotely.

A plugin often starts as a script plugin (because they are easy to write). Then, as the code becomes
more valuable, it’s migrated to a binary plugin that can be easily tested and shared between
multiple projects or organizations.

Using plugins

To use the build logic encapsulated in a plugin, Gradle needs to perform two steps. First, it needs to
resolve the plugin, and then it needs to apply the plugin to the target, usually a Project.

Resolving a plugin means finding the correct version of the jar that contains a given plugin and
adding it to the script classpath. Once a plugin is resolved, its API can be used in a build script.
Script plugins are self-resolving in that they are resolved from the specific file path or URL
provided when applying them. Core binary plugins provided as part of the Gradle distribution are
automatically resolved.

Applying a plugin means executing the plugin’s Plugin.apply(T) on the Project you want to enhance
with the plugin.

The plugins DSL is recommended to resolve and apply plugins in one step.

Resolving plugins

Gradle provides the core plugins (e.g., JavaPlugin, GroovyPlugin, MavenPublishPlugin, etc.) as part of
its distribution, which means they are automatically resolved.

plugins {
id("java")
}

However, non-core plugins must be resolved before they can be applied. This can be achieved in
several ways:

https://plugins.gradle.org
https://docs.gradle.org/8.6/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/Plugin.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/Plugin.html#apply-T-

Application Recommended Usage Where

1 Using the plugins Applying community plugins or local plugins in buildSrc Build script or
block to a specific project. Settings file

plugins {
id("org.barfuin.gradle.taskinfo") version
"2.1.0"

}

2 Using the buildSrc Applying community or local plugins to multiple Build script
directory subprojects.

plugins {
id("org.barfuin.gradle.taskinfo") version
"2.1.0"
¥
repositories {
jeenter()
}
dependencies {
implementation(Libs.Kotlin.coroutines)

}

3 Using the Applying community plugins to be used specifically in Build script
buildscript block the build script or the build logic.

buildscript {
repositories {
maven {
url =
uri("https://plugins.gradle.org/m2/")
¥
}

dependencies {

classpath("org.barfuin.gradle.taskinfo:gradle-
taskinfo:2.1.0")

}
}
plugins {

id("org.barfuin.gradle.taskinfo") version
“2.1.0"

}

4 Using the legacy Applying local script plugins. Build script
apply() method

Application Recommended Usage Where

apply(plugin = "org.barfuin.gradle.taskinfo")
apply<MyPlugin>()

1. Applying plugins using the plugins{} block
The plugin DSL provides a concise and convenient way to declare plugin dependencies.

The plugins block configures an instance of PluginDependenciesSpec:

plugins {
application // by name
java // by name
id("java") // by id - recommended

id("org.jetbrains.kotlin.jvm") version "1.9.0" // by id - recommended

Core Gradle plugins are unique in that they provide short names, such as java for the core
JavaPlugin.

To apply a core plugin, the short name can be used:

build.gradle.kts

plugins {
java

}

build.gradle

plugins {
id 'java'

}

All other binary plugins must use the fully qualified form of the plugin id (e.g., com.github.foo.bar).

To apply a community plugin from Gradle plugin portal, the fully qualified plugin id, a globally
unique identifier, must be used:

https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html
https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/JavaPlugin.html
http://plugins.gradle.org

build.gradle.kts

plugins {
id("com.jfrog.bintray") version "1.8.5"
}
build.gradle
plugins {
id 'com.jfrog.bintray' version '1.8.5'
}

See PluginDependenciesSpec for more information on using the Plugin DSL.

Limitations of the plugins DSL

The plugins DSL provides a convenient syntax for users and the ability for Gradle to determine
which plugins are used quickly. This allows Gradle to:

» Optimize the loading and reuse of plugin classes.

* Provide editors with detailed information about the potential properties and values in the build
script.

However, the DSL requires that plugins be defined statically.

There are some key differences between the plugins {} block mechanism and the "traditional"
apply() method mechanism. There are also some constraints and possible limitations.

Constrained Syntax
The plugins {} block does not support arbitrary code.

It is constrained to be idempotent (produce the same result every time) and side effect-free (safe for
Gradle to execute at any time).

The form is:

https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/use/PluginDependenciesSpec.html

build.gradle.kts

plugins {
id(«plugin id») @
id(«plugin id») version «plugin version» @

@ for core Gradle plugins or plugins already available to the build script

@ for binary Gradle plugins that need to be resolved

build.gradle

plugins {
id «plugin id» @
id «plugin id» version «plugin version» @

@ for core Gradle plugins or plugins already available to the build script

@ for binary Gradle plugins that need to be resolved

Where «plugin id» and «plugin version» are a string.
Where «plugin id» and «plugin version» must be constant, literal strings.

