
The lua-tikz3dtools package v2.1.0
https://github.com/Pseudonym321/TikZ-Animations/tree/master1/TikZ/lua-tikz3dtools

Jasper

November 22nd, 2025

This work is licensed under the LATEX Project Public License, version 1.3c or
later.

This work was typeset using TEX, the typesetting system created by Don-
ald E. Knuth, along with various extensions and packages developed by the TEX
community. I am grateful to the vibrant TEX Stack Exchange community for
their ongoing support and resources. For those interested, my contributions can
be found at Jasper

Jasper Nice

Contents
1 What the heck is a projective transformation? 2

2 Getting started: drawing a sphere 2

3 Filtering surfaces: problems and possibilities 3

4 Documentation of Commands and Keys 3
4.1 Setting Objects . 3
4.2 Appending Points and Labels . 3
4.3 Appending Curves, Surfaces, and Solids 3
4.4 Rendering and Display . 4
4.5 Package Options and Keys . 4

5 Matrix Operations and Transformations in Parametric Code 5
5.1 Core Matrix Operations . 5
5.2 Standard 3D Transformations . 5

1

https://tex.stackexchange.com/users/319072/jasper

Figure 1: A sphere inside a cube, in perspective

𝑥

𝑦

𝑧

Figure 2: A case in volving filtering and partitioning

1 What the heck is a projective transformation?
Unfortunately, in order to use lua-tikz3dtools, you need to know how to do ma-
trix multiplications. This can be learned in one semester of linear algebra—which
is all I currently have. Linear algebra involves linear transformations, which
exclude translations and perspective transformations. These linear transforma-
tions are encoded in 3 × 3 matrice (for 3D). This package also uses row-vector
convention (because it is more convenient to code with), so our vectors are
multiplied on the left of the transformation matrix. Using a homogeneous com-
ponent, these linear transformation matrices can be transformed into affine and
projective transformation matrices. I suggest the mathematical elements for
computer graphics book by David Rogers (I recommend the first edition; it is
free on archive.org) for learning about projective transformations. Read chapters
two and three, and you’ll be set.

2 Getting started: drawing a sphere
Before I drown you in documentation, here are some simple diagrams to get you
started (see the source for the code):

2

3 Filtering surfaces: problems and possibilities
Filtering surfaces works when we don’t use perspective. Currently, due to a bug,
perspective breaks the filtering. I’m open to hear from anyone if they have a fix.

Additionally, the partitioning still has a bug due to degenerate triangles, so
I’m all ears on that too.

4 Documentation of Commands and Keys
This section summarizes the main commands and configuration keys of the
lua-tikz3dtools package.

This section is ChatGPT generated, and looks OK to me.

4.1 Setting Objects
• \setobject[<options>] Defines a 3D object with a transformation matrix.

Options are passed as TikZ keys:

– name — Name of the object.
– object — Transformation matrix (default: identity_matrix()).

4.2 Appending Points and Labels
• \appendpoint[<options>] Adds a point in 3D space.

– x, y, z — Coordinates of the point (default: 0,0,0).
– fill options — TikZ styling for the point (default: fill).
– transformation — Transformation matrix applied to the point (de-

fault: identity).

• \appendlabel[<options>] Adds a label at a 3D position.

– x, y, z — Coordinates of the label (default: 0,0,0).
– name — Text of the label (default: George).
– transformation — Transformation applied to the label (default:

identity).

4.3 Appending Curves, Surfaces, and Solids
• \appendcurve[<options>] Adds a parametric 3D curve.

– ustart, ustop — Parameter range for the curve (default: 0 to 1).
– usamples — Number of samples along the curve (default: 64).
– x, y, z — Parametric functions of the parameter 𝑢.
– transformation — Transformation matrix applied to the curve.

3

– draw options — TikZ styling.
– arrow tip/tail, arrow tip/tail options — Optional arrowheads.
– filter — Boolean or Lua condition for selective drawing.

• \appendsurface[<options>] Adds a parametric 3D surface.

– ustart, ustop, vstart, vstop — Parameter ranges.
– usamples, vsamples — Number of samples along 𝑢 and 𝑣.
– x, y, z — Parametric functions of 𝑢 and 𝑣.
– transformation — Transformation matrix.
– fill options — TikZ styling for the surface.
– filter — Condition to include/exclude surface points.

• \appendsolid[<options>] Adds a parametric 3D solid (volume).

– ustart, ustop, vstart, vstop, wstart, wstop — Parameter ranges.
– usamples, vsamples, wsamples — Sampling resolution.
– x, y, z — Parametric functions of 𝑢, 𝑣, 𝑤.
– transformation — Transformation matrix.
– fill options — TikZ styling for the solid.
– filter — Boolean or Lua condition for selective drawing.

4.4 Rendering and Display
• \displaysegments Renders all defined objects, curves, surfaces, and solids

in proper order, taking occlusion into account.

4.5 Package Options and Keys
All keys are accessible through TikZ’s path system, under the family /lua-
tikz3dtools. Subcategories:

• /parametric/matrix — Transformation matrices.

• /parametric/point — Individual points.

• /parametric/label — Labels in 3D space.

• /parametric/curve — Parametric curves.

• /parametric/surface — Parametric surfaces.

• /parametric/solid — Parametric solids.

4

5 Matrix Operations and Transformations in Para-
metric Code

Again, this part is ChatGPT generated. Note that new objects can be made
with the \setobject command.

Inside all parametric fields of lua-tikz3dtools (for instance in \appendcurve,
\appendsurface, and filtering conditions), a small collection of matrix com-
mands is available. These functions originate from the internal module mm, but
inside parametric expressions they are used without any prefix.

All transformations below return 4 × 4 matrices acting on homogeneous
row-vectors (𝑥, 𝑦, 𝑧, 1) using the row-vector convention adopted by the package.

5.1 Core Matrix Operations
matrix_multiply(A,B) Computes the product 𝐴 ⋅ 𝐵. All chained transforma-

tions are formed using this routine.

matrix_inverse(A) Returns the inverse of a non-singular square matrix using
Gauss–Jordan elimination.

5.2 Standard 3D Transformations
xrotation(angle) Rotation about the 𝑥-axis by the given angle.

yrotation(angle) Rotation about the 𝑦-axis.

zrotation(angle) Rotation about the 𝑧-axis.

euler(𝛼, 𝛽, 𝛾) Returns the composed rotation

𝑅𝑧(𝛾) 𝑅𝑦(𝛽) 𝑅𝑧(𝛼).

translate(x,y,z) Translation by the vector (𝑥, 𝑦, 𝑧).

xscale(s), yscale(s), zscale(s) Scaling in the respective coordinate direc-
tion.

scale(s) Uniform scaling in all coordinates.

scale3(x,y,z) General non-uniform scaling by three independent factors.

These commands can be freely combined using matrix_multiply to build
arbitrary affine (and some projective) transformations directly inside parametric
expressions.

5

	What the heck is a projective transformation?
	Getting started: drawing a sphere
	Filtering surfaces: problems and possibilities
	Documentation of Commands and Keys
	Setting Objects
	Appending Points and Labels
	Appending Curves, Surfaces, and Solids
	Rendering and Display
	Package Options and Keys

	Matrix Operations and Transformations in Parametric Code
	Core Matrix Operations
	Standard 3D Transformations

