69 #if CONFIG_HALDCLUT_FILTER 83 #define OFFSET(x) offsetof(LUT3DContext, x) 84 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM 85 #define COMMON_OPTIONS \ 86 { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, FLAGS, "interp_mode" }, \ 87 { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ 88 { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ 89 { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, INT_MIN, INT_MAX, FLAGS, "interp_mode" }, \ 92 static inline float lerpf(
float v0,
float v1,
float f)
94 return v0 + (v1 -
v0) * f;
105 #define NEAR(x) ((int)((x) + .5)) 106 #define PREV(x) ((int)(x)) 107 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1)) 127 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
128 const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
129 const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
130 const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
131 const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
132 const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
133 const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
134 const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
135 const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
155 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
156 const struct rgbvec c000 = lut3d->lut[prev[0]][prev[1]][prev[2]];
157 const struct rgbvec c111 = lut3d->lut[next[0]][next[1]][next[2]];
161 const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
162 const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
163 c.
r = (1-d.
r) * c000.
r + (d.
r-d.
g) * c100.
r + (d.
g-d.
b) * c110.
r + (d.
b) * c111.
r;
164 c.
g = (1-d.
r) * c000.
g + (d.
r-d.
g) * c100.
g + (d.
g-d.
b) * c110.
g + (d.
b) * c111.
g;
165 c.
b = (1-d.
r) * c000.
b + (d.
r-d.
g) * c100.
b + (d.
g-d.
b) * c110.
b + (d.
b) * c111.
b;
166 }
else if (d.
r > d.
b) {
167 const struct rgbvec c100 = lut3d->lut[next[0]][prev[1]][prev[2]];
168 const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
169 c.
r = (1-d.
r) * c000.
r + (d.
r-d.
b) * c100.
r + (d.
b-d.
g) * c101.
r + (d.
g) * c111.
r;
170 c.
g = (1-d.
r) * c000.
g + (d.
r-d.
b) * c100.
g + (d.
b-d.
g) * c101.
g + (d.
g) * c111.
g;
171 c.
b = (1-d.
r) * c000.
b + (d.
r-d.
b) * c100.
b + (d.
b-d.
g) * c101.
b + (d.
g) * c111.
b;
173 const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
174 const struct rgbvec c101 = lut3d->lut[next[0]][prev[1]][next[2]];
175 c.
r = (1-d.
b) * c000.
r + (d.
b-d.
r) * c001.
r + (d.
r-d.
g) * c101.
r + (d.
g) * c111.
r;
176 c.
g = (1-d.
b) * c000.
g + (d.
b-d.
r) * c001.
g + (d.
r-d.
g) * c101.
g + (d.
g) * c111.
g;
177 c.
b = (1-d.
b) * c000.
b + (d.
b-d.
r) * c001.
b + (d.
r-d.
g) * c101.
b + (d.
g) * c111.
b;
181 const struct rgbvec c001 = lut3d->lut[prev[0]][prev[1]][next[2]];
182 const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
183 c.
r = (1-d.
b) * c000.
r + (d.
b-d.
g) * c001.
r + (d.
g-d.
r) * c011.
r + (d.
r) * c111.
r;
184 c.
g = (1-d.
b) * c000.
g + (d.
b-d.
g) * c001.
g + (d.
g-d.
r) * c011.
g + (d.
r) * c111.
g;
185 c.
b = (1-d.
b) * c000.
b + (d.
b-d.
g) * c001.
b + (d.
g-d.
r) * c011.
b + (d.
r) * c111.
b;
186 }
else if (d.
b > d.
r) {
187 const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
188 const struct rgbvec c011 = lut3d->lut[prev[0]][next[1]][next[2]];
189 c.
r = (1-d.
g) * c000.
r + (d.
g-d.
b) * c010.
r + (d.
b-d.
r) * c011.
r + (d.
r) * c111.
r;
190 c.
g = (1-d.
g) * c000.
g + (d.
g-d.
b) * c010.
g + (d.
b-d.
r) * c011.
g + (d.
r) * c111.
g;
191 c.
b = (1-d.
g) * c000.
b + (d.
g-d.
b) * c010.
b + (d.
b-d.