The plugins{} block must also be a top-level statement in the build script. It cannot be nested inside
another construct (e.g., an if-statement or for-loop).

Only in build scripts and settings file

The plugins{} block can only be used in a project’s build script build.gradle(.kts) and the
settings.gradle(.kts) file. It must appear before any other block. It cannot be used in script plugins
or init scripts.

Applying plugins to all subprojects

Suppose you have a multi-project build, you probably want to apply plugins to some or all of the
subprojects in your build but not to the root project.

While the default behavior of the plugins{} block is to immediately resolve and apply the plugins,
you can use the apply false syntax to tell Gradle not to apply the plugin to the current project.
Then, use the plugins{} block without the version in subprojects' build scripts:

settings.gradle.kts

include("hello-a")
include("hello-b")
include("goodbye-c")

build.gradle.kts

plugins {
id("com.example.hello") version "1.0.0" apply false
id("com.example.goodbye") version "1.0.0" apply false

hello-a/build.gradle.kts

plugins {
id("com.example.hello")

}

hello-b/build.gradle.kts

plugins {
id("com.example.hello")

}

goodbye-c/build.gradle.kts

plugins {
id("com.example.goodbye")

}

settings.gradle

include 'hello-a'
include 'hello-b'
include 'goodbye-c'

build.gradle

plugins {
id 'com.example.hello' version '1.0.0' apply false
id 'com.example.goodbye' version '1.0.0"' apply false

hello-a/build.gradle

plugins {
id "com.example.hello’

}

hello-b/build.gradle

plugins {
id 'com.example.hello'

}

goodbye-c/build.gradle

plugins {
id 'com.example.goodbye'

}

You can also encapsulate the versions of external plugins by composing the build logic using your
own convention plugins.

2. Applying plugins from the buildSrc directory

buildSrc is an optional directory at the Gradle project root that contains build logic (i.e., plugins)
used in building the main project. You can apply plugins that reside in a project’s buildSrc directory
as long as they have a defined id.

The following example shows how to tie the plugin implementation class my.MyPlugin, defined in
buildSrc, to the id "my-plugin”:

buildSrc/build.gradle.kts

plugins {
‘java-gradle-plugin’
}

gradlePlugin {
plugins {
create("myPlugins") {
id = "my-plugin”
implementationClass = "my.MyPlugin"

buildSrc/build.gradle

plugins {
id 'java-gradle-plugin’
}

gradlePlugin {
plugins {
myPlugins {
id = 'my-plugin’
implementationClass = "my.MyPlugin'

The plugin can then be applied by id:

build.gradle.kts

plugins {
id("my-plugin™)
}

build.gradle

plugins {
id 'my-plugin’
}

3. Applying plugins using the buildscript{} block

The buildscript block is used for:
1. global dependencies and repositories required for building the project (applied in the
subprojects).
2. declaring which plugins are available for use in the build script (in the build.gradle(.kts) file

itself).

So when you want to use a library in the build script itself, you must add this library on the script
classpath using buildScript:

import org.apache.commons.codec.binary.Base64

buildscript {
repositories { // this is where the plugins are located
mavenCentral()
google()
}
dependencies { // these are the plugins that can be used in subprojects or in the
build file itself
classpath group: 'commons-codec', name: 'commons-codec', version: '1.2' //
used in the task below
classpath 'com.android.tools.build:gradle:4.1.0" // used in subproject

}

tasks.register('encode') {
dolast {
def byte[] encodedString = new Base64().encode('hello world\n'.getBytes())
println new String(encodedString)

And you can apply the globally declared dependencies in the subproject that needs it:

plugins {
id 'com.android.application’

}

Binary plugins published as external jar files can be added to a project by adding the plugin to the
build script classpath and then applying the plugin.

