The lua-tikz3dtools package v2.1.0

https://github.com/Pseudonym321/TikZ-Animations/tree/master1/TikZ/lua-tikz3dtools

Jasper

November 22^{nd} , 2025

This work is licensed under the LaTeX Project Public License, version 1.3c or later.

This work was typeset using T_EX , the typesetting system created by Donald E. Knuth, along with various extensions and packages developed by the T_EX community. I am grateful to the vibrant T_EX Stack Exchange community for their ongoing support and resources. For those interested, my contributions can be found at Jasper

Jasper Nice

Contents

1	What the heck is a projective transformation?	2
2	Getting started: drawing a sphere	2
3	Filtering surfaces: problems and possibilities	3
4	Documentation of Commands and Keys 4.1 Setting Objects	3 3 3 4 4
5	Matrix Operations and Transformations in Parametric Code 5.1 Core Matrix Operations	5 5 5

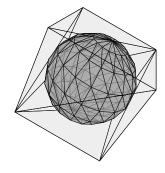


Figure 1: A sphere inside a cube, in perspective

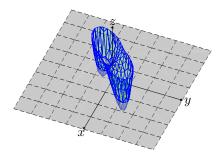


Figure 2: A case in volving filtering and partitioning

1 What the heck is a projective transformation?

Unfortunately, in order to use lua-tikz3dtools, you need to know how to do matrix multiplications. This can be learned in one semester of linear algebra—which is all I currently have. Linear algebra involves linear transformations, which exclude translations and perspective transformations. These linear transformations are encoded in 3×3 matrice (for 3D). This package also uses row-vector convention (because it is more convenient to code with), so our vectors are multiplied on the left of the transformation matrix. Using a homogeneous component, these linear transformation matrices can be transformed into affine and projective transformation matrices. I suggest the mathematical elements for computer graphics book by David Rogers (I recommend the first edition; it is free on archive.org) for learning about projective transformations. Read chapters two and three, and you'll be set.

2 Getting started: drawing a sphere

Before I drown you in documentation, here are some simple diagrams to get you started (see the source for the code):

3 Filtering surfaces: problems and possibilities

Filtering surfaces works when we don't use perspective. Currently, due to a bug, perspective breaks the filtering. I'm open to hear from anyone if they have a fix.

Additionally, the partitioning still has a bug due to degenerate triangles, so I'm all ears on that too.

4 Documentation of Commands and Keys

This section summarizes the main commands and configuration keys of the lua-tikz3dtools package.

This section is ChatGPT generated, and looks OK to me.

4.1 Setting Objects

- \setobject[<options>] Defines a 3D object with a transformation matrix. Options are passed as TikZ keys:
 - name Name of the object.
 - object Transformation matrix (default: identity_matrix()).

4.2 Appending Points and Labels

- \appendpoint[<options>] Adds a point in 3D space.
 - x, y, z Coordinates of the point (default: 0,0,0).
 - fill options TikZ styling for the point (default: fill).
 - transformation Transformation matrix applied to the point (default: identity).
- \appendlabel[<options>] Adds a label at a 3D position.
 - x, y, z Coordinates of the label (default: 0,0,0).
 - name Text of the label (default: George).
 - transformation Transformation applied to the label (default: identity).

4.3 Appending Curves, Surfaces, and Solids

- \appendcurve[<options>] Adds a parametric 3D curve.
 - ustart, ustop Parameter range for the curve (default: 0 to 1).
 - usamples Number of samples along the curve (default: 64).
 - x, y, z Parametric functions of the parameter u.
 - transformation Transformation matrix applied to the curve.

- draw options TikZ styling.
- arrow tip/tail, arrow tip/tail options Optional arrowheads.
- filter Boolean or Lua condition for selective drawing.
- \appendsurface[<options>] Adds a parametric 3D surface.
 - ustart, ustop, vstart, vstop Parameter ranges.
 - usamples, vsamples Number of samples along u and v.
 - x, y, z Parametric functions of u and v.
 - transformation Transformation matrix.
 - fill options TikZ styling for the surface.
 - filter Condition to include/exclude surface points.
- \appendsolid[<options>] Adds a parametric 3D solid (volume).
 - ustart, ustop, vstart, vstop, wstart, wstop Parameter ranges.
 - usamples, vsamples, wsamples Sampling resolution.
 - x, y, z Parametric functions of u, v, w.
 - transformation Transformation matrix.
 - fill options TikZ styling for the solid.
 - filter Boolean or Lua condition for selective drawing.

4.4 Rendering and Display

• \displaysegments Renders all defined objects, curves, surfaces, and solids in proper order, taking occlusion into account.

4.5 Package Options and Keys

All keys are accessible through TikZ's path system, under the family /lua-tikz3dtools. Subcategories:

- $\bullet \ \ / \texttt{parametric/matrix} \text{Transformation matrices}.$
- /parametric/point Individual points.
- /parametric/label Labels in 3D space.
- /parametric/curve Parametric curves.
- /parametric/surface Parametric surfaces.
- /parametric/solid Parametric solids.

5 Matrix Operations and Transformations in Parametric Code

Again, this part is ChatGPT generated. Note that new objects can be made with the \setobject command.

Inside all parametric fields of lua-tikz3dtools (for instance in \appendcurve, \appendsurface, and filtering conditions), a small collection of matrix commands is available. These functions originate from the internal module mm, but inside parametric expressions they are used without any prefix.

All transformations below return 4×4 matrices acting on homogeneous row-vectors (x, y, z, 1) using the row-vector convention adopted by the package.

5.1 Core Matrix Operations

matrix_multiply(A,B) Computes the product $A \cdot B$. All chained transformations are formed using this routine.

matrix_inverse(A) Returns the inverse of a non-singular square matrix using Gauss-Jordan elimination.

5.2 Standard 3D Transformations

xrotation(angle) Rotation about the x-axis by the given angle.

yrotation(angle) Rotation about the y-axis.

zrotation(angle) Rotation about the z-axis.

euler (α, β, γ) Returns the composed rotation

$$R_z(\gamma) R_u(\beta) R_z(\alpha)$$
.

translate(x,y,z) Translation by the vector (x,y,z).

xscale(s), yscale(s), zscale(s) Scaling in the respective coordinate direction.

scale(s) Uniform scaling in all coordinates.

scale3(x,y,z) General non-uniform scaling by three independent factors.

These commands can be freely combined using matrix_multiply to build arbitrary affine (and some projective) transformations directly inside parametric expressions.