r) * c011.
b + (d.
r) * c111.
b;
193 const struct rgbvec c010 = lut3d->lut[prev[0]][next[1]][prev[2]];
194 const struct rgbvec c110 = lut3d->lut[next[0]][next[1]][prev[2]];
195 c.
r = (1-d.
g) * c000.
r + (d.
g-d.
r) * c010.
r + (d.
r-d.
b) * c110.
r + (d.
b) * c111.
r;
196 c.
g = (1-d.
g) * c000.
g + (d.
g-d.
r) * c010.
g + (d.
r-d.
b) * c110.
g + (d.
b) * c111.
g;
197 c.
b = (1-d.
g) * c000.
b + (d.
g-d.
r) * c010.
b + (d.
r-d.
b) * c110.
b + (d.
b) * c111.
b;
203 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \ 204 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ 207 const LUT3DContext *lut3d = ctx->priv; \ 208 const ThreadData *td = arg; \ 209 const AVFrame *in = td->in; \ 210 const AVFrame *out = td->out; \ 211 const int direct = out == in; \ 212 const int slice_start = (in->height * jobnr ) / nb_jobs; \ 213 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ 214 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ 215 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ 216 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ 217 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ 218 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ 219 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ 220 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ 221 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ 222 const float scale = (1. / ((1<<depth) - 1)) * (lut3d->lutsize - 1); \ 224 for (y = slice_start; y < slice_end; y++) { \ 225 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \ 226 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \ 227 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \ 228 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \ 229 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \ 230 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \ 231 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \ 232 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \ 233 for (x = 0; x < in->width; x++) { \ 234 const struct rgbvec scaled_rgb = {srcr[x] * scale, \ 237 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ 238 dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \ 239 dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \ 240 dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \ 241 if (!direct && in->linesize[3]) \ 244 grow += out->linesize[0]; \ 245 brow += out->linesize[1]; \ 246 rrow += out->linesize[2]; \ 247 arow += out->linesize[3]; \ 248 srcgrow += in->linesize[0]; \ 249 srcbrow += in->linesize[1]; \ 250 srcrrow += in->linesize[2]; \ 251 srcarow += in->linesize[3]; \ 280 #define DEFINE_INTERP_FUNC(name, nbits) \ 281 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \ 284 const LUT3DContext *lut3d = ctx->priv; \ 285 const ThreadData *td = arg; \ 286 const AVFrame *in = td->in; \ 287 const AVFrame *out = td->out; \ 288 const int direct = out == in; \ 289 const int step = lut3d->step; \ 290 const uint8_t r = lut3d->rgba_map[R]; \ 291 const uint8_t g = lut3d->rgba_map[G]; \ 292 const uint8_t b = lut3d->rgba_map[B]; \ 293 const uint8_t a = lut3d->rgba_map[A]; \ 294 const int slice_start = (in->height * jobnr ) / nb_jobs; \ 295 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ 296 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ 297 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ 298 const float scale = (1. / ((1<<nbits) - 1)) * (lut3d->lutsize - 1); \ 300 for (y = slice_start; y < slice_end; y++) { \ 301 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ 302 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ 303 for (x = 0; x < in->width * step; x += step) { \ 304 const struct rgbvec scaled_rgb = {src[x + r] * scale, \ 305 src[x + g] * scale, \ 306 src[x + b] * scale}; \ 307 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \ 308 dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \ 309 dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \ 310 dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \ 311 if (!direct && step == 4) \ 312 dst[x + a] = src[x + a]; \ 314 dstrow += out->linesize[0]; \ 315 srcrow += in ->linesize[0]; \ 328 #define MAX_LINE_SIZE 512 334 return !*p || *p ==
'#';
337 #define NEXT_LINE(loop_cond) do { \ 338 if (!fgets(line, sizeof(line), f)) { \ 339 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \ 340 return AVERROR_INVALIDDATA; \ 355 if (!strncmp(line,
"3DLUTSIZE ", 10)) {
356 size = strtol(line + 10,
NULL, 0);
364 for (k = 0; k <
size; k++) {
365 for (j = 0; j <
size; j++) {
366 for (i = 0; i <
size; i++) {
368 if (k != 0 || j != 0 || i != 0)
370 if (sscanf(line,
"%f %f %f", &vec->
r, &vec->
g, &vec->
b) != 3)
383 float min[3] = {0.0, 0.0, 0.0};
384 float max[3] = {1.0, 1.0, 1.0};
386 while (fgets(line,
sizeof(line), f)) {
387 if (!strncmp(line,
"LUT_3D_SIZE ", 12)) {
389 const int size = strtol(line + 12,
NULL, 0);
396 for (k = 0; k <
size; k++) {
397 for (j = 0; j <
size; j++) {
398 for (i = 0; i <
size; i++) {
404 if (!strncmp(line,
"DOMAIN_", 7)) {
406 if (!strncmp(line + 7,
"MIN ", 4)) vals =
min;
407 else if (!strncmp(line + 7,
"MAX ", 4)) vals = max;
410 sscanf(line + 11,
"%f %f %f", vals, vals + 1, vals + 2);
412 min[0], min[1], min[2], max[0], max[1], max[2]);
414 }
else if (!strncmp(line,
"TITLE", 5)) {
418 if (sscanf(line,
"%f %f %f", &vec->
r, &vec->
g, &vec->
b) != 3)
420 vec->
r *= max[0] - min[0];
421 vec->
g *= max[1] - min[1];
422 vec->
b *= max[2] - min[2];
440 const float scale = 16*16*16;
444 for (k = 0; k <
size; k++) {
445 for (j = 0; j <
size; j++) {
446 for (i = 0; i <
size; i++) {
451 if (sscanf(line,
"%d %d %d", &r, &g, &b) != 3)
469 uint8_t rgb_map[3] = {0, 1, 2};
471 while (fgets(line,
sizeof(line), f)) {
472 if (!strncmp(line,
"in", 2)) in = strtol(line + 2,
NULL, 0);
473 else if (!strncmp(line,
"out", 3))
out = strtol(line + 3,
NULL, 0);
474 else if (!strncmp(line,
"values", 6)) {
475 const char *p = line + 6;
476 #define SET_COLOR(id) do { \ 477 while (av_isspace(*p)) \ 480 case 'r': rgb_map[id] = 0; break; \ 481 case 'g': rgb_map[id] = 1; break; \ 482 case 'b': rgb_map[id] = 2; break; \ 484 while (*p && !av_isspace(*p)) \ 494 if (in == -1 ||
out == -1) {
498 if (in < 2 ||
out < 2 ||
504 for (size = 1; size*size*size <
in; size++);
506 scale = 1. / (
out - 1);
508 for (k = 0; k <
size; k++) {
509 for (j = 0; j <
size; j++) {
510 for (i = 0; i <
size; i++) {
515 if (sscanf(line,
"%f %f %f", val, val + 1, val + 2) != 3)
517 vec->
r = val[rgb_map[0]] * scale;
518 vec->
g = val[rgb_map[1]] * scale;
519 vec->
b = val[rgb_map[2]] * scale;
529 const float c = 1. / (size - 1);
532 for (k = 0; k <
size; k++) {
533 for (j = 0; j <
size; j++) {
534 for (i = 0; i <
size; i++) {
570 int depth, is16bit = 0,
planar = 0;