External jars can be added to the build script classpath using the buildscript{} block as described
in External dependencies for the build script:

build.gradle.kts

buildscript {
repositories {
gradlePluginPortal()
Iy
dependencies {
classpath("com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.5")
}
}

apply(plugin = "com.jfrog.bintray")

build.gradle

buildscript {
repositories {
gradlePluginPortal()
}
dependencies {
classpath 'com.jfrog.bintray.gradle:gradle-bintray-plugin:1.8.5'
}
}

apply plugin: 'com.jfrog.bintray’

4. Applying script plugins using the legacy apply() method

A script plugin is an ad-hoc plugin, typically written and applied in the same build script. It is
applied using the legacy application method:

class MyPlugin : Plugin<Project> {
override fun apply(project: Project) {
println("Plugin ${this.javaClass.simpleName} applied on ${project.name}")
}
}

apply<MyPlugin>()

Let’s take a rudimentary example of a plugin written in a file called other.gradle located in the
same directory as the build.gradle file:

public class Other implements Plugin<Project> {
@0verride
void apply(Project project) {
// Does something

}

First, import the external file using:
apply from: 'other.gradle'
Then you can apply it:
apply plugin: Other

Script plugins are automatically resolved and can be applied from a script on the local filesystem or
remotely:

build.gradle.kts

apply(from = "other.gradle.kts")

build.gradle

apply from: 'other.gradle'

Filesystem locations are relative to the project directory, while remote script locations are specified
with an HTTP URL. Multiple script plugins (of either form) can be applied to a given target.

Plugin Management

The pluginManagement{} block may only appear in the settings.gradle(.kts) file, where it must be
the first block in the file or in an Initialization Script:

settings.gradle.kts

pluginManagement {
plugins {
}
resolutionStrategy {

}
repositories {
}

+

rootProject.name = "plugin-management"

init.gradle.kts

settingsEvaluated {
pluginManagement {
plugins {
}
resolutionStrategy {

}
repositories {

}

settings.gradle

pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {
}
+

rootProject.name = 'plugin-management’

init.gradle

settingsEvaluated { settings ->
settings.pluginManagement {
plugins {
}
resolutionStrategy {

}

repositories {

}

Custom Plugin Repositories

By default, the plugins{} DSL resolves plugins from the public Gradle Plugin Portal.

Many build authors would also like to resolve plugins from private Maven or Ivy repositories
because they contain proprietary implementation details or to have more control over what
plugins are available to their builds.

To specify custom plugin repositories, use the repositories{} block inside pluginManagement{}:

https://plugins.gradle.org

settings.gradle.kts

pluginManagement {
repositories {

maven(url = "./maven-repo")
gradlePluginPortal()
ivy(url = "./ivy-repo")
}
}
settings.gradle

pluginManagement {
repositories {
maven {
url './maven-repo’

}
gradlePluginPortal()
ivy {

url './ivy-repo’
}

This tells Gradle to first look in the Maven repository at ../maven-repo when resolving plugins and
then to check the Gradle Plugin Portal if the plugins are not found in the Maven repository. If you
don’t want the Gradle Plugin Portal to be searched, omit the gradlePluginPortal() line. Finally, the
Ivy repository at ../ivy-repo will be checked.

Plugin Version Management

A plugins{} block inside pluginManagement{} allows all plugin versions for the build to be defined in
a single location. Plugins can then be applied by id to any build script via the plugins{} block.

One benefit of setting plugin versions this way is that the pluginManagement.plugins{} does not have
the same constrained syntax as the build script plugins{} block. This allows plugin versions to be
taken from gradle.properties, or loaded via another mechanism.

Managing plugin versions via pluginManagement:

settings.gradle.kts

pluginManagement {
val helloPluginVersion: String by settings
plugins {
id("com.example.hello") version "${helloPluginVersion}"
}
}

build.gradle.kts
plugins {

id("com.example.hello")

}

gradle.properties

helloPluginVersion=1.0.0

settings.gradle

pluginManagement {
plugins {
id 'com.example.hello' version "${helloPluginVersion}"

}

build.gradle
plugins {

id "com.example.hello’

}

gradle.properties

helloPluginVersion=1.0.0

The plugin version is loaded from gradle.properties and configured in the settings script, allowing
the plugin to be added to any project without specifying the version.

Plugin Resolution Rules

Plugin resolution rules allow you to modify plugin requests made in plugins{} blocks, e.g., changing
the requested version or explicitly specifying the implementation artifact coordinates.

To add resolution rules, use the resolutionStrategy{} inside the pluginManagement{} block:

settings.gradle.kts

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.namespace == "com.example") {
useModule("com.example:sample-plugins:1.0.0")

}
}
}
repositories {
maven {
url = uri("./maven-repo")
}
gradlePluginPortal()
ivy {
url = uri("./ivy-repo")
}
}
}
settings.gradle

pluginManagement {
resolutionStrategy {
eachPlugin {
if (requested.id.namespace == 'com.example') {
useModule('com.example:sample-plugins:1.0.0")
}
}
}
repositories {
maven {
url './maven-repo’
}
gradlePluginPortal()
ivy {
url "./ivy-repo’

}

This tells Gradle to use the specified plugin implementation artifact instead of its built-in default
mapping from plugin ID to Maven/Ivy coordinates.

