%This is for the maths printer \magnification = \magstephalf \vsize=10 truein \hsize=170truemm \voffset=0truein \hoffset=0truecm \parskip = 1ex plus .5ex minus .1ex \parindent 3em \nopagenumbers \font\Byg = cmr10 at 17.28 truept \font\byg = cmr10 at 14.40 truept \font\menu = cmti10 at 10.00 truept \font\small = cmr10 at 10.00 truept \font\bold = cmb10 \font\bcaps = cmssbx10 \font\pfont = cmu10 \font\tiny = cmr6 at 6 truept \def\pound{{\pfont \$}} \centerline{{\byg MA21}} \vskip .75 truein \centerline{{\bold Sheet Ten}} \vskip 0.2 truein {\menu (To be handed in to the box outside McCrea 232 on the morning of the first lecturing day of next Term i.e.{\bold Wednesday 13th January}).} \hfill\break \vfill \noindent (1) \quad Evaluate $$\int\limits_{y=0}^1dy\,\int\limits_{x=3y}^3 e^{x^2}dx.$$ (Hint: first find the region over which the integral is taken, and then reverse the order of integration.) \hfill \bigskip \noindent (2) \quad Show that $$\int\!\!\!\int_Rxy^2 dx\,dy$$ where $R$ is the smaller segment of the circle $x^2+y^2=a^2$ cut off by the line $x+y=a$ is equal to $\displaystyle{a^5\over 20}$. \bigskip \noindent (3) \quad Evaluate $$\int\!\!\!\int_Rxy dx\,dy$$ where $R$ is the quadrant of the circle $x^2+y^2=a^2$ for which $x>0$, $y>0$. \hfill\break (Hint: use polar coordinates.) \hfill \bigskip \noindent (4) \quad Evaluate $$\int\!\!\!\int_Re^{-\left(x^2+y^2\right)}dx\,dy$$ where $R$ is the infinite quadrant given by $x>0$, $y>0$, by substituting plane polar coordinates. \par Let $I=\int\limits _0^\infty e^{-x^2}dx$. Evaluate $I^2$. (Hint: remember that $\int\limits _0^\infty e^{-x^2}dx$ is equal to $\int\limits _0^\infty e^{-y^2}dy$, and use the result of the first part.) \par Hence show that $$\int_0^\infty e^{-x^2}dx={1\over 2}\sqrt\pi.$$ \vfill \rightline{Peter Rado} \end