601 #define SET_FUNC(name) do { \ 604 case 8: lut3d->interp = interp_8_##name##_p8; break; \ 605 case 9: lut3d->interp = interp_16_##name##_p9; break; \ 606 case 10: lut3d->interp = interp_16_##name##_p10; break; \ 607 case 12: lut3d->interp = interp_16_##name##_p12; break; \ 608 case 14: lut3d->interp = interp_16_##name##_p14; break; \ 609 case 16: lut3d->interp = interp_16_##name##_p16; break; \ 611 } else if (is16bit) { lut3d->interp = interp_16_##name; \ 612 } else { lut3d->interp = interp_8_##name; } \ 664 #if CONFIG_LUT3D_FILTER 665 static const AVOption lut3d_options[] = {
684 f = fopen(lut3d->
file,
"r");
691 ext = strrchr(lut3d->
file,
'.');
748 .priv_class = &lut3d_class,
753 #if CONFIG_HALDCLUT_FILTER 758 const int linesize = frame->
linesize[0];
759 const int w = lut3d->clut_width;
760 const int step = lut3d->clut_step;
761 const uint8_t *rgba_map = lut3d->clut_rgba_map;
764 #define LOAD_CLUT(nbits) do { \ 765 int i, j, k, x = 0, y = 0; \ 767 for (k = 0; k < level; k++) { \ 768 for (j = 0; j < level; j++) { \ 769 for (i = 0; i < level; i++) { \ 770 const uint##nbits##_t *src = (const uint##nbits##_t *) \ 771 (data + y*linesize + x*step); \ 772 struct rgbvec *vec = &lut3d->lut[i][j][k]; \ 773 vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \ 774 vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \ 775 vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \ 785 switch (lut3d->clut_bits) {
786 case 8: LOAD_CLUT(8);
break;
787 case 16: LOAD_CLUT(16);
break;
796 const int glinesize = frame->
linesize[0];
797 const int blinesize = frame->
linesize[1];
798 const int rlinesize = frame->
linesize[2];
799 const int w = lut3d->clut_width;
802 #define LOAD_CLUT_PLANAR(nbits, depth) do { \ 803 int i, j, k, x = 0, y = 0; \ 805 for (k = 0; k < level; k++) { \ 806 for (j = 0; j < level; j++) { \ 807 for (i = 0; i < level; i++) { \ 808 const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \ 809 (datag + y*glinesize); \ 810 const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \ 811 (datab + y*blinesize); \ 812 const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \ 813 (datar + y*rlinesize); \ 814 struct rgbvec *vec = &lut3d->lut[i][j][k]; \ 815 vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \ 816 vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \ 817 vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \ 827 switch (lut3d->clut_bits) {
828 case 8: LOAD_CLUT_PLANAR(8, 8);
break;
829 case 9: LOAD_CLUT_PLANAR(16, 9);
break;
830 case 10: LOAD_CLUT_PLANAR(16, 10);
break;
831 case 12: LOAD_CLUT_PLANAR(16, 12);
break;
832 case 14: LOAD_CLUT_PLANAR(16, 14);
break;
833 case 16: LOAD_CLUT_PLANAR(16, 16);
break;
875 if (inlink->
w > inlink->
h)
877 "Hald CLUT will be ignored\n", inlink->
w - inlink->
h);
878 else if (inlink->
w < inlink->
h)
880 "Hald CLUT will be ignored\n", inlink->
h - inlink->
w);
881 lut3d->clut_width = w = h =
FFMIN(inlink->
w, inlink->
h);
883 for (level = 1; level*level*level <
w; level++);
884 size = level*level*
level;
892 const int max_clut_level = sqrt(
MAX_LEVEL);
893 const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
895 "(maximum level is %d, or %dx%d CLUT)\n",
896 max_clut_level, max_clut_size, max_clut_size);
917 if (lut3d->clut_planar)
918 update_clut_planar(ctx->
priv, second);
920 update_clut_packed(ctx->
priv, second);
928 lut3d->fs.on_event = update_apply_clut;
938 static const AVOption haldclut_options[] = {
952 .config_props = config_clut,
970 .preinit = haldclut_framesync_preinit,
971 .
init = haldclut_init,
972 .
uninit = haldclut_uninit,
975 .