Custom Maven and Ivy plugin repositories must contain plugin marker artifacts and the artifacts
that implement the plugin. For more information on publishing plugins to custom repositories, read
Gradle Plugin Development Plugin.

See PluginManagementSpec for complete documentation for using the pluginManagement{} block.

Plugin Marker Artifacts

Since the plugins{} DSL block only allows for declaring plugins by their globally unique plugin id
and version properties, Gradle needs a way to look up the coordinates of the plugin implementation
artifact.

To do so, Gradle will look for a Plugin Marker Artifact with the coordinates
plugin.id:plugin.id.gradle.plugin:plugin.version. This marker needs to have a dependency on the
actual plugin implementation. Publishing these markers is automated by the java-gradle-plugin.

For example, the following complete sample from the sample-plugins project shows how to publish
a com.example.hello plugin and a com.example.goodbye plugin to both an Ivy and Maven repository
using the combination of the java-gradle-plugin, the maven-publish plugin, and the ivy-publish
plugin.

java_gradle_plugin.pdf#java_gradle_plugin
https://docs.gradle.org/8.6/javadoc/org/gradle/plugin/management/PluginManagementSpec.html
java_gradle_plugin.pdf#java_gradle_plugin
java_gradle_plugin.pdf#java_gradle_plugin

build.gradle.kts

plugins {
‘java-gradle-plugin’
‘maven-publish®
“ivy-publish®

}

group = "com.example"
version = "1.0.0"

gradlePlugin {
plugins {
create("hello") {
id = "com.example.hello"
implementationClass = "com.example.hello.HelloPlugin"
}
create("qoodbye") {
id = "com.example.goodbye"
implementationClass = "com.example.goodbye.GoodbyePlugin"

}

publishing {
repositories {
maven {
url = uri(layout.buildDirectory.dir("maven-repo"))

}
ivy {

url = uri(layout.buildDirectory.dir("ivy-repo"))
}

build.gradle

plugins {
id 'java-gradle-plugin’
id 'maven-publish'
id "ivy-publish'

¥

group 'com.example’
version '1.0.0'

gradlePlugin {
plugins {
hello {
id = 'com.example.hello’
implementationClass = 'com.example.hello.HelloPlugin'

}
goodbye {

id = 'com.example.goodbye'

implementationClass = 'com.example.goodbye.GoodbyePlugin'
}

}

publishing {
repositories {
maven {
url layout.buildDirectory.dir("maven-repo")

}
ivy {

url layout.buildDirectory.dir("ivy-repo")
}

Running gradle publish in the sample directory creates the following Maven repository layout (the
Ivy layout is similar):

maven-repo

groupld com.example.goodbye groupld com.example.hello
artifactld com.example.goodbye.gradle.plugin artifactld com.example.hello.gradle.plugin
version 1.0.0 version 1.0.0

groupld com.example
artifactld samplee.plugin
version 1.0.0

«| sample-plugins-1.0.0.jar

Legacy Plugin Application

With the introduction of the plugins DSL, users should have little reason to use the legacy method
of applying plugins. It is documented here in case a build author cannot use the plugin DSL due to
restrictions in how it currently works.

build.gradle.kts

apply(plugin = "java")

build.gradle

apply plugin: 'java'

Plugins can be applied using a plugin id. In the above case, we are using the short name "java" to
apply the JavaPlugin.

Rather than using a plugin id, plugins can also be applied by simply specifying the class of the
plugin:

https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/JavaPlugin.html

build.gradle.kts

apply<JavaPlugin>()

build.gradle

apply plugin: JavaPlugin

The JavaPlugin symbol in the above sample refers to the JavaPlugin. This class does not strictly need
to be imported as the org.gradle.api.plugins package is automatically imported in all build scripts
(see Default imports).

Furthermore, one needs to append the ::class suffix to identify a class literal in Kotlin instead of
.class in Java.

Furthermore, it is unnecessary to append .class to identify a class literal in Groovy as it is in Java.

Using a Version Catalog

When a project uses a version catalog, plugins can be referenced via aliases when applied.
Let’s take a look at a simple Version Catalog:

gradle/libs.versions.toml

[versions]
intellij-plugin = "1.6"

[plugins]

jetbrains-intellij = { id = "org.jetbrains.intellij", version.ref = "intellij-plugin"

}

Then a plugin can be applied to any build script using the alias method:

build.gradle.kts
plugins {

alias(libs.plugins.jetbrains.intellij)
¥

Next Step: Learn how to write Plugins >>

https://docs.gradle.org/8.6/javadoc/org/gradle/api/plugins/JavaPlugin.html
writing_plugins.pdf#writing_plugins

Working With Files

Almost every Gradle build interacts with files in some way: think source files, file dependencies,
reports and so on. That’'s why Gradle comes with a comprehensive API that makes it simple to
perform the file operations you need.

The API has two parts to it:

» Specifying which files and directories to process

» Specifying what to do with them

The File paths in depth section covers the first of these in detail, while subsequent sections, like File
copying in depth, cover the second. To begin with, we’ll show you examples of the most common
scenarios that users encounter.

Copying a single file

You copy a file by creating an instance of Gradle’s builtin Copy task and configuring it with the
location of the file and where you want to put it. This example mimics copying a generated report
into a directory that will be packed into an archive, such as a ZIP or TAR:

Example 18. How to copy a single file

build.gradle.kts

tasks.register<Copy>("copyReport") {
from(layout.buildDirectory.file("reports/my-report.pdf"))
into(layout.buildDirectory.dir("toArchive"))

build.gradle

tasks.register('copyReport', Copy) {
from layout.buildDirectory.file("reports/my-report.pdf")
into layout.buildDirectory.dir("toArchive")

The ProjectLayout class is used to find a file or directory path relative to the current project. This is
a common way to make build scripts work regardless of the project path. The file and directory
paths are then used to specify what file to copy using Copy.from(java.lang.Object...) and which
directory to copy it to using Copy.into(java.lang.Object).

Although hard-coded paths make for simple examples, they also make the build brittle. It’s better to
use a reliable, single source of truth, such as a task or shared project property. In the following

https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.Copy.html
#ex-how-to-copy-a-single-file
https://docs.gradle.org/8.6/dsl/org.gradle.api.file.ProjectLayout.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:from(java.lang.Object[])
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.Copy.html#org.gradle.api.tasks.Copy:into(java.lang.Object)

modified example, we use a report task defined elsewhere that has the report’s location stored in
its outputFile property:

Example 19. Prefer task/project properties over hard-coded paths

build.gradle.kts

tasks.register<Copy>("copyReport2") {
from(myReportTask.flatMap { it.outputFile })
into(archiveReportsTask.flatMap { it.dirToArchive })

build.gradle

tasks.register('copyReport2', Copy) {
from myReportTask.outputFile
into archiveReportsTask.dirToArchive

We have also assumed that the reports will be archived by archiveReportsTask, which provides us
with the directory that will be archived and hence where we want to put the copies of the reports.

Copying multiple files

You can extend the previous examples to multiple files very easily by providing multiple arguments
to from():

#ex-prefer-taskproject-properties-over-hard-coded-paths

Example 20. Using multiple arguments with from()

build.gradle.kts

tasks.register<Copy>("copyReportsForArchiving") {
from(layout.buildDirectory.file("reports/my-report.pdf"),

layout.projectDirectory.file("src/docs/manual.pdf"))
into(layout.buildDirectory.dir("toArchive"))

}

build.gradle

tasks.register('copyReportsForArchiving', Copy) {

from layout.buildDirectory.file("reports/my-report.pdf"), layout
.projectDirectory.file("src/docs/manual.pdf")

into layout.buildDirectory.dir("toArchive")
}

Two files are now copied into the archive directory. You can also use multiple from() statements to
do the same thing, as shown in the first example of the section File copying in depth.

Now consider another example: what if you want to copy all the PDFs in a directory without having
to specify each one? To do this, attach inclusion and/or exclusion patterns to the copy specification.
Here we use a string pattern to include PDFs only:

#ex-using-multiple-arguments-with-from

Example 21. Using a flat filter

build.gradle.kts

tasks.register<Copy>("copyPdfReportsForArchiving") {
from(layout.buildDirectory.dir("reports"))
include("*.pdf")
into(layout.buildDirectory.dir("toArchive"))

build.gradle

tasks.register('copyPdfReportsForArchiving', Copy) {
from layout.buildDirectory.dir("reports")
include "*.pdf"
into layout.buildDirectory.dir("toArchive")

One thing to note, as demonstrated in the following diagram, is that only the PDFs that reside
directly in the reports directory are copied:

With *. pdf filter
build/reports ' > build/toArchive

— metrics L my-report.pdf

|—scatterPIot.pdf
— numbers.csv
— my-report.pdf

Figure 7. The effect of a flat filter on copying

You can include files in subdirectories by using an Ant-style glob pattern (**/*), as done in this
updated example:

#ex-using-a-flat-filter

Example 22. Using a deep filter

build.gradle.kts

tasks.register<Copy>("copyAl1PdfReportsForArchiving") {
from(layout.buildDirectory.dir("reports"))
include("**/*.pdf")
into(layout.buildDirectory.dir("toArchive"))

build.gradle
tasks.register('copyAl1PdfReportsForArchiving', Copy) {
from layout.buildDirectory.dir("reports")

include "**/*. pdf"
into layout.buildDirectory.dir("toArchive")

This task has the following effect:

With *x/* . pdf filter

build/reports ' > build/toArchive
metrics metrics
L scatterPlot.pdf L scatterPlot.pdf
numbers.csv my-report.pdf

my-report.pdf

Figure 8. The effect of a deep filter on copying

One thing to bear in mind is that a deep filter like this has the side effect of copying the directory
structure below reports as well as the files. If you just want to copy the files without the directory
structure, you need to use an explicit fileTree(dir) { includes }.files expression. We talk more
about the difference between file trees and file collections in the File trees section.

This is just one of the variations in behavior you’re likely to come across when dealing with file
operations in Gradle builds. Fortunately, Gradle provides elegant solutions to almost all those use
cases. Read the in-depth sections later in the chapter for more detail on how the file operations
work in Gradle and what options you have for configuring them.

Copying directory hierarchies

You may have a need to copy not just files, but the directory structure they reside in as well. This is
the default behavior when you specify a directory as the from() argument, as demonstrated by the
following example that copies everything in the reports directory, including all its subdirectories, to

#ex-using-a-deep-filter

the destination:

Example 23. Copying an entire directory

build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving") {
from(layout.buildDirectory.dir("reports"))
into(layout.buildDirectory.dir("toArchive"))

build.gradle

tasks.register('copyReportsDirForArchiving', Copy) {
from layout.buildDirectory.dir("reports")
into layout.buildDirectory.dir("toArchive")

The key aspect that users struggle with is controlling how much of the directory structure goes to
the destination. In the above example, do you get a toArchive/reports directory or does everything
in reports go straight into toArchive? The answer is the latter. If a directory is part of the from()
path, then it won’t appear in the destination.

So how do you ensure that reports itself is copied across, but not any other directory in
${layout.buildDirectory}? The answer is to add it as an include pattern:

#ex-copying-an-entire-directory

Example 24. Copying an entire directory, including itself

build.gradle.kts

tasks.register<Copy>("copyReportsDirForArchiving2") {
from(layout.buildDirectory) {
include("reports/**")

}
into(layout.buildDirectory.dir("toArchive"))
}
build.gradle

tasks.register('copyReportsDirForArchiving2', Copy) {
from(layout.buildDirectory) {
include "reports/**"

}
into layout.buildDirectory.dir("toArchive")

You’ll get the same behavior as before except with one extra level of directory in the destination, i.e.
toArchive/reports.

One thing to note is how the include() directive applies only to the from(), whereas the directive in
the previous section applied to the whole task. These different levels of granularity in the copy
specification allow you to easily handle most requirements that you will come across. You can learn
more about this in the section on child specifications.

Creating archives (zip, tar, etc.)

From the perspective of Gradle, packing files into an archive is effectively a copy in which the
destination is the archive file rather than a directory on the file system. This means that creating
archives looks a lot like copying, with all of the same features!

The simplest case involves archiving the entire contents of a directory, which this example
demonstrates by creating a ZIP of the toArchive directory:

#ex-copying-an-entire-directory-including-itself

Example 25. Archiving a directory as a ZIP

build.gradle.kts

tasks.register<Zip>("packageDistribution") {
archiveFileName = "my-distribution.zip"
destinationDirectory = layout.buildDirectory.dir("dist")

from(layout.buildDirectory.dir("toArchive"))

build.gradle

tasks.register('packageDistribution', Zip) {
archiveFileName = "my-distribution.zip"
destinationDirectory = layout.buildDirectory.dir('dist")

from layout.buildDirectory.dir("toArchive")

Notice how we specify the destination and name of the archive instead of an into(): both are
required. You often won’t see them explicitly set, because most projects apply the Base Plugin. It
provides some conventional values for those properties. The next example demonstrates this and
you can learn more about the conventions in the archive naming section.