inputs = haldclut_inputs,
977 .priv_class = &haldclut_class,
982 #if CONFIG_LUT1D_FILTER 984 enum interp_1d_mode {
985 INTERPOLATE_1D_NEAREST,
986 INTERPOLATE_1D_LINEAR,
987 INTERPOLATE_1D_CUBIC,
991 #define MAX_1D_LEVEL 65536 993 typedef struct LUT1DContext {
999 float lut[3][MAX_1D_LEVEL];
1005 #define OFFSET(x) offsetof(LUT1DContext, x) 1007 static void set_identity_matrix_1d(LUT1DContext *lut1d,
int size)
1009 const float c = 1. / (size - 1);
1012 lut1d->lutsize =
size;
1013 for (i = 0; i <
size; i++) {
1014 lut1d->lut[0][
i] = i *
c;
1015 lut1d->lut[1][
i] = i *
c;
1016 lut1d->lut[2][
i] = i *
c;
1022 LUT1DContext *lut1d = ctx->
priv;
1024 float min[3] = {0.0, 0.0, 0.0};
1025 float max[3] = {1.0, 1.0, 1.0};
1027 while (fgets(line,
sizeof(line), f)) {
1028 if (!strncmp(line,
"LUT_1D_SIZE ", 12)) {
1029 const int size = strtol(line + 12,
NULL, 0);
1032 if (size < 2 || size > MAX_1D_LEVEL) {
1036 lut1d->lutsize =
size;
1037 for (i = 0; i <
size; i++) {
1041 if (!strncmp(line,
"DOMAIN_", 7)) {
1043 if (!strncmp(line + 7,
"MIN ", 4)) vals =
min;
1044 else if (!strncmp(line + 7,
"MAX ", 4)) vals = max;
1047 sscanf(line + 11,
"%f %f %f", vals, vals + 1, vals + 2);
1049 min[0], min[1], min[2], max[0], max[1], max[2]);
1051 }
else if (!strncmp(line,
"LUT_1D_INPUT_RANGE ", 19)) {
1052 sscanf(line + 19,
"%f %f", min, max);
1053 min[1] = min[2] = min[0];
1054 max[1] = max[2] = max[0];
1056 }
else if (!strncmp(line,
"TITLE", 5)) {
1060 if (sscanf(line,
"%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1062 lut1d->lut[0][
i] *= max[0] - min[0];
1063 lut1d->lut[1][
i] *= max[1] - min[1];
1064 lut1d->lut[2][
i] *= max[2] - min[2];
1072 static const AVOption lut1d_options[] = {
1075 {
"nearest",
"use values from the nearest defined points", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, INT_MIN, INT_MAX,
FLAGS,
"interp_mode" },
1076 {
"linear",
"use values from the linear interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, INT_MIN, INT_MAX,
FLAGS,
"interp_mode" },
1077 {
"cubic",
"use values from the cubic interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, INT_MIN, INT_MAX,
FLAGS,
"interp_mode" },
1083 static inline float interp_1d_nearest(
const LUT1DContext *lut1d,
1084 int idx,
const float s)
1086 return lut1d->lut[idx][
NEAR(s)];
1089 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1)) 1091 static inline float interp_1d_linear(
const LUT1DContext *lut1d,
1092 int idx,
const float s)
1094 const int prev =
PREV(s);
1095 const int next = NEXT1D(s);
1096 const float d = s - prev;
1097 const float p = lut1d->lut[idx][prev];
1098 const float n = lut1d->lut[idx][next];
1100 return lerpf(p, n, d);
1103 static inline float interp_1d_cubic(
const LUT1DContext *lut1d,
1104 int idx,
const float s)
1106 const int prev =
PREV(s);
1107 const int next = NEXT1D(s);
1108 const float mu = s - prev;
1111 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1112 float y1 = lut1d->lut[idx][prev];
1113 float y2 = lut1d->lut[idx][next];
1114 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1118 a0 = y3 - y2 - y0 + y1;
1123 return a0 * mu * mu2 + a1 * mu2 + a2 * mu +
a3;
1126 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \ 1127 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \ 1128 void *arg, int jobnr, \ 1132 const LUT1DContext *lut1d = ctx->priv; \ 1133 const ThreadData *td = arg; \ 1134 const AVFrame *in = td->in; \ 1135 const AVFrame *out = td->out; \ 1136 const int direct = out == in; \ 1137 const int slice_start = (in->height * jobnr ) / nb_jobs; \ 1138 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ 1139 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \ 1140 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \ 1141 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \ 1142 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \ 1143 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \ 1144 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \ 1145 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \ 1146 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \ 1147 const float factor = (1 << depth) - 1; \ 1148 const float scale = (1. / factor) * (lut1d->lutsize - 1); \ 1150 for (y = slice_start; y < slice_end; y++) { \ 1151 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \ 1152 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \ 1153 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \ 1154 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \ 1155 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \ 1156 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \ 1157 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \ 1158 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \ 1159 for (x = 0; x < in->width; x++) { \ 1160 float r = srcr[x] * scale; \ 1161 float g = srcg[x] * scale; \ 1162 float b = srcb[x] * scale; \ 1163 r = interp_1d_##name(lut1d, 0, r); \ 1164 g = interp_1d_##name(lut1d, 1, g); \ 1165 b = interp_1d_##name(lut1d, 2, b); \ 1166 dstr[x] = av_clip_uintp2(r * factor, depth); \ 1167 dstg[x] = av_clip_uintp2(g * factor, depth); \ 1168 dstb[x] = av_clip_uintp2(b * factor, depth); \ 1169 if (!direct && in->linesize[3]) \ 1170 dsta[x] = srca[x]; \ 1172 grow += out->linesize[0]; \ 1173 brow += out->linesize[1]; \ 1174 rrow += out->linesize[2]; \ 1175 arow += out->linesize[3]; \ 1176 srcgrow += in->linesize[0]; \ 1177 srcbrow += in->linesize[1]; \ 1178 srcrrow += in->linesize[2]; \ 1179 srcarow += in->linesize[3]; \ 1184 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1185 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 8, 8)