Each type of archive has its own task type, the most common ones being Zip, Tar and Jar. They all
share most of the configuration options of Copy, including filtering and renaming.

One of the most common scenarios involves copying files into specified subdirectories of the
archive. For example, let’s say you want to package all PDFs into a docs directory in the root of the
archive. This docs directory doesn’t exist in the source location, so you have to create it as part of
the archive. You do this by adding an into() declaration for just the PDFs:

#ex-archiving-a-directory-as-a-zip
base_plugin.pdf#base_plugin
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.Zip.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.Tar.html
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.Jar.html

Example 26. Using the Base Plugin for its archive name convention

build.gradle.kts

plugins {
base

}
version = "1.0.0"

tasks.register<Zip>("packageDistribution") {
from(layout.buildDirectory.dir("toArchive")) {
exclude("**/*.pdf")
}

from(layout.buildDirectory.dir("toArchive")) {
include("**/*.pdf")
into("docs")

build.gradle

plugins {
id 'base'

}

version = "1.0.0"

tasks.register('packageDistribution', Zip) {
from(layout.buildDirectory.dir("toArchive")) {
exclude "**/* pdf"
}

from(layout.buildDirectory.dir("toArchive")) {
include "**/* pdf"
into "docs"

As you can see, you can have multiple from() declarations in a copy specification, each with its own
configuration. See Using child copy specifications for more information on this feature.

#ex-using-the-base-plugin-for-its-archive-name-convention

Unpacking archives

Archives are effectively self-contained file systems, so unpacking them is a case of copying the files
from that file system onto the local file system — or even into another archive. Gradle enables this
by providing some wrapper functions that make archives available as hierarchical collections of
files (file trees).

The two functions of interest are Project.zipTree(java.lang.Object) and
Project.tarTree(java.lang.Object), which produce a FileTree from a corresponding archive file. That
file tree can then be used in a from() specification, like so:

Example 27. Unpacking a ZIP file

build.gradle.kts

tasks.register<Copy>("unpackFiles") {
from(zipTree("src/resources/thirdPartyResources.zip"))
into(layout.buildDirectory.dir("resources"))

build.gradle

tasks.register('unpackFiles', Copy) {
from zipTree("src/resources/thirdPartyResources.zip")
into layout.buildDirectory.dir("resources")

As with a normal copy, you can control which files are unpacked via filters and even rename files
as they are unpacked.

More advanced processing can be handled by the eachFile() method. For example, you might need
to extract different subtrees of the archive into different paths within the destination directory. The
following sample uses the method to extract the files within the archive’s libs directory into the
root destination directory, rather than into a 1ibs subdirectory:

https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:tarTree(java.lang.Object)
https://docs.gradle.org/8.6/javadoc/org/gradle/api/file/FileTree.html
#ex-unpacking-a-zip-file
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.AbstractCopyTask.html#eachFile(org.gradle.api.Action)

Example 28. Unpacking a subset of a ZIP file

build.gradle.kts

tasks.register<Copy>("unpackLibsDirectory") {
from(zipTree("src/resources/thirdPartyResources.zip")) {
include("libs/**") @
eachFile {
relativePath = RelativePath(true,
*relativePath.segments.drop(1).toTypedArray()) @

}
includeEmptyDirs = false ®

}
into(layout.buildDirectory.dir("resources"))
}
build.gradle

tasks.register('unpackLibsDirectory', Copy) {
from(zipTree("src/resources/thirdPartyResources.zip")) {
include "libs/**" @
eachFile { fed ->
fed.relativePath = new RelativePath(true, fcd.relativePath
.segments.drop(1)) @

}
includeEmptyDirs = false ®

}

into layout.buildDirectory.dir("resources")

@ Extracts only the subset of files that reside in the 1ibs directory

@ Remaps the path of the extracting files into the destination directory by dropping the 1ibs
segment from the file path

® Ignores the empty directories resulting from the remapping, see Caution note below

You can not change the destination path of empty directories with this

CAUTION . . .
technique. You can learn more in this issue.

If you're a Java developer and are wondering why there is no jarTree() method, that’s because
zipTree() works perfectly well for JARs, WARs and EARs.

Creating "uber" or "fat" JARs

In the Java space, applications and their dependencies typically used to be packaged as separate

#ex-unpacking-a-subset-of-a-zip-file
https://github.com/gradle/gradle/issues/2940

JARs within a single distribution archive. That still happens, but there is another approach that is

now common: placing the classes and resources of the dependencies directly into the application
JAR, creating what is known as an uber or fat JAR.

Gradle makes this approach easy to accomplish. Consider the aim: to copy the contents of other JAR
files into the application JAR. All you need for this is the Project.zipTree(java.lang.Object) method
and the Jar task, as demonstrated by the uberJar task in the following example:

https://docs.gradle.org/8.6/dsl/org.gradle.api.Project.html#org.gradle.api.Project:zipTree(java.lang.Object)
https://docs.gradle.org/8.6/dsl/org.gradle.api.tasks.bundling.Jar.html

Example 29. Creating a Java uber or fat JAR

build.gradle.kts

plugins {
java

}
version = "1.0.0"

repositories {
mavenCentral()

}

dependencies {
implementation("commons-io:commons-i0:2.6")

}

tasks.register<Jar>("uberJar") {
archiveClassifier = "uber"

from(sourceSets.main.get().output)

dependsOn(configurations.runtimeClasspath)
from({
configurations.runtimeClasspath.get().filter {
it.name.endsWith("jar") }.map { zipTree(it) }
})
}

#ex-creating-a-java-uber-or-fat-jar

build.gradle

plugins {
id 'java'

}

version = '1.0.0'

repositories {
mavenCentral()

}

dependencies {
implementation 'commons-io:commons-io:2.6'

}

tasks.register('uberJar', Jar) {
archiveClassifier = 'uber'

from sourceSets.main.output

dependsOn configurations.runtimeClasspath
from {
configurations.runtimeClasspath.findAll { it.name.endsWith('jar') }
.collect { zipTree(it) }
}
}

In this case, we’re taking the runtime dependencies of the project —
configurations.runtimeClasspath.files — and wrapping each of the JAR files with the zipTree()
method. The result is a collection of ZIP file trees, the contents of which are copied into the uber JAR
alongside the application classes.

Creating directories

Many tasks need to create directories to store the files they generate, which is why Gradle
automatically manages this aspect of tasks when they explicitly define file and directory outputs.
You can learn about this feature in the incremental build section of the user manual. All core
Gradle tasks ensure that any output directories they need are created if necessary using this
mechanism.

In cases where you need to create a directory manually, you can use the standard
Files.createDirectories or File.mkdirs methods from within your build scripts or custom task
implementations. Here’s a simple example that creates a single images directory in the project
folder:

https://docs.oracle.com/javase/8/docs/api/java/nio/file/Files.html#createDirectories-java.nio.file.Path-java.nio.file.attribute.FileAttribute...-
https://docs.oracle.com/javase/8/docs/api/java/io/File.html#mkdirs--

Example 30. Manually creating a directory

build.gradle.kts

tasks.register("ensureDirectory") {

// Store target directory into a variable to avoid project reference in
the configuration cache

val directory = file("images")

dolast {
Files.createDirectories(directory.toPath())
}
}
build.gradle

tasks.register('ensureDirectory') {

// Store target directory into a variable to avoid project reference in
the confiquration cache

def directory = file("images")

dolast {
Files.createDirectories(directory.toPath())

As described in the Apache Ant manual, the mkdir task will automatically create all necessary
directories in the given path and will do nothing if the directory already exists.

Moving files and directories

Gradle has no API for moving files and directories around, but you can use the Apache Ant
integration to easily do that, as shown in this example:

#ex-manually-creating-a-directory
https://ant.apache.org/manual/Tasks/mkdir.html

Example 31. Moving a directory using the Ant task

build.gradle.kts

tasks.register("moveReports") {

// Store the build directory into a variable to avoid project reference
in the configuration cache

val dir = buildDir

dolast {
ant.withGroovyBuilder {
"move"("file" to "${dir}/reports", "todir" to "${dir}/toArchive")
}

build.gradle

tasks.register('moveReports') {

// Store the build directory into a variable to avoid project reference
in the confiquration cache

def dir = buildDir

dolast {
ant.move file: "${dir}/reports",
todir: "${dir}/toArchive"

This is not a common requirement and should be used sparingly as you lose information and can
easily break a build. It’s generally preferable to copy directories and files instead.

Renaming files on copy

The files used and generated by your builds sometimes don’t have names that suit, in which case
you want to rename those files as you copy them. Gradle allows you to do this as part of a copy
specification using the rename() configuration.

The following example removes the "-staging" marker from the names of any files that have it:

#ex-moving-a-directory-using-the-ant-task

Example 32. Renaming files as they are copied

build.gradle.kts

tasks.register<Copy>("copyFromS