1186 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1188 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1189 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 9)
1190 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1192 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1193 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 10)
1194 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1196 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1197 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 12)
1198 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1200 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1201 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 14)
1202 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1204 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1205 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 16)
1206 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1208 #define DEFINE_INTERP_FUNC_1D(name, nbits) \ 1209 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \ 1210 int jobnr, int nb_jobs) \ 1213 const LUT1DContext *lut1d = ctx->priv; \ 1214 const ThreadData *td = arg; \ 1215 const AVFrame *in = td->in; \ 1216 const AVFrame *out = td->out; \ 1217 const int direct = out == in; \ 1218 const int step = lut1d->step; \ 1219 const uint8_t r = lut1d->rgba_map[R]; \ 1220 const uint8_t g = lut1d->rgba_map[G]; \ 1221 const uint8_t b = lut1d->rgba_map[B]; \ 1222 const uint8_t a = lut1d->rgba_map[A]; \ 1223 const int slice_start = (in->height * jobnr ) / nb_jobs; \ 1224 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \ 1225 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \ 1226 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \ 1227 const float factor = (1 << nbits) - 1; \ 1228 const float scale = (1. / factor) * (lut1d->lutsize - 1); \ 1230 for (y = slice_start; y < slice_end; y++) { \ 1231 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \ 1232 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \ 1233 for (x = 0; x < in->width * step; x += step) { \ 1234 float rr = src[x + r] * scale; \ 1235 float gg = src[x + g] * scale; \ 1236 float bb = src[x + b] * scale; \ 1237 rr = interp_1d_##name(lut1d, 0, rr); \ 1238 gg = interp_1d_##name(lut1d, 1, gg); \ 1239 bb = interp_1d_##name(lut1d, 2, bb); \ 1240 dst[x + r] = av_clip_uint##nbits(rr * factor); \ 1241 dst[x + g] = av_clip_uint##nbits(gg * factor); \ 1242 dst[x + b] = av_clip_uint##nbits(bb * factor); \ 1243 if (!direct && step == 4) \ 1244 dst[x + a] = src[x + a]; \ 1246 dstrow += out->linesize[0]; \ 1247 srcrow += in ->linesize[0]; \ 1252 DEFINE_INTERP_FUNC_1D(nearest, 8)
1253 DEFINE_INTERP_FUNC_1D(
linear, 8)
1254 DEFINE_INTERP_FUNC_1D(cubic, 8)
1256 DEFINE_INTERP_FUNC_1D(nearest, 16)
1257 DEFINE_INTERP_FUNC_1D(
linear, 16)
1258 DEFINE_INTERP_FUNC_1D(cubic, 16)
1262 int depth, is16bit = 0,
planar = 0;
1263 LUT1DContext *lut1d = inlink->
dst->
priv;
1268 switch (inlink->
format) {
1293 #define SET_FUNC_1D(name) do { \ 1296 case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \ 1297 case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \ 1298 case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \ 1299 case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \ 1300 case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \ 1301 case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \ 1303 } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \ 1304 } else { lut1d->interp = interp_1d_8_##name; } \ 1307 switch (lut1d->interpolation) {
1308 case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest);
break;
1309 case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(
linear);
break;
1310 case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic);
break;
1323 LUT1DContext *lut1d = ctx->
priv;
1326 set_identity_matrix_1d(lut1d, 32);
1330 f = fopen(lut1d->file,
"r");
1337 ext = strrchr(lut1d->file,
'.');
1346 ret = parse_cube_1d(ctx, f);
1352 if (!ret && !lut1d->lutsize) {
1365 LUT1DContext *lut1d = ctx->
priv;
1404 .filter_frame = filter_frame_1d,
1405 .config_props = config_input_1d,
1421 .priv_size =
sizeof(LUT1DContext),
1426 .priv_class = &lut1d_class,
const char const char void * val
#define FRAMESYNC_DEFINE_CLASS(name, context, field)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static int config_input(AVFilterLink *inlink)
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
This structure describes decoded (raw) audio or video data.
static int activate(AVFilterContext *ctx)
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
#define AV_PIX_FMT_GBRAP10
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
#define AV_LOG_WARNING
Something somehow does not look correct.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Main libavfilter public API header.
packed RGB 8:8:8, 24bpp, RGBRGB...
static av_cold int init(AVCodecContext *avctx)
#define AV_PIX_FMT_RGBA64
int h
agreed upon image height
static int skip_line(const char *p)
#define AV_PIX_FMT_GBRP10
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
#define AV_PIX_FMT_BGRA64
static int parse_cube(AVFilterContext *ctx, FILE *f)
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
const char * name
Pad name.
AVFilterContext * parent
Parent filter context.
AVFilterLink ** inputs
array of pointers to input links
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(INT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(INT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out-> ch const uint8_t **in ch off *out planar
static float lerpf(float v0, float v1, float f)
AVComponentDescriptor comp[4]
Parameters that describe how pixels are packed.
static av_cold int uninit(AVCodecContext *avctx)
#define fs(width, name, subs,...)
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
static av_cold int end(AVCodecContext *avctx)
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
static void set_identity_matrix(LUT3DContext *lut3d, int size)
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
A filter pad used for either input or output.
A link between two filters.
#define i(width, name, range_min, range_max)
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
#define DEFINE_INTERP_FUNC(name, nbits)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
void * priv
private data for use by the filter
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
static int config_output(AVFilterLink *outlink)
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link...
#define AV_PIX_FMT_GBRAP12
simple assert() macros that are a bit more flexible than ISO C assert().
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
#define AV_PIX_FMT_GBRAP16
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
int w
agreed upon image width
#define AV_PIX_FMT_GBRP16
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times...
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
packed RGB 8:8:8, 24bpp, BGRBGR...
AVFilterContext * src
source filter
static const AVFilterPad inputs[]
#define AV_PIX_FMT_GBRP14
static AVFrame * apply_lut(AVFilterLink *inlink, AVFrame *in)
static const AVFilterPad outputs[]
int format
agreed upon media format
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
#define AV_LOG_INFO
Standard information.
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Used for passing data between threads.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
int interpolation
interp_mode
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
Describe the class of an AVClass context structure.
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
const char * name
Filter name.
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
AVFilterLink ** outputs
array of pointers to output links
static enum AVPixelFormat pix_fmts[]
#define AV_PIX_FMT_GBRP12
#define flags(name, subs,...)
AVFilterInternal * internal
An opaque struct for libavfilter internal use.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
planar GBRA 4:4:4:4 32bpp
#define NEXT_LINE(loop_cond)
static int parse_m3d(AVFilterContext *ctx, FILE *f)
static int parse_3dl(AVFilterContext *ctx, FILE *f)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
avfilter_execute_func * execute
static int parse_dat(AVFilterContext *ctx, FILE *f)
AVFilterContext * dst
dest filter
#define AVFILTER_DEFINE_CLASS(fname)
static int query_formats(AVFilterContext *ctx)
int depth
Number of bits in the component.
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
AVPixelFormat
Pixel format.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
avfilter_action_func * interp
struct rgbvec lut[MAX_LEVEL][MAX_LEVEL][MAX_LEVEL]